1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include <drm/drm_blend.h>
7
8 #include "i915_drv.h"
9 #include "i915_reg.h"
10 #include "i9xx_wm.h"
11 #include "intel_atomic.h"
12 #include "intel_atomic_plane.h"
13 #include "intel_bw.h"
14 #include "intel_cdclk.h"
15 #include "intel_crtc.h"
16 #include "intel_cursor_regs.h"
17 #include "intel_de.h"
18 #include "intel_display.h"
19 #include "intel_display_power.h"
20 #include "intel_display_types.h"
21 #include "intel_fb.h"
22 #include "intel_fixed.h"
23 #include "intel_pcode.h"
24 #include "intel_wm.h"
25 #include "skl_universal_plane_regs.h"
26 #include "skl_watermark.h"
27 #include "skl_watermark_regs.h"
28
29 /*It is expected that DSB can do posted writes to every register in
30 * the pipe and planes within 100us. For flip queue use case, the
31 * recommended DSB execution time is 100us + one SAGV block time.
32 */
33 #define DSB_EXE_TIME 100
34
35 static void skl_sagv_disable(struct drm_i915_private *i915);
36
37 /* Stores plane specific WM parameters */
38 struct skl_wm_params {
39 bool x_tiled, y_tiled;
40 bool rc_surface;
41 bool is_planar;
42 u32 width;
43 u8 cpp;
44 u32 plane_pixel_rate;
45 u32 y_min_scanlines;
46 u32 plane_bytes_per_line;
47 uint_fixed_16_16_t plane_blocks_per_line;
48 uint_fixed_16_16_t y_tile_minimum;
49 u32 linetime_us;
50 u32 dbuf_block_size;
51 };
52
intel_enabled_dbuf_slices_mask(struct drm_i915_private * i915)53 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915)
54 {
55 u8 enabled_slices = 0;
56 enum dbuf_slice slice;
57
58 for_each_dbuf_slice(i915, slice) {
59 if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
60 enabled_slices |= BIT(slice);
61 }
62
63 return enabled_slices;
64 }
65
66 /*
67 * FIXME: We still don't have the proper code detect if we need to apply the WA,
68 * so assume we'll always need it in order to avoid underruns.
69 */
skl_needs_memory_bw_wa(struct drm_i915_private * i915)70 static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915)
71 {
72 return DISPLAY_VER(i915) == 9;
73 }
74
75 bool
intel_has_sagv(struct drm_i915_private * i915)76 intel_has_sagv(struct drm_i915_private *i915)
77 {
78 return HAS_SAGV(i915) &&
79 i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED;
80 }
81
82 static u32
intel_sagv_block_time(struct drm_i915_private * i915)83 intel_sagv_block_time(struct drm_i915_private *i915)
84 {
85 if (DISPLAY_VER(i915) >= 14) {
86 u32 val;
87
88 val = intel_de_read(i915, MTL_LATENCY_SAGV);
89
90 return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
91 } else if (DISPLAY_VER(i915) >= 12) {
92 u32 val = 0;
93 int ret;
94
95 ret = snb_pcode_read(&i915->uncore,
96 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
97 &val, NULL);
98 if (ret) {
99 drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n");
100 return 0;
101 }
102
103 return val;
104 } else if (DISPLAY_VER(i915) == 11) {
105 return 10;
106 } else if (HAS_SAGV(i915)) {
107 return 30;
108 } else {
109 return 0;
110 }
111 }
112
intel_sagv_init(struct drm_i915_private * i915)113 static void intel_sagv_init(struct drm_i915_private *i915)
114 {
115 if (!HAS_SAGV(i915))
116 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
117
118 /*
119 * Probe to see if we have working SAGV control.
120 * For icl+ this was already determined by intel_bw_init_hw().
121 */
122 if (DISPLAY_VER(i915) < 11)
123 skl_sagv_disable(i915);
124
125 drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN);
126
127 i915->display.sagv.block_time_us = intel_sagv_block_time(i915);
128
129 drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
130 str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us);
131
132 /* avoid overflow when adding with wm0 latency/etc. */
133 if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX,
134 "Excessive SAGV block time %u, ignoring\n",
135 i915->display.sagv.block_time_us))
136 i915->display.sagv.block_time_us = 0;
137
138 if (!intel_has_sagv(i915))
139 i915->display.sagv.block_time_us = 0;
140 }
141
142 /*
143 * SAGV dynamically adjusts the system agent voltage and clock frequencies
144 * depending on power and performance requirements. The display engine access
145 * to system memory is blocked during the adjustment time. Because of the
146 * blocking time, having this enabled can cause full system hangs and/or pipe
147 * underruns if we don't meet all of the following requirements:
148 *
149 * - <= 1 pipe enabled
150 * - All planes can enable watermarks for latencies >= SAGV engine block time
151 * - We're not using an interlaced display configuration
152 */
skl_sagv_enable(struct drm_i915_private * i915)153 static void skl_sagv_enable(struct drm_i915_private *i915)
154 {
155 int ret;
156
157 if (!intel_has_sagv(i915))
158 return;
159
160 if (i915->display.sagv.status == I915_SAGV_ENABLED)
161 return;
162
163 drm_dbg_kms(&i915->drm, "Enabling SAGV\n");
164 ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
165 GEN9_SAGV_ENABLE);
166
167 /* We don't need to wait for SAGV when enabling */
168
169 /*
170 * Some skl systems, pre-release machines in particular,
171 * don't actually have SAGV.
172 */
173 if (IS_SKYLAKE(i915) && ret == -ENXIO) {
174 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
175 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
176 return;
177 } else if (ret < 0) {
178 drm_err(&i915->drm, "Failed to enable SAGV\n");
179 return;
180 }
181
182 i915->display.sagv.status = I915_SAGV_ENABLED;
183 }
184
skl_sagv_disable(struct drm_i915_private * i915)185 static void skl_sagv_disable(struct drm_i915_private *i915)
186 {
187 int ret;
188
189 if (!intel_has_sagv(i915))
190 return;
191
192 if (i915->display.sagv.status == I915_SAGV_DISABLED)
193 return;
194
195 drm_dbg_kms(&i915->drm, "Disabling SAGV\n");
196 /* bspec says to keep retrying for at least 1 ms */
197 ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
198 GEN9_SAGV_DISABLE,
199 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
200 1);
201 /*
202 * Some skl systems, pre-release machines in particular,
203 * don't actually have SAGV.
204 */
205 if (IS_SKYLAKE(i915) && ret == -ENXIO) {
206 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
207 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
208 return;
209 } else if (ret < 0) {
210 drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret);
211 return;
212 }
213
214 i915->display.sagv.status = I915_SAGV_DISABLED;
215 }
216
skl_sagv_pre_plane_update(struct intel_atomic_state * state)217 static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
218 {
219 struct drm_i915_private *i915 = to_i915(state->base.dev);
220 const struct intel_bw_state *new_bw_state =
221 intel_atomic_get_new_bw_state(state);
222
223 if (!new_bw_state)
224 return;
225
226 if (!intel_can_enable_sagv(i915, new_bw_state))
227 skl_sagv_disable(i915);
228 }
229
skl_sagv_post_plane_update(struct intel_atomic_state * state)230 static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
231 {
232 struct drm_i915_private *i915 = to_i915(state->base.dev);
233 const struct intel_bw_state *new_bw_state =
234 intel_atomic_get_new_bw_state(state);
235
236 if (!new_bw_state)
237 return;
238
239 if (intel_can_enable_sagv(i915, new_bw_state))
240 skl_sagv_enable(i915);
241 }
242
icl_sagv_pre_plane_update(struct intel_atomic_state * state)243 static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
244 {
245 struct drm_i915_private *i915 = to_i915(state->base.dev);
246 const struct intel_bw_state *old_bw_state =
247 intel_atomic_get_old_bw_state(state);
248 const struct intel_bw_state *new_bw_state =
249 intel_atomic_get_new_bw_state(state);
250 u16 old_mask, new_mask;
251
252 if (!new_bw_state)
253 return;
254
255 old_mask = old_bw_state->qgv_points_mask;
256 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
257
258 if (old_mask == new_mask)
259 return;
260
261 WARN_ON(!new_bw_state->base.changed);
262
263 drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
264 old_mask, new_mask);
265
266 /*
267 * Restrict required qgv points before updating the configuration.
268 * According to BSpec we can't mask and unmask qgv points at the same
269 * time. Also masking should be done before updating the configuration
270 * and unmasking afterwards.
271 */
272 icl_pcode_restrict_qgv_points(i915, new_mask);
273 }
274
icl_sagv_post_plane_update(struct intel_atomic_state * state)275 static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
276 {
277 struct drm_i915_private *i915 = to_i915(state->base.dev);
278 const struct intel_bw_state *old_bw_state =
279 intel_atomic_get_old_bw_state(state);
280 const struct intel_bw_state *new_bw_state =
281 intel_atomic_get_new_bw_state(state);
282 u16 old_mask, new_mask;
283
284 if (!new_bw_state)
285 return;
286
287 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
288 new_mask = new_bw_state->qgv_points_mask;
289
290 if (old_mask == new_mask)
291 return;
292
293 WARN_ON(!new_bw_state->base.changed);
294
295 drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
296 old_mask, new_mask);
297
298 /*
299 * Allow required qgv points after updating the configuration.
300 * According to BSpec we can't mask and unmask qgv points at the same
301 * time. Also masking should be done before updating the configuration
302 * and unmasking afterwards.
303 */
304 icl_pcode_restrict_qgv_points(i915, new_mask);
305 }
306
intel_sagv_pre_plane_update(struct intel_atomic_state * state)307 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
308 {
309 struct drm_i915_private *i915 = to_i915(state->base.dev);
310
311 /*
312 * Just return if we can't control SAGV or don't have it.
313 * This is different from situation when we have SAGV but just can't
314 * afford it due to DBuf limitation - in case if SAGV is completely
315 * disabled in a BIOS, we are not even allowed to send a PCode request,
316 * as it will throw an error. So have to check it here.
317 */
318 if (!intel_has_sagv(i915))
319 return;
320
321 if (DISPLAY_VER(i915) >= 11)
322 icl_sagv_pre_plane_update(state);
323 else
324 skl_sagv_pre_plane_update(state);
325 }
326
intel_sagv_post_plane_update(struct intel_atomic_state * state)327 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
328 {
329 struct drm_i915_private *i915 = to_i915(state->base.dev);
330
331 /*
332 * Just return if we can't control SAGV or don't have it.
333 * This is different from situation when we have SAGV but just can't
334 * afford it due to DBuf limitation - in case if SAGV is completely
335 * disabled in a BIOS, we are not even allowed to send a PCode request,
336 * as it will throw an error. So have to check it here.
337 */
338 if (!intel_has_sagv(i915))
339 return;
340
341 if (DISPLAY_VER(i915) >= 11)
342 icl_sagv_post_plane_update(state);
343 else
344 skl_sagv_post_plane_update(state);
345 }
346
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)347 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
348 {
349 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
350 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
351 enum plane_id plane_id;
352 int max_level = INT_MAX;
353
354 if (!intel_has_sagv(i915))
355 return false;
356
357 if (!crtc_state->hw.active)
358 return true;
359
360 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
361 return false;
362
363 for_each_plane_id_on_crtc(crtc, plane_id) {
364 const struct skl_plane_wm *wm =
365 &crtc_state->wm.skl.optimal.planes[plane_id];
366 int level;
367
368 /* Skip this plane if it's not enabled */
369 if (!wm->wm[0].enable)
370 continue;
371
372 /* Find the highest enabled wm level for this plane */
373 for (level = i915->display.wm.num_levels - 1;
374 !wm->wm[level].enable; --level)
375 { }
376
377 /* Highest common enabled wm level for all planes */
378 max_level = min(level, max_level);
379 }
380
381 /* No enabled planes? */
382 if (max_level == INT_MAX)
383 return true;
384
385 for_each_plane_id_on_crtc(crtc, plane_id) {
386 const struct skl_plane_wm *wm =
387 &crtc_state->wm.skl.optimal.planes[plane_id];
388
389 /*
390 * All enabled planes must have enabled a common wm level that
391 * can tolerate memory latencies higher than sagv_block_time_us
392 */
393 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
394 return false;
395 }
396
397 return true;
398 }
399
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)400 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
401 {
402 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
403 enum plane_id plane_id;
404
405 if (!crtc_state->hw.active)
406 return true;
407
408 for_each_plane_id_on_crtc(crtc, plane_id) {
409 const struct skl_plane_wm *wm =
410 &crtc_state->wm.skl.optimal.planes[plane_id];
411
412 if (wm->wm[0].enable && !wm->sagv.wm0.enable)
413 return false;
414 }
415
416 return true;
417 }
418
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)419 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
420 {
421 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
422 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
423
424 if (!i915->display.params.enable_sagv)
425 return false;
426
427 if (DISPLAY_VER(i915) >= 12)
428 return tgl_crtc_can_enable_sagv(crtc_state);
429 else
430 return skl_crtc_can_enable_sagv(crtc_state);
431 }
432
intel_can_enable_sagv(struct drm_i915_private * i915,const struct intel_bw_state * bw_state)433 bool intel_can_enable_sagv(struct drm_i915_private *i915,
434 const struct intel_bw_state *bw_state)
435 {
436 if (DISPLAY_VER(i915) < 11 &&
437 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
438 return false;
439
440 return bw_state->pipe_sagv_reject == 0;
441 }
442
intel_compute_sagv_mask(struct intel_atomic_state * state)443 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
444 {
445 struct drm_i915_private *i915 = to_i915(state->base.dev);
446 int ret;
447 struct intel_crtc *crtc;
448 struct intel_crtc_state *new_crtc_state;
449 struct intel_bw_state *new_bw_state = NULL;
450 const struct intel_bw_state *old_bw_state = NULL;
451 int i;
452
453 for_each_new_intel_crtc_in_state(state, crtc,
454 new_crtc_state, i) {
455 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
456
457 new_bw_state = intel_atomic_get_bw_state(state);
458 if (IS_ERR(new_bw_state))
459 return PTR_ERR(new_bw_state);
460
461 old_bw_state = intel_atomic_get_old_bw_state(state);
462
463 /*
464 * We store use_sagv_wm in the crtc state rather than relying on
465 * that bw state since we have no convenient way to get at the
466 * latter from the plane commit hooks (especially in the legacy
467 * cursor case).
468 *
469 * drm_atomic_check_only() gets upset if we pull more crtcs
470 * into the state, so we have to calculate this based on the
471 * individual intel_crtc_can_enable_sagv() rather than
472 * the overall intel_can_enable_sagv(). Otherwise the
473 * crtcs not included in the commit would not switch to the
474 * SAGV watermarks when we are about to enable SAGV, and that
475 * would lead to underruns. This does mean extra power draw
476 * when only a subset of the crtcs are blocking SAGV as the
477 * other crtcs can't be allowed to use the more optimal
478 * normal (ie. non-SAGV) watermarks.
479 */
480 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) &&
481 DISPLAY_VER(i915) >= 12 &&
482 intel_crtc_can_enable_sagv(new_crtc_state);
483
484 if (intel_crtc_can_enable_sagv(new_crtc_state))
485 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
486 else
487 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
488 }
489
490 if (!new_bw_state)
491 return 0;
492
493 new_bw_state->active_pipes =
494 intel_calc_active_pipes(state, old_bw_state->active_pipes);
495
496 if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
497 ret = intel_atomic_lock_global_state(&new_bw_state->base);
498 if (ret)
499 return ret;
500 }
501
502 if (intel_can_enable_sagv(i915, new_bw_state) !=
503 intel_can_enable_sagv(i915, old_bw_state)) {
504 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
505 if (ret)
506 return ret;
507 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
508 ret = intel_atomic_lock_global_state(&new_bw_state->base);
509 if (ret)
510 return ret;
511 }
512
513 return 0;
514 }
515
skl_ddb_entry_init(struct skl_ddb_entry * entry,u16 start,u16 end)516 static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
517 u16 start, u16 end)
518 {
519 entry->start = start;
520 entry->end = end;
521
522 return end;
523 }
524
intel_dbuf_slice_size(struct drm_i915_private * i915)525 static int intel_dbuf_slice_size(struct drm_i915_private *i915)
526 {
527 return DISPLAY_INFO(i915)->dbuf.size /
528 hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask);
529 }
530
531 static void
skl_ddb_entry_for_slices(struct drm_i915_private * i915,u8 slice_mask,struct skl_ddb_entry * ddb)532 skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask,
533 struct skl_ddb_entry *ddb)
534 {
535 int slice_size = intel_dbuf_slice_size(i915);
536
537 if (!slice_mask) {
538 ddb->start = 0;
539 ddb->end = 0;
540 return;
541 }
542
543 ddb->start = (ffs(slice_mask) - 1) * slice_size;
544 ddb->end = fls(slice_mask) * slice_size;
545
546 WARN_ON(ddb->start >= ddb->end);
547 WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size);
548 }
549
mbus_ddb_offset(struct drm_i915_private * i915,u8 slice_mask)550 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
551 {
552 struct skl_ddb_entry ddb;
553
554 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
555 slice_mask = BIT(DBUF_S1);
556 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
557 slice_mask = BIT(DBUF_S3);
558
559 skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
560
561 return ddb.start;
562 }
563
skl_ddb_dbuf_slice_mask(struct drm_i915_private * i915,const struct skl_ddb_entry * entry)564 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915,
565 const struct skl_ddb_entry *entry)
566 {
567 int slice_size = intel_dbuf_slice_size(i915);
568 enum dbuf_slice start_slice, end_slice;
569 u8 slice_mask = 0;
570
571 if (!skl_ddb_entry_size(entry))
572 return 0;
573
574 start_slice = entry->start / slice_size;
575 end_slice = (entry->end - 1) / slice_size;
576
577 /*
578 * Per plane DDB entry can in a really worst case be on multiple slices
579 * but single entry is anyway contigious.
580 */
581 while (start_slice <= end_slice) {
582 slice_mask |= BIT(start_slice);
583 start_slice++;
584 }
585
586 return slice_mask;
587 }
588
intel_crtc_ddb_weight(const struct intel_crtc_state * crtc_state)589 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
590 {
591 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
592 int hdisplay, vdisplay;
593
594 if (!crtc_state->hw.active)
595 return 0;
596
597 /*
598 * Watermark/ddb requirement highly depends upon width of the
599 * framebuffer, So instead of allocating DDB equally among pipes
600 * distribute DDB based on resolution/width of the display.
601 */
602 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
603
604 return hdisplay;
605 }
606
intel_crtc_dbuf_weights(const struct intel_dbuf_state * dbuf_state,enum pipe for_pipe,unsigned int * weight_start,unsigned int * weight_end,unsigned int * weight_total)607 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
608 enum pipe for_pipe,
609 unsigned int *weight_start,
610 unsigned int *weight_end,
611 unsigned int *weight_total)
612 {
613 struct drm_i915_private *i915 =
614 to_i915(dbuf_state->base.state->base.dev);
615 enum pipe pipe;
616
617 *weight_start = 0;
618 *weight_end = 0;
619 *weight_total = 0;
620
621 for_each_pipe(i915, pipe) {
622 int weight = dbuf_state->weight[pipe];
623
624 /*
625 * Do not account pipes using other slice sets
626 * luckily as of current BSpec slice sets do not partially
627 * intersect(pipes share either same one slice or same slice set
628 * i.e no partial intersection), so it is enough to check for
629 * equality for now.
630 */
631 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
632 continue;
633
634 *weight_total += weight;
635 if (pipe < for_pipe) {
636 *weight_start += weight;
637 *weight_end += weight;
638 } else if (pipe == for_pipe) {
639 *weight_end += weight;
640 }
641 }
642 }
643
644 static int
skl_crtc_allocate_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)645 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
646 {
647 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
648 unsigned int weight_total, weight_start, weight_end;
649 const struct intel_dbuf_state *old_dbuf_state =
650 intel_atomic_get_old_dbuf_state(state);
651 struct intel_dbuf_state *new_dbuf_state =
652 intel_atomic_get_new_dbuf_state(state);
653 struct intel_crtc_state *crtc_state;
654 struct skl_ddb_entry ddb_slices;
655 enum pipe pipe = crtc->pipe;
656 unsigned int mbus_offset = 0;
657 u32 ddb_range_size;
658 u32 dbuf_slice_mask;
659 u32 start, end;
660 int ret;
661
662 if (new_dbuf_state->weight[pipe] == 0) {
663 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
664 goto out;
665 }
666
667 dbuf_slice_mask = new_dbuf_state->slices[pipe];
668
669 skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices);
670 mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask);
671 ddb_range_size = skl_ddb_entry_size(&ddb_slices);
672
673 intel_crtc_dbuf_weights(new_dbuf_state, pipe,
674 &weight_start, &weight_end, &weight_total);
675
676 start = ddb_range_size * weight_start / weight_total;
677 end = ddb_range_size * weight_end / weight_total;
678
679 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
680 ddb_slices.start - mbus_offset + start,
681 ddb_slices.start - mbus_offset + end);
682
683 out:
684 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
685 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
686 &new_dbuf_state->ddb[pipe]))
687 return 0;
688
689 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
690 if (ret)
691 return ret;
692
693 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
694 if (IS_ERR(crtc_state))
695 return PTR_ERR(crtc_state);
696
697 /*
698 * Used for checking overlaps, so we need absolute
699 * offsets instead of MBUS relative offsets.
700 */
701 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
702 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
703
704 drm_dbg_kms(&i915->drm,
705 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
706 crtc->base.base.id, crtc->base.name,
707 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
708 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
709 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
710 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
711
712 return 0;
713 }
714
715 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
716 int width, const struct drm_format_info *format,
717 u64 modifier, unsigned int rotation,
718 u32 plane_pixel_rate, struct skl_wm_params *wp,
719 int color_plane);
720
721 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
722 struct intel_plane *plane,
723 int level,
724 unsigned int latency,
725 const struct skl_wm_params *wp,
726 const struct skl_wm_level *result_prev,
727 struct skl_wm_level *result /* out */);
728
skl_wm_latency(struct drm_i915_private * i915,int level,const struct skl_wm_params * wp)729 static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level,
730 const struct skl_wm_params *wp)
731 {
732 unsigned int latency = i915->display.wm.skl_latency[level];
733
734 if (latency == 0)
735 return 0;
736
737 /*
738 * WaIncreaseLatencyIPCEnabled: kbl,cfl
739 * Display WA #1141: kbl,cfl
740 */
741 if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) &&
742 skl_watermark_ipc_enabled(i915))
743 latency += 4;
744
745 if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled)
746 latency += 15;
747
748 return latency;
749 }
750
751 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)752 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
753 int num_active)
754 {
755 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
756 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
757 struct skl_wm_level wm = {};
758 int ret, min_ddb_alloc = 0;
759 struct skl_wm_params wp;
760 int level;
761
762 ret = skl_compute_wm_params(crtc_state, 256,
763 drm_format_info(DRM_FORMAT_ARGB8888),
764 DRM_FORMAT_MOD_LINEAR,
765 DRM_MODE_ROTATE_0,
766 crtc_state->pixel_rate, &wp, 0);
767 drm_WARN_ON(&i915->drm, ret);
768
769 for (level = 0; level < i915->display.wm.num_levels; level++) {
770 unsigned int latency = skl_wm_latency(i915, level, &wp);
771
772 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
773 if (wm.min_ddb_alloc == U16_MAX)
774 break;
775
776 min_ddb_alloc = wm.min_ddb_alloc;
777 }
778
779 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
780 }
781
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)782 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
783 {
784 skl_ddb_entry_init(entry,
785 REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
786 REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
787 if (entry->end)
788 entry->end++;
789 }
790
791 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * i915,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)792 skl_ddb_get_hw_plane_state(struct drm_i915_private *i915,
793 const enum pipe pipe,
794 const enum plane_id plane_id,
795 struct skl_ddb_entry *ddb,
796 struct skl_ddb_entry *ddb_y)
797 {
798 u32 val;
799
800 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
801 if (plane_id == PLANE_CURSOR) {
802 val = intel_de_read(i915, CUR_BUF_CFG(pipe));
803 skl_ddb_entry_init_from_hw(ddb, val);
804 return;
805 }
806
807 val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id));
808 skl_ddb_entry_init_from_hw(ddb, val);
809
810 if (DISPLAY_VER(i915) >= 11)
811 return;
812
813 val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id));
814 skl_ddb_entry_init_from_hw(ddb_y, val);
815 }
816
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)817 static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
818 struct skl_ddb_entry *ddb,
819 struct skl_ddb_entry *ddb_y)
820 {
821 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
822 enum intel_display_power_domain power_domain;
823 enum pipe pipe = crtc->pipe;
824 intel_wakeref_t wakeref;
825 enum plane_id plane_id;
826
827 power_domain = POWER_DOMAIN_PIPE(pipe);
828 wakeref = intel_display_power_get_if_enabled(i915, power_domain);
829 if (!wakeref)
830 return;
831
832 for_each_plane_id_on_crtc(crtc, plane_id)
833 skl_ddb_get_hw_plane_state(i915, pipe,
834 plane_id,
835 &ddb[plane_id],
836 &ddb_y[plane_id]);
837
838 intel_display_power_put(i915, power_domain, wakeref);
839 }
840
841 struct dbuf_slice_conf_entry {
842 u8 active_pipes;
843 u8 dbuf_mask[I915_MAX_PIPES];
844 bool join_mbus;
845 };
846
847 /*
848 * Table taken from Bspec 12716
849 * Pipes do have some preferred DBuf slice affinity,
850 * plus there are some hardcoded requirements on how
851 * those should be distributed for multipipe scenarios.
852 * For more DBuf slices algorithm can get even more messy
853 * and less readable, so decided to use a table almost
854 * as is from BSpec itself - that way it is at least easier
855 * to compare, change and check.
856 */
857 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
858 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
859 {
860 {
861 .active_pipes = BIT(PIPE_A),
862 .dbuf_mask = {
863 [PIPE_A] = BIT(DBUF_S1),
864 },
865 },
866 {
867 .active_pipes = BIT(PIPE_B),
868 .dbuf_mask = {
869 [PIPE_B] = BIT(DBUF_S1),
870 },
871 },
872 {
873 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
874 .dbuf_mask = {
875 [PIPE_A] = BIT(DBUF_S1),
876 [PIPE_B] = BIT(DBUF_S2),
877 },
878 },
879 {
880 .active_pipes = BIT(PIPE_C),
881 .dbuf_mask = {
882 [PIPE_C] = BIT(DBUF_S2),
883 },
884 },
885 {
886 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
887 .dbuf_mask = {
888 [PIPE_A] = BIT(DBUF_S1),
889 [PIPE_C] = BIT(DBUF_S2),
890 },
891 },
892 {
893 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
894 .dbuf_mask = {
895 [PIPE_B] = BIT(DBUF_S1),
896 [PIPE_C] = BIT(DBUF_S2),
897 },
898 },
899 {
900 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
901 .dbuf_mask = {
902 [PIPE_A] = BIT(DBUF_S1),
903 [PIPE_B] = BIT(DBUF_S1),
904 [PIPE_C] = BIT(DBUF_S2),
905 },
906 },
907 {}
908 };
909
910 /*
911 * Table taken from Bspec 49255
912 * Pipes do have some preferred DBuf slice affinity,
913 * plus there are some hardcoded requirements on how
914 * those should be distributed for multipipe scenarios.
915 * For more DBuf slices algorithm can get even more messy
916 * and less readable, so decided to use a table almost
917 * as is from BSpec itself - that way it is at least easier
918 * to compare, change and check.
919 */
920 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
921 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
922 {
923 {
924 .active_pipes = BIT(PIPE_A),
925 .dbuf_mask = {
926 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
927 },
928 },
929 {
930 .active_pipes = BIT(PIPE_B),
931 .dbuf_mask = {
932 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
933 },
934 },
935 {
936 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
937 .dbuf_mask = {
938 [PIPE_A] = BIT(DBUF_S2),
939 [PIPE_B] = BIT(DBUF_S1),
940 },
941 },
942 {
943 .active_pipes = BIT(PIPE_C),
944 .dbuf_mask = {
945 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
946 },
947 },
948 {
949 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
950 .dbuf_mask = {
951 [PIPE_A] = BIT(DBUF_S1),
952 [PIPE_C] = BIT(DBUF_S2),
953 },
954 },
955 {
956 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
957 .dbuf_mask = {
958 [PIPE_B] = BIT(DBUF_S1),
959 [PIPE_C] = BIT(DBUF_S2),
960 },
961 },
962 {
963 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
964 .dbuf_mask = {
965 [PIPE_A] = BIT(DBUF_S1),
966 [PIPE_B] = BIT(DBUF_S1),
967 [PIPE_C] = BIT(DBUF_S2),
968 },
969 },
970 {
971 .active_pipes = BIT(PIPE_D),
972 .dbuf_mask = {
973 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
974 },
975 },
976 {
977 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
978 .dbuf_mask = {
979 [PIPE_A] = BIT(DBUF_S1),
980 [PIPE_D] = BIT(DBUF_S2),
981 },
982 },
983 {
984 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
985 .dbuf_mask = {
986 [PIPE_B] = BIT(DBUF_S1),
987 [PIPE_D] = BIT(DBUF_S2),
988 },
989 },
990 {
991 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
992 .dbuf_mask = {
993 [PIPE_A] = BIT(DBUF_S1),
994 [PIPE_B] = BIT(DBUF_S1),
995 [PIPE_D] = BIT(DBUF_S2),
996 },
997 },
998 {
999 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1000 .dbuf_mask = {
1001 [PIPE_C] = BIT(DBUF_S1),
1002 [PIPE_D] = BIT(DBUF_S2),
1003 },
1004 },
1005 {
1006 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1007 .dbuf_mask = {
1008 [PIPE_A] = BIT(DBUF_S1),
1009 [PIPE_C] = BIT(DBUF_S2),
1010 [PIPE_D] = BIT(DBUF_S2),
1011 },
1012 },
1013 {
1014 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1015 .dbuf_mask = {
1016 [PIPE_B] = BIT(DBUF_S1),
1017 [PIPE_C] = BIT(DBUF_S2),
1018 [PIPE_D] = BIT(DBUF_S2),
1019 },
1020 },
1021 {
1022 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1023 .dbuf_mask = {
1024 [PIPE_A] = BIT(DBUF_S1),
1025 [PIPE_B] = BIT(DBUF_S1),
1026 [PIPE_C] = BIT(DBUF_S2),
1027 [PIPE_D] = BIT(DBUF_S2),
1028 },
1029 },
1030 {}
1031 };
1032
1033 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
1034 {
1035 .active_pipes = BIT(PIPE_A),
1036 .dbuf_mask = {
1037 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1038 },
1039 },
1040 {
1041 .active_pipes = BIT(PIPE_B),
1042 .dbuf_mask = {
1043 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1044 },
1045 },
1046 {
1047 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1048 .dbuf_mask = {
1049 [PIPE_A] = BIT(DBUF_S1),
1050 [PIPE_B] = BIT(DBUF_S2),
1051 },
1052 },
1053 {
1054 .active_pipes = BIT(PIPE_C),
1055 .dbuf_mask = {
1056 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1057 },
1058 },
1059 {
1060 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1061 .dbuf_mask = {
1062 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1063 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1064 },
1065 },
1066 {
1067 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1068 .dbuf_mask = {
1069 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1070 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1071 },
1072 },
1073 {
1074 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1075 .dbuf_mask = {
1076 [PIPE_A] = BIT(DBUF_S1),
1077 [PIPE_B] = BIT(DBUF_S2),
1078 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1079 },
1080 },
1081 {
1082 .active_pipes = BIT(PIPE_D),
1083 .dbuf_mask = {
1084 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1085 },
1086 },
1087 {
1088 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1089 .dbuf_mask = {
1090 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1091 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1092 },
1093 },
1094 {
1095 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1096 .dbuf_mask = {
1097 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1098 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1099 },
1100 },
1101 {
1102 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1103 .dbuf_mask = {
1104 [PIPE_A] = BIT(DBUF_S1),
1105 [PIPE_B] = BIT(DBUF_S2),
1106 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1107 },
1108 },
1109 {
1110 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1111 .dbuf_mask = {
1112 [PIPE_C] = BIT(DBUF_S3),
1113 [PIPE_D] = BIT(DBUF_S4),
1114 },
1115 },
1116 {
1117 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1118 .dbuf_mask = {
1119 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1120 [PIPE_C] = BIT(DBUF_S3),
1121 [PIPE_D] = BIT(DBUF_S4),
1122 },
1123 },
1124 {
1125 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1126 .dbuf_mask = {
1127 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1128 [PIPE_C] = BIT(DBUF_S3),
1129 [PIPE_D] = BIT(DBUF_S4),
1130 },
1131 },
1132 {
1133 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1134 .dbuf_mask = {
1135 [PIPE_A] = BIT(DBUF_S1),
1136 [PIPE_B] = BIT(DBUF_S2),
1137 [PIPE_C] = BIT(DBUF_S3),
1138 [PIPE_D] = BIT(DBUF_S4),
1139 },
1140 },
1141 {}
1142 };
1143
1144 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
1145 /*
1146 * Keep the join_mbus cases first so check_mbus_joined()
1147 * will prefer them over the !join_mbus cases.
1148 */
1149 {
1150 .active_pipes = BIT(PIPE_A),
1151 .dbuf_mask = {
1152 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1153 },
1154 .join_mbus = true,
1155 },
1156 {
1157 .active_pipes = BIT(PIPE_B),
1158 .dbuf_mask = {
1159 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1160 },
1161 .join_mbus = true,
1162 },
1163 {
1164 .active_pipes = BIT(PIPE_A),
1165 .dbuf_mask = {
1166 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1167 },
1168 .join_mbus = false,
1169 },
1170 {
1171 .active_pipes = BIT(PIPE_B),
1172 .dbuf_mask = {
1173 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1174 },
1175 .join_mbus = false,
1176 },
1177 {
1178 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1179 .dbuf_mask = {
1180 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1181 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1182 },
1183 },
1184 {
1185 .active_pipes = BIT(PIPE_C),
1186 .dbuf_mask = {
1187 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1188 },
1189 },
1190 {
1191 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1192 .dbuf_mask = {
1193 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1194 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1195 },
1196 },
1197 {
1198 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1199 .dbuf_mask = {
1200 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1201 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1202 },
1203 },
1204 {
1205 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1206 .dbuf_mask = {
1207 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1208 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1209 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1210 },
1211 },
1212 {
1213 .active_pipes = BIT(PIPE_D),
1214 .dbuf_mask = {
1215 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1216 },
1217 },
1218 {
1219 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1220 .dbuf_mask = {
1221 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1222 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1223 },
1224 },
1225 {
1226 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1227 .dbuf_mask = {
1228 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1229 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1230 },
1231 },
1232 {
1233 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1234 .dbuf_mask = {
1235 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1236 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1237 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1238 },
1239 },
1240 {
1241 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1242 .dbuf_mask = {
1243 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1244 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1245 },
1246 },
1247 {
1248 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1249 .dbuf_mask = {
1250 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1251 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1252 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1253 },
1254 },
1255 {
1256 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1257 .dbuf_mask = {
1258 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1259 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1260 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1261 },
1262 },
1263 {
1264 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1265 .dbuf_mask = {
1266 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1267 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1268 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1269 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1270 },
1271 },
1272 {}
1273
1274 };
1275
check_mbus_joined(u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)1276 static bool check_mbus_joined(u8 active_pipes,
1277 const struct dbuf_slice_conf_entry *dbuf_slices)
1278 {
1279 int i;
1280
1281 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1282 if (dbuf_slices[i].active_pipes == active_pipes)
1283 return dbuf_slices[i].join_mbus;
1284 }
1285 return false;
1286 }
1287
adlp_check_mbus_joined(u8 active_pipes)1288 static bool adlp_check_mbus_joined(u8 active_pipes)
1289 {
1290 return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
1291 }
1292
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus,const struct dbuf_slice_conf_entry * dbuf_slices)1293 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
1294 const struct dbuf_slice_conf_entry *dbuf_slices)
1295 {
1296 int i;
1297
1298 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1299 if (dbuf_slices[i].active_pipes == active_pipes &&
1300 dbuf_slices[i].join_mbus == join_mbus)
1301 return dbuf_slices[i].dbuf_mask[pipe];
1302 }
1303 return 0;
1304 }
1305
1306 /*
1307 * This function finds an entry with same enabled pipe configuration and
1308 * returns correspondent DBuf slice mask as stated in BSpec for particular
1309 * platform.
1310 */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1311 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1312 {
1313 /*
1314 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
1315 * required calculating "pipe ratio" in order to determine
1316 * if one or two slices can be used for single pipe configurations
1317 * as additional constraint to the existing table.
1318 * However based on recent info, it should be not "pipe ratio"
1319 * but rather ratio between pixel_rate and cdclk with additional
1320 * constants, so for now we are using only table until this is
1321 * clarified. Also this is the reason why crtc_state param is
1322 * still here - we will need it once those additional constraints
1323 * pop up.
1324 */
1325 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1326 icl_allowed_dbufs);
1327 }
1328
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1329 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1330 {
1331 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1332 tgl_allowed_dbufs);
1333 }
1334
adlp_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1335 static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1336 {
1337 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1338 adlp_allowed_dbufs);
1339 }
1340
dg2_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1341 static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1342 {
1343 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1344 dg2_allowed_dbufs);
1345 }
1346
skl_compute_dbuf_slices(struct intel_crtc * crtc,u8 active_pipes,bool join_mbus)1347 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
1348 {
1349 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1350 enum pipe pipe = crtc->pipe;
1351
1352 if (IS_DG2(i915))
1353 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1354 else if (DISPLAY_VER(i915) >= 13)
1355 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1356 else if (DISPLAY_VER(i915) == 12)
1357 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1358 else if (DISPLAY_VER(i915) == 11)
1359 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1360 /*
1361 * For anything else just return one slice yet.
1362 * Should be extended for other platforms.
1363 */
1364 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
1365 }
1366
1367 static bool
use_minimal_wm0_only(const struct intel_crtc_state * crtc_state,struct intel_plane * plane)1368 use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
1369 struct intel_plane *plane)
1370 {
1371 struct drm_i915_private *i915 = to_i915(plane->base.dev);
1372
1373 return DISPLAY_VER(i915) >= 13 &&
1374 crtc_state->uapi.async_flip &&
1375 plane->async_flip;
1376 }
1377
1378 static u64
skl_total_relative_data_rate(const struct intel_crtc_state * crtc_state)1379 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
1380 {
1381 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1382 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1383 enum plane_id plane_id;
1384 u64 data_rate = 0;
1385
1386 for_each_plane_id_on_crtc(crtc, plane_id) {
1387 if (plane_id == PLANE_CURSOR)
1388 continue;
1389
1390 data_rate += crtc_state->rel_data_rate[plane_id];
1391
1392 if (DISPLAY_VER(i915) < 11)
1393 data_rate += crtc_state->rel_data_rate_y[plane_id];
1394 }
1395
1396 return data_rate;
1397 }
1398
1399 const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id,int level)1400 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
1401 enum plane_id plane_id,
1402 int level)
1403 {
1404 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1405
1406 if (level == 0 && pipe_wm->use_sagv_wm)
1407 return &wm->sagv.wm0;
1408
1409 return &wm->wm[level];
1410 }
1411
1412 const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id)1413 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
1414 enum plane_id plane_id)
1415 {
1416 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1417
1418 if (pipe_wm->use_sagv_wm)
1419 return &wm->sagv.trans_wm;
1420
1421 return &wm->trans_wm;
1422 }
1423
1424 /*
1425 * We only disable the watermarks for each plane if
1426 * they exceed the ddb allocation of said plane. This
1427 * is done so that we don't end up touching cursor
1428 * watermarks needlessly when some other plane reduces
1429 * our max possible watermark level.
1430 *
1431 * Bspec has this to say about the PLANE_WM enable bit:
1432 * "All the watermarks at this level for all enabled
1433 * planes must be enabled before the level will be used."
1434 * So this is actually safe to do.
1435 */
1436 static void
skl_check_wm_level(struct skl_wm_level * wm,const struct skl_ddb_entry * ddb)1437 skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
1438 {
1439 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
1440 memset(wm, 0, sizeof(*wm));
1441 }
1442
1443 static void
skl_check_nv12_wm_level(struct skl_wm_level * wm,struct skl_wm_level * uv_wm,const struct skl_ddb_entry * ddb_y,const struct skl_ddb_entry * ddb)1444 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
1445 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
1446 {
1447 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
1448 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1449 memset(wm, 0, sizeof(*wm));
1450 memset(uv_wm, 0, sizeof(*uv_wm));
1451 }
1452 }
1453
skl_need_wm_copy_wa(struct drm_i915_private * i915,int level,const struct skl_plane_wm * wm)1454 static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level,
1455 const struct skl_plane_wm *wm)
1456 {
1457 /*
1458 * Wa_1408961008:icl, ehl
1459 * Wa_14012656716:tgl, adl
1460 * Wa_14017887344:icl
1461 * Wa_14017868169:adl, tgl
1462 * Due to some power saving optimizations, different subsystems
1463 * like PSR, might still use even disabled wm level registers,
1464 * for "reference", so lets keep at least the values sane.
1465 * Considering amount of WA requiring us to do similar things, was
1466 * decided to simply do it for all of the platforms, as those wm
1467 * levels are disabled, this isn't going to do harm anyway.
1468 */
1469 return level > 0 && !wm->wm[level].enable;
1470 }
1471
1472 struct skl_plane_ddb_iter {
1473 u64 data_rate;
1474 u16 start, size;
1475 };
1476
1477 static void
skl_allocate_plane_ddb(struct skl_plane_ddb_iter * iter,struct skl_ddb_entry * ddb,const struct skl_wm_level * wm,u64 data_rate)1478 skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
1479 struct skl_ddb_entry *ddb,
1480 const struct skl_wm_level *wm,
1481 u64 data_rate)
1482 {
1483 u16 size, extra = 0;
1484
1485 if (data_rate) {
1486 extra = min_t(u16, iter->size,
1487 DIV64_U64_ROUND_UP(iter->size * data_rate,
1488 iter->data_rate));
1489 iter->size -= extra;
1490 iter->data_rate -= data_rate;
1491 }
1492
1493 /*
1494 * Keep ddb entry of all disabled planes explicitly zeroed
1495 * to avoid skl_ddb_add_affected_planes() adding them to
1496 * the state when other planes change their allocations.
1497 */
1498 size = wm->min_ddb_alloc + extra;
1499 if (size)
1500 iter->start = skl_ddb_entry_init(ddb, iter->start,
1501 iter->start + size);
1502 }
1503
1504 static int
skl_crtc_allocate_plane_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)1505 skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
1506 struct intel_crtc *crtc)
1507 {
1508 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1509 struct intel_crtc_state *crtc_state =
1510 intel_atomic_get_new_crtc_state(state, crtc);
1511 const struct intel_dbuf_state *dbuf_state =
1512 intel_atomic_get_new_dbuf_state(state);
1513 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
1514 int num_active = hweight8(dbuf_state->active_pipes);
1515 struct skl_plane_ddb_iter iter;
1516 enum plane_id plane_id;
1517 u16 cursor_size;
1518 u32 blocks;
1519 int level;
1520
1521 /* Clear the partitioning for disabled planes. */
1522 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
1523 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
1524
1525 if (!crtc_state->hw.active)
1526 return 0;
1527
1528 iter.start = alloc->start;
1529 iter.size = skl_ddb_entry_size(alloc);
1530 if (iter.size == 0)
1531 return 0;
1532
1533 /* Allocate fixed number of blocks for cursor. */
1534 cursor_size = skl_cursor_allocation(crtc_state, num_active);
1535 iter.size -= cursor_size;
1536 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
1537 alloc->end - cursor_size, alloc->end);
1538
1539 iter.data_rate = skl_total_relative_data_rate(crtc_state);
1540
1541 /*
1542 * Find the highest watermark level for which we can satisfy the block
1543 * requirement of active planes.
1544 */
1545 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
1546 blocks = 0;
1547 for_each_plane_id_on_crtc(crtc, plane_id) {
1548 const struct skl_plane_wm *wm =
1549 &crtc_state->wm.skl.optimal.planes[plane_id];
1550
1551 if (plane_id == PLANE_CURSOR) {
1552 const struct skl_ddb_entry *ddb =
1553 &crtc_state->wm.skl.plane_ddb[plane_id];
1554
1555 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1556 drm_WARN_ON(&i915->drm,
1557 wm->wm[level].min_ddb_alloc != U16_MAX);
1558 blocks = U32_MAX;
1559 break;
1560 }
1561 continue;
1562 }
1563
1564 blocks += wm->wm[level].min_ddb_alloc;
1565 blocks += wm->uv_wm[level].min_ddb_alloc;
1566 }
1567
1568 if (blocks <= iter.size) {
1569 iter.size -= blocks;
1570 break;
1571 }
1572 }
1573
1574 if (level < 0) {
1575 drm_dbg_kms(&i915->drm,
1576 "Requested display configuration exceeds system DDB limitations");
1577 drm_dbg_kms(&i915->drm, "minimum required %d/%d\n",
1578 blocks, iter.size);
1579 return -EINVAL;
1580 }
1581
1582 /* avoid the WARN later when we don't allocate any extra DDB */
1583 if (iter.data_rate == 0)
1584 iter.size = 0;
1585
1586 /*
1587 * Grant each plane the blocks it requires at the highest achievable
1588 * watermark level, plus an extra share of the leftover blocks
1589 * proportional to its relative data rate.
1590 */
1591 for_each_plane_id_on_crtc(crtc, plane_id) {
1592 struct skl_ddb_entry *ddb =
1593 &crtc_state->wm.skl.plane_ddb[plane_id];
1594 struct skl_ddb_entry *ddb_y =
1595 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1596 const struct skl_plane_wm *wm =
1597 &crtc_state->wm.skl.optimal.planes[plane_id];
1598
1599 if (plane_id == PLANE_CURSOR)
1600 continue;
1601
1602 if (DISPLAY_VER(i915) < 11 &&
1603 crtc_state->nv12_planes & BIT(plane_id)) {
1604 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
1605 crtc_state->rel_data_rate_y[plane_id]);
1606 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
1607 crtc_state->rel_data_rate[plane_id]);
1608 } else {
1609 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
1610 crtc_state->rel_data_rate[plane_id]);
1611 }
1612 }
1613 drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0);
1614
1615 /*
1616 * When we calculated watermark values we didn't know how high
1617 * of a level we'd actually be able to hit, so we just marked
1618 * all levels as "enabled." Go back now and disable the ones
1619 * that aren't actually possible.
1620 */
1621 for (level++; level < i915->display.wm.num_levels; level++) {
1622 for_each_plane_id_on_crtc(crtc, plane_id) {
1623 const struct skl_ddb_entry *ddb =
1624 &crtc_state->wm.skl.plane_ddb[plane_id];
1625 const struct skl_ddb_entry *ddb_y =
1626 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1627 struct skl_plane_wm *wm =
1628 &crtc_state->wm.skl.optimal.planes[plane_id];
1629
1630 if (DISPLAY_VER(i915) < 11 &&
1631 crtc_state->nv12_planes & BIT(plane_id))
1632 skl_check_nv12_wm_level(&wm->wm[level],
1633 &wm->uv_wm[level],
1634 ddb_y, ddb);
1635 else
1636 skl_check_wm_level(&wm->wm[level], ddb);
1637
1638 if (skl_need_wm_copy_wa(i915, level, wm)) {
1639 wm->wm[level].blocks = wm->wm[level - 1].blocks;
1640 wm->wm[level].lines = wm->wm[level - 1].lines;
1641 wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines;
1642 }
1643 }
1644 }
1645
1646 /*
1647 * Go back and disable the transition and SAGV watermarks
1648 * if it turns out we don't have enough DDB blocks for them.
1649 */
1650 for_each_plane_id_on_crtc(crtc, plane_id) {
1651 const struct skl_ddb_entry *ddb =
1652 &crtc_state->wm.skl.plane_ddb[plane_id];
1653 const struct skl_ddb_entry *ddb_y =
1654 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1655 struct skl_plane_wm *wm =
1656 &crtc_state->wm.skl.optimal.planes[plane_id];
1657
1658 if (DISPLAY_VER(i915) < 11 &&
1659 crtc_state->nv12_planes & BIT(plane_id)) {
1660 skl_check_wm_level(&wm->trans_wm, ddb_y);
1661 } else {
1662 WARN_ON(skl_ddb_entry_size(ddb_y));
1663
1664 skl_check_wm_level(&wm->trans_wm, ddb);
1665 }
1666
1667 skl_check_wm_level(&wm->sagv.wm0, ddb);
1668 skl_check_wm_level(&wm->sagv.trans_wm, ddb);
1669 }
1670
1671 return 0;
1672 }
1673
1674 /*
1675 * The max latency should be 257 (max the punit can code is 255 and we add 2us
1676 * for the read latency) and cpp should always be <= 8, so that
1677 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
1678 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
1679 */
1680 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * i915,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)1681 skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate,
1682 u8 cpp, u32 latency, u32 dbuf_block_size)
1683 {
1684 u32 wm_intermediate_val;
1685 uint_fixed_16_16_t ret;
1686
1687 if (latency == 0)
1688 return FP_16_16_MAX;
1689
1690 wm_intermediate_val = latency * pixel_rate * cpp;
1691 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
1692
1693 if (DISPLAY_VER(i915) >= 10)
1694 ret = add_fixed16_u32(ret, 1);
1695
1696 return ret;
1697 }
1698
1699 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)1700 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
1701 uint_fixed_16_16_t plane_blocks_per_line)
1702 {
1703 u32 wm_intermediate_val;
1704 uint_fixed_16_16_t ret;
1705
1706 if (latency == 0)
1707 return FP_16_16_MAX;
1708
1709 wm_intermediate_val = latency * pixel_rate;
1710 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
1711 pipe_htotal * 1000);
1712 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
1713 return ret;
1714 }
1715
1716 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)1717 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
1718 {
1719 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1720 u32 pixel_rate;
1721 u32 crtc_htotal;
1722 uint_fixed_16_16_t linetime_us;
1723
1724 if (!crtc_state->hw.active)
1725 return u32_to_fixed16(0);
1726
1727 pixel_rate = crtc_state->pixel_rate;
1728
1729 if (drm_WARN_ON(&i915->drm, pixel_rate == 0))
1730 return u32_to_fixed16(0);
1731
1732 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
1733 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
1734
1735 return linetime_us;
1736 }
1737
1738 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)1739 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
1740 int width, const struct drm_format_info *format,
1741 u64 modifier, unsigned int rotation,
1742 u32 plane_pixel_rate, struct skl_wm_params *wp,
1743 int color_plane)
1744 {
1745 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1746 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1747 u32 interm_pbpl;
1748
1749 /* only planar format has two planes */
1750 if (color_plane == 1 &&
1751 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
1752 drm_dbg_kms(&i915->drm,
1753 "Non planar format have single plane\n");
1754 return -EINVAL;
1755 }
1756
1757 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
1758 wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED &&
1759 intel_fb_is_tiled_modifier(modifier);
1760 wp->rc_surface = intel_fb_is_ccs_modifier(modifier);
1761 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
1762
1763 wp->width = width;
1764 if (color_plane == 1 && wp->is_planar)
1765 wp->width /= 2;
1766
1767 wp->cpp = format->cpp[color_plane];
1768 wp->plane_pixel_rate = plane_pixel_rate;
1769
1770 if (DISPLAY_VER(i915) >= 11 &&
1771 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
1772 wp->dbuf_block_size = 256;
1773 else
1774 wp->dbuf_block_size = 512;
1775
1776 if (drm_rotation_90_or_270(rotation)) {
1777 switch (wp->cpp) {
1778 case 1:
1779 wp->y_min_scanlines = 16;
1780 break;
1781 case 2:
1782 wp->y_min_scanlines = 8;
1783 break;
1784 case 4:
1785 wp->y_min_scanlines = 4;
1786 break;
1787 default:
1788 MISSING_CASE(wp->cpp);
1789 return -EINVAL;
1790 }
1791 } else {
1792 wp->y_min_scanlines = 4;
1793 }
1794
1795 if (skl_needs_memory_bw_wa(i915))
1796 wp->y_min_scanlines *= 2;
1797
1798 wp->plane_bytes_per_line = wp->width * wp->cpp;
1799 if (wp->y_tiled) {
1800 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
1801 wp->y_min_scanlines,
1802 wp->dbuf_block_size);
1803
1804 if (DISPLAY_VER(i915) >= 10)
1805 interm_pbpl++;
1806
1807 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
1808 wp->y_min_scanlines);
1809 } else {
1810 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
1811 wp->dbuf_block_size);
1812
1813 if (!wp->x_tiled || DISPLAY_VER(i915) >= 10)
1814 interm_pbpl++;
1815
1816 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
1817 }
1818
1819 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
1820 wp->plane_blocks_per_line);
1821
1822 wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
1823
1824 return 0;
1825 }
1826
1827 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)1828 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
1829 const struct intel_plane_state *plane_state,
1830 struct skl_wm_params *wp, int color_plane)
1831 {
1832 const struct drm_framebuffer *fb = plane_state->hw.fb;
1833 int width;
1834
1835 /*
1836 * Src coordinates are already rotated by 270 degrees for
1837 * the 90/270 degree plane rotation cases (to match the
1838 * GTT mapping), hence no need to account for rotation here.
1839 */
1840 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1841
1842 return skl_compute_wm_params(crtc_state, width,
1843 fb->format, fb->modifier,
1844 plane_state->hw.rotation,
1845 intel_plane_pixel_rate(crtc_state, plane_state),
1846 wp, color_plane);
1847 }
1848
skl_wm_has_lines(struct drm_i915_private * i915,int level)1849 static bool skl_wm_has_lines(struct drm_i915_private *i915, int level)
1850 {
1851 if (DISPLAY_VER(i915) >= 10)
1852 return true;
1853
1854 /* The number of lines are ignored for the level 0 watermark. */
1855 return level > 0;
1856 }
1857
skl_wm_max_lines(struct drm_i915_private * i915)1858 static int skl_wm_max_lines(struct drm_i915_private *i915)
1859 {
1860 if (DISPLAY_VER(i915) >= 13)
1861 return 255;
1862 else
1863 return 31;
1864 }
1865
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)1866 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
1867 struct intel_plane *plane,
1868 int level,
1869 unsigned int latency,
1870 const struct skl_wm_params *wp,
1871 const struct skl_wm_level *result_prev,
1872 struct skl_wm_level *result /* out */)
1873 {
1874 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1875 uint_fixed_16_16_t method1, method2;
1876 uint_fixed_16_16_t selected_result;
1877 u32 blocks, lines, min_ddb_alloc = 0;
1878
1879 if (latency == 0 ||
1880 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
1881 /* reject it */
1882 result->min_ddb_alloc = U16_MAX;
1883 return;
1884 }
1885
1886 method1 = skl_wm_method1(i915, wp->plane_pixel_rate,
1887 wp->cpp, latency, wp->dbuf_block_size);
1888 method2 = skl_wm_method2(wp->plane_pixel_rate,
1889 crtc_state->hw.pipe_mode.crtc_htotal,
1890 latency,
1891 wp->plane_blocks_per_line);
1892
1893 if (wp->y_tiled) {
1894 selected_result = max_fixed16(method2, wp->y_tile_minimum);
1895 } else {
1896 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
1897 wp->dbuf_block_size < 1) &&
1898 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
1899 selected_result = method2;
1900 } else if (latency >= wp->linetime_us) {
1901 if (DISPLAY_VER(i915) == 9)
1902 selected_result = min_fixed16(method1, method2);
1903 else
1904 selected_result = method2;
1905 } else {
1906 selected_result = method1;
1907 }
1908 }
1909
1910 blocks = fixed16_to_u32_round_up(selected_result) + 1;
1911 /*
1912 * Lets have blocks at minimum equivalent to plane_blocks_per_line
1913 * as there will be at minimum one line for lines configuration. This
1914 * is a work around for FIFO underruns observed with resolutions like
1915 * 4k 60 Hz in single channel DRAM configurations.
1916 *
1917 * As per the Bspec 49325, if the ddb allocation can hold at least
1918 * one plane_blocks_per_line, we should have selected method2 in
1919 * the above logic. Assuming that modern versions have enough dbuf
1920 * and method2 guarantees blocks equivalent to at least 1 line,
1921 * select the blocks as plane_blocks_per_line.
1922 *
1923 * TODO: Revisit the logic when we have better understanding on DRAM
1924 * channels' impact on the level 0 memory latency and the relevant
1925 * wm calculations.
1926 */
1927 if (skl_wm_has_lines(i915, level))
1928 blocks = max(blocks,
1929 fixed16_to_u32_round_up(wp->plane_blocks_per_line));
1930 lines = div_round_up_fixed16(selected_result,
1931 wp->plane_blocks_per_line);
1932
1933 if (DISPLAY_VER(i915) == 9) {
1934 /* Display WA #1125: skl,bxt,kbl */
1935 if (level == 0 && wp->rc_surface)
1936 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1937
1938 /* Display WA #1126: skl,bxt,kbl */
1939 if (level >= 1 && level <= 7) {
1940 if (wp->y_tiled) {
1941 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1942 lines += wp->y_min_scanlines;
1943 } else {
1944 blocks++;
1945 }
1946
1947 /*
1948 * Make sure result blocks for higher latency levels are
1949 * at least as high as level below the current level.
1950 * Assumption in DDB algorithm optimization for special
1951 * cases. Also covers Display WA #1125 for RC.
1952 */
1953 if (result_prev->blocks > blocks)
1954 blocks = result_prev->blocks;
1955 }
1956 }
1957
1958 if (DISPLAY_VER(i915) >= 11) {
1959 if (wp->y_tiled) {
1960 int extra_lines;
1961
1962 if (lines % wp->y_min_scanlines == 0)
1963 extra_lines = wp->y_min_scanlines;
1964 else
1965 extra_lines = wp->y_min_scanlines * 2 -
1966 lines % wp->y_min_scanlines;
1967
1968 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
1969 wp->plane_blocks_per_line);
1970 } else {
1971 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
1972 }
1973 }
1974
1975 if (!skl_wm_has_lines(i915, level))
1976 lines = 0;
1977
1978 if (lines > skl_wm_max_lines(i915)) {
1979 /* reject it */
1980 result->min_ddb_alloc = U16_MAX;
1981 return;
1982 }
1983
1984 /*
1985 * If lines is valid, assume we can use this watermark level
1986 * for now. We'll come back and disable it after we calculate the
1987 * DDB allocation if it turns out we don't actually have enough
1988 * blocks to satisfy it.
1989 */
1990 result->blocks = blocks;
1991 result->lines = lines;
1992 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
1993 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
1994 result->enable = true;
1995
1996 if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us)
1997 result->can_sagv = latency >= i915->display.sagv.block_time_us;
1998 }
1999
2000 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)2001 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
2002 struct intel_plane *plane,
2003 const struct skl_wm_params *wm_params,
2004 struct skl_wm_level *levels)
2005 {
2006 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2007 struct skl_wm_level *result_prev = &levels[0];
2008 int level;
2009
2010 for (level = 0; level < i915->display.wm.num_levels; level++) {
2011 struct skl_wm_level *result = &levels[level];
2012 unsigned int latency = skl_wm_latency(i915, level, wm_params);
2013
2014 skl_compute_plane_wm(crtc_state, plane, level, latency,
2015 wm_params, result_prev, result);
2016
2017 result_prev = result;
2018 }
2019 }
2020
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)2021 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
2022 struct intel_plane *plane,
2023 const struct skl_wm_params *wm_params,
2024 struct skl_plane_wm *plane_wm)
2025 {
2026 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2027 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
2028 struct skl_wm_level *levels = plane_wm->wm;
2029 unsigned int latency = 0;
2030
2031 if (i915->display.sagv.block_time_us)
2032 latency = i915->display.sagv.block_time_us +
2033 skl_wm_latency(i915, 0, wm_params);
2034
2035 skl_compute_plane_wm(crtc_state, plane, 0, latency,
2036 wm_params, &levels[0],
2037 sagv_wm);
2038 }
2039
skl_compute_transition_wm(struct drm_i915_private * i915,struct skl_wm_level * trans_wm,const struct skl_wm_level * wm0,const struct skl_wm_params * wp)2040 static void skl_compute_transition_wm(struct drm_i915_private *i915,
2041 struct skl_wm_level *trans_wm,
2042 const struct skl_wm_level *wm0,
2043 const struct skl_wm_params *wp)
2044 {
2045 u16 trans_min, trans_amount, trans_y_tile_min;
2046 u16 wm0_blocks, trans_offset, blocks;
2047
2048 /* Transition WM don't make any sense if ipc is disabled */
2049 if (!skl_watermark_ipc_enabled(i915))
2050 return;
2051
2052 /*
2053 * WaDisableTWM:skl,kbl,cfl,bxt
2054 * Transition WM are not recommended by HW team for GEN9
2055 */
2056 if (DISPLAY_VER(i915) == 9)
2057 return;
2058
2059 if (DISPLAY_VER(i915) >= 11)
2060 trans_min = 4;
2061 else
2062 trans_min = 14;
2063
2064 /* Display WA #1140: glk,cnl */
2065 if (DISPLAY_VER(i915) == 10)
2066 trans_amount = 0;
2067 else
2068 trans_amount = 10; /* This is configurable amount */
2069
2070 trans_offset = trans_min + trans_amount;
2071
2072 /*
2073 * The spec asks for Selected Result Blocks for wm0 (the real value),
2074 * not Result Blocks (the integer value). Pay attention to the capital
2075 * letters. The value wm_l0->blocks is actually Result Blocks, but
2076 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
2077 * and since we later will have to get the ceiling of the sum in the
2078 * transition watermarks calculation, we can just pretend Selected
2079 * Result Blocks is Result Blocks minus 1 and it should work for the
2080 * current platforms.
2081 */
2082 wm0_blocks = wm0->blocks - 1;
2083
2084 if (wp->y_tiled) {
2085 trans_y_tile_min =
2086 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
2087 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
2088 } else {
2089 blocks = wm0_blocks + trans_offset;
2090 }
2091 blocks++;
2092
2093 /*
2094 * Just assume we can enable the transition watermark. After
2095 * computing the DDB we'll come back and disable it if that
2096 * assumption turns out to be false.
2097 */
2098 trans_wm->blocks = blocks;
2099 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
2100 trans_wm->enable = true;
2101 }
2102
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane,int color_plane)2103 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
2104 const struct intel_plane_state *plane_state,
2105 struct intel_plane *plane, int color_plane)
2106 {
2107 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2108 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2109 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2110 struct skl_wm_params wm_params;
2111 int ret;
2112
2113 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2114 &wm_params, color_plane);
2115 if (ret)
2116 return ret;
2117
2118 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
2119
2120 skl_compute_transition_wm(i915, &wm->trans_wm,
2121 &wm->wm[0], &wm_params);
2122
2123 if (DISPLAY_VER(i915) >= 12) {
2124 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
2125
2126 skl_compute_transition_wm(i915, &wm->sagv.trans_wm,
2127 &wm->sagv.wm0, &wm_params);
2128 }
2129
2130 return 0;
2131 }
2132
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane)2133 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
2134 const struct intel_plane_state *plane_state,
2135 struct intel_plane *plane)
2136 {
2137 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2138 struct skl_wm_params wm_params;
2139 int ret;
2140
2141 wm->is_planar = true;
2142
2143 /* uv plane watermarks must also be validated for NV12/Planar */
2144 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2145 &wm_params, 1);
2146 if (ret)
2147 return ret;
2148
2149 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
2150
2151 return 0;
2152 }
2153
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)2154 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
2155 const struct intel_plane_state *plane_state)
2156 {
2157 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2158 enum plane_id plane_id = plane->id;
2159 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2160 const struct drm_framebuffer *fb = plane_state->hw.fb;
2161 int ret;
2162
2163 memset(wm, 0, sizeof(*wm));
2164
2165 if (!intel_wm_plane_visible(crtc_state, plane_state))
2166 return 0;
2167
2168 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2169 plane, 0);
2170 if (ret)
2171 return ret;
2172
2173 if (fb->format->is_yuv && fb->format->num_planes > 1) {
2174 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
2175 plane);
2176 if (ret)
2177 return ret;
2178 }
2179
2180 return 0;
2181 }
2182
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)2183 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
2184 const struct intel_plane_state *plane_state)
2185 {
2186 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2187 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2188 enum plane_id plane_id = plane->id;
2189 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2190 int ret;
2191
2192 /* Watermarks calculated in master */
2193 if (plane_state->planar_slave)
2194 return 0;
2195
2196 memset(wm, 0, sizeof(*wm));
2197
2198 if (plane_state->planar_linked_plane) {
2199 const struct drm_framebuffer *fb = plane_state->hw.fb;
2200
2201 drm_WARN_ON(&i915->drm,
2202 !intel_wm_plane_visible(crtc_state, plane_state));
2203 drm_WARN_ON(&i915->drm, !fb->format->is_yuv ||
2204 fb->format->num_planes == 1);
2205
2206 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2207 plane_state->planar_linked_plane, 0);
2208 if (ret)
2209 return ret;
2210
2211 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2212 plane, 1);
2213 if (ret)
2214 return ret;
2215 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
2216 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2217 plane, 0);
2218 if (ret)
2219 return ret;
2220 }
2221
2222 return 0;
2223 }
2224
2225 static bool
skl_is_vblank_too_short(const struct intel_crtc_state * crtc_state,int wm0_lines,int latency)2226 skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state,
2227 int wm0_lines, int latency)
2228 {
2229 const struct drm_display_mode *adjusted_mode =
2230 &crtc_state->hw.adjusted_mode;
2231
2232 /* FIXME missing scaler and DSC pre-fill time */
2233 return crtc_state->framestart_delay +
2234 intel_usecs_to_scanlines(adjusted_mode, latency) +
2235 wm0_lines >
2236 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
2237 }
2238
skl_max_wm0_lines(const struct intel_crtc_state * crtc_state)2239 static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state)
2240 {
2241 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2242 enum plane_id plane_id;
2243 int wm0_lines = 0;
2244
2245 for_each_plane_id_on_crtc(crtc, plane_id) {
2246 const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
2247
2248 /* FIXME what about !skl_wm_has_lines() platforms? */
2249 wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines);
2250 }
2251
2252 return wm0_lines;
2253 }
2254
skl_max_wm_level_for_vblank(struct intel_crtc_state * crtc_state,int wm0_lines)2255 static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state,
2256 int wm0_lines)
2257 {
2258 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2259 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2260 int level;
2261
2262 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
2263 int latency;
2264
2265 /* FIXME should we care about the latency w/a's? */
2266 latency = skl_wm_latency(i915, level, NULL);
2267 if (latency == 0)
2268 continue;
2269
2270 /* FIXME is it correct to use 0 latency for wm0 here? */
2271 if (level == 0)
2272 latency = 0;
2273
2274 if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency))
2275 return level;
2276 }
2277
2278 return -EINVAL;
2279 }
2280
skl_wm_check_vblank(struct intel_crtc_state * crtc_state)2281 static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state)
2282 {
2283 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2284 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2285 int wm0_lines, level;
2286
2287 if (!crtc_state->hw.active)
2288 return 0;
2289
2290 wm0_lines = skl_max_wm0_lines(crtc_state);
2291
2292 level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines);
2293 if (level < 0)
2294 return level;
2295
2296 /*
2297 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_*
2298 * based on whether we're limited by the vblank duration.
2299 */
2300 crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1;
2301
2302 for (level++; level < i915->display.wm.num_levels; level++) {
2303 enum plane_id plane_id;
2304
2305 for_each_plane_id_on_crtc(crtc, plane_id) {
2306 struct skl_plane_wm *wm =
2307 &crtc_state->wm.skl.optimal.planes[plane_id];
2308
2309 /*
2310 * FIXME just clear enable or flag the entire
2311 * thing as bad via min_ddb_alloc=U16_MAX?
2312 */
2313 wm->wm[level].enable = false;
2314 wm->uv_wm[level].enable = false;
2315 }
2316 }
2317
2318 if (DISPLAY_VER(i915) >= 12 &&
2319 i915->display.sagv.block_time_us &&
2320 skl_is_vblank_too_short(crtc_state, wm0_lines,
2321 i915->display.sagv.block_time_us)) {
2322 enum plane_id plane_id;
2323
2324 for_each_plane_id_on_crtc(crtc, plane_id) {
2325 struct skl_plane_wm *wm =
2326 &crtc_state->wm.skl.optimal.planes[plane_id];
2327
2328 wm->sagv.wm0.enable = false;
2329 wm->sagv.trans_wm.enable = false;
2330 }
2331 }
2332
2333 return 0;
2334 }
2335
skl_build_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2336 static int skl_build_pipe_wm(struct intel_atomic_state *state,
2337 struct intel_crtc *crtc)
2338 {
2339 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2340 struct intel_crtc_state *crtc_state =
2341 intel_atomic_get_new_crtc_state(state, crtc);
2342 const struct intel_plane_state *plane_state;
2343 struct intel_plane *plane;
2344 int ret, i;
2345
2346 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2347 /*
2348 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
2349 * instead but we don't populate that correctly for NV12 Y
2350 * planes so for now hack this.
2351 */
2352 if (plane->pipe != crtc->pipe)
2353 continue;
2354
2355 if (DISPLAY_VER(i915) >= 11)
2356 ret = icl_build_plane_wm(crtc_state, plane_state);
2357 else
2358 ret = skl_build_plane_wm(crtc_state, plane_state);
2359 if (ret)
2360 return ret;
2361 }
2362
2363 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
2364
2365 return skl_wm_check_vblank(crtc_state);
2366 }
2367
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)2368 static bool skl_wm_level_equals(const struct skl_wm_level *l1,
2369 const struct skl_wm_level *l2)
2370 {
2371 return l1->enable == l2->enable &&
2372 l1->ignore_lines == l2->ignore_lines &&
2373 l1->lines == l2->lines &&
2374 l1->blocks == l2->blocks;
2375 }
2376
skl_plane_wm_equals(struct drm_i915_private * i915,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)2377 static bool skl_plane_wm_equals(struct drm_i915_private *i915,
2378 const struct skl_plane_wm *wm1,
2379 const struct skl_plane_wm *wm2)
2380 {
2381 int level;
2382
2383 for (level = 0; level < i915->display.wm.num_levels; level++) {
2384 /*
2385 * We don't check uv_wm as the hardware doesn't actually
2386 * use it. It only gets used for calculating the required
2387 * ddb allocation.
2388 */
2389 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
2390 return false;
2391 }
2392
2393 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
2394 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
2395 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
2396 }
2397
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)2398 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
2399 const struct skl_ddb_entry *b)
2400 {
2401 return a->start < b->end && b->start < a->end;
2402 }
2403
skl_ddb_entry_union(struct skl_ddb_entry * a,const struct skl_ddb_entry * b)2404 static void skl_ddb_entry_union(struct skl_ddb_entry *a,
2405 const struct skl_ddb_entry *b)
2406 {
2407 if (a->end && b->end) {
2408 a->start = min(a->start, b->start);
2409 a->end = max(a->end, b->end);
2410 } else if (b->end) {
2411 a->start = b->start;
2412 a->end = b->end;
2413 }
2414 }
2415
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)2416 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
2417 const struct skl_ddb_entry *entries,
2418 int num_entries, int ignore_idx)
2419 {
2420 int i;
2421
2422 for (i = 0; i < num_entries; i++) {
2423 if (i != ignore_idx &&
2424 skl_ddb_entries_overlap(ddb, &entries[i]))
2425 return true;
2426 }
2427
2428 return false;
2429 }
2430
2431 static int
skl_ddb_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)2432 skl_ddb_add_affected_planes(struct intel_atomic_state *state,
2433 struct intel_crtc *crtc)
2434 {
2435 struct drm_i915_private *i915 = to_i915(state->base.dev);
2436 const struct intel_crtc_state *old_crtc_state =
2437 intel_atomic_get_old_crtc_state(state, crtc);
2438 struct intel_crtc_state *new_crtc_state =
2439 intel_atomic_get_new_crtc_state(state, crtc);
2440 struct intel_plane *plane;
2441
2442 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2443 struct intel_plane_state *plane_state;
2444 enum plane_id plane_id = plane->id;
2445
2446 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
2447 &new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
2448 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
2449 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
2450 continue;
2451
2452 if (new_crtc_state->do_async_flip) {
2453 drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Can't change DDB during async flip\n",
2454 plane->base.base.id, plane->base.name);
2455 return -EINVAL;
2456 }
2457
2458 plane_state = intel_atomic_get_plane_state(state, plane);
2459 if (IS_ERR(plane_state))
2460 return PTR_ERR(plane_state);
2461
2462 new_crtc_state->update_planes |= BIT(plane_id);
2463 new_crtc_state->async_flip_planes = 0;
2464 new_crtc_state->do_async_flip = false;
2465 }
2466
2467 return 0;
2468 }
2469
intel_dbuf_enabled_slices(const struct intel_dbuf_state * dbuf_state)2470 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
2471 {
2472 struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev);
2473 u8 enabled_slices;
2474 enum pipe pipe;
2475
2476 /*
2477 * FIXME: For now we always enable slice S1 as per
2478 * the Bspec display initialization sequence.
2479 */
2480 enabled_slices = BIT(DBUF_S1);
2481
2482 for_each_pipe(i915, pipe)
2483 enabled_slices |= dbuf_state->slices[pipe];
2484
2485 return enabled_slices;
2486 }
2487
2488 static int
skl_compute_ddb(struct intel_atomic_state * state)2489 skl_compute_ddb(struct intel_atomic_state *state)
2490 {
2491 struct drm_i915_private *i915 = to_i915(state->base.dev);
2492 const struct intel_dbuf_state *old_dbuf_state;
2493 struct intel_dbuf_state *new_dbuf_state = NULL;
2494 struct intel_crtc_state *new_crtc_state;
2495 struct intel_crtc *crtc;
2496 int ret, i;
2497
2498 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2499 new_dbuf_state = intel_atomic_get_dbuf_state(state);
2500 if (IS_ERR(new_dbuf_state))
2501 return PTR_ERR(new_dbuf_state);
2502
2503 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
2504 break;
2505 }
2506
2507 if (!new_dbuf_state)
2508 return 0;
2509
2510 new_dbuf_state->active_pipes =
2511 intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
2512
2513 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
2514 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2515 if (ret)
2516 return ret;
2517 }
2518
2519 if (HAS_MBUS_JOINING(i915)) {
2520 new_dbuf_state->joined_mbus =
2521 adlp_check_mbus_joined(new_dbuf_state->active_pipes);
2522
2523 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2524 ret = intel_cdclk_state_set_joined_mbus(state, new_dbuf_state->joined_mbus);
2525 if (ret)
2526 return ret;
2527 }
2528 }
2529
2530 for_each_intel_crtc(&i915->drm, crtc) {
2531 enum pipe pipe = crtc->pipe;
2532
2533 new_dbuf_state->slices[pipe] =
2534 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
2535 new_dbuf_state->joined_mbus);
2536
2537 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
2538 continue;
2539
2540 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2541 if (ret)
2542 return ret;
2543 }
2544
2545 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
2546
2547 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
2548 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2549 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
2550 if (ret)
2551 return ret;
2552
2553 drm_dbg_kms(&i915->drm,
2554 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
2555 old_dbuf_state->enabled_slices,
2556 new_dbuf_state->enabled_slices,
2557 DISPLAY_INFO(i915)->dbuf.slice_mask,
2558 str_yes_no(old_dbuf_state->joined_mbus),
2559 str_yes_no(new_dbuf_state->joined_mbus));
2560 }
2561
2562 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2563 enum pipe pipe = crtc->pipe;
2564
2565 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
2566
2567 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
2568 continue;
2569
2570 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2571 if (ret)
2572 return ret;
2573 }
2574
2575 for_each_intel_crtc(&i915->drm, crtc) {
2576 ret = skl_crtc_allocate_ddb(state, crtc);
2577 if (ret)
2578 return ret;
2579 }
2580
2581 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2582 ret = skl_crtc_allocate_plane_ddb(state, crtc);
2583 if (ret)
2584 return ret;
2585
2586 ret = skl_ddb_add_affected_planes(state, crtc);
2587 if (ret)
2588 return ret;
2589 }
2590
2591 return 0;
2592 }
2593
enast(bool enable)2594 static char enast(bool enable)
2595 {
2596 return enable ? '*' : ' ';
2597 }
2598
2599 static void
skl_print_wm_changes(struct intel_atomic_state * state)2600 skl_print_wm_changes(struct intel_atomic_state *state)
2601 {
2602 struct drm_i915_private *i915 = to_i915(state->base.dev);
2603 const struct intel_crtc_state *old_crtc_state;
2604 const struct intel_crtc_state *new_crtc_state;
2605 struct intel_plane *plane;
2606 struct intel_crtc *crtc;
2607 int i;
2608
2609 if (!drm_debug_enabled(DRM_UT_KMS))
2610 return;
2611
2612 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2613 new_crtc_state, i) {
2614 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
2615
2616 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
2617 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
2618
2619 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2620 enum plane_id plane_id = plane->id;
2621 const struct skl_ddb_entry *old, *new;
2622
2623 old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
2624 new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
2625
2626 if (skl_ddb_entry_equal(old, new))
2627 continue;
2628
2629 drm_dbg_kms(&i915->drm,
2630 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
2631 plane->base.base.id, plane->base.name,
2632 old->start, old->end, new->start, new->end,
2633 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
2634 }
2635
2636 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2637 enum plane_id plane_id = plane->id;
2638 const struct skl_plane_wm *old_wm, *new_wm;
2639
2640 old_wm = &old_pipe_wm->planes[plane_id];
2641 new_wm = &new_pipe_wm->planes[plane_id];
2642
2643 if (skl_plane_wm_equals(i915, old_wm, new_wm))
2644 continue;
2645
2646 drm_dbg_kms(&i915->drm,
2647 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
2648 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
2649 plane->base.base.id, plane->base.name,
2650 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
2651 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
2652 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
2653 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
2654 enast(old_wm->trans_wm.enable),
2655 enast(old_wm->sagv.wm0.enable),
2656 enast(old_wm->sagv.trans_wm.enable),
2657 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
2658 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
2659 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
2660 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
2661 enast(new_wm->trans_wm.enable),
2662 enast(new_wm->sagv.wm0.enable),
2663 enast(new_wm->sagv.trans_wm.enable));
2664
2665 drm_dbg_kms(&i915->drm,
2666 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
2667 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
2668 plane->base.base.id, plane->base.name,
2669 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
2670 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
2671 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
2672 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
2673 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
2674 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
2675 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
2676 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
2677 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
2678 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
2679 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
2680 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
2681 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
2682 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
2683 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
2684 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
2685 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
2686 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
2687 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
2688 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
2689 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
2690 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
2691
2692 drm_dbg_kms(&i915->drm,
2693 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2694 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2695 plane->base.base.id, plane->base.name,
2696 old_wm->wm[0].blocks, old_wm->wm[1].blocks,
2697 old_wm->wm[2].blocks, old_wm->wm[3].blocks,
2698 old_wm->wm[4].blocks, old_wm->wm[5].blocks,
2699 old_wm->wm[6].blocks, old_wm->wm[7].blocks,
2700 old_wm->trans_wm.blocks,
2701 old_wm->sagv.wm0.blocks,
2702 old_wm->sagv.trans_wm.blocks,
2703 new_wm->wm[0].blocks, new_wm->wm[1].blocks,
2704 new_wm->wm[2].blocks, new_wm->wm[3].blocks,
2705 new_wm->wm[4].blocks, new_wm->wm[5].blocks,
2706 new_wm->wm[6].blocks, new_wm->wm[7].blocks,
2707 new_wm->trans_wm.blocks,
2708 new_wm->sagv.wm0.blocks,
2709 new_wm->sagv.trans_wm.blocks);
2710
2711 drm_dbg_kms(&i915->drm,
2712 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2713 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2714 plane->base.base.id, plane->base.name,
2715 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
2716 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
2717 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
2718 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
2719 old_wm->trans_wm.min_ddb_alloc,
2720 old_wm->sagv.wm0.min_ddb_alloc,
2721 old_wm->sagv.trans_wm.min_ddb_alloc,
2722 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
2723 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
2724 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
2725 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
2726 new_wm->trans_wm.min_ddb_alloc,
2727 new_wm->sagv.wm0.min_ddb_alloc,
2728 new_wm->sagv.trans_wm.min_ddb_alloc);
2729 }
2730 }
2731 }
2732
skl_plane_selected_wm_equals(struct intel_plane * plane,const struct skl_pipe_wm * old_pipe_wm,const struct skl_pipe_wm * new_pipe_wm)2733 static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
2734 const struct skl_pipe_wm *old_pipe_wm,
2735 const struct skl_pipe_wm *new_pipe_wm)
2736 {
2737 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2738 int level;
2739
2740 for (level = 0; level < i915->display.wm.num_levels; level++) {
2741 /*
2742 * We don't check uv_wm as the hardware doesn't actually
2743 * use it. It only gets used for calculating the required
2744 * ddb allocation.
2745 */
2746 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
2747 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
2748 return false;
2749 }
2750
2751 if (HAS_HW_SAGV_WM(i915)) {
2752 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
2753 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
2754
2755 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
2756 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
2757 return false;
2758 }
2759
2760 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
2761 skl_plane_trans_wm(new_pipe_wm, plane->id));
2762 }
2763
2764 /*
2765 * To make sure the cursor watermark registers are always consistent
2766 * with our computed state the following scenario needs special
2767 * treatment:
2768 *
2769 * 1. enable cursor
2770 * 2. move cursor entirely offscreen
2771 * 3. disable cursor
2772 *
2773 * Step 2. does call .disable_plane() but does not zero the watermarks
2774 * (since we consider an offscreen cursor still active for the purposes
2775 * of watermarks). Step 3. would not normally call .disable_plane()
2776 * because the actual plane visibility isn't changing, and we don't
2777 * deallocate the cursor ddb until the pipe gets disabled. So we must
2778 * force step 3. to call .disable_plane() to update the watermark
2779 * registers properly.
2780 *
2781 * Other planes do not suffer from this issues as their watermarks are
2782 * calculated based on the actual plane visibility. The only time this
2783 * can trigger for the other planes is during the initial readout as the
2784 * default value of the watermarks registers is not zero.
2785 */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)2786 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
2787 struct intel_crtc *crtc)
2788 {
2789 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2790 const struct intel_crtc_state *old_crtc_state =
2791 intel_atomic_get_old_crtc_state(state, crtc);
2792 struct intel_crtc_state *new_crtc_state =
2793 intel_atomic_get_new_crtc_state(state, crtc);
2794 struct intel_plane *plane;
2795
2796 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2797 struct intel_plane_state *plane_state;
2798 enum plane_id plane_id = plane->id;
2799
2800 /*
2801 * Force a full wm update for every plane on modeset.
2802 * Required because the reset value of the wm registers
2803 * is non-zero, whereas we want all disabled planes to
2804 * have zero watermarks. So if we turn off the relevant
2805 * power well the hardware state will go out of sync
2806 * with the software state.
2807 */
2808 if (!intel_crtc_needs_modeset(new_crtc_state) &&
2809 skl_plane_selected_wm_equals(plane,
2810 &old_crtc_state->wm.skl.optimal,
2811 &new_crtc_state->wm.skl.optimal))
2812 continue;
2813
2814 if (new_crtc_state->do_async_flip) {
2815 drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Can't change watermarks during async flip\n",
2816 plane->base.base.id, plane->base.name);
2817 return -EINVAL;
2818 }
2819
2820 plane_state = intel_atomic_get_plane_state(state, plane);
2821 if (IS_ERR(plane_state))
2822 return PTR_ERR(plane_state);
2823
2824 new_crtc_state->update_planes |= BIT(plane_id);
2825 new_crtc_state->async_flip_planes = 0;
2826 new_crtc_state->do_async_flip = false;
2827 }
2828
2829 return 0;
2830 }
2831
2832 /*
2833 * If Fixed Refresh Rate or For VRR case Vmin = Vmax = Flipline:
2834 * Program DEEP PKG_C_LATENCY Pkg C with highest valid latency from
2835 * watermark level1 and up and above. If watermark level 1 is
2836 * invalid program it with all 1's.
2837 * Program PKG_C_LATENCY Added Wake Time = DSB execution time
2838 * If Variable Refresh Rate where Vmin != Vmax != Flipline:
2839 * Program DEEP PKG_C_LATENCY Pkg C with all 1's.
2840 * Program PKG_C_LATENCY Added Wake Time = 0
2841 */
2842 static void
skl_program_dpkgc_latency(struct drm_i915_private * i915,bool enable_dpkgc)2843 skl_program_dpkgc_latency(struct drm_i915_private *i915, bool enable_dpkgc)
2844 {
2845 u32 max_latency = 0;
2846 u32 clear = 0, val = 0;
2847 u32 added_wake_time = 0;
2848
2849 if (DISPLAY_VER(i915) < 20)
2850 return;
2851
2852 if (enable_dpkgc) {
2853 max_latency = skl_watermark_max_latency(i915, 1);
2854 if (max_latency == 0)
2855 max_latency = LNL_PKG_C_LATENCY_MASK;
2856 added_wake_time = DSB_EXE_TIME +
2857 i915->display.sagv.block_time_us;
2858 } else {
2859 max_latency = LNL_PKG_C_LATENCY_MASK;
2860 added_wake_time = 0;
2861 }
2862
2863 clear |= LNL_ADDED_WAKE_TIME_MASK | LNL_PKG_C_LATENCY_MASK;
2864 val |= REG_FIELD_PREP(LNL_PKG_C_LATENCY_MASK, max_latency);
2865 val |= REG_FIELD_PREP(LNL_ADDED_WAKE_TIME_MASK, added_wake_time);
2866
2867 intel_uncore_rmw(&i915->uncore, LNL_PKG_C_LATENCY, clear, val);
2868 }
2869
2870 static int
skl_compute_wm(struct intel_atomic_state * state)2871 skl_compute_wm(struct intel_atomic_state *state)
2872 {
2873 struct intel_crtc *crtc;
2874 struct intel_crtc_state __maybe_unused *new_crtc_state;
2875 int ret, i;
2876 bool enable_dpkgc = false;
2877
2878 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2879 ret = skl_build_pipe_wm(state, crtc);
2880 if (ret)
2881 return ret;
2882 }
2883
2884 ret = skl_compute_ddb(state);
2885 if (ret)
2886 return ret;
2887
2888 ret = intel_compute_sagv_mask(state);
2889 if (ret)
2890 return ret;
2891
2892 /*
2893 * skl_compute_ddb() will have adjusted the final watermarks
2894 * based on how much ddb is available. Now we can actually
2895 * check if the final watermarks changed.
2896 */
2897 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2898 ret = skl_wm_add_affected_planes(state, crtc);
2899 if (ret)
2900 return ret;
2901
2902 if ((new_crtc_state->vrr.vmin == new_crtc_state->vrr.vmax &&
2903 new_crtc_state->vrr.vmin == new_crtc_state->vrr.flipline) ||
2904 !new_crtc_state->vrr.enable)
2905 enable_dpkgc = true;
2906 }
2907
2908 skl_program_dpkgc_latency(to_i915(state->base.dev), enable_dpkgc);
2909
2910 skl_print_wm_changes(state);
2911
2912 return 0;
2913 }
2914
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)2915 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
2916 {
2917 level->enable = val & PLANE_WM_EN;
2918 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
2919 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
2920 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
2921 }
2922
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)2923 static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
2924 struct skl_pipe_wm *out)
2925 {
2926 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2927 enum pipe pipe = crtc->pipe;
2928 enum plane_id plane_id;
2929 int level;
2930 u32 val;
2931
2932 for_each_plane_id_on_crtc(crtc, plane_id) {
2933 struct skl_plane_wm *wm = &out->planes[plane_id];
2934
2935 for (level = 0; level < i915->display.wm.num_levels; level++) {
2936 if (plane_id != PLANE_CURSOR)
2937 val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level));
2938 else
2939 val = intel_de_read(i915, CUR_WM(pipe, level));
2940
2941 skl_wm_level_from_reg_val(val, &wm->wm[level]);
2942 }
2943
2944 if (plane_id != PLANE_CURSOR)
2945 val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id));
2946 else
2947 val = intel_de_read(i915, CUR_WM_TRANS(pipe));
2948
2949 skl_wm_level_from_reg_val(val, &wm->trans_wm);
2950
2951 if (HAS_HW_SAGV_WM(i915)) {
2952 if (plane_id != PLANE_CURSOR)
2953 val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id));
2954 else
2955 val = intel_de_read(i915, CUR_WM_SAGV(pipe));
2956
2957 skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
2958
2959 if (plane_id != PLANE_CURSOR)
2960 val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id));
2961 else
2962 val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe));
2963
2964 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
2965 } else if (DISPLAY_VER(i915) >= 12) {
2966 wm->sagv.wm0 = wm->wm[0];
2967 wm->sagv.trans_wm = wm->trans_wm;
2968 }
2969 }
2970 }
2971
skl_wm_get_hw_state(struct drm_i915_private * i915)2972 static void skl_wm_get_hw_state(struct drm_i915_private *i915)
2973 {
2974 struct intel_dbuf_state *dbuf_state =
2975 to_intel_dbuf_state(i915->display.dbuf.obj.state);
2976 struct intel_crtc *crtc;
2977
2978 if (HAS_MBUS_JOINING(i915))
2979 dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN;
2980
2981 dbuf_state->mdclk_cdclk_ratio = intel_mdclk_cdclk_ratio(i915, &i915->display.cdclk.hw);
2982
2983 for_each_intel_crtc(&i915->drm, crtc) {
2984 struct intel_crtc_state *crtc_state =
2985 to_intel_crtc_state(crtc->base.state);
2986 enum pipe pipe = crtc->pipe;
2987 unsigned int mbus_offset;
2988 enum plane_id plane_id;
2989 u8 slices;
2990
2991 memset(&crtc_state->wm.skl.optimal, 0,
2992 sizeof(crtc_state->wm.skl.optimal));
2993 if (crtc_state->hw.active)
2994 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
2995 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
2996
2997 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
2998
2999 for_each_plane_id_on_crtc(crtc, plane_id) {
3000 struct skl_ddb_entry *ddb =
3001 &crtc_state->wm.skl.plane_ddb[plane_id];
3002 struct skl_ddb_entry *ddb_y =
3003 &crtc_state->wm.skl.plane_ddb_y[plane_id];
3004
3005 if (!crtc_state->hw.active)
3006 continue;
3007
3008 skl_ddb_get_hw_plane_state(i915, crtc->pipe,
3009 plane_id, ddb, ddb_y);
3010
3011 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
3012 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
3013 }
3014
3015 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
3016
3017 /*
3018 * Used for checking overlaps, so we need absolute
3019 * offsets instead of MBUS relative offsets.
3020 */
3021 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3022 dbuf_state->joined_mbus);
3023 mbus_offset = mbus_ddb_offset(i915, slices);
3024 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
3025 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
3026
3027 /* The slices actually used by the planes on the pipe */
3028 dbuf_state->slices[pipe] =
3029 skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb);
3030
3031 drm_dbg_kms(&i915->drm,
3032 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
3033 crtc->base.base.id, crtc->base.name,
3034 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
3035 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
3036 str_yes_no(dbuf_state->joined_mbus));
3037 }
3038
3039 dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices;
3040 }
3041
skl_dbuf_is_misconfigured(struct drm_i915_private * i915)3042 static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
3043 {
3044 const struct intel_dbuf_state *dbuf_state =
3045 to_intel_dbuf_state(i915->display.dbuf.obj.state);
3046 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
3047 struct intel_crtc *crtc;
3048
3049 for_each_intel_crtc(&i915->drm, crtc) {
3050 const struct intel_crtc_state *crtc_state =
3051 to_intel_crtc_state(crtc->base.state);
3052
3053 entries[crtc->pipe] = crtc_state->wm.skl.ddb;
3054 }
3055
3056 for_each_intel_crtc(&i915->drm, crtc) {
3057 const struct intel_crtc_state *crtc_state =
3058 to_intel_crtc_state(crtc->base.state);
3059 u8 slices;
3060
3061 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3062 dbuf_state->joined_mbus);
3063 if (dbuf_state->slices[crtc->pipe] & ~slices)
3064 return true;
3065
3066 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
3067 I915_MAX_PIPES, crtc->pipe))
3068 return true;
3069 }
3070
3071 return false;
3072 }
3073
skl_wm_sanitize(struct drm_i915_private * i915)3074 static void skl_wm_sanitize(struct drm_i915_private *i915)
3075 {
3076 struct intel_crtc *crtc;
3077
3078 /*
3079 * On TGL/RKL (at least) the BIOS likes to assign the planes
3080 * to the wrong DBUF slices. This will cause an infinite loop
3081 * in skl_commit_modeset_enables() as it can't find a way to
3082 * transition between the old bogus DBUF layout to the new
3083 * proper DBUF layout without DBUF allocation overlaps between
3084 * the planes (which cannot be allowed or else the hardware
3085 * may hang). If we detect a bogus DBUF layout just turn off
3086 * all the planes so that skl_commit_modeset_enables() can
3087 * simply ignore them.
3088 */
3089 if (!skl_dbuf_is_misconfigured(i915))
3090 return;
3091
3092 drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
3093
3094 for_each_intel_crtc(&i915->drm, crtc) {
3095 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
3096 const struct intel_plane_state *plane_state =
3097 to_intel_plane_state(plane->base.state);
3098 struct intel_crtc_state *crtc_state =
3099 to_intel_crtc_state(crtc->base.state);
3100
3101 if (plane_state->uapi.visible)
3102 intel_plane_disable_noatomic(crtc, plane);
3103
3104 drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
3105
3106 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3107 }
3108 }
3109
skl_wm_get_hw_state_and_sanitize(struct drm_i915_private * i915)3110 static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3111 {
3112 skl_wm_get_hw_state(i915);
3113 skl_wm_sanitize(i915);
3114 }
3115
intel_wm_state_verify(struct intel_atomic_state * state,struct intel_crtc * crtc)3116 void intel_wm_state_verify(struct intel_atomic_state *state,
3117 struct intel_crtc *crtc)
3118 {
3119 struct drm_i915_private *i915 = to_i915(state->base.dev);
3120 const struct intel_crtc_state *new_crtc_state =
3121 intel_atomic_get_new_crtc_state(state, crtc);
3122 struct skl_hw_state {
3123 struct skl_ddb_entry ddb[I915_MAX_PLANES];
3124 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
3125 struct skl_pipe_wm wm;
3126 } *hw;
3127 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
3128 struct intel_plane *plane;
3129 u8 hw_enabled_slices;
3130 int level;
3131
3132 if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active)
3133 return;
3134
3135 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3136 if (!hw)
3137 return;
3138
3139 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
3140
3141 skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y);
3142
3143 hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915);
3144
3145 if (DISPLAY_VER(i915) >= 11 &&
3146 hw_enabled_slices != i915->display.dbuf.enabled_slices)
3147 drm_err(&i915->drm,
3148 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
3149 i915->display.dbuf.enabled_slices,
3150 hw_enabled_slices);
3151
3152 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
3153 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
3154 const struct skl_wm_level *hw_wm_level, *sw_wm_level;
3155
3156 /* Watermarks */
3157 for (level = 0; level < i915->display.wm.num_levels; level++) {
3158 hw_wm_level = &hw->wm.planes[plane->id].wm[level];
3159 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
3160
3161 if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
3162 continue;
3163
3164 drm_err(&i915->drm,
3165 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3166 plane->base.base.id, plane->base.name, level,
3167 sw_wm_level->enable,
3168 sw_wm_level->blocks,
3169 sw_wm_level->lines,
3170 hw_wm_level->enable,
3171 hw_wm_level->blocks,
3172 hw_wm_level->lines);
3173 }
3174
3175 hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
3176 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
3177
3178 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3179 drm_err(&i915->drm,
3180 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3181 plane->base.base.id, plane->base.name,
3182 sw_wm_level->enable,
3183 sw_wm_level->blocks,
3184 sw_wm_level->lines,
3185 hw_wm_level->enable,
3186 hw_wm_level->blocks,
3187 hw_wm_level->lines);
3188 }
3189
3190 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
3191 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
3192
3193 if (HAS_HW_SAGV_WM(i915) &&
3194 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3195 drm_err(&i915->drm,
3196 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3197 plane->base.base.id, plane->base.name,
3198 sw_wm_level->enable,
3199 sw_wm_level->blocks,
3200 sw_wm_level->lines,
3201 hw_wm_level->enable,
3202 hw_wm_level->blocks,
3203 hw_wm_level->lines);
3204 }
3205
3206 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
3207 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
3208
3209 if (HAS_HW_SAGV_WM(i915) &&
3210 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3211 drm_err(&i915->drm,
3212 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3213 plane->base.base.id, plane->base.name,
3214 sw_wm_level->enable,
3215 sw_wm_level->blocks,
3216 sw_wm_level->lines,
3217 hw_wm_level->enable,
3218 hw_wm_level->blocks,
3219 hw_wm_level->lines);
3220 }
3221
3222 /* DDB */
3223 hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
3224 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
3225
3226 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
3227 drm_err(&i915->drm,
3228 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
3229 plane->base.base.id, plane->base.name,
3230 sw_ddb_entry->start, sw_ddb_entry->end,
3231 hw_ddb_entry->start, hw_ddb_entry->end);
3232 }
3233 }
3234
3235 kfree(hw);
3236 }
3237
skl_watermark_ipc_enabled(struct drm_i915_private * i915)3238 bool skl_watermark_ipc_enabled(struct drm_i915_private *i915)
3239 {
3240 return i915->display.wm.ipc_enabled;
3241 }
3242
skl_watermark_ipc_update(struct drm_i915_private * i915)3243 void skl_watermark_ipc_update(struct drm_i915_private *i915)
3244 {
3245 if (!HAS_IPC(i915))
3246 return;
3247
3248 intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE,
3249 skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0);
3250 }
3251
skl_watermark_ipc_can_enable(struct drm_i915_private * i915)3252 static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915)
3253 {
3254 /* Display WA #0477 WaDisableIPC: skl */
3255 if (IS_SKYLAKE(i915))
3256 return false;
3257
3258 /* Display WA #1141: SKL:all KBL:all CFL */
3259 if (IS_KABYLAKE(i915) ||
3260 IS_COFFEELAKE(i915) ||
3261 IS_COMETLAKE(i915))
3262 return i915->dram_info.symmetric_memory;
3263
3264 return true;
3265 }
3266
skl_watermark_ipc_init(struct drm_i915_private * i915)3267 void skl_watermark_ipc_init(struct drm_i915_private *i915)
3268 {
3269 if (!HAS_IPC(i915))
3270 return;
3271
3272 i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915);
3273
3274 skl_watermark_ipc_update(i915);
3275 }
3276
3277 static void
adjust_wm_latency(struct drm_i915_private * i915,u16 wm[],int num_levels,int read_latency)3278 adjust_wm_latency(struct drm_i915_private *i915,
3279 u16 wm[], int num_levels, int read_latency)
3280 {
3281 bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed;
3282 int i, level;
3283
3284 /*
3285 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
3286 * need to be disabled. We make sure to sanitize the values out
3287 * of the punit to satisfy this requirement.
3288 */
3289 for (level = 1; level < num_levels; level++) {
3290 if (wm[level] == 0) {
3291 for (i = level + 1; i < num_levels; i++)
3292 wm[i] = 0;
3293
3294 num_levels = level;
3295 break;
3296 }
3297 }
3298
3299 /*
3300 * WaWmMemoryReadLatency
3301 *
3302 * punit doesn't take into account the read latency so we need
3303 * to add proper adjustement to each valid level we retrieve
3304 * from the punit when level 0 response data is 0us.
3305 */
3306 if (wm[0] == 0) {
3307 for (level = 0; level < num_levels; level++)
3308 wm[level] += read_latency;
3309 }
3310
3311 /*
3312 * WA Level-0 adjustment for 16GB DIMMs: SKL+
3313 * If we could not get dimm info enable this WA to prevent from
3314 * any underrun. If not able to get Dimm info assume 16GB dimm
3315 * to avoid any underrun.
3316 */
3317 if (wm_lv_0_adjust_needed)
3318 wm[0] += 1;
3319 }
3320
mtl_read_wm_latency(struct drm_i915_private * i915,u16 wm[])3321 static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3322 {
3323 int num_levels = i915->display.wm.num_levels;
3324 u32 val;
3325
3326 val = intel_de_read(i915, MTL_LATENCY_LP0_LP1);
3327 wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3328 wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3329
3330 val = intel_de_read(i915, MTL_LATENCY_LP2_LP3);
3331 wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3332 wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3333
3334 val = intel_de_read(i915, MTL_LATENCY_LP4_LP5);
3335 wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3336 wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3337
3338 adjust_wm_latency(i915, wm, num_levels, 6);
3339 }
3340
skl_read_wm_latency(struct drm_i915_private * i915,u16 wm[])3341 static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3342 {
3343 int num_levels = i915->display.wm.num_levels;
3344 int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2;
3345 int mult = IS_DG2(i915) ? 2 : 1;
3346 u32 val;
3347 int ret;
3348
3349 /* read the first set of memory latencies[0:3] */
3350 val = 0; /* data0 to be programmed to 0 for first set */
3351 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3352 if (ret) {
3353 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3354 return;
3355 }
3356
3357 wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3358 wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3359 wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3360 wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3361
3362 /* read the second set of memory latencies[4:7] */
3363 val = 1; /* data0 to be programmed to 1 for second set */
3364 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3365 if (ret) {
3366 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3367 return;
3368 }
3369
3370 wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3371 wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3372 wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3373 wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3374
3375 adjust_wm_latency(i915, wm, num_levels, read_latency);
3376 }
3377
skl_setup_wm_latency(struct drm_i915_private * i915)3378 static void skl_setup_wm_latency(struct drm_i915_private *i915)
3379 {
3380 if (HAS_HW_SAGV_WM(i915))
3381 i915->display.wm.num_levels = 6;
3382 else
3383 i915->display.wm.num_levels = 8;
3384
3385 if (DISPLAY_VER(i915) >= 14)
3386 mtl_read_wm_latency(i915, i915->display.wm.skl_latency);
3387 else
3388 skl_read_wm_latency(i915, i915->display.wm.skl_latency);
3389
3390 intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency);
3391 }
3392
3393 static const struct intel_wm_funcs skl_wm_funcs = {
3394 .compute_global_watermarks = skl_compute_wm,
3395 .get_hw_state = skl_wm_get_hw_state_and_sanitize,
3396 };
3397
skl_wm_init(struct drm_i915_private * i915)3398 void skl_wm_init(struct drm_i915_private *i915)
3399 {
3400 intel_sagv_init(i915);
3401
3402 skl_setup_wm_latency(i915);
3403
3404 i915->display.funcs.wm = &skl_wm_funcs;
3405 }
3406
intel_dbuf_duplicate_state(struct intel_global_obj * obj)3407 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
3408 {
3409 struct intel_dbuf_state *dbuf_state;
3410
3411 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
3412 if (!dbuf_state)
3413 return NULL;
3414
3415 return &dbuf_state->base;
3416 }
3417
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)3418 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
3419 struct intel_global_state *state)
3420 {
3421 kfree(state);
3422 }
3423
3424 static const struct intel_global_state_funcs intel_dbuf_funcs = {
3425 .atomic_duplicate_state = intel_dbuf_duplicate_state,
3426 .atomic_destroy_state = intel_dbuf_destroy_state,
3427 };
3428
3429 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)3430 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
3431 {
3432 struct drm_i915_private *i915 = to_i915(state->base.dev);
3433 struct intel_global_state *dbuf_state;
3434
3435 dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj);
3436 if (IS_ERR(dbuf_state))
3437 return ERR_CAST(dbuf_state);
3438
3439 return to_intel_dbuf_state(dbuf_state);
3440 }
3441
intel_dbuf_init(struct drm_i915_private * i915)3442 int intel_dbuf_init(struct drm_i915_private *i915)
3443 {
3444 struct intel_dbuf_state *dbuf_state;
3445
3446 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
3447 if (!dbuf_state)
3448 return -ENOMEM;
3449
3450 intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj,
3451 &dbuf_state->base, &intel_dbuf_funcs);
3452
3453 return 0;
3454 }
3455
xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe,u8 active_pipes)3456 static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes)
3457 {
3458 switch (pipe) {
3459 case PIPE_A:
3460 return !(active_pipes & BIT(PIPE_D));
3461 case PIPE_D:
3462 return !(active_pipes & BIT(PIPE_A));
3463 case PIPE_B:
3464 return !(active_pipes & BIT(PIPE_C));
3465 case PIPE_C:
3466 return !(active_pipes & BIT(PIPE_B));
3467 default: /* to suppress compiler warning */
3468 MISSING_CASE(pipe);
3469 break;
3470 }
3471
3472 return false;
3473 }
3474
intel_mbus_dbox_update(struct intel_atomic_state * state)3475 static void intel_mbus_dbox_update(struct intel_atomic_state *state)
3476 {
3477 struct drm_i915_private *i915 = to_i915(state->base.dev);
3478 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3479 const struct intel_crtc *crtc;
3480 u32 val = 0;
3481
3482 if (DISPLAY_VER(i915) < 11)
3483 return;
3484
3485 new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3486 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3487 if (!new_dbuf_state ||
3488 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
3489 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
3490 return;
3491
3492 if (DISPLAY_VER(i915) >= 14)
3493 val |= MBUS_DBOX_I_CREDIT(2);
3494
3495 if (DISPLAY_VER(i915) >= 12) {
3496 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
3497 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
3498 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
3499 }
3500
3501 if (DISPLAY_VER(i915) >= 14)
3502 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) :
3503 MBUS_DBOX_A_CREDIT(8);
3504 else if (IS_ALDERLAKE_P(i915))
3505 /* Wa_22010947358:adl-p */
3506 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
3507 MBUS_DBOX_A_CREDIT(4);
3508 else
3509 val |= MBUS_DBOX_A_CREDIT(2);
3510
3511 if (DISPLAY_VER(i915) >= 14) {
3512 val |= MBUS_DBOX_B_CREDIT(0xA);
3513 } else if (IS_ALDERLAKE_P(i915)) {
3514 val |= MBUS_DBOX_BW_CREDIT(2);
3515 val |= MBUS_DBOX_B_CREDIT(8);
3516 } else if (DISPLAY_VER(i915) >= 12) {
3517 val |= MBUS_DBOX_BW_CREDIT(2);
3518 val |= MBUS_DBOX_B_CREDIT(12);
3519 } else {
3520 val |= MBUS_DBOX_BW_CREDIT(1);
3521 val |= MBUS_DBOX_B_CREDIT(8);
3522 }
3523
3524 for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, new_dbuf_state->active_pipes) {
3525 u32 pipe_val = val;
3526
3527 if (DISPLAY_VER_FULL(i915) == IP_VER(14, 0)) {
3528 if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe,
3529 new_dbuf_state->active_pipes))
3530 pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL;
3531 else
3532 pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL;
3533 }
3534
3535 intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val);
3536 }
3537 }
3538
intel_dbuf_state_set_mdclk_cdclk_ratio(struct intel_atomic_state * state,int ratio)3539 int intel_dbuf_state_set_mdclk_cdclk_ratio(struct intel_atomic_state *state,
3540 int ratio)
3541 {
3542 struct intel_dbuf_state *dbuf_state;
3543
3544 dbuf_state = intel_atomic_get_dbuf_state(state);
3545 if (IS_ERR(dbuf_state))
3546 return PTR_ERR(dbuf_state);
3547
3548 dbuf_state->mdclk_cdclk_ratio = ratio;
3549
3550 return intel_atomic_lock_global_state(&dbuf_state->base);
3551 }
3552
intel_dbuf_mdclk_cdclk_ratio_update(struct drm_i915_private * i915,int ratio,bool joined_mbus)3553 void intel_dbuf_mdclk_cdclk_ratio_update(struct drm_i915_private *i915,
3554 int ratio, bool joined_mbus)
3555 {
3556 enum dbuf_slice slice;
3557
3558 if (!HAS_MBUS_JOINING(i915))
3559 return;
3560
3561 if (DISPLAY_VER(i915) >= 20)
3562 intel_de_rmw(i915, MBUS_CTL, MBUS_TRANSLATION_THROTTLE_MIN_MASK,
3563 MBUS_TRANSLATION_THROTTLE_MIN(ratio - 1));
3564
3565 if (joined_mbus)
3566 ratio *= 2;
3567
3568 drm_dbg_kms(&i915->drm, "Updating dbuf ratio to %d (mbus joined: %s)\n",
3569 ratio, str_yes_no(joined_mbus));
3570
3571 for_each_dbuf_slice(i915, slice)
3572 intel_de_rmw(i915, DBUF_CTL_S(slice),
3573 DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
3574 DBUF_MIN_TRACKER_STATE_SERVICE(ratio - 1));
3575 }
3576
intel_dbuf_mdclk_min_tracker_update(struct intel_atomic_state * state)3577 static void intel_dbuf_mdclk_min_tracker_update(struct intel_atomic_state *state)
3578 {
3579 struct drm_i915_private *i915 = to_i915(state->base.dev);
3580 const struct intel_dbuf_state *old_dbuf_state =
3581 intel_atomic_get_old_dbuf_state(state);
3582 const struct intel_dbuf_state *new_dbuf_state =
3583 intel_atomic_get_new_dbuf_state(state);
3584 int mdclk_cdclk_ratio;
3585
3586 if (intel_cdclk_is_decreasing_later(state)) {
3587 /* cdclk/mdclk will be changed later by intel_set_cdclk_post_plane_update() */
3588 mdclk_cdclk_ratio = old_dbuf_state->mdclk_cdclk_ratio;
3589 } else {
3590 /* cdclk/mdclk already changed by intel_set_cdclk_pre_plane_update() */
3591 mdclk_cdclk_ratio = new_dbuf_state->mdclk_cdclk_ratio;
3592 }
3593
3594 intel_dbuf_mdclk_cdclk_ratio_update(i915, mdclk_cdclk_ratio,
3595 new_dbuf_state->joined_mbus);
3596 }
3597
intel_mbus_joined_pipe(struct intel_atomic_state * state,const struct intel_dbuf_state * dbuf_state)3598 static enum pipe intel_mbus_joined_pipe(struct intel_atomic_state *state,
3599 const struct intel_dbuf_state *dbuf_state)
3600 {
3601 struct drm_i915_private *i915 = to_i915(state->base.dev);
3602 enum pipe pipe = ffs(dbuf_state->active_pipes) - 1;
3603 const struct intel_crtc_state *new_crtc_state;
3604 struct intel_crtc *crtc;
3605
3606 drm_WARN_ON(&i915->drm, !dbuf_state->joined_mbus);
3607 drm_WARN_ON(&i915->drm, !is_power_of_2(dbuf_state->active_pipes));
3608
3609 crtc = intel_crtc_for_pipe(i915, pipe);
3610 new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
3611
3612 if (new_crtc_state && !intel_crtc_needs_modeset(new_crtc_state))
3613 return pipe;
3614 else
3615 return INVALID_PIPE;
3616 }
3617
intel_dbuf_mbus_join_update(struct intel_atomic_state * state,enum pipe pipe)3618 static void intel_dbuf_mbus_join_update(struct intel_atomic_state *state,
3619 enum pipe pipe)
3620 {
3621 struct drm_i915_private *i915 = to_i915(state->base.dev);
3622 const struct intel_dbuf_state *old_dbuf_state =
3623 intel_atomic_get_old_dbuf_state(state);
3624 const struct intel_dbuf_state *new_dbuf_state =
3625 intel_atomic_get_new_dbuf_state(state);
3626 u32 mbus_ctl;
3627
3628 drm_dbg_kms(&i915->drm, "Changing mbus joined: %s -> %s (pipe: %c)\n",
3629 str_yes_no(old_dbuf_state->joined_mbus),
3630 str_yes_no(new_dbuf_state->joined_mbus),
3631 pipe != INVALID_PIPE ? pipe_name(pipe) : '*');
3632
3633 if (new_dbuf_state->joined_mbus)
3634 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN;
3635 else
3636 mbus_ctl = MBUS_HASHING_MODE_2x2;
3637
3638 if (pipe != INVALID_PIPE)
3639 mbus_ctl |= MBUS_JOIN_PIPE_SELECT(pipe);
3640 else
3641 mbus_ctl |= MBUS_JOIN_PIPE_SELECT_NONE;
3642
3643 intel_de_rmw(i915, MBUS_CTL,
3644 MBUS_HASHING_MODE_MASK | MBUS_JOIN |
3645 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
3646 }
3647
intel_dbuf_mbus_pre_ddb_update(struct intel_atomic_state * state)3648 void intel_dbuf_mbus_pre_ddb_update(struct intel_atomic_state *state)
3649 {
3650 const struct intel_dbuf_state *new_dbuf_state =
3651 intel_atomic_get_new_dbuf_state(state);
3652 const struct intel_dbuf_state *old_dbuf_state =
3653 intel_atomic_get_old_dbuf_state(state);
3654
3655 if (!new_dbuf_state)
3656 return;
3657
3658 if (!old_dbuf_state->joined_mbus && new_dbuf_state->joined_mbus) {
3659 enum pipe pipe = intel_mbus_joined_pipe(state, new_dbuf_state);
3660
3661 WARN_ON(!new_dbuf_state->base.changed);
3662
3663 intel_dbuf_mbus_join_update(state, pipe);
3664 intel_mbus_dbox_update(state);
3665 intel_dbuf_mdclk_min_tracker_update(state);
3666 }
3667 }
3668
intel_dbuf_mbus_post_ddb_update(struct intel_atomic_state * state)3669 void intel_dbuf_mbus_post_ddb_update(struct intel_atomic_state *state)
3670 {
3671 struct drm_i915_private *i915 = to_i915(state->base.dev);
3672 const struct intel_dbuf_state *new_dbuf_state =
3673 intel_atomic_get_new_dbuf_state(state);
3674 const struct intel_dbuf_state *old_dbuf_state =
3675 intel_atomic_get_old_dbuf_state(state);
3676
3677 if (!new_dbuf_state)
3678 return;
3679
3680 if (old_dbuf_state->joined_mbus && !new_dbuf_state->joined_mbus) {
3681 enum pipe pipe = intel_mbus_joined_pipe(state, old_dbuf_state);
3682
3683 WARN_ON(!new_dbuf_state->base.changed);
3684
3685 intel_dbuf_mdclk_min_tracker_update(state);
3686 intel_mbus_dbox_update(state);
3687 intel_dbuf_mbus_join_update(state, pipe);
3688
3689 if (pipe != INVALID_PIPE) {
3690 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
3691
3692 intel_crtc_wait_for_next_vblank(crtc);
3693 }
3694 } else if (old_dbuf_state->joined_mbus == new_dbuf_state->joined_mbus &&
3695 old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
3696 WARN_ON(!new_dbuf_state->base.changed);
3697
3698 intel_dbuf_mdclk_min_tracker_update(state);
3699 intel_mbus_dbox_update(state);
3700 }
3701
3702 }
3703
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)3704 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
3705 {
3706 struct drm_i915_private *i915 = to_i915(state->base.dev);
3707 const struct intel_dbuf_state *new_dbuf_state =
3708 intel_atomic_get_new_dbuf_state(state);
3709 const struct intel_dbuf_state *old_dbuf_state =
3710 intel_atomic_get_old_dbuf_state(state);
3711 u8 old_slices, new_slices;
3712
3713 if (!new_dbuf_state)
3714 return;
3715
3716 old_slices = old_dbuf_state->enabled_slices;
3717 new_slices = old_dbuf_state->enabled_slices | new_dbuf_state->enabled_slices;
3718
3719 if (old_slices == new_slices)
3720 return;
3721
3722 WARN_ON(!new_dbuf_state->base.changed);
3723
3724 gen9_dbuf_slices_update(i915, new_slices);
3725 }
3726
intel_dbuf_post_plane_update(struct intel_atomic_state * state)3727 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
3728 {
3729 struct drm_i915_private *i915 = to_i915(state->base.dev);
3730 const struct intel_dbuf_state *new_dbuf_state =
3731 intel_atomic_get_new_dbuf_state(state);
3732 const struct intel_dbuf_state *old_dbuf_state =
3733 intel_atomic_get_old_dbuf_state(state);
3734 u8 old_slices, new_slices;
3735
3736 if (!new_dbuf_state)
3737 return;
3738
3739 old_slices = old_dbuf_state->enabled_slices | new_dbuf_state->enabled_slices;
3740 new_slices = new_dbuf_state->enabled_slices;
3741
3742 if (old_slices == new_slices)
3743 return;
3744
3745 WARN_ON(!new_dbuf_state->base.changed);
3746
3747 gen9_dbuf_slices_update(i915, new_slices);
3748 }
3749
skl_watermark_ipc_status_show(struct seq_file * m,void * data)3750 static int skl_watermark_ipc_status_show(struct seq_file *m, void *data)
3751 {
3752 struct drm_i915_private *i915 = m->private;
3753
3754 seq_printf(m, "Isochronous Priority Control: %s\n",
3755 str_yes_no(skl_watermark_ipc_enabled(i915)));
3756 return 0;
3757 }
3758
skl_watermark_ipc_status_open(struct inode * inode,struct file * file)3759 static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file)
3760 {
3761 struct drm_i915_private *i915 = inode->i_private;
3762
3763 return single_open(file, skl_watermark_ipc_status_show, i915);
3764 }
3765
skl_watermark_ipc_status_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)3766 static ssize_t skl_watermark_ipc_status_write(struct file *file,
3767 const char __user *ubuf,
3768 size_t len, loff_t *offp)
3769 {
3770 struct seq_file *m = file->private_data;
3771 struct drm_i915_private *i915 = m->private;
3772 intel_wakeref_t wakeref;
3773 bool enable;
3774 int ret;
3775
3776 ret = kstrtobool_from_user(ubuf, len, &enable);
3777 if (ret < 0)
3778 return ret;
3779
3780 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
3781 if (!skl_watermark_ipc_enabled(i915) && enable)
3782 drm_info(&i915->drm,
3783 "Enabling IPC: WM will be proper only after next commit\n");
3784 i915->display.wm.ipc_enabled = enable;
3785 skl_watermark_ipc_update(i915);
3786 }
3787
3788 return len;
3789 }
3790
3791 static const struct file_operations skl_watermark_ipc_status_fops = {
3792 .owner = THIS_MODULE,
3793 .open = skl_watermark_ipc_status_open,
3794 .read = seq_read,
3795 .llseek = seq_lseek,
3796 .release = single_release,
3797 .write = skl_watermark_ipc_status_write
3798 };
3799
intel_sagv_status_show(struct seq_file * m,void * unused)3800 static int intel_sagv_status_show(struct seq_file *m, void *unused)
3801 {
3802 struct drm_i915_private *i915 = m->private;
3803 static const char * const sagv_status[] = {
3804 [I915_SAGV_UNKNOWN] = "unknown",
3805 [I915_SAGV_DISABLED] = "disabled",
3806 [I915_SAGV_ENABLED] = "enabled",
3807 [I915_SAGV_NOT_CONTROLLED] = "not controlled",
3808 };
3809
3810 seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915)));
3811 seq_printf(m, "SAGV modparam: %s\n",
3812 str_enabled_disabled(i915->display.params.enable_sagv));
3813 seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]);
3814 seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us);
3815
3816 return 0;
3817 }
3818
3819 DEFINE_SHOW_ATTRIBUTE(intel_sagv_status);
3820
skl_watermark_debugfs_register(struct drm_i915_private * i915)3821 void skl_watermark_debugfs_register(struct drm_i915_private *i915)
3822 {
3823 struct drm_minor *minor = i915->drm.primary;
3824
3825 if (HAS_IPC(i915))
3826 debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915,
3827 &skl_watermark_ipc_status_fops);
3828
3829 if (HAS_SAGV(i915))
3830 debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915,
3831 &intel_sagv_status_fops);
3832 }
3833
skl_watermark_max_latency(struct drm_i915_private * i915,int initial_wm_level)3834 unsigned int skl_watermark_max_latency(struct drm_i915_private *i915, int initial_wm_level)
3835 {
3836 int level;
3837
3838 for (level = i915->display.wm.num_levels - 1; level >= initial_wm_level; level--) {
3839 unsigned int latency = skl_wm_latency(i915, level, NULL);
3840
3841 if (latency)
3842 return latency;
3843 }
3844
3845 return 0;
3846 }
3847