1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <linux/iopoll.h> 7 #include <linux/string_helpers.h> 8 9 #include <drm/drm_print.h> 10 11 #include "soc/intel_dram.h" 12 13 #include "i915_drv.h" 14 #include "i915_irq.h" 15 #include "i915_reg.h" 16 #include "i915_utils.h" 17 #include "intel_backlight_regs.h" 18 #include "intel_cdclk.h" 19 #include "intel_clock_gating.h" 20 #include "intel_combo_phy.h" 21 #include "intel_de.h" 22 #include "intel_display_power.h" 23 #include "intel_display_power_map.h" 24 #include "intel_display_power_well.h" 25 #include "intel_display_regs.h" 26 #include "intel_display_rpm.h" 27 #include "intel_display_types.h" 28 #include "intel_dmc.h" 29 #include "intel_mchbar_regs.h" 30 #include "intel_pch_refclk.h" 31 #include "intel_pcode.h" 32 #include "intel_pmdemand.h" 33 #include "intel_pps_regs.h" 34 #include "intel_snps_phy.h" 35 #include "skl_watermark.h" 36 #include "skl_watermark_regs.h" 37 #include "vlv_sideband.h" 38 39 #define for_each_power_domain_well(__display, __power_well, __domain) \ 40 for_each_power_well((__display), __power_well) \ 41 for_each_if(test_bit((__domain), (__power_well)->domains.bits)) 42 43 #define for_each_power_domain_well_reverse(__display, __power_well, __domain) \ 44 for_each_power_well_reverse((__display), __power_well) \ 45 for_each_if(test_bit((__domain), (__power_well)->domains.bits)) 46 47 static const char * 48 intel_display_power_domain_str(enum intel_display_power_domain domain) 49 { 50 switch (domain) { 51 case POWER_DOMAIN_DISPLAY_CORE: 52 return "DISPLAY_CORE"; 53 case POWER_DOMAIN_PIPE_A: 54 return "PIPE_A"; 55 case POWER_DOMAIN_PIPE_B: 56 return "PIPE_B"; 57 case POWER_DOMAIN_PIPE_C: 58 return "PIPE_C"; 59 case POWER_DOMAIN_PIPE_D: 60 return "PIPE_D"; 61 case POWER_DOMAIN_PIPE_PANEL_FITTER_A: 62 return "PIPE_PANEL_FITTER_A"; 63 case POWER_DOMAIN_PIPE_PANEL_FITTER_B: 64 return "PIPE_PANEL_FITTER_B"; 65 case POWER_DOMAIN_PIPE_PANEL_FITTER_C: 66 return "PIPE_PANEL_FITTER_C"; 67 case POWER_DOMAIN_PIPE_PANEL_FITTER_D: 68 return "PIPE_PANEL_FITTER_D"; 69 case POWER_DOMAIN_TRANSCODER_A: 70 return "TRANSCODER_A"; 71 case POWER_DOMAIN_TRANSCODER_B: 72 return "TRANSCODER_B"; 73 case POWER_DOMAIN_TRANSCODER_C: 74 return "TRANSCODER_C"; 75 case POWER_DOMAIN_TRANSCODER_D: 76 return "TRANSCODER_D"; 77 case POWER_DOMAIN_TRANSCODER_EDP: 78 return "TRANSCODER_EDP"; 79 case POWER_DOMAIN_TRANSCODER_DSI_A: 80 return "TRANSCODER_DSI_A"; 81 case POWER_DOMAIN_TRANSCODER_DSI_C: 82 return "TRANSCODER_DSI_C"; 83 case POWER_DOMAIN_TRANSCODER_VDSC_PW2: 84 return "TRANSCODER_VDSC_PW2"; 85 case POWER_DOMAIN_PORT_DDI_LANES_A: 86 return "PORT_DDI_LANES_A"; 87 case POWER_DOMAIN_PORT_DDI_LANES_B: 88 return "PORT_DDI_LANES_B"; 89 case POWER_DOMAIN_PORT_DDI_LANES_C: 90 return "PORT_DDI_LANES_C"; 91 case POWER_DOMAIN_PORT_DDI_LANES_D: 92 return "PORT_DDI_LANES_D"; 93 case POWER_DOMAIN_PORT_DDI_LANES_E: 94 return "PORT_DDI_LANES_E"; 95 case POWER_DOMAIN_PORT_DDI_LANES_F: 96 return "PORT_DDI_LANES_F"; 97 case POWER_DOMAIN_PORT_DDI_LANES_TC1: 98 return "PORT_DDI_LANES_TC1"; 99 case POWER_DOMAIN_PORT_DDI_LANES_TC2: 100 return "PORT_DDI_LANES_TC2"; 101 case POWER_DOMAIN_PORT_DDI_LANES_TC3: 102 return "PORT_DDI_LANES_TC3"; 103 case POWER_DOMAIN_PORT_DDI_LANES_TC4: 104 return "PORT_DDI_LANES_TC4"; 105 case POWER_DOMAIN_PORT_DDI_LANES_TC5: 106 return "PORT_DDI_LANES_TC5"; 107 case POWER_DOMAIN_PORT_DDI_LANES_TC6: 108 return "PORT_DDI_LANES_TC6"; 109 case POWER_DOMAIN_PORT_DDI_IO_A: 110 return "PORT_DDI_IO_A"; 111 case POWER_DOMAIN_PORT_DDI_IO_B: 112 return "PORT_DDI_IO_B"; 113 case POWER_DOMAIN_PORT_DDI_IO_C: 114 return "PORT_DDI_IO_C"; 115 case POWER_DOMAIN_PORT_DDI_IO_D: 116 return "PORT_DDI_IO_D"; 117 case POWER_DOMAIN_PORT_DDI_IO_E: 118 return "PORT_DDI_IO_E"; 119 case POWER_DOMAIN_PORT_DDI_IO_F: 120 return "PORT_DDI_IO_F"; 121 case POWER_DOMAIN_PORT_DDI_IO_TC1: 122 return "PORT_DDI_IO_TC1"; 123 case POWER_DOMAIN_PORT_DDI_IO_TC2: 124 return "PORT_DDI_IO_TC2"; 125 case POWER_DOMAIN_PORT_DDI_IO_TC3: 126 return "PORT_DDI_IO_TC3"; 127 case POWER_DOMAIN_PORT_DDI_IO_TC4: 128 return "PORT_DDI_IO_TC4"; 129 case POWER_DOMAIN_PORT_DDI_IO_TC5: 130 return "PORT_DDI_IO_TC5"; 131 case POWER_DOMAIN_PORT_DDI_IO_TC6: 132 return "PORT_DDI_IO_TC6"; 133 case POWER_DOMAIN_PORT_DSI: 134 return "PORT_DSI"; 135 case POWER_DOMAIN_PORT_CRT: 136 return "PORT_CRT"; 137 case POWER_DOMAIN_PORT_OTHER: 138 return "PORT_OTHER"; 139 case POWER_DOMAIN_VGA: 140 return "VGA"; 141 case POWER_DOMAIN_AUDIO_MMIO: 142 return "AUDIO_MMIO"; 143 case POWER_DOMAIN_AUDIO_PLAYBACK: 144 return "AUDIO_PLAYBACK"; 145 case POWER_DOMAIN_AUX_IO_A: 146 return "AUX_IO_A"; 147 case POWER_DOMAIN_AUX_IO_B: 148 return "AUX_IO_B"; 149 case POWER_DOMAIN_AUX_IO_C: 150 return "AUX_IO_C"; 151 case POWER_DOMAIN_AUX_IO_D: 152 return "AUX_IO_D"; 153 case POWER_DOMAIN_AUX_IO_E: 154 return "AUX_IO_E"; 155 case POWER_DOMAIN_AUX_IO_F: 156 return "AUX_IO_F"; 157 case POWER_DOMAIN_AUX_A: 158 return "AUX_A"; 159 case POWER_DOMAIN_AUX_B: 160 return "AUX_B"; 161 case POWER_DOMAIN_AUX_C: 162 return "AUX_C"; 163 case POWER_DOMAIN_AUX_D: 164 return "AUX_D"; 165 case POWER_DOMAIN_AUX_E: 166 return "AUX_E"; 167 case POWER_DOMAIN_AUX_F: 168 return "AUX_F"; 169 case POWER_DOMAIN_AUX_USBC1: 170 return "AUX_USBC1"; 171 case POWER_DOMAIN_AUX_USBC2: 172 return "AUX_USBC2"; 173 case POWER_DOMAIN_AUX_USBC3: 174 return "AUX_USBC3"; 175 case POWER_DOMAIN_AUX_USBC4: 176 return "AUX_USBC4"; 177 case POWER_DOMAIN_AUX_USBC5: 178 return "AUX_USBC5"; 179 case POWER_DOMAIN_AUX_USBC6: 180 return "AUX_USBC6"; 181 case POWER_DOMAIN_AUX_TBT1: 182 return "AUX_TBT1"; 183 case POWER_DOMAIN_AUX_TBT2: 184 return "AUX_TBT2"; 185 case POWER_DOMAIN_AUX_TBT3: 186 return "AUX_TBT3"; 187 case POWER_DOMAIN_AUX_TBT4: 188 return "AUX_TBT4"; 189 case POWER_DOMAIN_AUX_TBT5: 190 return "AUX_TBT5"; 191 case POWER_DOMAIN_AUX_TBT6: 192 return "AUX_TBT6"; 193 case POWER_DOMAIN_GMBUS: 194 return "GMBUS"; 195 case POWER_DOMAIN_INIT: 196 return "INIT"; 197 case POWER_DOMAIN_GT_IRQ: 198 return "GT_IRQ"; 199 case POWER_DOMAIN_DC_OFF: 200 return "DC_OFF"; 201 case POWER_DOMAIN_TC_COLD_OFF: 202 return "TC_COLD_OFF"; 203 default: 204 MISSING_CASE(domain); 205 return "?"; 206 } 207 } 208 209 static bool __intel_display_power_is_enabled(struct intel_display *display, 210 enum intel_display_power_domain domain) 211 { 212 struct i915_power_well *power_well; 213 bool is_enabled; 214 215 if (intel_display_rpm_suspended(display)) 216 return false; 217 218 is_enabled = true; 219 220 for_each_power_domain_well_reverse(display, power_well, domain) { 221 if (intel_power_well_is_always_on(power_well)) 222 continue; 223 224 if (!intel_power_well_is_enabled_cached(power_well)) { 225 is_enabled = false; 226 break; 227 } 228 } 229 230 return is_enabled; 231 } 232 233 /** 234 * intel_display_power_is_enabled - check for a power domain 235 * @display: display device instance 236 * @domain: power domain to check 237 * 238 * This function can be used to check the hw power domain state. It is mostly 239 * used in hardware state readout functions. Everywhere else code should rely 240 * upon explicit power domain reference counting to ensure that the hardware 241 * block is powered up before accessing it. 242 * 243 * Callers must hold the relevant modesetting locks to ensure that concurrent 244 * threads can't disable the power well while the caller tries to read a few 245 * registers. 246 * 247 * Returns: 248 * True when the power domain is enabled, false otherwise. 249 */ 250 bool intel_display_power_is_enabled(struct intel_display *display, 251 enum intel_display_power_domain domain) 252 { 253 struct i915_power_domains *power_domains = &display->power.domains; 254 bool ret; 255 256 mutex_lock(&power_domains->lock); 257 ret = __intel_display_power_is_enabled(display, domain); 258 mutex_unlock(&power_domains->lock); 259 260 return ret; 261 } 262 263 static u32 264 sanitize_target_dc_state(struct intel_display *display, 265 u32 target_dc_state) 266 { 267 struct i915_power_domains *power_domains = &display->power.domains; 268 static const u32 states[] = { 269 DC_STATE_EN_UPTO_DC6, 270 DC_STATE_EN_UPTO_DC5, 271 DC_STATE_EN_DC3CO, 272 DC_STATE_DISABLE, 273 }; 274 int i; 275 276 for (i = 0; i < ARRAY_SIZE(states) - 1; i++) { 277 if (target_dc_state != states[i]) 278 continue; 279 280 if (power_domains->allowed_dc_mask & target_dc_state) 281 break; 282 283 target_dc_state = states[i + 1]; 284 } 285 286 return target_dc_state; 287 } 288 289 /** 290 * intel_display_power_set_target_dc_state - Set target dc state. 291 * @display: display device 292 * @state: state which needs to be set as target_dc_state. 293 * 294 * This function set the "DC off" power well target_dc_state, 295 * based upon this target_dc_stste, "DC off" power well will 296 * enable desired DC state. 297 */ 298 void intel_display_power_set_target_dc_state(struct intel_display *display, 299 u32 state) 300 { 301 struct i915_power_well *power_well; 302 bool dc_off_enabled; 303 struct i915_power_domains *power_domains = &display->power.domains; 304 305 mutex_lock(&power_domains->lock); 306 power_well = lookup_power_well(display, SKL_DISP_DC_OFF); 307 308 if (drm_WARN_ON(display->drm, !power_well)) 309 goto unlock; 310 311 state = sanitize_target_dc_state(display, state); 312 313 if (state == power_domains->target_dc_state) 314 goto unlock; 315 316 dc_off_enabled = intel_power_well_is_enabled(display, power_well); 317 /* 318 * If DC off power well is disabled, need to enable and disable the 319 * DC off power well to effect target DC state. 320 */ 321 if (!dc_off_enabled) 322 intel_power_well_enable(display, power_well); 323 324 power_domains->target_dc_state = state; 325 326 if (!dc_off_enabled) 327 intel_power_well_disable(display, power_well); 328 329 unlock: 330 mutex_unlock(&power_domains->lock); 331 } 332 333 /** 334 * intel_display_power_get_current_dc_state - Set target dc state. 335 * @display: display device 336 * 337 * This function set the "DC off" power well target_dc_state, 338 * based upon this target_dc_stste, "DC off" power well will 339 * enable desired DC state. 340 */ 341 u32 intel_display_power_get_current_dc_state(struct intel_display *display) 342 { 343 struct i915_power_well *power_well; 344 struct i915_power_domains *power_domains = &display->power.domains; 345 u32 current_dc_state = DC_STATE_DISABLE; 346 347 mutex_lock(&power_domains->lock); 348 power_well = lookup_power_well(display, SKL_DISP_DC_OFF); 349 350 if (drm_WARN_ON(display->drm, !power_well)) 351 goto unlock; 352 353 current_dc_state = intel_power_well_is_enabled(display, power_well) ? 354 DC_STATE_DISABLE : power_domains->target_dc_state; 355 356 unlock: 357 mutex_unlock(&power_domains->lock); 358 359 return current_dc_state; 360 } 361 362 static void __async_put_domains_mask(struct i915_power_domains *power_domains, 363 struct intel_power_domain_mask *mask) 364 { 365 bitmap_or(mask->bits, 366 power_domains->async_put_domains[0].bits, 367 power_domains->async_put_domains[1].bits, 368 POWER_DOMAIN_NUM); 369 } 370 371 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 372 373 static bool 374 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) 375 { 376 struct intel_display *display = container_of(power_domains, 377 struct intel_display, 378 power.domains); 379 380 return !drm_WARN_ON(display->drm, 381 bitmap_intersects(power_domains->async_put_domains[0].bits, 382 power_domains->async_put_domains[1].bits, 383 POWER_DOMAIN_NUM)); 384 } 385 386 static bool 387 __async_put_domains_state_ok(struct i915_power_domains *power_domains) 388 { 389 struct intel_display *display = container_of(power_domains, 390 struct intel_display, 391 power.domains); 392 struct intel_power_domain_mask async_put_mask; 393 enum intel_display_power_domain domain; 394 bool err = false; 395 396 err |= !assert_async_put_domain_masks_disjoint(power_domains); 397 __async_put_domains_mask(power_domains, &async_put_mask); 398 err |= drm_WARN_ON(display->drm, 399 !!power_domains->async_put_wakeref != 400 !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)); 401 402 for_each_power_domain(domain, &async_put_mask) 403 err |= drm_WARN_ON(display->drm, 404 power_domains->domain_use_count[domain] != 1); 405 406 return !err; 407 } 408 409 static void print_power_domains(struct i915_power_domains *power_domains, 410 const char *prefix, struct intel_power_domain_mask *mask) 411 { 412 struct intel_display *display = container_of(power_domains, 413 struct intel_display, 414 power.domains); 415 enum intel_display_power_domain domain; 416 417 drm_dbg_kms(display->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM)); 418 for_each_power_domain(domain, mask) 419 drm_dbg_kms(display->drm, "%s use_count %d\n", 420 intel_display_power_domain_str(domain), 421 power_domains->domain_use_count[domain]); 422 } 423 424 static void 425 print_async_put_domains_state(struct i915_power_domains *power_domains) 426 { 427 struct intel_display *display = container_of(power_domains, 428 struct intel_display, 429 power.domains); 430 431 drm_dbg_kms(display->drm, "async_put_wakeref: %s\n", 432 str_yes_no(power_domains->async_put_wakeref)); 433 434 print_power_domains(power_domains, "async_put_domains[0]", 435 &power_domains->async_put_domains[0]); 436 print_power_domains(power_domains, "async_put_domains[1]", 437 &power_domains->async_put_domains[1]); 438 } 439 440 static void 441 verify_async_put_domains_state(struct i915_power_domains *power_domains) 442 { 443 if (!__async_put_domains_state_ok(power_domains)) 444 print_async_put_domains_state(power_domains); 445 } 446 447 #else 448 449 static void 450 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) 451 { 452 } 453 454 static void 455 verify_async_put_domains_state(struct i915_power_domains *power_domains) 456 { 457 } 458 459 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */ 460 461 static void async_put_domains_mask(struct i915_power_domains *power_domains, 462 struct intel_power_domain_mask *mask) 463 464 { 465 assert_async_put_domain_masks_disjoint(power_domains); 466 467 __async_put_domains_mask(power_domains, mask); 468 } 469 470 static void 471 async_put_domains_clear_domain(struct i915_power_domains *power_domains, 472 enum intel_display_power_domain domain) 473 { 474 assert_async_put_domain_masks_disjoint(power_domains); 475 476 clear_bit(domain, power_domains->async_put_domains[0].bits); 477 clear_bit(domain, power_domains->async_put_domains[1].bits); 478 } 479 480 static void 481 cancel_async_put_work(struct i915_power_domains *power_domains, bool sync) 482 { 483 if (sync) 484 cancel_delayed_work_sync(&power_domains->async_put_work); 485 else 486 cancel_delayed_work(&power_domains->async_put_work); 487 488 power_domains->async_put_next_delay = 0; 489 } 490 491 static bool 492 intel_display_power_grab_async_put_ref(struct intel_display *display, 493 enum intel_display_power_domain domain) 494 { 495 struct i915_power_domains *power_domains = &display->power.domains; 496 struct intel_power_domain_mask async_put_mask; 497 bool ret = false; 498 499 async_put_domains_mask(power_domains, &async_put_mask); 500 if (!test_bit(domain, async_put_mask.bits)) 501 goto out_verify; 502 503 async_put_domains_clear_domain(power_domains, domain); 504 505 ret = true; 506 507 async_put_domains_mask(power_domains, &async_put_mask); 508 if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)) 509 goto out_verify; 510 511 cancel_async_put_work(power_domains, false); 512 intel_display_rpm_put_raw(display, 513 fetch_and_zero(&power_domains->async_put_wakeref)); 514 out_verify: 515 verify_async_put_domains_state(power_domains); 516 517 return ret; 518 } 519 520 static void 521 __intel_display_power_get_domain(struct intel_display *display, 522 enum intel_display_power_domain domain) 523 { 524 struct i915_power_domains *power_domains = &display->power.domains; 525 struct i915_power_well *power_well; 526 527 if (intel_display_power_grab_async_put_ref(display, domain)) 528 return; 529 530 for_each_power_domain_well(display, power_well, domain) 531 intel_power_well_get(display, power_well); 532 533 power_domains->domain_use_count[domain]++; 534 } 535 536 /** 537 * intel_display_power_get - grab a power domain reference 538 * @display: display device instance 539 * @domain: power domain to reference 540 * 541 * This function grabs a power domain reference for @domain and ensures that the 542 * power domain and all its parents are powered up. Therefore users should only 543 * grab a reference to the innermost power domain they need. 544 * 545 * Any power domain reference obtained by this function must have a symmetric 546 * call to intel_display_power_put() to release the reference again. 547 */ 548 intel_wakeref_t intel_display_power_get(struct intel_display *display, 549 enum intel_display_power_domain domain) 550 { 551 struct i915_power_domains *power_domains = &display->power.domains; 552 struct ref_tracker *wakeref; 553 554 wakeref = intel_display_rpm_get(display); 555 556 mutex_lock(&power_domains->lock); 557 __intel_display_power_get_domain(display, domain); 558 mutex_unlock(&power_domains->lock); 559 560 return wakeref; 561 } 562 563 /** 564 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain 565 * @display: display device instance 566 * @domain: power domain to reference 567 * 568 * This function grabs a power domain reference for @domain and ensures that the 569 * power domain and all its parents are powered up. Therefore users should only 570 * grab a reference to the innermost power domain they need. 571 * 572 * Any power domain reference obtained by this function must have a symmetric 573 * call to intel_display_power_put() to release the reference again. 574 */ 575 intel_wakeref_t 576 intel_display_power_get_if_enabled(struct intel_display *display, 577 enum intel_display_power_domain domain) 578 { 579 struct i915_power_domains *power_domains = &display->power.domains; 580 struct ref_tracker *wakeref; 581 bool is_enabled; 582 583 wakeref = intel_display_rpm_get_if_in_use(display); 584 if (!wakeref) 585 return NULL; 586 587 mutex_lock(&power_domains->lock); 588 589 if (__intel_display_power_is_enabled(display, domain)) { 590 __intel_display_power_get_domain(display, domain); 591 is_enabled = true; 592 } else { 593 is_enabled = false; 594 } 595 596 mutex_unlock(&power_domains->lock); 597 598 if (!is_enabled) { 599 intel_display_rpm_put(display, wakeref); 600 wakeref = NULL; 601 } 602 603 return wakeref; 604 } 605 606 static void 607 __intel_display_power_put_domain(struct intel_display *display, 608 enum intel_display_power_domain domain) 609 { 610 struct i915_power_domains *power_domains = &display->power.domains; 611 struct i915_power_well *power_well; 612 const char *name = intel_display_power_domain_str(domain); 613 struct intel_power_domain_mask async_put_mask; 614 615 drm_WARN(display->drm, !power_domains->domain_use_count[domain], 616 "Use count on domain %s is already zero\n", 617 name); 618 async_put_domains_mask(power_domains, &async_put_mask); 619 drm_WARN(display->drm, 620 test_bit(domain, async_put_mask.bits), 621 "Async disabling of domain %s is pending\n", 622 name); 623 624 power_domains->domain_use_count[domain]--; 625 626 for_each_power_domain_well_reverse(display, power_well, domain) 627 intel_power_well_put(display, power_well); 628 } 629 630 static void __intel_display_power_put(struct intel_display *display, 631 enum intel_display_power_domain domain) 632 { 633 struct i915_power_domains *power_domains = &display->power.domains; 634 635 mutex_lock(&power_domains->lock); 636 __intel_display_power_put_domain(display, domain); 637 mutex_unlock(&power_domains->lock); 638 } 639 640 static void 641 queue_async_put_domains_work(struct i915_power_domains *power_domains, 642 intel_wakeref_t wakeref, 643 int delay_ms) 644 { 645 struct intel_display *display = container_of(power_domains, 646 struct intel_display, 647 power.domains); 648 drm_WARN_ON(display->drm, power_domains->async_put_wakeref); 649 power_domains->async_put_wakeref = wakeref; 650 drm_WARN_ON(display->drm, !queue_delayed_work(system_unbound_wq, 651 &power_domains->async_put_work, 652 msecs_to_jiffies(delay_ms))); 653 } 654 655 static void 656 release_async_put_domains(struct i915_power_domains *power_domains, 657 struct intel_power_domain_mask *mask) 658 { 659 struct intel_display *display = container_of(power_domains, 660 struct intel_display, 661 power.domains); 662 enum intel_display_power_domain domain; 663 struct ref_tracker *wakeref; 664 665 wakeref = intel_display_rpm_get_noresume(display); 666 667 for_each_power_domain(domain, mask) { 668 /* Clear before put, so put's sanity check is happy. */ 669 async_put_domains_clear_domain(power_domains, domain); 670 __intel_display_power_put_domain(display, domain); 671 } 672 673 intel_display_rpm_put(display, wakeref); 674 } 675 676 static void 677 intel_display_power_put_async_work(struct work_struct *work) 678 { 679 struct intel_display *display = container_of(work, struct intel_display, 680 power.domains.async_put_work.work); 681 struct i915_power_domains *power_domains = &display->power.domains; 682 struct ref_tracker *new_work_wakeref, *old_work_wakeref = NULL; 683 684 new_work_wakeref = intel_display_rpm_get_raw(display); 685 686 mutex_lock(&power_domains->lock); 687 688 /* 689 * Bail out if all the domain refs pending to be released were grabbed 690 * by subsequent gets or a flush_work. 691 */ 692 old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); 693 if (!old_work_wakeref) 694 goto out_verify; 695 696 release_async_put_domains(power_domains, 697 &power_domains->async_put_domains[0]); 698 699 /* 700 * Cancel the work that got queued after this one got dequeued, 701 * since here we released the corresponding async-put reference. 702 */ 703 cancel_async_put_work(power_domains, false); 704 705 /* Requeue the work if more domains were async put meanwhile. */ 706 if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) { 707 bitmap_copy(power_domains->async_put_domains[0].bits, 708 power_domains->async_put_domains[1].bits, 709 POWER_DOMAIN_NUM); 710 bitmap_zero(power_domains->async_put_domains[1].bits, 711 POWER_DOMAIN_NUM); 712 queue_async_put_domains_work(power_domains, 713 fetch_and_zero(&new_work_wakeref), 714 power_domains->async_put_next_delay); 715 power_domains->async_put_next_delay = 0; 716 } 717 718 out_verify: 719 verify_async_put_domains_state(power_domains); 720 721 mutex_unlock(&power_domains->lock); 722 723 if (old_work_wakeref) 724 intel_display_rpm_put_raw(display, old_work_wakeref); 725 if (new_work_wakeref) 726 intel_display_rpm_put_raw(display, new_work_wakeref); 727 } 728 729 /** 730 * __intel_display_power_put_async - release a power domain reference asynchronously 731 * @display: display device instance 732 * @domain: power domain to reference 733 * @wakeref: wakeref acquired for the reference that is being released 734 * @delay_ms: delay of powering down the power domain 735 * 736 * This function drops the power domain reference obtained by 737 * intel_display_power_get*() and schedules a work to power down the 738 * corresponding hardware block if this is the last reference. 739 * The power down is delayed by @delay_ms if this is >= 0, or by a default 740 * 100 ms otherwise. 741 */ 742 void __intel_display_power_put_async(struct intel_display *display, 743 enum intel_display_power_domain domain, 744 intel_wakeref_t wakeref, 745 int delay_ms) 746 { 747 struct i915_power_domains *power_domains = &display->power.domains; 748 struct ref_tracker *work_wakeref; 749 750 work_wakeref = intel_display_rpm_get_raw(display); 751 752 delay_ms = delay_ms >= 0 ? delay_ms : 100; 753 754 mutex_lock(&power_domains->lock); 755 756 if (power_domains->domain_use_count[domain] > 1) { 757 __intel_display_power_put_domain(display, domain); 758 759 goto out_verify; 760 } 761 762 drm_WARN_ON(display->drm, power_domains->domain_use_count[domain] != 1); 763 764 /* Let a pending work requeue itself or queue a new one. */ 765 if (power_domains->async_put_wakeref) { 766 set_bit(domain, power_domains->async_put_domains[1].bits); 767 power_domains->async_put_next_delay = max(power_domains->async_put_next_delay, 768 delay_ms); 769 } else { 770 set_bit(domain, power_domains->async_put_domains[0].bits); 771 queue_async_put_domains_work(power_domains, 772 fetch_and_zero(&work_wakeref), 773 delay_ms); 774 } 775 776 out_verify: 777 verify_async_put_domains_state(power_domains); 778 779 mutex_unlock(&power_domains->lock); 780 781 if (work_wakeref) 782 intel_display_rpm_put_raw(display, work_wakeref); 783 784 intel_display_rpm_put(display, wakeref); 785 } 786 787 /** 788 * intel_display_power_flush_work - flushes the async display power disabling work 789 * @display: display device instance 790 * 791 * Flushes any pending work that was scheduled by a preceding 792 * intel_display_power_put_async() call, completing the disabling of the 793 * corresponding power domains. 794 * 795 * Note that the work handler function may still be running after this 796 * function returns; to ensure that the work handler isn't running use 797 * intel_display_power_flush_work_sync() instead. 798 */ 799 void intel_display_power_flush_work(struct intel_display *display) 800 { 801 struct i915_power_domains *power_domains = &display->power.domains; 802 struct intel_power_domain_mask async_put_mask; 803 intel_wakeref_t work_wakeref; 804 805 mutex_lock(&power_domains->lock); 806 807 work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); 808 if (!work_wakeref) 809 goto out_verify; 810 811 async_put_domains_mask(power_domains, &async_put_mask); 812 release_async_put_domains(power_domains, &async_put_mask); 813 cancel_async_put_work(power_domains, false); 814 815 out_verify: 816 verify_async_put_domains_state(power_domains); 817 818 mutex_unlock(&power_domains->lock); 819 820 if (work_wakeref) 821 intel_display_rpm_put_raw(display, work_wakeref); 822 } 823 824 /** 825 * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work 826 * @display: display device instance 827 * 828 * Like intel_display_power_flush_work(), but also ensure that the work 829 * handler function is not running any more when this function returns. 830 */ 831 static void 832 intel_display_power_flush_work_sync(struct intel_display *display) 833 { 834 struct i915_power_domains *power_domains = &display->power.domains; 835 836 intel_display_power_flush_work(display); 837 cancel_async_put_work(power_domains, true); 838 839 verify_async_put_domains_state(power_domains); 840 841 drm_WARN_ON(display->drm, power_domains->async_put_wakeref); 842 } 843 844 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 845 /** 846 * intel_display_power_put - release a power domain reference 847 * @display: display device instance 848 * @domain: power domain to reference 849 * @wakeref: wakeref acquired for the reference that is being released 850 * 851 * This function drops the power domain reference obtained by 852 * intel_display_power_get() and might power down the corresponding hardware 853 * block right away if this is the last reference. 854 */ 855 void intel_display_power_put(struct intel_display *display, 856 enum intel_display_power_domain domain, 857 intel_wakeref_t wakeref) 858 { 859 __intel_display_power_put(display, domain); 860 intel_display_rpm_put(display, wakeref); 861 } 862 #else 863 /** 864 * intel_display_power_put_unchecked - release an unchecked power domain reference 865 * @display: display device instance 866 * @domain: power domain to reference 867 * 868 * This function drops the power domain reference obtained by 869 * intel_display_power_get() and might power down the corresponding hardware 870 * block right away if this is the last reference. 871 * 872 * This function is only for the power domain code's internal use to suppress wakeref 873 * tracking when the corresponding debug kconfig option is disabled, should not 874 * be used otherwise. 875 */ 876 void intel_display_power_put_unchecked(struct intel_display *display, 877 enum intel_display_power_domain domain) 878 { 879 __intel_display_power_put(display, domain); 880 intel_display_rpm_put_unchecked(display); 881 } 882 #endif 883 884 void 885 intel_display_power_get_in_set(struct intel_display *display, 886 struct intel_display_power_domain_set *power_domain_set, 887 enum intel_display_power_domain domain) 888 { 889 intel_wakeref_t __maybe_unused wf; 890 891 drm_WARN_ON(display->drm, test_bit(domain, power_domain_set->mask.bits)); 892 893 wf = intel_display_power_get(display, domain); 894 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 895 power_domain_set->wakerefs[domain] = wf; 896 #endif 897 set_bit(domain, power_domain_set->mask.bits); 898 } 899 900 bool 901 intel_display_power_get_in_set_if_enabled(struct intel_display *display, 902 struct intel_display_power_domain_set *power_domain_set, 903 enum intel_display_power_domain domain) 904 { 905 intel_wakeref_t wf; 906 907 drm_WARN_ON(display->drm, test_bit(domain, power_domain_set->mask.bits)); 908 909 wf = intel_display_power_get_if_enabled(display, domain); 910 if (!wf) 911 return false; 912 913 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 914 power_domain_set->wakerefs[domain] = wf; 915 #endif 916 set_bit(domain, power_domain_set->mask.bits); 917 918 return true; 919 } 920 921 void 922 intel_display_power_put_mask_in_set(struct intel_display *display, 923 struct intel_display_power_domain_set *power_domain_set, 924 struct intel_power_domain_mask *mask) 925 { 926 enum intel_display_power_domain domain; 927 928 drm_WARN_ON(display->drm, 929 !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM)); 930 931 for_each_power_domain(domain, mask) { 932 intel_wakeref_t __maybe_unused wf = INTEL_WAKEREF_DEF; 933 934 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 935 wf = fetch_and_zero(&power_domain_set->wakerefs[domain]); 936 #endif 937 intel_display_power_put(display, domain, wf); 938 clear_bit(domain, power_domain_set->mask.bits); 939 } 940 } 941 942 static int 943 sanitize_disable_power_well_option(int disable_power_well) 944 { 945 if (disable_power_well >= 0) 946 return !!disable_power_well; 947 948 return 1; 949 } 950 951 static u32 get_allowed_dc_mask(struct intel_display *display, int enable_dc) 952 { 953 u32 mask; 954 int requested_dc; 955 int max_dc; 956 957 if (!HAS_DISPLAY(display)) 958 return 0; 959 960 if (DISPLAY_VER(display) >= 20) 961 max_dc = 2; 962 else if (display->platform.dg2) 963 max_dc = 1; 964 else if (display->platform.dg1) 965 max_dc = 3; 966 else if (DISPLAY_VER(display) >= 12) 967 max_dc = 4; 968 else if (display->platform.geminilake || display->platform.broxton) 969 max_dc = 1; 970 else if (DISPLAY_VER(display) >= 9) 971 max_dc = 2; 972 else 973 max_dc = 0; 974 975 /* 976 * DC9 has a separate HW flow from the rest of the DC states, 977 * not depending on the DMC firmware. It's needed by system 978 * suspend/resume, so allow it unconditionally. 979 */ 980 mask = display->platform.geminilake || display->platform.broxton || 981 DISPLAY_VER(display) >= 11 ? DC_STATE_EN_DC9 : 0; 982 983 if (!display->params.disable_power_well) 984 max_dc = 0; 985 986 if (enable_dc >= 0 && enable_dc <= max_dc) { 987 requested_dc = enable_dc; 988 } else if (enable_dc == -1) { 989 requested_dc = max_dc; 990 } else if (enable_dc > max_dc && enable_dc <= 4) { 991 drm_dbg_kms(display->drm, 992 "Adjusting requested max DC state (%d->%d)\n", 993 enable_dc, max_dc); 994 requested_dc = max_dc; 995 } else { 996 drm_err(display->drm, 997 "Unexpected value for enable_dc (%d)\n", enable_dc); 998 requested_dc = max_dc; 999 } 1000 1001 switch (requested_dc) { 1002 case 4: 1003 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6; 1004 break; 1005 case 3: 1006 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5; 1007 break; 1008 case 2: 1009 mask |= DC_STATE_EN_UPTO_DC6; 1010 break; 1011 case 1: 1012 mask |= DC_STATE_EN_UPTO_DC5; 1013 break; 1014 } 1015 1016 drm_dbg_kms(display->drm, "Allowed DC state mask %02x\n", mask); 1017 1018 return mask; 1019 } 1020 1021 /** 1022 * intel_power_domains_init - initializes the power domain structures 1023 * @display: display device instance 1024 * 1025 * Initializes the power domain structures for @display depending upon the 1026 * supported platform. 1027 */ 1028 int intel_power_domains_init(struct intel_display *display) 1029 { 1030 struct i915_power_domains *power_domains = &display->power.domains; 1031 1032 display->params.disable_power_well = 1033 sanitize_disable_power_well_option(display->params.disable_power_well); 1034 power_domains->allowed_dc_mask = 1035 get_allowed_dc_mask(display, display->params.enable_dc); 1036 1037 power_domains->target_dc_state = 1038 sanitize_target_dc_state(display, DC_STATE_EN_UPTO_DC6); 1039 1040 mutex_init(&power_domains->lock); 1041 1042 INIT_DELAYED_WORK(&power_domains->async_put_work, 1043 intel_display_power_put_async_work); 1044 1045 return intel_display_power_map_init(power_domains); 1046 } 1047 1048 /** 1049 * intel_power_domains_cleanup - clean up power domains resources 1050 * @display: display device instance 1051 * 1052 * Release any resources acquired by intel_power_domains_init() 1053 */ 1054 void intel_power_domains_cleanup(struct intel_display *display) 1055 { 1056 intel_display_power_map_cleanup(&display->power.domains); 1057 } 1058 1059 static void intel_power_domains_sync_hw(struct intel_display *display) 1060 { 1061 struct i915_power_domains *power_domains = &display->power.domains; 1062 struct i915_power_well *power_well; 1063 1064 mutex_lock(&power_domains->lock); 1065 for_each_power_well(display, power_well) 1066 intel_power_well_sync_hw(display, power_well); 1067 mutex_unlock(&power_domains->lock); 1068 } 1069 1070 static void gen9_dbuf_slice_set(struct intel_display *display, 1071 enum dbuf_slice slice, bool enable) 1072 { 1073 i915_reg_t reg = DBUF_CTL_S(slice); 1074 bool state; 1075 1076 intel_de_rmw(display, reg, DBUF_POWER_REQUEST, 1077 enable ? DBUF_POWER_REQUEST : 0); 1078 intel_de_posting_read(display, reg); 1079 udelay(10); 1080 1081 state = intel_de_read(display, reg) & DBUF_POWER_STATE; 1082 drm_WARN(display->drm, enable != state, 1083 "DBuf slice %d power %s timeout!\n", 1084 slice, str_enable_disable(enable)); 1085 } 1086 1087 void gen9_dbuf_slices_update(struct intel_display *display, 1088 u8 req_slices) 1089 { 1090 struct i915_power_domains *power_domains = &display->power.domains; 1091 u8 slice_mask = DISPLAY_INFO(display)->dbuf.slice_mask; 1092 enum dbuf_slice slice; 1093 1094 drm_WARN(display->drm, req_slices & ~slice_mask, 1095 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n", 1096 req_slices, slice_mask); 1097 1098 drm_dbg_kms(display->drm, "Updating dbuf slices to 0x%x\n", 1099 req_slices); 1100 1101 /* 1102 * Might be running this in parallel to gen9_dc_off_power_well_enable 1103 * being called from intel_dp_detect for instance, 1104 * which causes assertion triggered by race condition, 1105 * as gen9_assert_dbuf_enabled might preempt this when registers 1106 * were already updated, while dev_priv was not. 1107 */ 1108 mutex_lock(&power_domains->lock); 1109 1110 for_each_dbuf_slice(display, slice) 1111 gen9_dbuf_slice_set(display, slice, req_slices & BIT(slice)); 1112 1113 display->dbuf.enabled_slices = req_slices; 1114 1115 mutex_unlock(&power_domains->lock); 1116 } 1117 1118 static void gen9_dbuf_enable(struct intel_display *display) 1119 { 1120 u8 slices_mask; 1121 1122 display->dbuf.enabled_slices = intel_enabled_dbuf_slices_mask(display); 1123 1124 slices_mask = BIT(DBUF_S1) | display->dbuf.enabled_slices; 1125 1126 if (DISPLAY_VER(display) >= 14) 1127 intel_pmdemand_program_dbuf(display, slices_mask); 1128 1129 /* 1130 * Just power up at least 1 slice, we will 1131 * figure out later which slices we have and what we need. 1132 */ 1133 gen9_dbuf_slices_update(display, slices_mask); 1134 } 1135 1136 static void gen9_dbuf_disable(struct intel_display *display) 1137 { 1138 gen9_dbuf_slices_update(display, 0); 1139 1140 if (DISPLAY_VER(display) >= 14) 1141 intel_pmdemand_program_dbuf(display, 0); 1142 } 1143 1144 static void gen12_dbuf_slices_config(struct intel_display *display) 1145 { 1146 enum dbuf_slice slice; 1147 1148 for_each_dbuf_slice(display, slice) 1149 intel_de_rmw(display, DBUF_CTL_S(slice), 1150 DBUF_TRACKER_STATE_SERVICE_MASK, 1151 DBUF_TRACKER_STATE_SERVICE(8)); 1152 } 1153 1154 static void icl_mbus_init(struct intel_display *display) 1155 { 1156 unsigned long abox_regs = DISPLAY_INFO(display)->abox_mask; 1157 u32 mask, val, i; 1158 1159 if (display->platform.alderlake_p || DISPLAY_VER(display) >= 14) 1160 return; 1161 1162 mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK | 1163 MBUS_ABOX_BT_CREDIT_POOL2_MASK | 1164 MBUS_ABOX_B_CREDIT_MASK | 1165 MBUS_ABOX_BW_CREDIT_MASK; 1166 val = MBUS_ABOX_BT_CREDIT_POOL1(16) | 1167 MBUS_ABOX_BT_CREDIT_POOL2(16) | 1168 MBUS_ABOX_B_CREDIT(1) | 1169 MBUS_ABOX_BW_CREDIT(1); 1170 1171 /* 1172 * gen12 platforms that use abox1 and abox2 for pixel data reads still 1173 * expect us to program the abox_ctl0 register as well, even though 1174 * we don't have to program other instance-0 registers like BW_BUDDY. 1175 */ 1176 if (DISPLAY_VER(display) == 12) 1177 abox_regs |= BIT(0); 1178 1179 for_each_set_bit(i, &abox_regs, BITS_PER_TYPE(abox_regs)) 1180 intel_de_rmw(display, MBUS_ABOX_CTL(i), mask, val); 1181 } 1182 1183 static void hsw_assert_cdclk(struct intel_display *display) 1184 { 1185 u32 val = intel_de_read(display, LCPLL_CTL); 1186 1187 /* 1188 * The LCPLL register should be turned on by the BIOS. For now 1189 * let's just check its state and print errors in case 1190 * something is wrong. Don't even try to turn it on. 1191 */ 1192 1193 if (val & LCPLL_CD_SOURCE_FCLK) 1194 drm_err(display->drm, "CDCLK source is not LCPLL\n"); 1195 1196 if (val & LCPLL_PLL_DISABLE) 1197 drm_err(display->drm, "LCPLL is disabled\n"); 1198 1199 if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC) 1200 drm_err(display->drm, "LCPLL not using non-SSC reference\n"); 1201 } 1202 1203 static void assert_can_disable_lcpll(struct intel_display *display) 1204 { 1205 struct drm_i915_private *dev_priv = to_i915(display->drm); 1206 struct intel_crtc *crtc; 1207 1208 for_each_intel_crtc(display->drm, crtc) 1209 INTEL_DISPLAY_STATE_WARN(display, crtc->active, 1210 "CRTC for pipe %c enabled\n", 1211 pipe_name(crtc->pipe)); 1212 1213 INTEL_DISPLAY_STATE_WARN(display, intel_de_read(display, HSW_PWR_WELL_CTL2), 1214 "Display power well on\n"); 1215 INTEL_DISPLAY_STATE_WARN(display, 1216 intel_de_read(display, SPLL_CTL) & SPLL_PLL_ENABLE, 1217 "SPLL enabled\n"); 1218 INTEL_DISPLAY_STATE_WARN(display, 1219 intel_de_read(display, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, 1220 "WRPLL1 enabled\n"); 1221 INTEL_DISPLAY_STATE_WARN(display, 1222 intel_de_read(display, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, 1223 "WRPLL2 enabled\n"); 1224 INTEL_DISPLAY_STATE_WARN(display, 1225 intel_de_read(display, PP_STATUS(display, 0)) & PP_ON, 1226 "Panel power on\n"); 1227 INTEL_DISPLAY_STATE_WARN(display, 1228 intel_de_read(display, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, 1229 "CPU PWM1 enabled\n"); 1230 if (display->platform.haswell) 1231 INTEL_DISPLAY_STATE_WARN(display, 1232 intel_de_read(display, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, 1233 "CPU PWM2 enabled\n"); 1234 INTEL_DISPLAY_STATE_WARN(display, 1235 intel_de_read(display, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, 1236 "PCH PWM1 enabled\n"); 1237 INTEL_DISPLAY_STATE_WARN(display, 1238 (intel_de_read(display, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM), 1239 "Utility pin enabled in PWM mode\n"); 1240 INTEL_DISPLAY_STATE_WARN(display, 1241 intel_de_read(display, PCH_GTC_CTL) & PCH_GTC_ENABLE, 1242 "PCH GTC enabled\n"); 1243 1244 /* 1245 * In theory we can still leave IRQs enabled, as long as only the HPD 1246 * interrupts remain enabled. We used to check for that, but since it's 1247 * gen-specific and since we only disable LCPLL after we fully disable 1248 * the interrupts, the check below should be enough. 1249 */ 1250 INTEL_DISPLAY_STATE_WARN(display, intel_irqs_enabled(dev_priv), 1251 "IRQs enabled\n"); 1252 } 1253 1254 static u32 hsw_read_dcomp(struct intel_display *display) 1255 { 1256 if (display->platform.haswell) 1257 return intel_de_read(display, D_COMP_HSW); 1258 else 1259 return intel_de_read(display, D_COMP_BDW); 1260 } 1261 1262 static void hsw_write_dcomp(struct intel_display *display, u32 val) 1263 { 1264 if (display->platform.haswell) { 1265 if (intel_pcode_write(display->drm, GEN6_PCODE_WRITE_D_COMP, val)) 1266 drm_dbg_kms(display->drm, "Failed to write to D_COMP\n"); 1267 } else { 1268 intel_de_write(display, D_COMP_BDW, val); 1269 intel_de_posting_read(display, D_COMP_BDW); 1270 } 1271 } 1272 1273 /* 1274 * This function implements pieces of two sequences from BSpec: 1275 * - Sequence for display software to disable LCPLL 1276 * - Sequence for display software to allow package C8+ 1277 * The steps implemented here are just the steps that actually touch the LCPLL 1278 * register. Callers should take care of disabling all the display engine 1279 * functions, doing the mode unset, fixing interrupts, etc. 1280 */ 1281 static void hsw_disable_lcpll(struct intel_display *display, 1282 bool switch_to_fclk, bool allow_power_down) 1283 { 1284 u32 val; 1285 int ret; 1286 1287 assert_can_disable_lcpll(display); 1288 1289 val = intel_de_read(display, LCPLL_CTL); 1290 1291 if (switch_to_fclk) { 1292 val |= LCPLL_CD_SOURCE_FCLK; 1293 intel_de_write(display, LCPLL_CTL, val); 1294 1295 ret = intel_de_wait_custom(display, LCPLL_CTL, 1296 LCPLL_CD_SOURCE_FCLK_DONE, LCPLL_CD_SOURCE_FCLK_DONE, 1297 1, 0, NULL); 1298 if (ret) 1299 drm_err(display->drm, "Switching to FCLK failed\n"); 1300 1301 val = intel_de_read(display, LCPLL_CTL); 1302 } 1303 1304 val |= LCPLL_PLL_DISABLE; 1305 intel_de_write(display, LCPLL_CTL, val); 1306 intel_de_posting_read(display, LCPLL_CTL); 1307 1308 if (intel_de_wait_for_clear(display, LCPLL_CTL, LCPLL_PLL_LOCK, 1)) 1309 drm_err(display->drm, "LCPLL still locked\n"); 1310 1311 val = hsw_read_dcomp(display); 1312 val |= D_COMP_COMP_DISABLE; 1313 hsw_write_dcomp(display, val); 1314 ndelay(100); 1315 1316 ret = poll_timeout_us(val = hsw_read_dcomp(display), 1317 (val & D_COMP_RCOMP_IN_PROGRESS) == 0, 1318 100, 1000, false); 1319 if (ret) 1320 drm_err(display->drm, "D_COMP RCOMP still in progress\n"); 1321 1322 if (allow_power_down) { 1323 intel_de_rmw(display, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW); 1324 intel_de_posting_read(display, LCPLL_CTL); 1325 } 1326 } 1327 1328 /* 1329 * Fully restores LCPLL, disallowing power down and switching back to LCPLL 1330 * source. 1331 */ 1332 static void hsw_restore_lcpll(struct intel_display *display) 1333 { 1334 struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm); 1335 u32 val; 1336 int ret; 1337 1338 val = intel_de_read(display, LCPLL_CTL); 1339 1340 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | 1341 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) 1342 return; 1343 1344 /* 1345 * Make sure we're not on PC8 state before disabling PC8, otherwise 1346 * we'll hang the machine. To prevent PC8 state, just enable force_wake. 1347 */ 1348 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); 1349 1350 if (val & LCPLL_POWER_DOWN_ALLOW) { 1351 val &= ~LCPLL_POWER_DOWN_ALLOW; 1352 intel_de_write(display, LCPLL_CTL, val); 1353 intel_de_posting_read(display, LCPLL_CTL); 1354 } 1355 1356 val = hsw_read_dcomp(display); 1357 val |= D_COMP_COMP_FORCE; 1358 val &= ~D_COMP_COMP_DISABLE; 1359 hsw_write_dcomp(display, val); 1360 1361 val = intel_de_read(display, LCPLL_CTL); 1362 val &= ~LCPLL_PLL_DISABLE; 1363 intel_de_write(display, LCPLL_CTL, val); 1364 1365 if (intel_de_wait_for_set(display, LCPLL_CTL, LCPLL_PLL_LOCK, 5)) 1366 drm_err(display->drm, "LCPLL not locked yet\n"); 1367 1368 if (val & LCPLL_CD_SOURCE_FCLK) { 1369 intel_de_rmw(display, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0); 1370 1371 ret = intel_de_wait_custom(display, LCPLL_CTL, 1372 LCPLL_CD_SOURCE_FCLK_DONE, 0, 1373 1, 0, NULL); 1374 if (ret) 1375 drm_err(display->drm, 1376 "Switching back to LCPLL failed\n"); 1377 } 1378 1379 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); 1380 1381 intel_update_cdclk(display); 1382 intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK"); 1383 } 1384 1385 /* 1386 * Package states C8 and deeper are really deep PC states that can only be 1387 * reached when all the devices on the system allow it, so even if the graphics 1388 * device allows PC8+, it doesn't mean the system will actually get to these 1389 * states. Our driver only allows PC8+ when going into runtime PM. 1390 * 1391 * The requirements for PC8+ are that all the outputs are disabled, the power 1392 * well is disabled and most interrupts are disabled, and these are also 1393 * requirements for runtime PM. When these conditions are met, we manually do 1394 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk 1395 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard 1396 * hang the machine. 1397 * 1398 * When we really reach PC8 or deeper states (not just when we allow it) we lose 1399 * the state of some registers, so when we come back from PC8+ we need to 1400 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't 1401 * need to take care of the registers kept by RC6. Notice that this happens even 1402 * if we don't put the device in PCI D3 state (which is what currently happens 1403 * because of the runtime PM support). 1404 * 1405 * For more, read "Display Sequences for Package C8" on the hardware 1406 * documentation. 1407 */ 1408 static void hsw_enable_pc8(struct intel_display *display) 1409 { 1410 drm_dbg_kms(display->drm, "Enabling package C8+\n"); 1411 1412 if (HAS_PCH_LPT_LP(display)) 1413 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 1414 PCH_LP_PARTITION_LEVEL_DISABLE, 0); 1415 1416 lpt_disable_clkout_dp(display); 1417 hsw_disable_lcpll(display, true, true); 1418 } 1419 1420 static void hsw_disable_pc8(struct intel_display *display) 1421 { 1422 struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm); 1423 1424 drm_dbg_kms(display->drm, "Disabling package C8+\n"); 1425 1426 hsw_restore_lcpll(display); 1427 intel_init_pch_refclk(display); 1428 1429 /* Many display registers don't survive PC8+ */ 1430 #ifdef I915 /* FIXME */ 1431 intel_clock_gating_init(dev_priv); 1432 #endif 1433 } 1434 1435 static void intel_pch_reset_handshake(struct intel_display *display, 1436 bool enable) 1437 { 1438 i915_reg_t reg; 1439 u32 reset_bits; 1440 1441 if (display->platform.ivybridge) { 1442 reg = GEN7_MSG_CTL; 1443 reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK; 1444 } else { 1445 reg = HSW_NDE_RSTWRN_OPT; 1446 reset_bits = RESET_PCH_HANDSHAKE_ENABLE; 1447 } 1448 1449 if (DISPLAY_VER(display) >= 14) 1450 reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN; 1451 1452 intel_de_rmw(display, reg, reset_bits, enable ? reset_bits : 0); 1453 } 1454 1455 static void skl_display_core_init(struct intel_display *display, 1456 bool resume) 1457 { 1458 struct i915_power_domains *power_domains = &display->power.domains; 1459 struct i915_power_well *well; 1460 1461 gen9_set_dc_state(display, DC_STATE_DISABLE); 1462 1463 /* enable PCH reset handshake */ 1464 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1465 1466 if (!HAS_DISPLAY(display)) 1467 return; 1468 1469 /* enable PG1 and Misc I/O */ 1470 mutex_lock(&power_domains->lock); 1471 1472 well = lookup_power_well(display, SKL_DISP_PW_1); 1473 intel_power_well_enable(display, well); 1474 1475 well = lookup_power_well(display, SKL_DISP_PW_MISC_IO); 1476 intel_power_well_enable(display, well); 1477 1478 mutex_unlock(&power_domains->lock); 1479 1480 intel_cdclk_init_hw(display); 1481 1482 gen9_dbuf_enable(display); 1483 1484 if (resume) 1485 intel_dmc_load_program(display); 1486 } 1487 1488 static void skl_display_core_uninit(struct intel_display *display) 1489 { 1490 struct i915_power_domains *power_domains = &display->power.domains; 1491 struct i915_power_well *well; 1492 1493 if (!HAS_DISPLAY(display)) 1494 return; 1495 1496 gen9_disable_dc_states(display); 1497 /* TODO: disable DMC program */ 1498 1499 gen9_dbuf_disable(display); 1500 1501 intel_cdclk_uninit_hw(display); 1502 1503 /* The spec doesn't call for removing the reset handshake flag */ 1504 /* disable PG1 and Misc I/O */ 1505 1506 mutex_lock(&power_domains->lock); 1507 1508 /* 1509 * BSpec says to keep the MISC IO power well enabled here, only 1510 * remove our request for power well 1. 1511 * Note that even though the driver's request is removed power well 1 1512 * may stay enabled after this due to DMC's own request on it. 1513 */ 1514 well = lookup_power_well(display, SKL_DISP_PW_1); 1515 intel_power_well_disable(display, well); 1516 1517 mutex_unlock(&power_domains->lock); 1518 1519 usleep_range(10, 30); /* 10 us delay per Bspec */ 1520 } 1521 1522 static void bxt_display_core_init(struct intel_display *display, bool resume) 1523 { 1524 struct i915_power_domains *power_domains = &display->power.domains; 1525 struct i915_power_well *well; 1526 1527 gen9_set_dc_state(display, DC_STATE_DISABLE); 1528 1529 /* 1530 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT 1531 * or else the reset will hang because there is no PCH to respond. 1532 * Move the handshake programming to initialization sequence. 1533 * Previously was left up to BIOS. 1534 */ 1535 intel_pch_reset_handshake(display, false); 1536 1537 if (!HAS_DISPLAY(display)) 1538 return; 1539 1540 /* Enable PG1 */ 1541 mutex_lock(&power_domains->lock); 1542 1543 well = lookup_power_well(display, SKL_DISP_PW_1); 1544 intel_power_well_enable(display, well); 1545 1546 mutex_unlock(&power_domains->lock); 1547 1548 intel_cdclk_init_hw(display); 1549 1550 gen9_dbuf_enable(display); 1551 1552 if (resume) 1553 intel_dmc_load_program(display); 1554 } 1555 1556 static void bxt_display_core_uninit(struct intel_display *display) 1557 { 1558 struct i915_power_domains *power_domains = &display->power.domains; 1559 struct i915_power_well *well; 1560 1561 if (!HAS_DISPLAY(display)) 1562 return; 1563 1564 gen9_disable_dc_states(display); 1565 /* TODO: disable DMC program */ 1566 1567 gen9_dbuf_disable(display); 1568 1569 intel_cdclk_uninit_hw(display); 1570 1571 /* The spec doesn't call for removing the reset handshake flag */ 1572 1573 /* 1574 * Disable PW1 (PG1). 1575 * Note that even though the driver's request is removed power well 1 1576 * may stay enabled after this due to DMC's own request on it. 1577 */ 1578 mutex_lock(&power_domains->lock); 1579 1580 well = lookup_power_well(display, SKL_DISP_PW_1); 1581 intel_power_well_disable(display, well); 1582 1583 mutex_unlock(&power_domains->lock); 1584 1585 usleep_range(10, 30); /* 10 us delay per Bspec */ 1586 } 1587 1588 struct buddy_page_mask { 1589 u32 page_mask; 1590 u8 type; 1591 u8 num_channels; 1592 }; 1593 1594 static const struct buddy_page_mask tgl_buddy_page_masks[] = { 1595 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF }, 1596 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF }, 1597 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C }, 1598 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C }, 1599 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F }, 1600 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E }, 1601 { .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 }, 1602 { .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 }, 1603 {} 1604 }; 1605 1606 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = { 1607 { .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 }, 1608 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 }, 1609 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 }, 1610 { .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 }, 1611 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 }, 1612 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 }, 1613 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 }, 1614 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 }, 1615 {} 1616 }; 1617 1618 static void tgl_bw_buddy_init(struct intel_display *display) 1619 { 1620 const struct dram_info *dram_info = intel_dram_info(display->drm); 1621 const struct buddy_page_mask *table; 1622 unsigned long abox_mask = DISPLAY_INFO(display)->abox_mask; 1623 int config, i; 1624 1625 /* BW_BUDDY registers are not used on dgpu's beyond DG1 */ 1626 if (display->platform.dgfx && !display->platform.dg1) 1627 return; 1628 1629 if (display->platform.alderlake_s || 1630 (display->platform.rocketlake && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0))) 1631 /* Wa_1409767108 */ 1632 table = wa_1409767108_buddy_page_masks; 1633 else 1634 table = tgl_buddy_page_masks; 1635 1636 for (config = 0; table[config].page_mask != 0; config++) 1637 if (table[config].num_channels == dram_info->num_channels && 1638 table[config].type == dram_info->type) 1639 break; 1640 1641 if (table[config].page_mask == 0) { 1642 drm_dbg_kms(display->drm, 1643 "Unknown memory configuration; disabling address buddy logic.\n"); 1644 for_each_set_bit(i, &abox_mask, BITS_PER_TYPE(abox_mask)) 1645 intel_de_write(display, BW_BUDDY_CTL(i), 1646 BW_BUDDY_DISABLE); 1647 } else { 1648 for_each_set_bit(i, &abox_mask, BITS_PER_TYPE(abox_mask)) { 1649 intel_de_write(display, BW_BUDDY_PAGE_MASK(i), 1650 table[config].page_mask); 1651 1652 /* Wa_22010178259:tgl,dg1,rkl,adl-s */ 1653 if (DISPLAY_VER(display) == 12) 1654 intel_de_rmw(display, BW_BUDDY_CTL(i), 1655 BW_BUDDY_TLB_REQ_TIMER_MASK, 1656 BW_BUDDY_TLB_REQ_TIMER(0x8)); 1657 } 1658 } 1659 } 1660 1661 static void icl_display_core_init(struct intel_display *display, 1662 bool resume) 1663 { 1664 struct i915_power_domains *power_domains = &display->power.domains; 1665 struct i915_power_well *well; 1666 1667 gen9_set_dc_state(display, DC_STATE_DISABLE); 1668 1669 /* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */ 1670 if (INTEL_PCH_TYPE(display) >= PCH_TGP && 1671 INTEL_PCH_TYPE(display) < PCH_DG1) 1672 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 0, 1673 PCH_DPMGUNIT_CLOCK_GATE_DISABLE); 1674 1675 /* 1. Enable PCH reset handshake. */ 1676 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1677 1678 if (!HAS_DISPLAY(display)) 1679 return; 1680 1681 /* 2. Initialize all combo phys */ 1682 intel_combo_phy_init(display); 1683 1684 /* 1685 * 3. Enable Power Well 1 (PG1). 1686 * The AUX IO power wells will be enabled on demand. 1687 */ 1688 mutex_lock(&power_domains->lock); 1689 well = lookup_power_well(display, SKL_DISP_PW_1); 1690 intel_power_well_enable(display, well); 1691 mutex_unlock(&power_domains->lock); 1692 1693 if (DISPLAY_VER(display) == 14) 1694 intel_de_rmw(display, DC_STATE_EN, 1695 HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0); 1696 1697 /* 4. Enable CDCLK. */ 1698 intel_cdclk_init_hw(display); 1699 1700 if (DISPLAY_VER(display) == 12 || display->platform.dg2) 1701 gen12_dbuf_slices_config(display); 1702 1703 /* 5. Enable DBUF. */ 1704 gen9_dbuf_enable(display); 1705 1706 /* 6. Setup MBUS. */ 1707 icl_mbus_init(display); 1708 1709 /* 7. Program arbiter BW_BUDDY registers */ 1710 if (DISPLAY_VER(display) >= 12) 1711 tgl_bw_buddy_init(display); 1712 1713 /* 8. Ensure PHYs have completed calibration and adaptation */ 1714 if (display->platform.dg2) 1715 intel_snps_phy_wait_for_calibration(display); 1716 1717 /* 9. XE2_HPD: Program CHICKEN_MISC_2 before any cursor or planes are enabled */ 1718 if (DISPLAY_VERx100(display) == 1401) 1719 intel_de_rmw(display, CHICKEN_MISC_2, BMG_DARB_HALF_BLK_END_BURST, 1); 1720 1721 if (resume) 1722 intel_dmc_load_program(display); 1723 1724 /* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p,dg2 */ 1725 if (IS_DISPLAY_VERx100(display, 1200, 1300)) 1726 intel_de_rmw(display, GEN11_CHICKEN_DCPR_2, 0, 1727 DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM | 1728 DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR); 1729 1730 /* Wa_14011503030:xelpd */ 1731 if (DISPLAY_VER(display) == 13) 1732 intel_de_write(display, XELPD_DISPLAY_ERR_FATAL_MASK, ~0); 1733 1734 /* Wa_15013987218 */ 1735 if (DISPLAY_VER(display) == 20) { 1736 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 1737 0, PCH_GMBUSUNIT_CLOCK_GATE_DISABLE); 1738 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 1739 PCH_GMBUSUNIT_CLOCK_GATE_DISABLE, 0); 1740 } 1741 } 1742 1743 static void icl_display_core_uninit(struct intel_display *display) 1744 { 1745 struct i915_power_domains *power_domains = &display->power.domains; 1746 struct i915_power_well *well; 1747 1748 if (!HAS_DISPLAY(display)) 1749 return; 1750 1751 gen9_disable_dc_states(display); 1752 intel_dmc_disable_program(display); 1753 1754 /* 1. Disable all display engine functions -> already done */ 1755 1756 /* 2. Disable DBUF */ 1757 gen9_dbuf_disable(display); 1758 1759 /* 3. Disable CD clock */ 1760 intel_cdclk_uninit_hw(display); 1761 1762 if (DISPLAY_VER(display) == 14) 1763 intel_de_rmw(display, DC_STATE_EN, 0, 1764 HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH); 1765 1766 /* 1767 * 4. Disable Power Well 1 (PG1). 1768 * The AUX IO power wells are toggled on demand, so they are already 1769 * disabled at this point. 1770 */ 1771 mutex_lock(&power_domains->lock); 1772 well = lookup_power_well(display, SKL_DISP_PW_1); 1773 intel_power_well_disable(display, well); 1774 mutex_unlock(&power_domains->lock); 1775 1776 /* 5. */ 1777 intel_combo_phy_uninit(display); 1778 } 1779 1780 static void chv_phy_control_init(struct intel_display *display) 1781 { 1782 struct i915_power_well *cmn_bc = 1783 lookup_power_well(display, VLV_DISP_PW_DPIO_CMN_BC); 1784 struct i915_power_well *cmn_d = 1785 lookup_power_well(display, CHV_DISP_PW_DPIO_CMN_D); 1786 1787 /* 1788 * DISPLAY_PHY_CONTROL can get corrupted if read. As a 1789 * workaround never ever read DISPLAY_PHY_CONTROL, and 1790 * instead maintain a shadow copy ourselves. Use the actual 1791 * power well state and lane status to reconstruct the 1792 * expected initial value. 1793 */ 1794 display->power.chv_phy_control = 1795 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) | 1796 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) | 1797 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) | 1798 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) | 1799 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0); 1800 1801 /* 1802 * If all lanes are disabled we leave the override disabled 1803 * with all power down bits cleared to match the state we 1804 * would use after disabling the port. Otherwise enable the 1805 * override and set the lane powerdown bits accding to the 1806 * current lane status. 1807 */ 1808 if (intel_power_well_is_enabled(display, cmn_bc)) { 1809 u32 status = intel_de_read(display, DPLL(display, PIPE_A)); 1810 unsigned int mask; 1811 1812 mask = status & DPLL_PORTB_READY_MASK; 1813 if (mask == 0xf) 1814 mask = 0x0; 1815 else 1816 display->power.chv_phy_control |= 1817 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0); 1818 1819 display->power.chv_phy_control |= 1820 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0); 1821 1822 mask = (status & DPLL_PORTC_READY_MASK) >> 4; 1823 if (mask == 0xf) 1824 mask = 0x0; 1825 else 1826 display->power.chv_phy_control |= 1827 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1); 1828 1829 display->power.chv_phy_control |= 1830 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1); 1831 1832 display->power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0); 1833 1834 display->power.chv_phy_assert[DPIO_PHY0] = false; 1835 } else { 1836 display->power.chv_phy_assert[DPIO_PHY0] = true; 1837 } 1838 1839 if (intel_power_well_is_enabled(display, cmn_d)) { 1840 u32 status = intel_de_read(display, DPIO_PHY_STATUS); 1841 unsigned int mask; 1842 1843 mask = status & DPLL_PORTD_READY_MASK; 1844 1845 if (mask == 0xf) 1846 mask = 0x0; 1847 else 1848 display->power.chv_phy_control |= 1849 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0); 1850 1851 display->power.chv_phy_control |= 1852 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0); 1853 1854 display->power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1); 1855 1856 display->power.chv_phy_assert[DPIO_PHY1] = false; 1857 } else { 1858 display->power.chv_phy_assert[DPIO_PHY1] = true; 1859 } 1860 1861 drm_dbg_kms(display->drm, "Initial PHY_CONTROL=0x%08x\n", 1862 display->power.chv_phy_control); 1863 1864 /* Defer application of initial phy_control to enabling the powerwell */ 1865 } 1866 1867 static void vlv_cmnlane_wa(struct intel_display *display) 1868 { 1869 struct i915_power_well *cmn = 1870 lookup_power_well(display, VLV_DISP_PW_DPIO_CMN_BC); 1871 struct i915_power_well *disp2d = 1872 lookup_power_well(display, VLV_DISP_PW_DISP2D); 1873 1874 /* If the display might be already active skip this */ 1875 if (intel_power_well_is_enabled(display, cmn) && 1876 intel_power_well_is_enabled(display, disp2d) && 1877 intel_de_read(display, DPIO_CTL) & DPIO_CMNRST) 1878 return; 1879 1880 drm_dbg_kms(display->drm, "toggling display PHY side reset\n"); 1881 1882 /* cmnlane needs DPLL registers */ 1883 intel_power_well_enable(display, disp2d); 1884 1885 /* 1886 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: 1887 * Need to assert and de-assert PHY SB reset by gating the 1888 * common lane power, then un-gating it. 1889 * Simply ungating isn't enough to reset the PHY enough to get 1890 * ports and lanes running. 1891 */ 1892 intel_power_well_disable(display, cmn); 1893 } 1894 1895 static bool vlv_punit_is_power_gated(struct intel_display *display, u32 reg0) 1896 { 1897 bool ret; 1898 1899 vlv_punit_get(display->drm); 1900 ret = (vlv_punit_read(display->drm, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE; 1901 vlv_punit_put(display->drm); 1902 1903 return ret; 1904 } 1905 1906 static void assert_ved_power_gated(struct intel_display *display) 1907 { 1908 drm_WARN(display->drm, 1909 !vlv_punit_is_power_gated(display, PUNIT_REG_VEDSSPM0), 1910 "VED not power gated\n"); 1911 } 1912 1913 static void assert_isp_power_gated(struct intel_display *display) 1914 { 1915 static const struct pci_device_id isp_ids[] = { 1916 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)}, 1917 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)}, 1918 {} 1919 }; 1920 1921 drm_WARN(display->drm, !pci_dev_present(isp_ids) && 1922 !vlv_punit_is_power_gated(display, PUNIT_REG_ISPSSPM0), 1923 "ISP not power gated\n"); 1924 } 1925 1926 static void intel_power_domains_verify_state(struct intel_display *display); 1927 1928 /** 1929 * intel_power_domains_init_hw - initialize hardware power domain state 1930 * @display: display device instance 1931 * @resume: Called from resume code paths or not 1932 * 1933 * This function initializes the hardware power domain state and enables all 1934 * power wells belonging to the INIT power domain. Power wells in other 1935 * domains (and not in the INIT domain) are referenced or disabled by 1936 * intel_modeset_readout_hw_state(). After that the reference count of each 1937 * power well must match its HW enabled state, see 1938 * intel_power_domains_verify_state(). 1939 * 1940 * It will return with power domains disabled (to be enabled later by 1941 * intel_power_domains_enable()) and must be paired with 1942 * intel_power_domains_driver_remove(). 1943 */ 1944 void intel_power_domains_init_hw(struct intel_display *display, bool resume) 1945 { 1946 struct i915_power_domains *power_domains = &display->power.domains; 1947 1948 power_domains->initializing = true; 1949 1950 if (DISPLAY_VER(display) >= 11) { 1951 icl_display_core_init(display, resume); 1952 } else if (display->platform.geminilake || display->platform.broxton) { 1953 bxt_display_core_init(display, resume); 1954 } else if (DISPLAY_VER(display) == 9) { 1955 skl_display_core_init(display, resume); 1956 } else if (display->platform.cherryview) { 1957 mutex_lock(&power_domains->lock); 1958 chv_phy_control_init(display); 1959 mutex_unlock(&power_domains->lock); 1960 assert_isp_power_gated(display); 1961 } else if (display->platform.valleyview) { 1962 mutex_lock(&power_domains->lock); 1963 vlv_cmnlane_wa(display); 1964 mutex_unlock(&power_domains->lock); 1965 assert_ved_power_gated(display); 1966 assert_isp_power_gated(display); 1967 } else if (display->platform.broadwell || display->platform.haswell) { 1968 hsw_assert_cdclk(display); 1969 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1970 } else if (display->platform.ivybridge) { 1971 intel_pch_reset_handshake(display, !HAS_PCH_NOP(display)); 1972 } 1973 1974 /* 1975 * Keep all power wells enabled for any dependent HW access during 1976 * initialization and to make sure we keep BIOS enabled display HW 1977 * resources powered until display HW readout is complete. We drop 1978 * this reference in intel_power_domains_enable(). 1979 */ 1980 drm_WARN_ON(display->drm, power_domains->init_wakeref); 1981 power_domains->init_wakeref = 1982 intel_display_power_get(display, POWER_DOMAIN_INIT); 1983 1984 /* Disable power support if the user asked so. */ 1985 if (!display->params.disable_power_well) { 1986 drm_WARN_ON(display->drm, power_domains->disable_wakeref); 1987 display->power.domains.disable_wakeref = intel_display_power_get(display, 1988 POWER_DOMAIN_INIT); 1989 } 1990 intel_power_domains_sync_hw(display); 1991 1992 power_domains->initializing = false; 1993 } 1994 1995 /** 1996 * intel_power_domains_driver_remove - deinitialize hw power domain state 1997 * @display: display device instance 1998 * 1999 * De-initializes the display power domain HW state. It also ensures that the 2000 * device stays powered up so that the driver can be reloaded. 2001 * 2002 * It must be called with power domains already disabled (after a call to 2003 * intel_power_domains_disable()) and must be paired with 2004 * intel_power_domains_init_hw(). 2005 */ 2006 void intel_power_domains_driver_remove(struct intel_display *display) 2007 { 2008 intel_wakeref_t wakeref __maybe_unused = 2009 fetch_and_zero(&display->power.domains.init_wakeref); 2010 2011 /* Remove the refcount we took to keep power well support disabled. */ 2012 if (!display->params.disable_power_well) 2013 intel_display_power_put(display, POWER_DOMAIN_INIT, 2014 fetch_and_zero(&display->power.domains.disable_wakeref)); 2015 2016 intel_display_power_flush_work_sync(display); 2017 2018 intel_power_domains_verify_state(display); 2019 2020 /* Keep the power well enabled, but cancel its rpm wakeref. */ 2021 intel_display_rpm_put(display, wakeref); 2022 } 2023 2024 /** 2025 * intel_power_domains_sanitize_state - sanitize power domains state 2026 * @display: display device instance 2027 * 2028 * Sanitize the power domains state during driver loading and system resume. 2029 * The function will disable all display power wells that BIOS has enabled 2030 * without a user for it (any user for a power well has taken a reference 2031 * on it by the time this function is called, after the state of all the 2032 * pipe, encoder, etc. HW resources have been sanitized). 2033 */ 2034 void intel_power_domains_sanitize_state(struct intel_display *display) 2035 { 2036 struct i915_power_domains *power_domains = &display->power.domains; 2037 struct i915_power_well *power_well; 2038 2039 mutex_lock(&power_domains->lock); 2040 2041 for_each_power_well_reverse(display, power_well) { 2042 if (power_well->desc->always_on || power_well->count || 2043 !intel_power_well_is_enabled(display, power_well)) 2044 continue; 2045 2046 drm_dbg_kms(display->drm, 2047 "BIOS left unused %s power well enabled, disabling it\n", 2048 intel_power_well_name(power_well)); 2049 intel_power_well_disable(display, power_well); 2050 } 2051 2052 mutex_unlock(&power_domains->lock); 2053 } 2054 2055 /** 2056 * intel_power_domains_enable - enable toggling of display power wells 2057 * @display: display device instance 2058 * 2059 * Enable the ondemand enabling/disabling of the display power wells. Note that 2060 * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled 2061 * only at specific points of the display modeset sequence, thus they are not 2062 * affected by the intel_power_domains_enable()/disable() calls. The purpose 2063 * of these function is to keep the rest of power wells enabled until the end 2064 * of display HW readout (which will acquire the power references reflecting 2065 * the current HW state). 2066 */ 2067 void intel_power_domains_enable(struct intel_display *display) 2068 { 2069 intel_wakeref_t wakeref __maybe_unused = 2070 fetch_and_zero(&display->power.domains.init_wakeref); 2071 2072 intel_display_power_put(display, POWER_DOMAIN_INIT, wakeref); 2073 intel_power_domains_verify_state(display); 2074 } 2075 2076 /** 2077 * intel_power_domains_disable - disable toggling of display power wells 2078 * @display: display device instance 2079 * 2080 * Disable the ondemand enabling/disabling of the display power wells. See 2081 * intel_power_domains_enable() for which power wells this call controls. 2082 */ 2083 void intel_power_domains_disable(struct intel_display *display) 2084 { 2085 struct i915_power_domains *power_domains = &display->power.domains; 2086 2087 drm_WARN_ON(display->drm, power_domains->init_wakeref); 2088 power_domains->init_wakeref = 2089 intel_display_power_get(display, POWER_DOMAIN_INIT); 2090 2091 intel_power_domains_verify_state(display); 2092 } 2093 2094 /** 2095 * intel_power_domains_suspend - suspend power domain state 2096 * @display: display device instance 2097 * @s2idle: specifies whether we go to idle, or deeper sleep 2098 * 2099 * This function prepares the hardware power domain state before entering 2100 * system suspend. 2101 * 2102 * It must be called with power domains already disabled (after a call to 2103 * intel_power_domains_disable()) and paired with intel_power_domains_resume(). 2104 */ 2105 void intel_power_domains_suspend(struct intel_display *display, bool s2idle) 2106 { 2107 struct i915_power_domains *power_domains = &display->power.domains; 2108 intel_wakeref_t wakeref __maybe_unused = 2109 fetch_and_zero(&power_domains->init_wakeref); 2110 2111 intel_display_power_put(display, POWER_DOMAIN_INIT, wakeref); 2112 2113 /* 2114 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9 2115 * support don't manually deinit the power domains. This also means the 2116 * DMC firmware will stay active, it will power down any HW 2117 * resources as required and also enable deeper system power states 2118 * that would be blocked if the firmware was inactive. 2119 */ 2120 if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle && 2121 intel_dmc_has_payload(display)) { 2122 intel_display_power_flush_work(display); 2123 intel_power_domains_verify_state(display); 2124 return; 2125 } 2126 2127 /* 2128 * Even if power well support was disabled we still want to disable 2129 * power wells if power domains must be deinitialized for suspend. 2130 */ 2131 if (!display->params.disable_power_well) 2132 intel_display_power_put(display, POWER_DOMAIN_INIT, 2133 fetch_and_zero(&display->power.domains.disable_wakeref)); 2134 2135 intel_display_power_flush_work(display); 2136 intel_power_domains_verify_state(display); 2137 2138 if (DISPLAY_VER(display) >= 11) 2139 icl_display_core_uninit(display); 2140 else if (display->platform.geminilake || display->platform.broxton) 2141 bxt_display_core_uninit(display); 2142 else if (DISPLAY_VER(display) == 9) 2143 skl_display_core_uninit(display); 2144 2145 power_domains->display_core_suspended = true; 2146 } 2147 2148 /** 2149 * intel_power_domains_resume - resume power domain state 2150 * @display: display device instance 2151 * 2152 * This function resume the hardware power domain state during system resume. 2153 * 2154 * It will return with power domain support disabled (to be enabled later by 2155 * intel_power_domains_enable()) and must be paired with 2156 * intel_power_domains_suspend(). 2157 */ 2158 void intel_power_domains_resume(struct intel_display *display) 2159 { 2160 struct i915_power_domains *power_domains = &display->power.domains; 2161 2162 if (power_domains->display_core_suspended) { 2163 intel_power_domains_init_hw(display, true); 2164 power_domains->display_core_suspended = false; 2165 } else { 2166 drm_WARN_ON(display->drm, power_domains->init_wakeref); 2167 power_domains->init_wakeref = 2168 intel_display_power_get(display, POWER_DOMAIN_INIT); 2169 } 2170 } 2171 2172 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 2173 2174 static void intel_power_domains_dump_info(struct intel_display *display) 2175 { 2176 struct i915_power_domains *power_domains = &display->power.domains; 2177 struct i915_power_well *power_well; 2178 2179 for_each_power_well(display, power_well) { 2180 enum intel_display_power_domain domain; 2181 2182 drm_dbg_kms(display->drm, "%-25s %d\n", 2183 intel_power_well_name(power_well), intel_power_well_refcount(power_well)); 2184 2185 for_each_power_domain(domain, intel_power_well_domains(power_well)) 2186 drm_dbg_kms(display->drm, " %-23s %d\n", 2187 intel_display_power_domain_str(domain), 2188 power_domains->domain_use_count[domain]); 2189 } 2190 } 2191 2192 /** 2193 * intel_power_domains_verify_state - verify the HW/SW state for all power wells 2194 * @display: display device instance 2195 * 2196 * Verify if the reference count of each power well matches its HW enabled 2197 * state and the total refcount of the domains it belongs to. This must be 2198 * called after modeset HW state sanitization, which is responsible for 2199 * acquiring reference counts for any power wells in use and disabling the 2200 * ones left on by BIOS but not required by any active output. 2201 */ 2202 static void intel_power_domains_verify_state(struct intel_display *display) 2203 { 2204 struct i915_power_domains *power_domains = &display->power.domains; 2205 struct i915_power_well *power_well; 2206 bool dump_domain_info; 2207 2208 mutex_lock(&power_domains->lock); 2209 2210 verify_async_put_domains_state(power_domains); 2211 2212 dump_domain_info = false; 2213 for_each_power_well(display, power_well) { 2214 enum intel_display_power_domain domain; 2215 int domains_count; 2216 bool enabled; 2217 2218 enabled = intel_power_well_is_enabled(display, power_well); 2219 if ((intel_power_well_refcount(power_well) || 2220 intel_power_well_is_always_on(power_well)) != 2221 enabled) 2222 drm_err(display->drm, 2223 "power well %s state mismatch (refcount %d/enabled %d)", 2224 intel_power_well_name(power_well), 2225 intel_power_well_refcount(power_well), enabled); 2226 2227 domains_count = 0; 2228 for_each_power_domain(domain, intel_power_well_domains(power_well)) 2229 domains_count += power_domains->domain_use_count[domain]; 2230 2231 if (intel_power_well_refcount(power_well) != domains_count) { 2232 drm_err(display->drm, 2233 "power well %s refcount/domain refcount mismatch " 2234 "(refcount %d/domains refcount %d)\n", 2235 intel_power_well_name(power_well), 2236 intel_power_well_refcount(power_well), 2237 domains_count); 2238 dump_domain_info = true; 2239 } 2240 } 2241 2242 if (dump_domain_info) { 2243 static bool dumped; 2244 2245 if (!dumped) { 2246 intel_power_domains_dump_info(display); 2247 dumped = true; 2248 } 2249 } 2250 2251 mutex_unlock(&power_domains->lock); 2252 } 2253 2254 #else 2255 2256 static void intel_power_domains_verify_state(struct intel_display *display) 2257 { 2258 } 2259 2260 #endif 2261 2262 void intel_display_power_suspend_late(struct intel_display *display, bool s2idle) 2263 { 2264 intel_power_domains_suspend(display, s2idle); 2265 2266 if (DISPLAY_VER(display) >= 11 || display->platform.geminilake || 2267 display->platform.broxton) { 2268 bxt_enable_dc9(display); 2269 } else if (display->platform.haswell || display->platform.broadwell) { 2270 hsw_enable_pc8(display); 2271 } 2272 2273 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ 2274 if (INTEL_PCH_TYPE(display) >= PCH_CNP && INTEL_PCH_TYPE(display) < PCH_DG1) 2275 intel_de_rmw(display, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS); 2276 } 2277 2278 void intel_display_power_resume_early(struct intel_display *display) 2279 { 2280 if (DISPLAY_VER(display) >= 11 || display->platform.geminilake || 2281 display->platform.broxton) { 2282 gen9_sanitize_dc_state(display); 2283 bxt_disable_dc9(display); 2284 } else if (display->platform.haswell || display->platform.broadwell) { 2285 hsw_disable_pc8(display); 2286 } 2287 2288 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ 2289 if (INTEL_PCH_TYPE(display) >= PCH_CNP && INTEL_PCH_TYPE(display) < PCH_DG1) 2290 intel_de_rmw(display, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0); 2291 2292 intel_power_domains_resume(display); 2293 } 2294 2295 void intel_display_power_suspend(struct intel_display *display) 2296 { 2297 if (DISPLAY_VER(display) >= 11) { 2298 icl_display_core_uninit(display); 2299 bxt_enable_dc9(display); 2300 } else if (display->platform.geminilake || display->platform.broxton) { 2301 bxt_display_core_uninit(display); 2302 bxt_enable_dc9(display); 2303 } else if (display->platform.haswell || display->platform.broadwell) { 2304 hsw_enable_pc8(display); 2305 } 2306 } 2307 2308 void intel_display_power_resume(struct intel_display *display) 2309 { 2310 struct i915_power_domains *power_domains = &display->power.domains; 2311 2312 if (DISPLAY_VER(display) >= 11) { 2313 bxt_disable_dc9(display); 2314 icl_display_core_init(display, true); 2315 if (intel_dmc_has_payload(display)) { 2316 if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6) 2317 skl_enable_dc6(display); 2318 else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5) 2319 gen9_enable_dc5(display); 2320 } 2321 } else if (display->platform.geminilake || display->platform.broxton) { 2322 bxt_disable_dc9(display); 2323 bxt_display_core_init(display, true); 2324 if (intel_dmc_has_payload(display) && 2325 (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)) 2326 gen9_enable_dc5(display); 2327 } else if (display->platform.haswell || display->platform.broadwell) { 2328 hsw_disable_pc8(display); 2329 } 2330 } 2331 2332 void intel_display_power_debug(struct intel_display *display, struct seq_file *m) 2333 { 2334 struct i915_power_domains *power_domains = &display->power.domains; 2335 int i; 2336 2337 mutex_lock(&power_domains->lock); 2338 2339 seq_printf(m, "Runtime power status: %s\n", 2340 str_enabled_disabled(!power_domains->init_wakeref)); 2341 2342 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); 2343 for (i = 0; i < power_domains->power_well_count; i++) { 2344 struct i915_power_well *power_well; 2345 enum intel_display_power_domain power_domain; 2346 2347 power_well = &power_domains->power_wells[i]; 2348 seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well), 2349 intel_power_well_refcount(power_well)); 2350 2351 for_each_power_domain(power_domain, intel_power_well_domains(power_well)) 2352 seq_printf(m, " %-23s %d\n", 2353 intel_display_power_domain_str(power_domain), 2354 power_domains->domain_use_count[power_domain]); 2355 } 2356 2357 mutex_unlock(&power_domains->lock); 2358 } 2359 2360 struct intel_ddi_port_domains { 2361 enum port port_start; 2362 enum port port_end; 2363 enum aux_ch aux_ch_start; 2364 enum aux_ch aux_ch_end; 2365 2366 enum intel_display_power_domain ddi_lanes; 2367 enum intel_display_power_domain ddi_io; 2368 enum intel_display_power_domain aux_io; 2369 enum intel_display_power_domain aux_legacy_usbc; 2370 enum intel_display_power_domain aux_tbt; 2371 }; 2372 2373 static const struct intel_ddi_port_domains 2374 i9xx_port_domains[] = { 2375 { 2376 .port_start = PORT_A, 2377 .port_end = PORT_F, 2378 .aux_ch_start = AUX_CH_A, 2379 .aux_ch_end = AUX_CH_F, 2380 2381 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2382 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2383 .aux_io = POWER_DOMAIN_AUX_IO_A, 2384 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2385 .aux_tbt = POWER_DOMAIN_INVALID, 2386 }, 2387 }; 2388 2389 static const struct intel_ddi_port_domains 2390 d11_port_domains[] = { 2391 { 2392 .port_start = PORT_A, 2393 .port_end = PORT_B, 2394 .aux_ch_start = AUX_CH_A, 2395 .aux_ch_end = AUX_CH_B, 2396 2397 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2398 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2399 .aux_io = POWER_DOMAIN_AUX_IO_A, 2400 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2401 .aux_tbt = POWER_DOMAIN_INVALID, 2402 }, { 2403 .port_start = PORT_C, 2404 .port_end = PORT_F, 2405 .aux_ch_start = AUX_CH_C, 2406 .aux_ch_end = AUX_CH_F, 2407 2408 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C, 2409 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_C, 2410 .aux_io = POWER_DOMAIN_AUX_IO_C, 2411 .aux_legacy_usbc = POWER_DOMAIN_AUX_C, 2412 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2413 }, 2414 }; 2415 2416 static const struct intel_ddi_port_domains 2417 d12_port_domains[] = { 2418 { 2419 .port_start = PORT_A, 2420 .port_end = PORT_C, 2421 .aux_ch_start = AUX_CH_A, 2422 .aux_ch_end = AUX_CH_C, 2423 2424 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2425 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2426 .aux_io = POWER_DOMAIN_AUX_IO_A, 2427 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2428 .aux_tbt = POWER_DOMAIN_INVALID, 2429 }, { 2430 .port_start = PORT_TC1, 2431 .port_end = PORT_TC6, 2432 .aux_ch_start = AUX_CH_USBC1, 2433 .aux_ch_end = AUX_CH_USBC6, 2434 2435 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, 2436 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, 2437 .aux_io = POWER_DOMAIN_INVALID, 2438 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, 2439 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2440 }, 2441 }; 2442 2443 static const struct intel_ddi_port_domains 2444 d13_port_domains[] = { 2445 { 2446 .port_start = PORT_A, 2447 .port_end = PORT_C, 2448 .aux_ch_start = AUX_CH_A, 2449 .aux_ch_end = AUX_CH_C, 2450 2451 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2452 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2453 .aux_io = POWER_DOMAIN_AUX_IO_A, 2454 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2455 .aux_tbt = POWER_DOMAIN_INVALID, 2456 }, { 2457 .port_start = PORT_TC1, 2458 .port_end = PORT_TC4, 2459 .aux_ch_start = AUX_CH_USBC1, 2460 .aux_ch_end = AUX_CH_USBC4, 2461 2462 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, 2463 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, 2464 .aux_io = POWER_DOMAIN_INVALID, 2465 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, 2466 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2467 }, { 2468 .port_start = PORT_D_XELPD, 2469 .port_end = PORT_E_XELPD, 2470 .aux_ch_start = AUX_CH_D_XELPD, 2471 .aux_ch_end = AUX_CH_E_XELPD, 2472 2473 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D, 2474 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_D, 2475 .aux_io = POWER_DOMAIN_AUX_IO_D, 2476 .aux_legacy_usbc = POWER_DOMAIN_AUX_D, 2477 .aux_tbt = POWER_DOMAIN_INVALID, 2478 }, 2479 }; 2480 2481 static void 2482 intel_port_domains_for_platform(struct intel_display *display, 2483 const struct intel_ddi_port_domains **domains, 2484 int *domains_size) 2485 { 2486 if (DISPLAY_VER(display) >= 13) { 2487 *domains = d13_port_domains; 2488 *domains_size = ARRAY_SIZE(d13_port_domains); 2489 } else if (DISPLAY_VER(display) >= 12) { 2490 *domains = d12_port_domains; 2491 *domains_size = ARRAY_SIZE(d12_port_domains); 2492 } else if (DISPLAY_VER(display) >= 11) { 2493 *domains = d11_port_domains; 2494 *domains_size = ARRAY_SIZE(d11_port_domains); 2495 } else { 2496 *domains = i9xx_port_domains; 2497 *domains_size = ARRAY_SIZE(i9xx_port_domains); 2498 } 2499 } 2500 2501 static const struct intel_ddi_port_domains * 2502 intel_port_domains_for_port(struct intel_display *display, enum port port) 2503 { 2504 const struct intel_ddi_port_domains *domains; 2505 int domains_size; 2506 int i; 2507 2508 intel_port_domains_for_platform(display, &domains, &domains_size); 2509 for (i = 0; i < domains_size; i++) 2510 if (port >= domains[i].port_start && port <= domains[i].port_end) 2511 return &domains[i]; 2512 2513 return NULL; 2514 } 2515 2516 enum intel_display_power_domain 2517 intel_display_power_ddi_io_domain(struct intel_display *display, enum port port) 2518 { 2519 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(display, port); 2520 2521 if (drm_WARN_ON(display->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID)) 2522 return POWER_DOMAIN_PORT_DDI_IO_A; 2523 2524 return domains->ddi_io + (int)(port - domains->port_start); 2525 } 2526 2527 enum intel_display_power_domain 2528 intel_display_power_ddi_lanes_domain(struct intel_display *display, enum port port) 2529 { 2530 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(display, port); 2531 2532 if (drm_WARN_ON(display->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID)) 2533 return POWER_DOMAIN_PORT_DDI_LANES_A; 2534 2535 return domains->ddi_lanes + (int)(port - domains->port_start); 2536 } 2537 2538 static const struct intel_ddi_port_domains * 2539 intel_port_domains_for_aux_ch(struct intel_display *display, enum aux_ch aux_ch) 2540 { 2541 const struct intel_ddi_port_domains *domains; 2542 int domains_size; 2543 int i; 2544 2545 intel_port_domains_for_platform(display, &domains, &domains_size); 2546 for (i = 0; i < domains_size; i++) 2547 if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end) 2548 return &domains[i]; 2549 2550 return NULL; 2551 } 2552 2553 enum intel_display_power_domain 2554 intel_display_power_aux_io_domain(struct intel_display *display, enum aux_ch aux_ch) 2555 { 2556 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch); 2557 2558 if (drm_WARN_ON(display->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID)) 2559 return POWER_DOMAIN_AUX_IO_A; 2560 2561 return domains->aux_io + (int)(aux_ch - domains->aux_ch_start); 2562 } 2563 2564 enum intel_display_power_domain 2565 intel_display_power_legacy_aux_domain(struct intel_display *display, enum aux_ch aux_ch) 2566 { 2567 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch); 2568 2569 if (drm_WARN_ON(display->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)) 2570 return POWER_DOMAIN_AUX_A; 2571 2572 return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start); 2573 } 2574 2575 enum intel_display_power_domain 2576 intel_display_power_tbt_aux_domain(struct intel_display *display, enum aux_ch aux_ch) 2577 { 2578 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch); 2579 2580 if (drm_WARN_ON(display->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID)) 2581 return POWER_DOMAIN_AUX_TBT1; 2582 2583 return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start); 2584 } 2585