1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "i915_reg.h"
11 #include "intel_backlight_regs.h"
12 #include "intel_cdclk.h"
13 #include "intel_clock_gating.h"
14 #include "intel_combo_phy.h"
15 #include "intel_de.h"
16 #include "intel_display_power.h"
17 #include "intel_display_power_map.h"
18 #include "intel_display_power_well.h"
19 #include "intel_display_types.h"
20 #include "intel_dmc.h"
21 #include "intel_mchbar_regs.h"
22 #include "intel_pch_refclk.h"
23 #include "intel_pcode.h"
24 #include "intel_pmdemand.h"
25 #include "intel_pps_regs.h"
26 #include "intel_snps_phy.h"
27 #include "skl_watermark.h"
28 #include "skl_watermark_regs.h"
29 #include "vlv_sideband.h"
30
31 #define for_each_power_domain_well(__dev_priv, __power_well, __domain) \
32 for_each_power_well(__dev_priv, __power_well) \
33 for_each_if(test_bit((__domain), (__power_well)->domains.bits))
34
35 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
36 for_each_power_well_reverse(__dev_priv, __power_well) \
37 for_each_if(test_bit((__domain), (__power_well)->domains.bits))
38
39 static const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)40 intel_display_power_domain_str(enum intel_display_power_domain domain)
41 {
42 switch (domain) {
43 case POWER_DOMAIN_DISPLAY_CORE:
44 return "DISPLAY_CORE";
45 case POWER_DOMAIN_PIPE_A:
46 return "PIPE_A";
47 case POWER_DOMAIN_PIPE_B:
48 return "PIPE_B";
49 case POWER_DOMAIN_PIPE_C:
50 return "PIPE_C";
51 case POWER_DOMAIN_PIPE_D:
52 return "PIPE_D";
53 case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
54 return "PIPE_PANEL_FITTER_A";
55 case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
56 return "PIPE_PANEL_FITTER_B";
57 case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
58 return "PIPE_PANEL_FITTER_C";
59 case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
60 return "PIPE_PANEL_FITTER_D";
61 case POWER_DOMAIN_TRANSCODER_A:
62 return "TRANSCODER_A";
63 case POWER_DOMAIN_TRANSCODER_B:
64 return "TRANSCODER_B";
65 case POWER_DOMAIN_TRANSCODER_C:
66 return "TRANSCODER_C";
67 case POWER_DOMAIN_TRANSCODER_D:
68 return "TRANSCODER_D";
69 case POWER_DOMAIN_TRANSCODER_EDP:
70 return "TRANSCODER_EDP";
71 case POWER_DOMAIN_TRANSCODER_DSI_A:
72 return "TRANSCODER_DSI_A";
73 case POWER_DOMAIN_TRANSCODER_DSI_C:
74 return "TRANSCODER_DSI_C";
75 case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
76 return "TRANSCODER_VDSC_PW2";
77 case POWER_DOMAIN_PORT_DDI_LANES_A:
78 return "PORT_DDI_LANES_A";
79 case POWER_DOMAIN_PORT_DDI_LANES_B:
80 return "PORT_DDI_LANES_B";
81 case POWER_DOMAIN_PORT_DDI_LANES_C:
82 return "PORT_DDI_LANES_C";
83 case POWER_DOMAIN_PORT_DDI_LANES_D:
84 return "PORT_DDI_LANES_D";
85 case POWER_DOMAIN_PORT_DDI_LANES_E:
86 return "PORT_DDI_LANES_E";
87 case POWER_DOMAIN_PORT_DDI_LANES_F:
88 return "PORT_DDI_LANES_F";
89 case POWER_DOMAIN_PORT_DDI_LANES_TC1:
90 return "PORT_DDI_LANES_TC1";
91 case POWER_DOMAIN_PORT_DDI_LANES_TC2:
92 return "PORT_DDI_LANES_TC2";
93 case POWER_DOMAIN_PORT_DDI_LANES_TC3:
94 return "PORT_DDI_LANES_TC3";
95 case POWER_DOMAIN_PORT_DDI_LANES_TC4:
96 return "PORT_DDI_LANES_TC4";
97 case POWER_DOMAIN_PORT_DDI_LANES_TC5:
98 return "PORT_DDI_LANES_TC5";
99 case POWER_DOMAIN_PORT_DDI_LANES_TC6:
100 return "PORT_DDI_LANES_TC6";
101 case POWER_DOMAIN_PORT_DDI_IO_A:
102 return "PORT_DDI_IO_A";
103 case POWER_DOMAIN_PORT_DDI_IO_B:
104 return "PORT_DDI_IO_B";
105 case POWER_DOMAIN_PORT_DDI_IO_C:
106 return "PORT_DDI_IO_C";
107 case POWER_DOMAIN_PORT_DDI_IO_D:
108 return "PORT_DDI_IO_D";
109 case POWER_DOMAIN_PORT_DDI_IO_E:
110 return "PORT_DDI_IO_E";
111 case POWER_DOMAIN_PORT_DDI_IO_F:
112 return "PORT_DDI_IO_F";
113 case POWER_DOMAIN_PORT_DDI_IO_TC1:
114 return "PORT_DDI_IO_TC1";
115 case POWER_DOMAIN_PORT_DDI_IO_TC2:
116 return "PORT_DDI_IO_TC2";
117 case POWER_DOMAIN_PORT_DDI_IO_TC3:
118 return "PORT_DDI_IO_TC3";
119 case POWER_DOMAIN_PORT_DDI_IO_TC4:
120 return "PORT_DDI_IO_TC4";
121 case POWER_DOMAIN_PORT_DDI_IO_TC5:
122 return "PORT_DDI_IO_TC5";
123 case POWER_DOMAIN_PORT_DDI_IO_TC6:
124 return "PORT_DDI_IO_TC6";
125 case POWER_DOMAIN_PORT_DSI:
126 return "PORT_DSI";
127 case POWER_DOMAIN_PORT_CRT:
128 return "PORT_CRT";
129 case POWER_DOMAIN_PORT_OTHER:
130 return "PORT_OTHER";
131 case POWER_DOMAIN_VGA:
132 return "VGA";
133 case POWER_DOMAIN_AUDIO_MMIO:
134 return "AUDIO_MMIO";
135 case POWER_DOMAIN_AUDIO_PLAYBACK:
136 return "AUDIO_PLAYBACK";
137 case POWER_DOMAIN_AUX_IO_A:
138 return "AUX_IO_A";
139 case POWER_DOMAIN_AUX_IO_B:
140 return "AUX_IO_B";
141 case POWER_DOMAIN_AUX_IO_C:
142 return "AUX_IO_C";
143 case POWER_DOMAIN_AUX_IO_D:
144 return "AUX_IO_D";
145 case POWER_DOMAIN_AUX_IO_E:
146 return "AUX_IO_E";
147 case POWER_DOMAIN_AUX_IO_F:
148 return "AUX_IO_F";
149 case POWER_DOMAIN_AUX_A:
150 return "AUX_A";
151 case POWER_DOMAIN_AUX_B:
152 return "AUX_B";
153 case POWER_DOMAIN_AUX_C:
154 return "AUX_C";
155 case POWER_DOMAIN_AUX_D:
156 return "AUX_D";
157 case POWER_DOMAIN_AUX_E:
158 return "AUX_E";
159 case POWER_DOMAIN_AUX_F:
160 return "AUX_F";
161 case POWER_DOMAIN_AUX_USBC1:
162 return "AUX_USBC1";
163 case POWER_DOMAIN_AUX_USBC2:
164 return "AUX_USBC2";
165 case POWER_DOMAIN_AUX_USBC3:
166 return "AUX_USBC3";
167 case POWER_DOMAIN_AUX_USBC4:
168 return "AUX_USBC4";
169 case POWER_DOMAIN_AUX_USBC5:
170 return "AUX_USBC5";
171 case POWER_DOMAIN_AUX_USBC6:
172 return "AUX_USBC6";
173 case POWER_DOMAIN_AUX_TBT1:
174 return "AUX_TBT1";
175 case POWER_DOMAIN_AUX_TBT2:
176 return "AUX_TBT2";
177 case POWER_DOMAIN_AUX_TBT3:
178 return "AUX_TBT3";
179 case POWER_DOMAIN_AUX_TBT4:
180 return "AUX_TBT4";
181 case POWER_DOMAIN_AUX_TBT5:
182 return "AUX_TBT5";
183 case POWER_DOMAIN_AUX_TBT6:
184 return "AUX_TBT6";
185 case POWER_DOMAIN_GMBUS:
186 return "GMBUS";
187 case POWER_DOMAIN_INIT:
188 return "INIT";
189 case POWER_DOMAIN_GT_IRQ:
190 return "GT_IRQ";
191 case POWER_DOMAIN_DC_OFF:
192 return "DC_OFF";
193 case POWER_DOMAIN_TC_COLD_OFF:
194 return "TC_COLD_OFF";
195 default:
196 MISSING_CASE(domain);
197 return "?";
198 }
199 }
200
__intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)201 static bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
202 enum intel_display_power_domain domain)
203 {
204 struct i915_power_well *power_well;
205 bool is_enabled;
206
207 if (pm_runtime_suspended(dev_priv->drm.dev))
208 return false;
209
210 is_enabled = true;
211
212 for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
213 if (intel_power_well_is_always_on(power_well))
214 continue;
215
216 if (!intel_power_well_is_enabled_cached(power_well)) {
217 is_enabled = false;
218 break;
219 }
220 }
221
222 return is_enabled;
223 }
224
225 /**
226 * intel_display_power_is_enabled - check for a power domain
227 * @dev_priv: i915 device instance
228 * @domain: power domain to check
229 *
230 * This function can be used to check the hw power domain state. It is mostly
231 * used in hardware state readout functions. Everywhere else code should rely
232 * upon explicit power domain reference counting to ensure that the hardware
233 * block is powered up before accessing it.
234 *
235 * Callers must hold the relevant modesetting locks to ensure that concurrent
236 * threads can't disable the power well while the caller tries to read a few
237 * registers.
238 *
239 * Returns:
240 * True when the power domain is enabled, false otherwise.
241 */
intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)242 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
243 enum intel_display_power_domain domain)
244 {
245 struct i915_power_domains *power_domains;
246 bool ret;
247
248 power_domains = &dev_priv->display.power.domains;
249
250 mutex_lock(&power_domains->lock);
251 ret = __intel_display_power_is_enabled(dev_priv, domain);
252 mutex_unlock(&power_domains->lock);
253
254 return ret;
255 }
256
257 static u32
sanitize_target_dc_state(struct drm_i915_private * i915,u32 target_dc_state)258 sanitize_target_dc_state(struct drm_i915_private *i915,
259 u32 target_dc_state)
260 {
261 struct i915_power_domains *power_domains = &i915->display.power.domains;
262 static const u32 states[] = {
263 DC_STATE_EN_UPTO_DC6,
264 DC_STATE_EN_UPTO_DC5,
265 DC_STATE_EN_DC3CO,
266 DC_STATE_DISABLE,
267 };
268 int i;
269
270 for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
271 if (target_dc_state != states[i])
272 continue;
273
274 if (power_domains->allowed_dc_mask & target_dc_state)
275 break;
276
277 target_dc_state = states[i + 1];
278 }
279
280 return target_dc_state;
281 }
282
283 /**
284 * intel_display_power_set_target_dc_state - Set target dc state.
285 * @dev_priv: i915 device
286 * @state: state which needs to be set as target_dc_state.
287 *
288 * This function set the "DC off" power well target_dc_state,
289 * based upon this target_dc_stste, "DC off" power well will
290 * enable desired DC state.
291 */
intel_display_power_set_target_dc_state(struct drm_i915_private * dev_priv,u32 state)292 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
293 u32 state)
294 {
295 struct i915_power_well *power_well;
296 bool dc_off_enabled;
297 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
298
299 mutex_lock(&power_domains->lock);
300 power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
301
302 if (drm_WARN_ON(&dev_priv->drm, !power_well))
303 goto unlock;
304
305 state = sanitize_target_dc_state(dev_priv, state);
306
307 if (state == power_domains->target_dc_state)
308 goto unlock;
309
310 dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
311 /*
312 * If DC off power well is disabled, need to enable and disable the
313 * DC off power well to effect target DC state.
314 */
315 if (!dc_off_enabled)
316 intel_power_well_enable(dev_priv, power_well);
317
318 power_domains->target_dc_state = state;
319
320 if (!dc_off_enabled)
321 intel_power_well_disable(dev_priv, power_well);
322
323 unlock:
324 mutex_unlock(&power_domains->lock);
325 }
326
__async_put_domains_mask(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)327 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
328 struct intel_power_domain_mask *mask)
329 {
330 bitmap_or(mask->bits,
331 power_domains->async_put_domains[0].bits,
332 power_domains->async_put_domains[1].bits,
333 POWER_DOMAIN_NUM);
334 }
335
336 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
337
338 static bool
assert_async_put_domain_masks_disjoint(struct i915_power_domains * power_domains)339 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
340 {
341 struct drm_i915_private *i915 = container_of(power_domains,
342 struct drm_i915_private,
343 display.power.domains);
344
345 return !drm_WARN_ON(&i915->drm,
346 bitmap_intersects(power_domains->async_put_domains[0].bits,
347 power_domains->async_put_domains[1].bits,
348 POWER_DOMAIN_NUM));
349 }
350
351 static bool
__async_put_domains_state_ok(struct i915_power_domains * power_domains)352 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
353 {
354 struct drm_i915_private *i915 = container_of(power_domains,
355 struct drm_i915_private,
356 display.power.domains);
357 struct intel_power_domain_mask async_put_mask;
358 enum intel_display_power_domain domain;
359 bool err = false;
360
361 err |= !assert_async_put_domain_masks_disjoint(power_domains);
362 __async_put_domains_mask(power_domains, &async_put_mask);
363 err |= drm_WARN_ON(&i915->drm,
364 !!power_domains->async_put_wakeref !=
365 !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
366
367 for_each_power_domain(domain, &async_put_mask)
368 err |= drm_WARN_ON(&i915->drm,
369 power_domains->domain_use_count[domain] != 1);
370
371 return !err;
372 }
373
print_power_domains(struct i915_power_domains * power_domains,const char * prefix,struct intel_power_domain_mask * mask)374 static void print_power_domains(struct i915_power_domains *power_domains,
375 const char *prefix, struct intel_power_domain_mask *mask)
376 {
377 struct drm_i915_private *i915 = container_of(power_domains,
378 struct drm_i915_private,
379 display.power.domains);
380 enum intel_display_power_domain domain;
381
382 drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
383 for_each_power_domain(domain, mask)
384 drm_dbg(&i915->drm, "%s use_count %d\n",
385 intel_display_power_domain_str(domain),
386 power_domains->domain_use_count[domain]);
387 }
388
389 static void
print_async_put_domains_state(struct i915_power_domains * power_domains)390 print_async_put_domains_state(struct i915_power_domains *power_domains)
391 {
392 struct drm_i915_private *i915 = container_of(power_domains,
393 struct drm_i915_private,
394 display.power.domains);
395
396 drm_dbg(&i915->drm, "async_put_wakeref: %s\n",
397 str_yes_no(power_domains->async_put_wakeref));
398
399 print_power_domains(power_domains, "async_put_domains[0]",
400 &power_domains->async_put_domains[0]);
401 print_power_domains(power_domains, "async_put_domains[1]",
402 &power_domains->async_put_domains[1]);
403 }
404
405 static void
verify_async_put_domains_state(struct i915_power_domains * power_domains)406 verify_async_put_domains_state(struct i915_power_domains *power_domains)
407 {
408 if (!__async_put_domains_state_ok(power_domains))
409 print_async_put_domains_state(power_domains);
410 }
411
412 #else
413
414 static void
assert_async_put_domain_masks_disjoint(struct i915_power_domains * power_domains)415 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
416 {
417 }
418
419 static void
verify_async_put_domains_state(struct i915_power_domains * power_domains)420 verify_async_put_domains_state(struct i915_power_domains *power_domains)
421 {
422 }
423
424 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
425
async_put_domains_mask(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)426 static void async_put_domains_mask(struct i915_power_domains *power_domains,
427 struct intel_power_domain_mask *mask)
428
429 {
430 assert_async_put_domain_masks_disjoint(power_domains);
431
432 __async_put_domains_mask(power_domains, mask);
433 }
434
435 static void
async_put_domains_clear_domain(struct i915_power_domains * power_domains,enum intel_display_power_domain domain)436 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
437 enum intel_display_power_domain domain)
438 {
439 assert_async_put_domain_masks_disjoint(power_domains);
440
441 clear_bit(domain, power_domains->async_put_domains[0].bits);
442 clear_bit(domain, power_domains->async_put_domains[1].bits);
443 }
444
445 static void
cancel_async_put_work(struct i915_power_domains * power_domains,bool sync)446 cancel_async_put_work(struct i915_power_domains *power_domains, bool sync)
447 {
448 if (sync)
449 cancel_delayed_work_sync(&power_domains->async_put_work);
450 else
451 cancel_delayed_work(&power_domains->async_put_work);
452
453 power_domains->async_put_next_delay = 0;
454 }
455
456 static bool
intel_display_power_grab_async_put_ref(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)457 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
458 enum intel_display_power_domain domain)
459 {
460 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
461 struct intel_power_domain_mask async_put_mask;
462 bool ret = false;
463
464 async_put_domains_mask(power_domains, &async_put_mask);
465 if (!test_bit(domain, async_put_mask.bits))
466 goto out_verify;
467
468 async_put_domains_clear_domain(power_domains, domain);
469
470 ret = true;
471
472 async_put_domains_mask(power_domains, &async_put_mask);
473 if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
474 goto out_verify;
475
476 cancel_async_put_work(power_domains, false);
477 intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
478 fetch_and_zero(&power_domains->async_put_wakeref));
479 out_verify:
480 verify_async_put_domains_state(power_domains);
481
482 return ret;
483 }
484
485 static void
__intel_display_power_get_domain(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)486 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
487 enum intel_display_power_domain domain)
488 {
489 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
490 struct i915_power_well *power_well;
491
492 if (intel_display_power_grab_async_put_ref(dev_priv, domain))
493 return;
494
495 for_each_power_domain_well(dev_priv, power_well, domain)
496 intel_power_well_get(dev_priv, power_well);
497
498 power_domains->domain_use_count[domain]++;
499 }
500
501 /**
502 * intel_display_power_get - grab a power domain reference
503 * @dev_priv: i915 device instance
504 * @domain: power domain to reference
505 *
506 * This function grabs a power domain reference for @domain and ensures that the
507 * power domain and all its parents are powered up. Therefore users should only
508 * grab a reference to the innermost power domain they need.
509 *
510 * Any power domain reference obtained by this function must have a symmetric
511 * call to intel_display_power_put() to release the reference again.
512 */
intel_display_power_get(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)513 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
514 enum intel_display_power_domain domain)
515 {
516 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
517 intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
518
519 mutex_lock(&power_domains->lock);
520 __intel_display_power_get_domain(dev_priv, domain);
521 mutex_unlock(&power_domains->lock);
522
523 return wakeref;
524 }
525
526 /**
527 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
528 * @dev_priv: i915 device instance
529 * @domain: power domain to reference
530 *
531 * This function grabs a power domain reference for @domain and ensures that the
532 * power domain and all its parents are powered up. Therefore users should only
533 * grab a reference to the innermost power domain they need.
534 *
535 * Any power domain reference obtained by this function must have a symmetric
536 * call to intel_display_power_put() to release the reference again.
537 */
538 intel_wakeref_t
intel_display_power_get_if_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)539 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
540 enum intel_display_power_domain domain)
541 {
542 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
543 intel_wakeref_t wakeref;
544 bool is_enabled;
545
546 wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
547 if (!wakeref)
548 return false;
549
550 mutex_lock(&power_domains->lock);
551
552 if (__intel_display_power_is_enabled(dev_priv, domain)) {
553 __intel_display_power_get_domain(dev_priv, domain);
554 is_enabled = true;
555 } else {
556 is_enabled = false;
557 }
558
559 mutex_unlock(&power_domains->lock);
560
561 if (!is_enabled) {
562 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
563 wakeref = 0;
564 }
565
566 return wakeref;
567 }
568
569 static void
__intel_display_power_put_domain(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)570 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
571 enum intel_display_power_domain domain)
572 {
573 struct i915_power_domains *power_domains;
574 struct i915_power_well *power_well;
575 const char *name = intel_display_power_domain_str(domain);
576 struct intel_power_domain_mask async_put_mask;
577
578 power_domains = &dev_priv->display.power.domains;
579
580 drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
581 "Use count on domain %s is already zero\n",
582 name);
583 async_put_domains_mask(power_domains, &async_put_mask);
584 drm_WARN(&dev_priv->drm,
585 test_bit(domain, async_put_mask.bits),
586 "Async disabling of domain %s is pending\n",
587 name);
588
589 power_domains->domain_use_count[domain]--;
590
591 for_each_power_domain_well_reverse(dev_priv, power_well, domain)
592 intel_power_well_put(dev_priv, power_well);
593 }
594
__intel_display_power_put(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)595 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
596 enum intel_display_power_domain domain)
597 {
598 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
599
600 mutex_lock(&power_domains->lock);
601 __intel_display_power_put_domain(dev_priv, domain);
602 mutex_unlock(&power_domains->lock);
603 }
604
605 static void
queue_async_put_domains_work(struct i915_power_domains * power_domains,intel_wakeref_t wakeref,int delay_ms)606 queue_async_put_domains_work(struct i915_power_domains *power_domains,
607 intel_wakeref_t wakeref,
608 int delay_ms)
609 {
610 struct drm_i915_private *i915 = container_of(power_domains,
611 struct drm_i915_private,
612 display.power.domains);
613 drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
614 power_domains->async_put_wakeref = wakeref;
615 drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
616 &power_domains->async_put_work,
617 msecs_to_jiffies(delay_ms)));
618 }
619
620 static void
release_async_put_domains(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)621 release_async_put_domains(struct i915_power_domains *power_domains,
622 struct intel_power_domain_mask *mask)
623 {
624 struct drm_i915_private *dev_priv =
625 container_of(power_domains, struct drm_i915_private,
626 display.power.domains);
627 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
628 enum intel_display_power_domain domain;
629 intel_wakeref_t wakeref;
630
631 wakeref = intel_runtime_pm_get_noresume(rpm);
632
633 for_each_power_domain(domain, mask) {
634 /* Clear before put, so put's sanity check is happy. */
635 async_put_domains_clear_domain(power_domains, domain);
636 __intel_display_power_put_domain(dev_priv, domain);
637 }
638
639 intel_runtime_pm_put(rpm, wakeref);
640 }
641
642 static void
intel_display_power_put_async_work(struct work_struct * work)643 intel_display_power_put_async_work(struct work_struct *work)
644 {
645 struct drm_i915_private *dev_priv =
646 container_of(work, struct drm_i915_private,
647 display.power.domains.async_put_work.work);
648 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
649 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
650 intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
651 intel_wakeref_t old_work_wakeref = 0;
652
653 mutex_lock(&power_domains->lock);
654
655 /*
656 * Bail out if all the domain refs pending to be released were grabbed
657 * by subsequent gets or a flush_work.
658 */
659 old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
660 if (!old_work_wakeref)
661 goto out_verify;
662
663 release_async_put_domains(power_domains,
664 &power_domains->async_put_domains[0]);
665
666 /*
667 * Cancel the work that got queued after this one got dequeued,
668 * since here we released the corresponding async-put reference.
669 */
670 cancel_async_put_work(power_domains, false);
671
672 /* Requeue the work if more domains were async put meanwhile. */
673 if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
674 bitmap_copy(power_domains->async_put_domains[0].bits,
675 power_domains->async_put_domains[1].bits,
676 POWER_DOMAIN_NUM);
677 bitmap_zero(power_domains->async_put_domains[1].bits,
678 POWER_DOMAIN_NUM);
679 queue_async_put_domains_work(power_domains,
680 fetch_and_zero(&new_work_wakeref),
681 power_domains->async_put_next_delay);
682 power_domains->async_put_next_delay = 0;
683 }
684
685 out_verify:
686 verify_async_put_domains_state(power_domains);
687
688 mutex_unlock(&power_domains->lock);
689
690 if (old_work_wakeref)
691 intel_runtime_pm_put_raw(rpm, old_work_wakeref);
692 if (new_work_wakeref)
693 intel_runtime_pm_put_raw(rpm, new_work_wakeref);
694 }
695
696 /**
697 * __intel_display_power_put_async - release a power domain reference asynchronously
698 * @i915: i915 device instance
699 * @domain: power domain to reference
700 * @wakeref: wakeref acquired for the reference that is being released
701 * @delay_ms: delay of powering down the power domain
702 *
703 * This function drops the power domain reference obtained by
704 * intel_display_power_get*() and schedules a work to power down the
705 * corresponding hardware block if this is the last reference.
706 * The power down is delayed by @delay_ms if this is >= 0, or by a default
707 * 100 ms otherwise.
708 */
__intel_display_power_put_async(struct drm_i915_private * i915,enum intel_display_power_domain domain,intel_wakeref_t wakeref,int delay_ms)709 void __intel_display_power_put_async(struct drm_i915_private *i915,
710 enum intel_display_power_domain domain,
711 intel_wakeref_t wakeref,
712 int delay_ms)
713 {
714 struct i915_power_domains *power_domains = &i915->display.power.domains;
715 struct intel_runtime_pm *rpm = &i915->runtime_pm;
716 intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
717
718 delay_ms = delay_ms >= 0 ? delay_ms : 100;
719
720 mutex_lock(&power_domains->lock);
721
722 if (power_domains->domain_use_count[domain] > 1) {
723 __intel_display_power_put_domain(i915, domain);
724
725 goto out_verify;
726 }
727
728 drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
729
730 /* Let a pending work requeue itself or queue a new one. */
731 if (power_domains->async_put_wakeref) {
732 set_bit(domain, power_domains->async_put_domains[1].bits);
733 power_domains->async_put_next_delay = max(power_domains->async_put_next_delay,
734 delay_ms);
735 } else {
736 set_bit(domain, power_domains->async_put_domains[0].bits);
737 queue_async_put_domains_work(power_domains,
738 fetch_and_zero(&work_wakeref),
739 delay_ms);
740 }
741
742 out_verify:
743 verify_async_put_domains_state(power_domains);
744
745 mutex_unlock(&power_domains->lock);
746
747 if (work_wakeref)
748 intel_runtime_pm_put_raw(rpm, work_wakeref);
749
750 intel_runtime_pm_put(rpm, wakeref);
751 }
752
753 /**
754 * intel_display_power_flush_work - flushes the async display power disabling work
755 * @i915: i915 device instance
756 *
757 * Flushes any pending work that was scheduled by a preceding
758 * intel_display_power_put_async() call, completing the disabling of the
759 * corresponding power domains.
760 *
761 * Note that the work handler function may still be running after this
762 * function returns; to ensure that the work handler isn't running use
763 * intel_display_power_flush_work_sync() instead.
764 */
intel_display_power_flush_work(struct drm_i915_private * i915)765 void intel_display_power_flush_work(struct drm_i915_private *i915)
766 {
767 struct i915_power_domains *power_domains = &i915->display.power.domains;
768 struct intel_power_domain_mask async_put_mask;
769 intel_wakeref_t work_wakeref;
770
771 mutex_lock(&power_domains->lock);
772
773 work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
774 if (!work_wakeref)
775 goto out_verify;
776
777 async_put_domains_mask(power_domains, &async_put_mask);
778 release_async_put_domains(power_domains, &async_put_mask);
779 cancel_async_put_work(power_domains, false);
780
781 out_verify:
782 verify_async_put_domains_state(power_domains);
783
784 mutex_unlock(&power_domains->lock);
785
786 if (work_wakeref)
787 intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
788 }
789
790 /**
791 * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
792 * @i915: i915 device instance
793 *
794 * Like intel_display_power_flush_work(), but also ensure that the work
795 * handler function is not running any more when this function returns.
796 */
797 static void
intel_display_power_flush_work_sync(struct drm_i915_private * i915)798 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
799 {
800 struct i915_power_domains *power_domains = &i915->display.power.domains;
801
802 intel_display_power_flush_work(i915);
803 cancel_async_put_work(power_domains, true);
804
805 verify_async_put_domains_state(power_domains);
806
807 drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
808 }
809
810 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
811 /**
812 * intel_display_power_put - release a power domain reference
813 * @dev_priv: i915 device instance
814 * @domain: power domain to reference
815 * @wakeref: wakeref acquired for the reference that is being released
816 *
817 * This function drops the power domain reference obtained by
818 * intel_display_power_get() and might power down the corresponding hardware
819 * block right away if this is the last reference.
820 */
intel_display_power_put(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain,intel_wakeref_t wakeref)821 void intel_display_power_put(struct drm_i915_private *dev_priv,
822 enum intel_display_power_domain domain,
823 intel_wakeref_t wakeref)
824 {
825 __intel_display_power_put(dev_priv, domain);
826 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
827 }
828 #else
829 /**
830 * intel_display_power_put_unchecked - release an unchecked power domain reference
831 * @dev_priv: i915 device instance
832 * @domain: power domain to reference
833 *
834 * This function drops the power domain reference obtained by
835 * intel_display_power_get() and might power down the corresponding hardware
836 * block right away if this is the last reference.
837 *
838 * This function is only for the power domain code's internal use to suppress wakeref
839 * tracking when the correspondig debug kconfig option is disabled, should not
840 * be used otherwise.
841 */
intel_display_power_put_unchecked(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)842 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
843 enum intel_display_power_domain domain)
844 {
845 __intel_display_power_put(dev_priv, domain);
846 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
847 }
848 #endif
849
850 void
intel_display_power_get_in_set(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,enum intel_display_power_domain domain)851 intel_display_power_get_in_set(struct drm_i915_private *i915,
852 struct intel_display_power_domain_set *power_domain_set,
853 enum intel_display_power_domain domain)
854 {
855 intel_wakeref_t __maybe_unused wf;
856
857 drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
858
859 wf = intel_display_power_get(i915, domain);
860 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
861 power_domain_set->wakerefs[domain] = wf;
862 #endif
863 set_bit(domain, power_domain_set->mask.bits);
864 }
865
866 bool
intel_display_power_get_in_set_if_enabled(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,enum intel_display_power_domain domain)867 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
868 struct intel_display_power_domain_set *power_domain_set,
869 enum intel_display_power_domain domain)
870 {
871 intel_wakeref_t wf;
872
873 drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
874
875 wf = intel_display_power_get_if_enabled(i915, domain);
876 if (!wf)
877 return false;
878
879 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
880 power_domain_set->wakerefs[domain] = wf;
881 #endif
882 set_bit(domain, power_domain_set->mask.bits);
883
884 return true;
885 }
886
887 void
intel_display_power_put_mask_in_set(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,struct intel_power_domain_mask * mask)888 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
889 struct intel_display_power_domain_set *power_domain_set,
890 struct intel_power_domain_mask *mask)
891 {
892 enum intel_display_power_domain domain;
893
894 drm_WARN_ON(&i915->drm,
895 !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
896
897 for_each_power_domain(domain, mask) {
898 intel_wakeref_t __maybe_unused wf = -1;
899
900 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
901 wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
902 #endif
903 intel_display_power_put(i915, domain, wf);
904 clear_bit(domain, power_domain_set->mask.bits);
905 }
906 }
907
908 static int
sanitize_disable_power_well_option(const struct drm_i915_private * dev_priv,int disable_power_well)909 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
910 int disable_power_well)
911 {
912 if (disable_power_well >= 0)
913 return !!disable_power_well;
914
915 return 1;
916 }
917
get_allowed_dc_mask(const struct drm_i915_private * dev_priv,int enable_dc)918 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
919 int enable_dc)
920 {
921 u32 mask;
922 int requested_dc;
923 int max_dc;
924
925 if (!HAS_DISPLAY(dev_priv))
926 return 0;
927
928 if (DISPLAY_VER(dev_priv) >= 20)
929 max_dc = 2;
930 else if (IS_DG2(dev_priv))
931 max_dc = 1;
932 else if (IS_DG1(dev_priv))
933 max_dc = 3;
934 else if (DISPLAY_VER(dev_priv) >= 12)
935 max_dc = 4;
936 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
937 max_dc = 1;
938 else if (DISPLAY_VER(dev_priv) >= 9)
939 max_dc = 2;
940 else
941 max_dc = 0;
942
943 /*
944 * DC9 has a separate HW flow from the rest of the DC states,
945 * not depending on the DMC firmware. It's needed by system
946 * suspend/resume, so allow it unconditionally.
947 */
948 mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
949 DISPLAY_VER(dev_priv) >= 11 ?
950 DC_STATE_EN_DC9 : 0;
951
952 if (!dev_priv->display.params.disable_power_well)
953 max_dc = 0;
954
955 if (enable_dc >= 0 && enable_dc <= max_dc) {
956 requested_dc = enable_dc;
957 } else if (enable_dc == -1) {
958 requested_dc = max_dc;
959 } else if (enable_dc > max_dc && enable_dc <= 4) {
960 drm_dbg_kms(&dev_priv->drm,
961 "Adjusting requested max DC state (%d->%d)\n",
962 enable_dc, max_dc);
963 requested_dc = max_dc;
964 } else {
965 drm_err(&dev_priv->drm,
966 "Unexpected value for enable_dc (%d)\n", enable_dc);
967 requested_dc = max_dc;
968 }
969
970 switch (requested_dc) {
971 case 4:
972 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
973 break;
974 case 3:
975 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
976 break;
977 case 2:
978 mask |= DC_STATE_EN_UPTO_DC6;
979 break;
980 case 1:
981 mask |= DC_STATE_EN_UPTO_DC5;
982 break;
983 }
984
985 drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
986
987 return mask;
988 }
989
990 /**
991 * intel_power_domains_init - initializes the power domain structures
992 * @dev_priv: i915 device instance
993 *
994 * Initializes the power domain structures for @dev_priv depending upon the
995 * supported platform.
996 */
intel_power_domains_init(struct drm_i915_private * dev_priv)997 int intel_power_domains_init(struct drm_i915_private *dev_priv)
998 {
999 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1000
1001 dev_priv->display.params.disable_power_well =
1002 sanitize_disable_power_well_option(dev_priv,
1003 dev_priv->display.params.disable_power_well);
1004 power_domains->allowed_dc_mask =
1005 get_allowed_dc_mask(dev_priv, dev_priv->display.params.enable_dc);
1006
1007 power_domains->target_dc_state =
1008 sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1009
1010 mutex_init(&power_domains->lock);
1011
1012 INIT_DELAYED_WORK(&power_domains->async_put_work,
1013 intel_display_power_put_async_work);
1014
1015 return intel_display_power_map_init(power_domains);
1016 }
1017
1018 /**
1019 * intel_power_domains_cleanup - clean up power domains resources
1020 * @dev_priv: i915 device instance
1021 *
1022 * Release any resources acquired by intel_power_domains_init()
1023 */
intel_power_domains_cleanup(struct drm_i915_private * dev_priv)1024 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1025 {
1026 intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1027 }
1028
intel_power_domains_sync_hw(struct drm_i915_private * dev_priv)1029 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1030 {
1031 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1032 struct i915_power_well *power_well;
1033
1034 mutex_lock(&power_domains->lock);
1035 for_each_power_well(dev_priv, power_well)
1036 intel_power_well_sync_hw(dev_priv, power_well);
1037 mutex_unlock(&power_domains->lock);
1038 }
1039
gen9_dbuf_slice_set(struct drm_i915_private * dev_priv,enum dbuf_slice slice,bool enable)1040 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1041 enum dbuf_slice slice, bool enable)
1042 {
1043 i915_reg_t reg = DBUF_CTL_S(slice);
1044 bool state;
1045
1046 intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1047 enable ? DBUF_POWER_REQUEST : 0);
1048 intel_de_posting_read(dev_priv, reg);
1049 udelay(10);
1050
1051 state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1052 drm_WARN(&dev_priv->drm, enable != state,
1053 "DBuf slice %d power %s timeout!\n",
1054 slice, str_enable_disable(enable));
1055 }
1056
gen9_dbuf_slices_update(struct drm_i915_private * dev_priv,u8 req_slices)1057 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1058 u8 req_slices)
1059 {
1060 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1061 u8 slice_mask = DISPLAY_INFO(dev_priv)->dbuf.slice_mask;
1062 enum dbuf_slice slice;
1063
1064 drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1065 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1066 req_slices, slice_mask);
1067
1068 drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1069 req_slices);
1070
1071 /*
1072 * Might be running this in parallel to gen9_dc_off_power_well_enable
1073 * being called from intel_dp_detect for instance,
1074 * which causes assertion triggered by race condition,
1075 * as gen9_assert_dbuf_enabled might preempt this when registers
1076 * were already updated, while dev_priv was not.
1077 */
1078 mutex_lock(&power_domains->lock);
1079
1080 for_each_dbuf_slice(dev_priv, slice)
1081 gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1082
1083 dev_priv->display.dbuf.enabled_slices = req_slices;
1084
1085 mutex_unlock(&power_domains->lock);
1086 }
1087
gen9_dbuf_enable(struct drm_i915_private * dev_priv)1088 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1089 {
1090 u8 slices_mask;
1091
1092 dev_priv->display.dbuf.enabled_slices =
1093 intel_enabled_dbuf_slices_mask(dev_priv);
1094
1095 slices_mask = BIT(DBUF_S1) | dev_priv->display.dbuf.enabled_slices;
1096
1097 if (DISPLAY_VER(dev_priv) >= 14)
1098 intel_pmdemand_program_dbuf(dev_priv, slices_mask);
1099
1100 /*
1101 * Just power up at least 1 slice, we will
1102 * figure out later which slices we have and what we need.
1103 */
1104 gen9_dbuf_slices_update(dev_priv, slices_mask);
1105 }
1106
gen9_dbuf_disable(struct drm_i915_private * dev_priv)1107 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1108 {
1109 gen9_dbuf_slices_update(dev_priv, 0);
1110
1111 if (DISPLAY_VER(dev_priv) >= 14)
1112 intel_pmdemand_program_dbuf(dev_priv, 0);
1113 }
1114
gen12_dbuf_slices_config(struct drm_i915_private * dev_priv)1115 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1116 {
1117 enum dbuf_slice slice;
1118
1119 if (IS_ALDERLAKE_P(dev_priv))
1120 return;
1121
1122 for_each_dbuf_slice(dev_priv, slice)
1123 intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1124 DBUF_TRACKER_STATE_SERVICE_MASK,
1125 DBUF_TRACKER_STATE_SERVICE(8));
1126 }
1127
icl_mbus_init(struct drm_i915_private * dev_priv)1128 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1129 {
1130 unsigned long abox_regs = DISPLAY_INFO(dev_priv)->abox_mask;
1131 u32 mask, val, i;
1132
1133 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1134 return;
1135
1136 mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1137 MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1138 MBUS_ABOX_B_CREDIT_MASK |
1139 MBUS_ABOX_BW_CREDIT_MASK;
1140 val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1141 MBUS_ABOX_BT_CREDIT_POOL2(16) |
1142 MBUS_ABOX_B_CREDIT(1) |
1143 MBUS_ABOX_BW_CREDIT(1);
1144
1145 /*
1146 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1147 * expect us to program the abox_ctl0 register as well, even though
1148 * we don't have to program other instance-0 registers like BW_BUDDY.
1149 */
1150 if (DISPLAY_VER(dev_priv) == 12)
1151 abox_regs |= BIT(0);
1152
1153 for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1154 intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1155 }
1156
hsw_assert_cdclk(struct drm_i915_private * dev_priv)1157 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1158 {
1159 u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1160
1161 /*
1162 * The LCPLL register should be turned on by the BIOS. For now
1163 * let's just check its state and print errors in case
1164 * something is wrong. Don't even try to turn it on.
1165 */
1166
1167 if (val & LCPLL_CD_SOURCE_FCLK)
1168 drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1169
1170 if (val & LCPLL_PLL_DISABLE)
1171 drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1172
1173 if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1174 drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1175 }
1176
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)1177 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1178 {
1179 struct intel_crtc *crtc;
1180
1181 for_each_intel_crtc(&dev_priv->drm, crtc)
1182 I915_STATE_WARN(dev_priv, crtc->active,
1183 "CRTC for pipe %c enabled\n",
1184 pipe_name(crtc->pipe));
1185
1186 I915_STATE_WARN(dev_priv, intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1187 "Display power well on\n");
1188 I915_STATE_WARN(dev_priv,
1189 intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1190 "SPLL enabled\n");
1191 I915_STATE_WARN(dev_priv,
1192 intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1193 "WRPLL1 enabled\n");
1194 I915_STATE_WARN(dev_priv,
1195 intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1196 "WRPLL2 enabled\n");
1197 I915_STATE_WARN(dev_priv,
1198 intel_de_read(dev_priv, PP_STATUS(dev_priv, 0)) & PP_ON,
1199 "Panel power on\n");
1200 I915_STATE_WARN(dev_priv,
1201 intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1202 "CPU PWM1 enabled\n");
1203 if (IS_HASWELL(dev_priv))
1204 I915_STATE_WARN(dev_priv,
1205 intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1206 "CPU PWM2 enabled\n");
1207 I915_STATE_WARN(dev_priv,
1208 intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1209 "PCH PWM1 enabled\n");
1210 I915_STATE_WARN(dev_priv,
1211 (intel_de_read(dev_priv, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1212 "Utility pin enabled in PWM mode\n");
1213 I915_STATE_WARN(dev_priv,
1214 intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1215 "PCH GTC enabled\n");
1216
1217 /*
1218 * In theory we can still leave IRQs enabled, as long as only the HPD
1219 * interrupts remain enabled. We used to check for that, but since it's
1220 * gen-specific and since we only disable LCPLL after we fully disable
1221 * the interrupts, the check below should be enough.
1222 */
1223 I915_STATE_WARN(dev_priv, intel_irqs_enabled(dev_priv),
1224 "IRQs enabled\n");
1225 }
1226
hsw_read_dcomp(struct drm_i915_private * dev_priv)1227 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1228 {
1229 if (IS_HASWELL(dev_priv))
1230 return intel_de_read(dev_priv, D_COMP_HSW);
1231 else
1232 return intel_de_read(dev_priv, D_COMP_BDW);
1233 }
1234
hsw_write_dcomp(struct drm_i915_private * dev_priv,u32 val)1235 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1236 {
1237 if (IS_HASWELL(dev_priv)) {
1238 if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1239 drm_dbg_kms(&dev_priv->drm,
1240 "Failed to write to D_COMP\n");
1241 } else {
1242 intel_de_write(dev_priv, D_COMP_BDW, val);
1243 intel_de_posting_read(dev_priv, D_COMP_BDW);
1244 }
1245 }
1246
1247 /*
1248 * This function implements pieces of two sequences from BSpec:
1249 * - Sequence for display software to disable LCPLL
1250 * - Sequence for display software to allow package C8+
1251 * The steps implemented here are just the steps that actually touch the LCPLL
1252 * register. Callers should take care of disabling all the display engine
1253 * functions, doing the mode unset, fixing interrupts, etc.
1254 */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)1255 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1256 bool switch_to_fclk, bool allow_power_down)
1257 {
1258 u32 val;
1259
1260 assert_can_disable_lcpll(dev_priv);
1261
1262 val = intel_de_read(dev_priv, LCPLL_CTL);
1263
1264 if (switch_to_fclk) {
1265 val |= LCPLL_CD_SOURCE_FCLK;
1266 intel_de_write(dev_priv, LCPLL_CTL, val);
1267
1268 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1269 LCPLL_CD_SOURCE_FCLK_DONE, 1))
1270 drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1271
1272 val = intel_de_read(dev_priv, LCPLL_CTL);
1273 }
1274
1275 val |= LCPLL_PLL_DISABLE;
1276 intel_de_write(dev_priv, LCPLL_CTL, val);
1277 intel_de_posting_read(dev_priv, LCPLL_CTL);
1278
1279 if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1280 drm_err(&dev_priv->drm, "LCPLL still locked\n");
1281
1282 val = hsw_read_dcomp(dev_priv);
1283 val |= D_COMP_COMP_DISABLE;
1284 hsw_write_dcomp(dev_priv, val);
1285 ndelay(100);
1286
1287 if (wait_for((hsw_read_dcomp(dev_priv) &
1288 D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1289 drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1290
1291 if (allow_power_down) {
1292 intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1293 intel_de_posting_read(dev_priv, LCPLL_CTL);
1294 }
1295 }
1296
1297 /*
1298 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1299 * source.
1300 */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)1301 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1302 {
1303 u32 val;
1304
1305 val = intel_de_read(dev_priv, LCPLL_CTL);
1306
1307 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1308 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1309 return;
1310
1311 /*
1312 * Make sure we're not on PC8 state before disabling PC8, otherwise
1313 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1314 */
1315 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1316
1317 if (val & LCPLL_POWER_DOWN_ALLOW) {
1318 val &= ~LCPLL_POWER_DOWN_ALLOW;
1319 intel_de_write(dev_priv, LCPLL_CTL, val);
1320 intel_de_posting_read(dev_priv, LCPLL_CTL);
1321 }
1322
1323 val = hsw_read_dcomp(dev_priv);
1324 val |= D_COMP_COMP_FORCE;
1325 val &= ~D_COMP_COMP_DISABLE;
1326 hsw_write_dcomp(dev_priv, val);
1327
1328 val = intel_de_read(dev_priv, LCPLL_CTL);
1329 val &= ~LCPLL_PLL_DISABLE;
1330 intel_de_write(dev_priv, LCPLL_CTL, val);
1331
1332 if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1333 drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1334
1335 if (val & LCPLL_CD_SOURCE_FCLK) {
1336 intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1337
1338 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1339 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1340 drm_err(&dev_priv->drm,
1341 "Switching back to LCPLL failed\n");
1342 }
1343
1344 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1345
1346 intel_update_cdclk(dev_priv);
1347 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1348 }
1349
1350 /*
1351 * Package states C8 and deeper are really deep PC states that can only be
1352 * reached when all the devices on the system allow it, so even if the graphics
1353 * device allows PC8+, it doesn't mean the system will actually get to these
1354 * states. Our driver only allows PC8+ when going into runtime PM.
1355 *
1356 * The requirements for PC8+ are that all the outputs are disabled, the power
1357 * well is disabled and most interrupts are disabled, and these are also
1358 * requirements for runtime PM. When these conditions are met, we manually do
1359 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1360 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1361 * hang the machine.
1362 *
1363 * When we really reach PC8 or deeper states (not just when we allow it) we lose
1364 * the state of some registers, so when we come back from PC8+ we need to
1365 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1366 * need to take care of the registers kept by RC6. Notice that this happens even
1367 * if we don't put the device in PCI D3 state (which is what currently happens
1368 * because of the runtime PM support).
1369 *
1370 * For more, read "Display Sequences for Package C8" on the hardware
1371 * documentation.
1372 */
hsw_enable_pc8(struct drm_i915_private * dev_priv)1373 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1374 {
1375 drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1376
1377 if (HAS_PCH_LPT_LP(dev_priv))
1378 intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1379 PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1380
1381 lpt_disable_clkout_dp(dev_priv);
1382 hsw_disable_lcpll(dev_priv, true, true);
1383 }
1384
hsw_disable_pc8(struct drm_i915_private * dev_priv)1385 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1386 {
1387 drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1388
1389 hsw_restore_lcpll(dev_priv);
1390 intel_init_pch_refclk(dev_priv);
1391
1392 /* Many display registers don't survive PC8+ */
1393 intel_clock_gating_init(dev_priv);
1394 }
1395
intel_pch_reset_handshake(struct drm_i915_private * dev_priv,bool enable)1396 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1397 bool enable)
1398 {
1399 i915_reg_t reg;
1400 u32 reset_bits;
1401
1402 if (IS_IVYBRIDGE(dev_priv)) {
1403 reg = GEN7_MSG_CTL;
1404 reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1405 } else {
1406 reg = HSW_NDE_RSTWRN_OPT;
1407 reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1408 }
1409
1410 if (DISPLAY_VER(dev_priv) >= 14)
1411 reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1412
1413 intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1414 }
1415
skl_display_core_init(struct drm_i915_private * dev_priv,bool resume)1416 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1417 bool resume)
1418 {
1419 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1420 struct i915_power_well *well;
1421
1422 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1423
1424 /* enable PCH reset handshake */
1425 intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1426
1427 if (!HAS_DISPLAY(dev_priv))
1428 return;
1429
1430 /* enable PG1 and Misc I/O */
1431 mutex_lock(&power_domains->lock);
1432
1433 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1434 intel_power_well_enable(dev_priv, well);
1435
1436 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1437 intel_power_well_enable(dev_priv, well);
1438
1439 mutex_unlock(&power_domains->lock);
1440
1441 intel_cdclk_init_hw(dev_priv);
1442
1443 gen9_dbuf_enable(dev_priv);
1444
1445 if (resume)
1446 intel_dmc_load_program(dev_priv);
1447 }
1448
skl_display_core_uninit(struct drm_i915_private * dev_priv)1449 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1450 {
1451 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1452 struct i915_power_well *well;
1453
1454 if (!HAS_DISPLAY(dev_priv))
1455 return;
1456
1457 gen9_disable_dc_states(dev_priv);
1458 /* TODO: disable DMC program */
1459
1460 gen9_dbuf_disable(dev_priv);
1461
1462 intel_cdclk_uninit_hw(dev_priv);
1463
1464 /* The spec doesn't call for removing the reset handshake flag */
1465 /* disable PG1 and Misc I/O */
1466
1467 mutex_lock(&power_domains->lock);
1468
1469 /*
1470 * BSpec says to keep the MISC IO power well enabled here, only
1471 * remove our request for power well 1.
1472 * Note that even though the driver's request is removed power well 1
1473 * may stay enabled after this due to DMC's own request on it.
1474 */
1475 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1476 intel_power_well_disable(dev_priv, well);
1477
1478 mutex_unlock(&power_domains->lock);
1479
1480 usleep_range(10, 30); /* 10 us delay per Bspec */
1481 }
1482
bxt_display_core_init(struct drm_i915_private * dev_priv,bool resume)1483 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1484 {
1485 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1486 struct i915_power_well *well;
1487
1488 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1489
1490 /*
1491 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1492 * or else the reset will hang because there is no PCH to respond.
1493 * Move the handshake programming to initialization sequence.
1494 * Previously was left up to BIOS.
1495 */
1496 intel_pch_reset_handshake(dev_priv, false);
1497
1498 if (!HAS_DISPLAY(dev_priv))
1499 return;
1500
1501 /* Enable PG1 */
1502 mutex_lock(&power_domains->lock);
1503
1504 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1505 intel_power_well_enable(dev_priv, well);
1506
1507 mutex_unlock(&power_domains->lock);
1508
1509 intel_cdclk_init_hw(dev_priv);
1510
1511 gen9_dbuf_enable(dev_priv);
1512
1513 if (resume)
1514 intel_dmc_load_program(dev_priv);
1515 }
1516
bxt_display_core_uninit(struct drm_i915_private * dev_priv)1517 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1518 {
1519 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1520 struct i915_power_well *well;
1521
1522 if (!HAS_DISPLAY(dev_priv))
1523 return;
1524
1525 gen9_disable_dc_states(dev_priv);
1526 /* TODO: disable DMC program */
1527
1528 gen9_dbuf_disable(dev_priv);
1529
1530 intel_cdclk_uninit_hw(dev_priv);
1531
1532 /* The spec doesn't call for removing the reset handshake flag */
1533
1534 /*
1535 * Disable PW1 (PG1).
1536 * Note that even though the driver's request is removed power well 1
1537 * may stay enabled after this due to DMC's own request on it.
1538 */
1539 mutex_lock(&power_domains->lock);
1540
1541 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1542 intel_power_well_disable(dev_priv, well);
1543
1544 mutex_unlock(&power_domains->lock);
1545
1546 usleep_range(10, 30); /* 10 us delay per Bspec */
1547 }
1548
1549 struct buddy_page_mask {
1550 u32 page_mask;
1551 u8 type;
1552 u8 num_channels;
1553 };
1554
1555 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1556 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF },
1557 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF },
1558 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1559 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1560 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F },
1561 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E },
1562 { .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1563 { .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1564 {}
1565 };
1566
1567 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1568 { .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1569 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 },
1570 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 },
1571 { .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1572 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1573 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 },
1574 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 },
1575 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1576 {}
1577 };
1578
tgl_bw_buddy_init(struct drm_i915_private * dev_priv)1579 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1580 {
1581 enum intel_dram_type type = dev_priv->dram_info.type;
1582 u8 num_channels = dev_priv->dram_info.num_channels;
1583 const struct buddy_page_mask *table;
1584 unsigned long abox_mask = DISPLAY_INFO(dev_priv)->abox_mask;
1585 int config, i;
1586
1587 /* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1588 if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1589 return;
1590
1591 if (IS_ALDERLAKE_S(dev_priv) ||
1592 (IS_ROCKETLAKE(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)))
1593 /* Wa_1409767108 */
1594 table = wa_1409767108_buddy_page_masks;
1595 else
1596 table = tgl_buddy_page_masks;
1597
1598 for (config = 0; table[config].page_mask != 0; config++)
1599 if (table[config].num_channels == num_channels &&
1600 table[config].type == type)
1601 break;
1602
1603 if (table[config].page_mask == 0) {
1604 drm_dbg(&dev_priv->drm,
1605 "Unknown memory configuration; disabling address buddy logic.\n");
1606 for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1607 intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1608 BW_BUDDY_DISABLE);
1609 } else {
1610 for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1611 intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1612 table[config].page_mask);
1613
1614 /* Wa_22010178259:tgl,dg1,rkl,adl-s */
1615 if (DISPLAY_VER(dev_priv) == 12)
1616 intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1617 BW_BUDDY_TLB_REQ_TIMER_MASK,
1618 BW_BUDDY_TLB_REQ_TIMER(0x8));
1619 }
1620 }
1621 }
1622
icl_display_core_init(struct drm_i915_private * dev_priv,bool resume)1623 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1624 bool resume)
1625 {
1626 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1627 struct i915_power_well *well;
1628
1629 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1630
1631 /* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1632 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1633 INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1634 intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1635 PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1636
1637 /* 1. Enable PCH reset handshake. */
1638 intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1639
1640 if (!HAS_DISPLAY(dev_priv))
1641 return;
1642
1643 /* 2. Initialize all combo phys */
1644 intel_combo_phy_init(dev_priv);
1645
1646 /*
1647 * 3. Enable Power Well 1 (PG1).
1648 * The AUX IO power wells will be enabled on demand.
1649 */
1650 mutex_lock(&power_domains->lock);
1651 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1652 intel_power_well_enable(dev_priv, well);
1653 mutex_unlock(&power_domains->lock);
1654
1655 if (DISPLAY_VER(dev_priv) == 14)
1656 intel_de_rmw(dev_priv, DC_STATE_EN,
1657 HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1658
1659 /* 4. Enable CDCLK. */
1660 intel_cdclk_init_hw(dev_priv);
1661
1662 if (DISPLAY_VER(dev_priv) >= 12)
1663 gen12_dbuf_slices_config(dev_priv);
1664
1665 /* 5. Enable DBUF. */
1666 gen9_dbuf_enable(dev_priv);
1667
1668 /* 6. Setup MBUS. */
1669 icl_mbus_init(dev_priv);
1670
1671 /* 7. Program arbiter BW_BUDDY registers */
1672 if (DISPLAY_VER(dev_priv) >= 12)
1673 tgl_bw_buddy_init(dev_priv);
1674
1675 /* 8. Ensure PHYs have completed calibration and adaptation */
1676 if (IS_DG2(dev_priv))
1677 intel_snps_phy_wait_for_calibration(dev_priv);
1678
1679 /* 9. XE2_HPD: Program CHICKEN_MISC_2 before any cursor or planes are enabled */
1680 if (DISPLAY_VER_FULL(dev_priv) == IP_VER(14, 1))
1681 intel_de_rmw(dev_priv, CHICKEN_MISC_2, BMG_DARB_HALF_BLK_END_BURST, 1);
1682
1683 if (resume)
1684 intel_dmc_load_program(dev_priv);
1685
1686 /* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p,dg2 */
1687 if (IS_DISPLAY_VER_FULL(dev_priv, IP_VER(12, 0), IP_VER(13, 0)))
1688 intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1689 DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1690 DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1691
1692 /* Wa_14011503030:xelpd */
1693 if (DISPLAY_VER(dev_priv) == 13)
1694 intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1695
1696 /* Wa_15013987218 */
1697 if (DISPLAY_VER(dev_priv) == 20) {
1698 intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1699 0, PCH_GMBUSUNIT_CLOCK_GATE_DISABLE);
1700 intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1701 PCH_GMBUSUNIT_CLOCK_GATE_DISABLE, 0);
1702 }
1703 }
1704
icl_display_core_uninit(struct drm_i915_private * dev_priv)1705 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1706 {
1707 struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1708 struct i915_power_well *well;
1709
1710 if (!HAS_DISPLAY(dev_priv))
1711 return;
1712
1713 gen9_disable_dc_states(dev_priv);
1714 intel_dmc_disable_program(dev_priv);
1715
1716 /* 1. Disable all display engine functions -> aready done */
1717
1718 /* 2. Disable DBUF */
1719 gen9_dbuf_disable(dev_priv);
1720
1721 /* 3. Disable CD clock */
1722 intel_cdclk_uninit_hw(dev_priv);
1723
1724 if (DISPLAY_VER(dev_priv) == 14)
1725 intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1726 HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1727
1728 /*
1729 * 4. Disable Power Well 1 (PG1).
1730 * The AUX IO power wells are toggled on demand, so they are already
1731 * disabled at this point.
1732 */
1733 mutex_lock(&power_domains->lock);
1734 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1735 intel_power_well_disable(dev_priv, well);
1736 mutex_unlock(&power_domains->lock);
1737
1738 /* 5. */
1739 intel_combo_phy_uninit(dev_priv);
1740 }
1741
chv_phy_control_init(struct drm_i915_private * dev_priv)1742 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1743 {
1744 struct i915_power_well *cmn_bc =
1745 lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1746 struct i915_power_well *cmn_d =
1747 lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1748
1749 /*
1750 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1751 * workaround never ever read DISPLAY_PHY_CONTROL, and
1752 * instead maintain a shadow copy ourselves. Use the actual
1753 * power well state and lane status to reconstruct the
1754 * expected initial value.
1755 */
1756 dev_priv->display.power.chv_phy_control =
1757 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1758 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1759 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1760 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1761 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1762
1763 /*
1764 * If all lanes are disabled we leave the override disabled
1765 * with all power down bits cleared to match the state we
1766 * would use after disabling the port. Otherwise enable the
1767 * override and set the lane powerdown bits accding to the
1768 * current lane status.
1769 */
1770 if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1771 u32 status = intel_de_read(dev_priv, DPLL(dev_priv, PIPE_A));
1772 unsigned int mask;
1773
1774 mask = status & DPLL_PORTB_READY_MASK;
1775 if (mask == 0xf)
1776 mask = 0x0;
1777 else
1778 dev_priv->display.power.chv_phy_control |=
1779 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1780
1781 dev_priv->display.power.chv_phy_control |=
1782 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1783
1784 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1785 if (mask == 0xf)
1786 mask = 0x0;
1787 else
1788 dev_priv->display.power.chv_phy_control |=
1789 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1790
1791 dev_priv->display.power.chv_phy_control |=
1792 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1793
1794 dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1795
1796 dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1797 } else {
1798 dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1799 }
1800
1801 if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1802 u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1803 unsigned int mask;
1804
1805 mask = status & DPLL_PORTD_READY_MASK;
1806
1807 if (mask == 0xf)
1808 mask = 0x0;
1809 else
1810 dev_priv->display.power.chv_phy_control |=
1811 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1812
1813 dev_priv->display.power.chv_phy_control |=
1814 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1815
1816 dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1817
1818 dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1819 } else {
1820 dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1821 }
1822
1823 drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1824 dev_priv->display.power.chv_phy_control);
1825
1826 /* Defer application of initial phy_control to enabling the powerwell */
1827 }
1828
vlv_cmnlane_wa(struct drm_i915_private * dev_priv)1829 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1830 {
1831 struct i915_power_well *cmn =
1832 lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1833 struct i915_power_well *disp2d =
1834 lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1835
1836 /* If the display might be already active skip this */
1837 if (intel_power_well_is_enabled(dev_priv, cmn) &&
1838 intel_power_well_is_enabled(dev_priv, disp2d) &&
1839 intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1840 return;
1841
1842 drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1843
1844 /* cmnlane needs DPLL registers */
1845 intel_power_well_enable(dev_priv, disp2d);
1846
1847 /*
1848 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1849 * Need to assert and de-assert PHY SB reset by gating the
1850 * common lane power, then un-gating it.
1851 * Simply ungating isn't enough to reset the PHY enough to get
1852 * ports and lanes running.
1853 */
1854 intel_power_well_disable(dev_priv, cmn);
1855 }
1856
vlv_punit_is_power_gated(struct drm_i915_private * dev_priv,u32 reg0)1857 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1858 {
1859 bool ret;
1860
1861 vlv_punit_get(dev_priv);
1862 ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1863 vlv_punit_put(dev_priv);
1864
1865 return ret;
1866 }
1867
assert_ved_power_gated(struct drm_i915_private * dev_priv)1868 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1869 {
1870 drm_WARN(&dev_priv->drm,
1871 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1872 "VED not power gated\n");
1873 }
1874
assert_isp_power_gated(struct drm_i915_private * dev_priv)1875 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1876 {
1877 static const struct pci_device_id isp_ids[] = {
1878 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1879 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1880 {}
1881 };
1882
1883 drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1884 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1885 "ISP not power gated\n");
1886 }
1887
1888 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1889
1890 /**
1891 * intel_power_domains_init_hw - initialize hardware power domain state
1892 * @i915: i915 device instance
1893 * @resume: Called from resume code paths or not
1894 *
1895 * This function initializes the hardware power domain state and enables all
1896 * power wells belonging to the INIT power domain. Power wells in other
1897 * domains (and not in the INIT domain) are referenced or disabled by
1898 * intel_modeset_readout_hw_state(). After that the reference count of each
1899 * power well must match its HW enabled state, see
1900 * intel_power_domains_verify_state().
1901 *
1902 * It will return with power domains disabled (to be enabled later by
1903 * intel_power_domains_enable()) and must be paired with
1904 * intel_power_domains_driver_remove().
1905 */
intel_power_domains_init_hw(struct drm_i915_private * i915,bool resume)1906 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1907 {
1908 struct i915_power_domains *power_domains = &i915->display.power.domains;
1909
1910 power_domains->initializing = true;
1911
1912 if (DISPLAY_VER(i915) >= 11) {
1913 icl_display_core_init(i915, resume);
1914 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1915 bxt_display_core_init(i915, resume);
1916 } else if (DISPLAY_VER(i915) == 9) {
1917 skl_display_core_init(i915, resume);
1918 } else if (IS_CHERRYVIEW(i915)) {
1919 mutex_lock(&power_domains->lock);
1920 chv_phy_control_init(i915);
1921 mutex_unlock(&power_domains->lock);
1922 assert_isp_power_gated(i915);
1923 } else if (IS_VALLEYVIEW(i915)) {
1924 mutex_lock(&power_domains->lock);
1925 vlv_cmnlane_wa(i915);
1926 mutex_unlock(&power_domains->lock);
1927 assert_ved_power_gated(i915);
1928 assert_isp_power_gated(i915);
1929 } else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1930 hsw_assert_cdclk(i915);
1931 intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1932 } else if (IS_IVYBRIDGE(i915)) {
1933 intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1934 }
1935
1936 /*
1937 * Keep all power wells enabled for any dependent HW access during
1938 * initialization and to make sure we keep BIOS enabled display HW
1939 * resources powered until display HW readout is complete. We drop
1940 * this reference in intel_power_domains_enable().
1941 */
1942 drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1943 power_domains->init_wakeref =
1944 intel_display_power_get(i915, POWER_DOMAIN_INIT);
1945
1946 /* Disable power support if the user asked so. */
1947 if (!i915->display.params.disable_power_well) {
1948 drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1949 i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1950 POWER_DOMAIN_INIT);
1951 }
1952 intel_power_domains_sync_hw(i915);
1953
1954 power_domains->initializing = false;
1955 }
1956
1957 /**
1958 * intel_power_domains_driver_remove - deinitialize hw power domain state
1959 * @i915: i915 device instance
1960 *
1961 * De-initializes the display power domain HW state. It also ensures that the
1962 * device stays powered up so that the driver can be reloaded.
1963 *
1964 * It must be called with power domains already disabled (after a call to
1965 * intel_power_domains_disable()) and must be paired with
1966 * intel_power_domains_init_hw().
1967 */
intel_power_domains_driver_remove(struct drm_i915_private * i915)1968 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1969 {
1970 intel_wakeref_t wakeref __maybe_unused =
1971 fetch_and_zero(&i915->display.power.domains.init_wakeref);
1972
1973 /* Remove the refcount we took to keep power well support disabled. */
1974 if (!i915->display.params.disable_power_well)
1975 intel_display_power_put(i915, POWER_DOMAIN_INIT,
1976 fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1977
1978 intel_display_power_flush_work_sync(i915);
1979
1980 intel_power_domains_verify_state(i915);
1981
1982 /* Keep the power well enabled, but cancel its rpm wakeref. */
1983 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1984 }
1985
1986 /**
1987 * intel_power_domains_sanitize_state - sanitize power domains state
1988 * @i915: i915 device instance
1989 *
1990 * Sanitize the power domains state during driver loading and system resume.
1991 * The function will disable all display power wells that BIOS has enabled
1992 * without a user for it (any user for a power well has taken a reference
1993 * on it by the time this function is called, after the state of all the
1994 * pipe, encoder, etc. HW resources have been sanitized).
1995 */
intel_power_domains_sanitize_state(struct drm_i915_private * i915)1996 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1997 {
1998 struct i915_power_domains *power_domains = &i915->display.power.domains;
1999 struct i915_power_well *power_well;
2000
2001 mutex_lock(&power_domains->lock);
2002
2003 for_each_power_well_reverse(i915, power_well) {
2004 if (power_well->desc->always_on || power_well->count ||
2005 !intel_power_well_is_enabled(i915, power_well))
2006 continue;
2007
2008 drm_dbg_kms(&i915->drm,
2009 "BIOS left unused %s power well enabled, disabling it\n",
2010 intel_power_well_name(power_well));
2011 intel_power_well_disable(i915, power_well);
2012 }
2013
2014 mutex_unlock(&power_domains->lock);
2015 }
2016
2017 /**
2018 * intel_power_domains_enable - enable toggling of display power wells
2019 * @i915: i915 device instance
2020 *
2021 * Enable the ondemand enabling/disabling of the display power wells. Note that
2022 * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
2023 * only at specific points of the display modeset sequence, thus they are not
2024 * affected by the intel_power_domains_enable()/disable() calls. The purpose
2025 * of these function is to keep the rest of power wells enabled until the end
2026 * of display HW readout (which will acquire the power references reflecting
2027 * the current HW state).
2028 */
intel_power_domains_enable(struct drm_i915_private * i915)2029 void intel_power_domains_enable(struct drm_i915_private *i915)
2030 {
2031 intel_wakeref_t wakeref __maybe_unused =
2032 fetch_and_zero(&i915->display.power.domains.init_wakeref);
2033
2034 intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2035 intel_power_domains_verify_state(i915);
2036 }
2037
2038 /**
2039 * intel_power_domains_disable - disable toggling of display power wells
2040 * @i915: i915 device instance
2041 *
2042 * Disable the ondemand enabling/disabling of the display power wells. See
2043 * intel_power_domains_enable() for which power wells this call controls.
2044 */
intel_power_domains_disable(struct drm_i915_private * i915)2045 void intel_power_domains_disable(struct drm_i915_private *i915)
2046 {
2047 struct i915_power_domains *power_domains = &i915->display.power.domains;
2048
2049 drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2050 power_domains->init_wakeref =
2051 intel_display_power_get(i915, POWER_DOMAIN_INIT);
2052
2053 intel_power_domains_verify_state(i915);
2054 }
2055
2056 /**
2057 * intel_power_domains_suspend - suspend power domain state
2058 * @i915: i915 device instance
2059 * @s2idle: specifies whether we go to idle, or deeper sleep
2060 *
2061 * This function prepares the hardware power domain state before entering
2062 * system suspend.
2063 *
2064 * It must be called with power domains already disabled (after a call to
2065 * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2066 */
intel_power_domains_suspend(struct drm_i915_private * i915,bool s2idle)2067 void intel_power_domains_suspend(struct drm_i915_private *i915, bool s2idle)
2068 {
2069 struct i915_power_domains *power_domains = &i915->display.power.domains;
2070 intel_wakeref_t wakeref __maybe_unused =
2071 fetch_and_zero(&power_domains->init_wakeref);
2072
2073 intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2074
2075 /*
2076 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2077 * support don't manually deinit the power domains. This also means the
2078 * DMC firmware will stay active, it will power down any HW
2079 * resources as required and also enable deeper system power states
2080 * that would be blocked if the firmware was inactive.
2081 */
2082 if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle &&
2083 intel_dmc_has_payload(i915)) {
2084 intel_display_power_flush_work(i915);
2085 intel_power_domains_verify_state(i915);
2086 return;
2087 }
2088
2089 /*
2090 * Even if power well support was disabled we still want to disable
2091 * power wells if power domains must be deinitialized for suspend.
2092 */
2093 if (!i915->display.params.disable_power_well)
2094 intel_display_power_put(i915, POWER_DOMAIN_INIT,
2095 fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2096
2097 intel_display_power_flush_work(i915);
2098 intel_power_domains_verify_state(i915);
2099
2100 if (DISPLAY_VER(i915) >= 11)
2101 icl_display_core_uninit(i915);
2102 else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2103 bxt_display_core_uninit(i915);
2104 else if (DISPLAY_VER(i915) == 9)
2105 skl_display_core_uninit(i915);
2106
2107 power_domains->display_core_suspended = true;
2108 }
2109
2110 /**
2111 * intel_power_domains_resume - resume power domain state
2112 * @i915: i915 device instance
2113 *
2114 * This function resume the hardware power domain state during system resume.
2115 *
2116 * It will return with power domain support disabled (to be enabled later by
2117 * intel_power_domains_enable()) and must be paired with
2118 * intel_power_domains_suspend().
2119 */
intel_power_domains_resume(struct drm_i915_private * i915)2120 void intel_power_domains_resume(struct drm_i915_private *i915)
2121 {
2122 struct i915_power_domains *power_domains = &i915->display.power.domains;
2123
2124 if (power_domains->display_core_suspended) {
2125 intel_power_domains_init_hw(i915, true);
2126 power_domains->display_core_suspended = false;
2127 } else {
2128 drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2129 power_domains->init_wakeref =
2130 intel_display_power_get(i915, POWER_DOMAIN_INIT);
2131 }
2132
2133 intel_power_domains_verify_state(i915);
2134 }
2135
2136 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2137
intel_power_domains_dump_info(struct drm_i915_private * i915)2138 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2139 {
2140 struct i915_power_domains *power_domains = &i915->display.power.domains;
2141 struct i915_power_well *power_well;
2142
2143 for_each_power_well(i915, power_well) {
2144 enum intel_display_power_domain domain;
2145
2146 drm_dbg(&i915->drm, "%-25s %d\n",
2147 intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2148
2149 for_each_power_domain(domain, intel_power_well_domains(power_well))
2150 drm_dbg(&i915->drm, " %-23s %d\n",
2151 intel_display_power_domain_str(domain),
2152 power_domains->domain_use_count[domain]);
2153 }
2154 }
2155
2156 /**
2157 * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2158 * @i915: i915 device instance
2159 *
2160 * Verify if the reference count of each power well matches its HW enabled
2161 * state and the total refcount of the domains it belongs to. This must be
2162 * called after modeset HW state sanitization, which is responsible for
2163 * acquiring reference counts for any power wells in use and disabling the
2164 * ones left on by BIOS but not required by any active output.
2165 */
intel_power_domains_verify_state(struct drm_i915_private * i915)2166 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2167 {
2168 struct i915_power_domains *power_domains = &i915->display.power.domains;
2169 struct i915_power_well *power_well;
2170 bool dump_domain_info;
2171
2172 mutex_lock(&power_domains->lock);
2173
2174 verify_async_put_domains_state(power_domains);
2175
2176 dump_domain_info = false;
2177 for_each_power_well(i915, power_well) {
2178 enum intel_display_power_domain domain;
2179 int domains_count;
2180 bool enabled;
2181
2182 enabled = intel_power_well_is_enabled(i915, power_well);
2183 if ((intel_power_well_refcount(power_well) ||
2184 intel_power_well_is_always_on(power_well)) !=
2185 enabled)
2186 drm_err(&i915->drm,
2187 "power well %s state mismatch (refcount %d/enabled %d)",
2188 intel_power_well_name(power_well),
2189 intel_power_well_refcount(power_well), enabled);
2190
2191 domains_count = 0;
2192 for_each_power_domain(domain, intel_power_well_domains(power_well))
2193 domains_count += power_domains->domain_use_count[domain];
2194
2195 if (intel_power_well_refcount(power_well) != domains_count) {
2196 drm_err(&i915->drm,
2197 "power well %s refcount/domain refcount mismatch "
2198 "(refcount %d/domains refcount %d)\n",
2199 intel_power_well_name(power_well),
2200 intel_power_well_refcount(power_well),
2201 domains_count);
2202 dump_domain_info = true;
2203 }
2204 }
2205
2206 if (dump_domain_info) {
2207 static bool dumped;
2208
2209 if (!dumped) {
2210 intel_power_domains_dump_info(i915);
2211 dumped = true;
2212 }
2213 }
2214
2215 mutex_unlock(&power_domains->lock);
2216 }
2217
2218 #else
2219
intel_power_domains_verify_state(struct drm_i915_private * i915)2220 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2221 {
2222 }
2223
2224 #endif
2225
intel_display_power_suspend_late(struct drm_i915_private * i915)2226 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2227 {
2228 if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2229 IS_BROXTON(i915)) {
2230 bxt_enable_dc9(i915);
2231 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2232 hsw_enable_pc8(i915);
2233 }
2234
2235 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2236 if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2237 intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2238 }
2239
intel_display_power_resume_early(struct drm_i915_private * i915)2240 void intel_display_power_resume_early(struct drm_i915_private *i915)
2241 {
2242 if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2243 IS_BROXTON(i915)) {
2244 gen9_sanitize_dc_state(i915);
2245 bxt_disable_dc9(i915);
2246 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2247 hsw_disable_pc8(i915);
2248 }
2249
2250 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2251 if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2252 intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2253 }
2254
intel_display_power_suspend(struct drm_i915_private * i915)2255 void intel_display_power_suspend(struct drm_i915_private *i915)
2256 {
2257 if (DISPLAY_VER(i915) >= 11) {
2258 icl_display_core_uninit(i915);
2259 bxt_enable_dc9(i915);
2260 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2261 bxt_display_core_uninit(i915);
2262 bxt_enable_dc9(i915);
2263 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2264 hsw_enable_pc8(i915);
2265 }
2266 }
2267
intel_display_power_resume(struct drm_i915_private * i915)2268 void intel_display_power_resume(struct drm_i915_private *i915)
2269 {
2270 struct i915_power_domains *power_domains = &i915->display.power.domains;
2271
2272 if (DISPLAY_VER(i915) >= 11) {
2273 bxt_disable_dc9(i915);
2274 icl_display_core_init(i915, true);
2275 if (intel_dmc_has_payload(i915)) {
2276 if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2277 skl_enable_dc6(i915);
2278 else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2279 gen9_enable_dc5(i915);
2280 }
2281 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2282 bxt_disable_dc9(i915);
2283 bxt_display_core_init(i915, true);
2284 if (intel_dmc_has_payload(i915) &&
2285 (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2286 gen9_enable_dc5(i915);
2287 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2288 hsw_disable_pc8(i915);
2289 }
2290 }
2291
intel_display_power_debug(struct drm_i915_private * i915,struct seq_file * m)2292 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2293 {
2294 struct i915_power_domains *power_domains = &i915->display.power.domains;
2295 int i;
2296
2297 mutex_lock(&power_domains->lock);
2298
2299 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2300 for (i = 0; i < power_domains->power_well_count; i++) {
2301 struct i915_power_well *power_well;
2302 enum intel_display_power_domain power_domain;
2303
2304 power_well = &power_domains->power_wells[i];
2305 seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2306 intel_power_well_refcount(power_well));
2307
2308 for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2309 seq_printf(m, " %-23s %d\n",
2310 intel_display_power_domain_str(power_domain),
2311 power_domains->domain_use_count[power_domain]);
2312 }
2313
2314 mutex_unlock(&power_domains->lock);
2315 }
2316
2317 struct intel_ddi_port_domains {
2318 enum port port_start;
2319 enum port port_end;
2320 enum aux_ch aux_ch_start;
2321 enum aux_ch aux_ch_end;
2322
2323 enum intel_display_power_domain ddi_lanes;
2324 enum intel_display_power_domain ddi_io;
2325 enum intel_display_power_domain aux_io;
2326 enum intel_display_power_domain aux_legacy_usbc;
2327 enum intel_display_power_domain aux_tbt;
2328 };
2329
2330 static const struct intel_ddi_port_domains
2331 i9xx_port_domains[] = {
2332 {
2333 .port_start = PORT_A,
2334 .port_end = PORT_F,
2335 .aux_ch_start = AUX_CH_A,
2336 .aux_ch_end = AUX_CH_F,
2337
2338 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2339 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2340 .aux_io = POWER_DOMAIN_AUX_IO_A,
2341 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2342 .aux_tbt = POWER_DOMAIN_INVALID,
2343 },
2344 };
2345
2346 static const struct intel_ddi_port_domains
2347 d11_port_domains[] = {
2348 {
2349 .port_start = PORT_A,
2350 .port_end = PORT_B,
2351 .aux_ch_start = AUX_CH_A,
2352 .aux_ch_end = AUX_CH_B,
2353
2354 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2355 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2356 .aux_io = POWER_DOMAIN_AUX_IO_A,
2357 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2358 .aux_tbt = POWER_DOMAIN_INVALID,
2359 }, {
2360 .port_start = PORT_C,
2361 .port_end = PORT_F,
2362 .aux_ch_start = AUX_CH_C,
2363 .aux_ch_end = AUX_CH_F,
2364
2365 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2366 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2367 .aux_io = POWER_DOMAIN_AUX_IO_C,
2368 .aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2369 .aux_tbt = POWER_DOMAIN_AUX_TBT1,
2370 },
2371 };
2372
2373 static const struct intel_ddi_port_domains
2374 d12_port_domains[] = {
2375 {
2376 .port_start = PORT_A,
2377 .port_end = PORT_C,
2378 .aux_ch_start = AUX_CH_A,
2379 .aux_ch_end = AUX_CH_C,
2380
2381 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2382 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2383 .aux_io = POWER_DOMAIN_AUX_IO_A,
2384 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2385 .aux_tbt = POWER_DOMAIN_INVALID,
2386 }, {
2387 .port_start = PORT_TC1,
2388 .port_end = PORT_TC6,
2389 .aux_ch_start = AUX_CH_USBC1,
2390 .aux_ch_end = AUX_CH_USBC6,
2391
2392 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2393 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2394 .aux_io = POWER_DOMAIN_INVALID,
2395 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2396 .aux_tbt = POWER_DOMAIN_AUX_TBT1,
2397 },
2398 };
2399
2400 static const struct intel_ddi_port_domains
2401 d13_port_domains[] = {
2402 {
2403 .port_start = PORT_A,
2404 .port_end = PORT_C,
2405 .aux_ch_start = AUX_CH_A,
2406 .aux_ch_end = AUX_CH_C,
2407
2408 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2409 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2410 .aux_io = POWER_DOMAIN_AUX_IO_A,
2411 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2412 .aux_tbt = POWER_DOMAIN_INVALID,
2413 }, {
2414 .port_start = PORT_TC1,
2415 .port_end = PORT_TC4,
2416 .aux_ch_start = AUX_CH_USBC1,
2417 .aux_ch_end = AUX_CH_USBC4,
2418
2419 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2420 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2421 .aux_io = POWER_DOMAIN_INVALID,
2422 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2423 .aux_tbt = POWER_DOMAIN_AUX_TBT1,
2424 }, {
2425 .port_start = PORT_D_XELPD,
2426 .port_end = PORT_E_XELPD,
2427 .aux_ch_start = AUX_CH_D_XELPD,
2428 .aux_ch_end = AUX_CH_E_XELPD,
2429
2430 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2431 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2432 .aux_io = POWER_DOMAIN_AUX_IO_D,
2433 .aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2434 .aux_tbt = POWER_DOMAIN_INVALID,
2435 },
2436 };
2437
2438 static void
intel_port_domains_for_platform(struct drm_i915_private * i915,const struct intel_ddi_port_domains ** domains,int * domains_size)2439 intel_port_domains_for_platform(struct drm_i915_private *i915,
2440 const struct intel_ddi_port_domains **domains,
2441 int *domains_size)
2442 {
2443 if (DISPLAY_VER(i915) >= 13) {
2444 *domains = d13_port_domains;
2445 *domains_size = ARRAY_SIZE(d13_port_domains);
2446 } else if (DISPLAY_VER(i915) >= 12) {
2447 *domains = d12_port_domains;
2448 *domains_size = ARRAY_SIZE(d12_port_domains);
2449 } else if (DISPLAY_VER(i915) >= 11) {
2450 *domains = d11_port_domains;
2451 *domains_size = ARRAY_SIZE(d11_port_domains);
2452 } else {
2453 *domains = i9xx_port_domains;
2454 *domains_size = ARRAY_SIZE(i9xx_port_domains);
2455 }
2456 }
2457
2458 static const struct intel_ddi_port_domains *
intel_port_domains_for_port(struct drm_i915_private * i915,enum port port)2459 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2460 {
2461 const struct intel_ddi_port_domains *domains;
2462 int domains_size;
2463 int i;
2464
2465 intel_port_domains_for_platform(i915, &domains, &domains_size);
2466 for (i = 0; i < domains_size; i++)
2467 if (port >= domains[i].port_start && port <= domains[i].port_end)
2468 return &domains[i];
2469
2470 return NULL;
2471 }
2472
2473 enum intel_display_power_domain
intel_display_power_ddi_io_domain(struct drm_i915_private * i915,enum port port)2474 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2475 {
2476 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2477
2478 if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2479 return POWER_DOMAIN_PORT_DDI_IO_A;
2480
2481 return domains->ddi_io + (int)(port - domains->port_start);
2482 }
2483
2484 enum intel_display_power_domain
intel_display_power_ddi_lanes_domain(struct drm_i915_private * i915,enum port port)2485 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2486 {
2487 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2488
2489 if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2490 return POWER_DOMAIN_PORT_DDI_LANES_A;
2491
2492 return domains->ddi_lanes + (int)(port - domains->port_start);
2493 }
2494
2495 static const struct intel_ddi_port_domains *
intel_port_domains_for_aux_ch(struct drm_i915_private * i915,enum aux_ch aux_ch)2496 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2497 {
2498 const struct intel_ddi_port_domains *domains;
2499 int domains_size;
2500 int i;
2501
2502 intel_port_domains_for_platform(i915, &domains, &domains_size);
2503 for (i = 0; i < domains_size; i++)
2504 if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2505 return &domains[i];
2506
2507 return NULL;
2508 }
2509
2510 enum intel_display_power_domain
intel_display_power_aux_io_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2511 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2512 {
2513 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2514
2515 if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2516 return POWER_DOMAIN_AUX_IO_A;
2517
2518 return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2519 }
2520
2521 enum intel_display_power_domain
intel_display_power_legacy_aux_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2522 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2523 {
2524 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2525
2526 if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2527 return POWER_DOMAIN_AUX_A;
2528
2529 return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2530 }
2531
2532 enum intel_display_power_domain
intel_display_power_tbt_aux_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2533 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2534 {
2535 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2536
2537 if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2538 return POWER_DOMAIN_AUX_TBT1;
2539
2540 return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2541 }
2542