xref: /linux/drivers/gpu/drm/i915/display/intel_display_power.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "i915_reg.h"
11 #include "intel_backlight_regs.h"
12 #include "intel_cdclk.h"
13 #include "intel_clock_gating.h"
14 #include "intel_combo_phy.h"
15 #include "intel_de.h"
16 #include "intel_display_power.h"
17 #include "intel_display_power_map.h"
18 #include "intel_display_power_well.h"
19 #include "intel_display_types.h"
20 #include "intel_dmc.h"
21 #include "intel_mchbar_regs.h"
22 #include "intel_pch_refclk.h"
23 #include "intel_pcode.h"
24 #include "intel_pmdemand.h"
25 #include "intel_pps_regs.h"
26 #include "intel_snps_phy.h"
27 #include "skl_watermark.h"
28 #include "skl_watermark_regs.h"
29 #include "vlv_sideband.h"
30 
31 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
32 	for_each_power_well(__dev_priv, __power_well)				\
33 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
34 
35 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
36 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
37 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
38 
39 const char *
40 intel_display_power_domain_str(enum intel_display_power_domain domain)
41 {
42 	switch (domain) {
43 	case POWER_DOMAIN_DISPLAY_CORE:
44 		return "DISPLAY_CORE";
45 	case POWER_DOMAIN_PIPE_A:
46 		return "PIPE_A";
47 	case POWER_DOMAIN_PIPE_B:
48 		return "PIPE_B";
49 	case POWER_DOMAIN_PIPE_C:
50 		return "PIPE_C";
51 	case POWER_DOMAIN_PIPE_D:
52 		return "PIPE_D";
53 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
54 		return "PIPE_PANEL_FITTER_A";
55 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
56 		return "PIPE_PANEL_FITTER_B";
57 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
58 		return "PIPE_PANEL_FITTER_C";
59 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
60 		return "PIPE_PANEL_FITTER_D";
61 	case POWER_DOMAIN_TRANSCODER_A:
62 		return "TRANSCODER_A";
63 	case POWER_DOMAIN_TRANSCODER_B:
64 		return "TRANSCODER_B";
65 	case POWER_DOMAIN_TRANSCODER_C:
66 		return "TRANSCODER_C";
67 	case POWER_DOMAIN_TRANSCODER_D:
68 		return "TRANSCODER_D";
69 	case POWER_DOMAIN_TRANSCODER_EDP:
70 		return "TRANSCODER_EDP";
71 	case POWER_DOMAIN_TRANSCODER_DSI_A:
72 		return "TRANSCODER_DSI_A";
73 	case POWER_DOMAIN_TRANSCODER_DSI_C:
74 		return "TRANSCODER_DSI_C";
75 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
76 		return "TRANSCODER_VDSC_PW2";
77 	case POWER_DOMAIN_PORT_DDI_LANES_A:
78 		return "PORT_DDI_LANES_A";
79 	case POWER_DOMAIN_PORT_DDI_LANES_B:
80 		return "PORT_DDI_LANES_B";
81 	case POWER_DOMAIN_PORT_DDI_LANES_C:
82 		return "PORT_DDI_LANES_C";
83 	case POWER_DOMAIN_PORT_DDI_LANES_D:
84 		return "PORT_DDI_LANES_D";
85 	case POWER_DOMAIN_PORT_DDI_LANES_E:
86 		return "PORT_DDI_LANES_E";
87 	case POWER_DOMAIN_PORT_DDI_LANES_F:
88 		return "PORT_DDI_LANES_F";
89 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
90 		return "PORT_DDI_LANES_TC1";
91 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
92 		return "PORT_DDI_LANES_TC2";
93 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
94 		return "PORT_DDI_LANES_TC3";
95 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
96 		return "PORT_DDI_LANES_TC4";
97 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
98 		return "PORT_DDI_LANES_TC5";
99 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
100 		return "PORT_DDI_LANES_TC6";
101 	case POWER_DOMAIN_PORT_DDI_IO_A:
102 		return "PORT_DDI_IO_A";
103 	case POWER_DOMAIN_PORT_DDI_IO_B:
104 		return "PORT_DDI_IO_B";
105 	case POWER_DOMAIN_PORT_DDI_IO_C:
106 		return "PORT_DDI_IO_C";
107 	case POWER_DOMAIN_PORT_DDI_IO_D:
108 		return "PORT_DDI_IO_D";
109 	case POWER_DOMAIN_PORT_DDI_IO_E:
110 		return "PORT_DDI_IO_E";
111 	case POWER_DOMAIN_PORT_DDI_IO_F:
112 		return "PORT_DDI_IO_F";
113 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
114 		return "PORT_DDI_IO_TC1";
115 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
116 		return "PORT_DDI_IO_TC2";
117 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
118 		return "PORT_DDI_IO_TC3";
119 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
120 		return "PORT_DDI_IO_TC4";
121 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
122 		return "PORT_DDI_IO_TC5";
123 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
124 		return "PORT_DDI_IO_TC6";
125 	case POWER_DOMAIN_PORT_DSI:
126 		return "PORT_DSI";
127 	case POWER_DOMAIN_PORT_CRT:
128 		return "PORT_CRT";
129 	case POWER_DOMAIN_PORT_OTHER:
130 		return "PORT_OTHER";
131 	case POWER_DOMAIN_VGA:
132 		return "VGA";
133 	case POWER_DOMAIN_AUDIO_MMIO:
134 		return "AUDIO_MMIO";
135 	case POWER_DOMAIN_AUDIO_PLAYBACK:
136 		return "AUDIO_PLAYBACK";
137 	case POWER_DOMAIN_AUX_IO_A:
138 		return "AUX_IO_A";
139 	case POWER_DOMAIN_AUX_IO_B:
140 		return "AUX_IO_B";
141 	case POWER_DOMAIN_AUX_IO_C:
142 		return "AUX_IO_C";
143 	case POWER_DOMAIN_AUX_IO_D:
144 		return "AUX_IO_D";
145 	case POWER_DOMAIN_AUX_IO_E:
146 		return "AUX_IO_E";
147 	case POWER_DOMAIN_AUX_IO_F:
148 		return "AUX_IO_F";
149 	case POWER_DOMAIN_AUX_A:
150 		return "AUX_A";
151 	case POWER_DOMAIN_AUX_B:
152 		return "AUX_B";
153 	case POWER_DOMAIN_AUX_C:
154 		return "AUX_C";
155 	case POWER_DOMAIN_AUX_D:
156 		return "AUX_D";
157 	case POWER_DOMAIN_AUX_E:
158 		return "AUX_E";
159 	case POWER_DOMAIN_AUX_F:
160 		return "AUX_F";
161 	case POWER_DOMAIN_AUX_USBC1:
162 		return "AUX_USBC1";
163 	case POWER_DOMAIN_AUX_USBC2:
164 		return "AUX_USBC2";
165 	case POWER_DOMAIN_AUX_USBC3:
166 		return "AUX_USBC3";
167 	case POWER_DOMAIN_AUX_USBC4:
168 		return "AUX_USBC4";
169 	case POWER_DOMAIN_AUX_USBC5:
170 		return "AUX_USBC5";
171 	case POWER_DOMAIN_AUX_USBC6:
172 		return "AUX_USBC6";
173 	case POWER_DOMAIN_AUX_TBT1:
174 		return "AUX_TBT1";
175 	case POWER_DOMAIN_AUX_TBT2:
176 		return "AUX_TBT2";
177 	case POWER_DOMAIN_AUX_TBT3:
178 		return "AUX_TBT3";
179 	case POWER_DOMAIN_AUX_TBT4:
180 		return "AUX_TBT4";
181 	case POWER_DOMAIN_AUX_TBT5:
182 		return "AUX_TBT5";
183 	case POWER_DOMAIN_AUX_TBT6:
184 		return "AUX_TBT6";
185 	case POWER_DOMAIN_GMBUS:
186 		return "GMBUS";
187 	case POWER_DOMAIN_INIT:
188 		return "INIT";
189 	case POWER_DOMAIN_GT_IRQ:
190 		return "GT_IRQ";
191 	case POWER_DOMAIN_DC_OFF:
192 		return "DC_OFF";
193 	case POWER_DOMAIN_TC_COLD_OFF:
194 		return "TC_COLD_OFF";
195 	default:
196 		MISSING_CASE(domain);
197 		return "?";
198 	}
199 }
200 
201 /**
202  * __intel_display_power_is_enabled - unlocked check for a power domain
203  * @dev_priv: i915 device instance
204  * @domain: power domain to check
205  *
206  * This is the unlocked version of intel_display_power_is_enabled() and should
207  * only be used from error capture and recovery code where deadlocks are
208  * possible.
209  *
210  * Returns:
211  * True when the power domain is enabled, false otherwise.
212  */
213 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
214 				      enum intel_display_power_domain domain)
215 {
216 	struct i915_power_well *power_well;
217 	bool is_enabled;
218 
219 	if (pm_runtime_suspended(dev_priv->drm.dev))
220 		return false;
221 
222 	is_enabled = true;
223 
224 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
225 		if (intel_power_well_is_always_on(power_well))
226 			continue;
227 
228 		if (!intel_power_well_is_enabled_cached(power_well)) {
229 			is_enabled = false;
230 			break;
231 		}
232 	}
233 
234 	return is_enabled;
235 }
236 
237 /**
238  * intel_display_power_is_enabled - check for a power domain
239  * @dev_priv: i915 device instance
240  * @domain: power domain to check
241  *
242  * This function can be used to check the hw power domain state. It is mostly
243  * used in hardware state readout functions. Everywhere else code should rely
244  * upon explicit power domain reference counting to ensure that the hardware
245  * block is powered up before accessing it.
246  *
247  * Callers must hold the relevant modesetting locks to ensure that concurrent
248  * threads can't disable the power well while the caller tries to read a few
249  * registers.
250  *
251  * Returns:
252  * True when the power domain is enabled, false otherwise.
253  */
254 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
255 				    enum intel_display_power_domain domain)
256 {
257 	struct i915_power_domains *power_domains;
258 	bool ret;
259 
260 	power_domains = &dev_priv->display.power.domains;
261 
262 	mutex_lock(&power_domains->lock);
263 	ret = __intel_display_power_is_enabled(dev_priv, domain);
264 	mutex_unlock(&power_domains->lock);
265 
266 	return ret;
267 }
268 
269 static u32
270 sanitize_target_dc_state(struct drm_i915_private *i915,
271 			 u32 target_dc_state)
272 {
273 	struct i915_power_domains *power_domains = &i915->display.power.domains;
274 	static const u32 states[] = {
275 		DC_STATE_EN_UPTO_DC6,
276 		DC_STATE_EN_UPTO_DC5,
277 		DC_STATE_EN_DC3CO,
278 		DC_STATE_DISABLE,
279 	};
280 	int i;
281 
282 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
283 		if (target_dc_state != states[i])
284 			continue;
285 
286 		if (power_domains->allowed_dc_mask & target_dc_state)
287 			break;
288 
289 		target_dc_state = states[i + 1];
290 	}
291 
292 	return target_dc_state;
293 }
294 
295 /**
296  * intel_display_power_set_target_dc_state - Set target dc state.
297  * @dev_priv: i915 device
298  * @state: state which needs to be set as target_dc_state.
299  *
300  * This function set the "DC off" power well target_dc_state,
301  * based upon this target_dc_stste, "DC off" power well will
302  * enable desired DC state.
303  */
304 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
305 					     u32 state)
306 {
307 	struct i915_power_well *power_well;
308 	bool dc_off_enabled;
309 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
310 
311 	mutex_lock(&power_domains->lock);
312 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
313 
314 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
315 		goto unlock;
316 
317 	state = sanitize_target_dc_state(dev_priv, state);
318 
319 	if (state == power_domains->target_dc_state)
320 		goto unlock;
321 
322 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
323 	/*
324 	 * If DC off power well is disabled, need to enable and disable the
325 	 * DC off power well to effect target DC state.
326 	 */
327 	if (!dc_off_enabled)
328 		intel_power_well_enable(dev_priv, power_well);
329 
330 	power_domains->target_dc_state = state;
331 
332 	if (!dc_off_enabled)
333 		intel_power_well_disable(dev_priv, power_well);
334 
335 unlock:
336 	mutex_unlock(&power_domains->lock);
337 }
338 
339 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
340 				     struct intel_power_domain_mask *mask)
341 {
342 	bitmap_or(mask->bits,
343 		  power_domains->async_put_domains[0].bits,
344 		  power_domains->async_put_domains[1].bits,
345 		  POWER_DOMAIN_NUM);
346 }
347 
348 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
349 
350 static bool
351 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
352 {
353 	struct drm_i915_private *i915 = container_of(power_domains,
354 						     struct drm_i915_private,
355 						     display.power.domains);
356 
357 	return !drm_WARN_ON(&i915->drm,
358 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
359 					      power_domains->async_put_domains[1].bits,
360 					      POWER_DOMAIN_NUM));
361 }
362 
363 static bool
364 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
365 {
366 	struct drm_i915_private *i915 = container_of(power_domains,
367 						     struct drm_i915_private,
368 						     display.power.domains);
369 	struct intel_power_domain_mask async_put_mask;
370 	enum intel_display_power_domain domain;
371 	bool err = false;
372 
373 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
374 	__async_put_domains_mask(power_domains, &async_put_mask);
375 	err |= drm_WARN_ON(&i915->drm,
376 			   !!power_domains->async_put_wakeref !=
377 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
378 
379 	for_each_power_domain(domain, &async_put_mask)
380 		err |= drm_WARN_ON(&i915->drm,
381 				   power_domains->domain_use_count[domain] != 1);
382 
383 	return !err;
384 }
385 
386 static void print_power_domains(struct i915_power_domains *power_domains,
387 				const char *prefix, struct intel_power_domain_mask *mask)
388 {
389 	struct drm_i915_private *i915 = container_of(power_domains,
390 						     struct drm_i915_private,
391 						     display.power.domains);
392 	enum intel_display_power_domain domain;
393 
394 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
395 	for_each_power_domain(domain, mask)
396 		drm_dbg(&i915->drm, "%s use_count %d\n",
397 			intel_display_power_domain_str(domain),
398 			power_domains->domain_use_count[domain]);
399 }
400 
401 static void
402 print_async_put_domains_state(struct i915_power_domains *power_domains)
403 {
404 	struct drm_i915_private *i915 = container_of(power_domains,
405 						     struct drm_i915_private,
406 						     display.power.domains);
407 
408 	drm_dbg(&i915->drm, "async_put_wakeref: %s\n",
409 		str_yes_no(power_domains->async_put_wakeref));
410 
411 	print_power_domains(power_domains, "async_put_domains[0]",
412 			    &power_domains->async_put_domains[0]);
413 	print_power_domains(power_domains, "async_put_domains[1]",
414 			    &power_domains->async_put_domains[1]);
415 }
416 
417 static void
418 verify_async_put_domains_state(struct i915_power_domains *power_domains)
419 {
420 	if (!__async_put_domains_state_ok(power_domains))
421 		print_async_put_domains_state(power_domains);
422 }
423 
424 #else
425 
426 static void
427 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
428 {
429 }
430 
431 static void
432 verify_async_put_domains_state(struct i915_power_domains *power_domains)
433 {
434 }
435 
436 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
437 
438 static void async_put_domains_mask(struct i915_power_domains *power_domains,
439 				   struct intel_power_domain_mask *mask)
440 
441 {
442 	assert_async_put_domain_masks_disjoint(power_domains);
443 
444 	__async_put_domains_mask(power_domains, mask);
445 }
446 
447 static void
448 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
449 			       enum intel_display_power_domain domain)
450 {
451 	assert_async_put_domain_masks_disjoint(power_domains);
452 
453 	clear_bit(domain, power_domains->async_put_domains[0].bits);
454 	clear_bit(domain, power_domains->async_put_domains[1].bits);
455 }
456 
457 static void
458 cancel_async_put_work(struct i915_power_domains *power_domains, bool sync)
459 {
460 	if (sync)
461 		cancel_delayed_work_sync(&power_domains->async_put_work);
462 	else
463 		cancel_delayed_work(&power_domains->async_put_work);
464 
465 	power_domains->async_put_next_delay = 0;
466 }
467 
468 static bool
469 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
470 				       enum intel_display_power_domain domain)
471 {
472 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
473 	struct intel_power_domain_mask async_put_mask;
474 	bool ret = false;
475 
476 	async_put_domains_mask(power_domains, &async_put_mask);
477 	if (!test_bit(domain, async_put_mask.bits))
478 		goto out_verify;
479 
480 	async_put_domains_clear_domain(power_domains, domain);
481 
482 	ret = true;
483 
484 	async_put_domains_mask(power_domains, &async_put_mask);
485 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
486 		goto out_verify;
487 
488 	cancel_async_put_work(power_domains, false);
489 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
490 				 fetch_and_zero(&power_domains->async_put_wakeref));
491 out_verify:
492 	verify_async_put_domains_state(power_domains);
493 
494 	return ret;
495 }
496 
497 static void
498 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
499 				 enum intel_display_power_domain domain)
500 {
501 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
502 	struct i915_power_well *power_well;
503 
504 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
505 		return;
506 
507 	for_each_power_domain_well(dev_priv, power_well, domain)
508 		intel_power_well_get(dev_priv, power_well);
509 
510 	power_domains->domain_use_count[domain]++;
511 }
512 
513 /**
514  * intel_display_power_get - grab a power domain reference
515  * @dev_priv: i915 device instance
516  * @domain: power domain to reference
517  *
518  * This function grabs a power domain reference for @domain and ensures that the
519  * power domain and all its parents are powered up. Therefore users should only
520  * grab a reference to the innermost power domain they need.
521  *
522  * Any power domain reference obtained by this function must have a symmetric
523  * call to intel_display_power_put() to release the reference again.
524  */
525 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
526 					enum intel_display_power_domain domain)
527 {
528 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
529 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
530 
531 	mutex_lock(&power_domains->lock);
532 	__intel_display_power_get_domain(dev_priv, domain);
533 	mutex_unlock(&power_domains->lock);
534 
535 	return wakeref;
536 }
537 
538 /**
539  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
540  * @dev_priv: i915 device instance
541  * @domain: power domain to reference
542  *
543  * This function grabs a power domain reference for @domain and ensures that the
544  * power domain and all its parents are powered up. Therefore users should only
545  * grab a reference to the innermost power domain they need.
546  *
547  * Any power domain reference obtained by this function must have a symmetric
548  * call to intel_display_power_put() to release the reference again.
549  */
550 intel_wakeref_t
551 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
552 				   enum intel_display_power_domain domain)
553 {
554 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
555 	intel_wakeref_t wakeref;
556 	bool is_enabled;
557 
558 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
559 	if (!wakeref)
560 		return false;
561 
562 	mutex_lock(&power_domains->lock);
563 
564 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
565 		__intel_display_power_get_domain(dev_priv, domain);
566 		is_enabled = true;
567 	} else {
568 		is_enabled = false;
569 	}
570 
571 	mutex_unlock(&power_domains->lock);
572 
573 	if (!is_enabled) {
574 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
575 		wakeref = 0;
576 	}
577 
578 	return wakeref;
579 }
580 
581 static void
582 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
583 				 enum intel_display_power_domain domain)
584 {
585 	struct i915_power_domains *power_domains;
586 	struct i915_power_well *power_well;
587 	const char *name = intel_display_power_domain_str(domain);
588 	struct intel_power_domain_mask async_put_mask;
589 
590 	power_domains = &dev_priv->display.power.domains;
591 
592 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
593 		 "Use count on domain %s is already zero\n",
594 		 name);
595 	async_put_domains_mask(power_domains, &async_put_mask);
596 	drm_WARN(&dev_priv->drm,
597 		 test_bit(domain, async_put_mask.bits),
598 		 "Async disabling of domain %s is pending\n",
599 		 name);
600 
601 	power_domains->domain_use_count[domain]--;
602 
603 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
604 		intel_power_well_put(dev_priv, power_well);
605 }
606 
607 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
608 				      enum intel_display_power_domain domain)
609 {
610 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
611 
612 	mutex_lock(&power_domains->lock);
613 	__intel_display_power_put_domain(dev_priv, domain);
614 	mutex_unlock(&power_domains->lock);
615 }
616 
617 static void
618 queue_async_put_domains_work(struct i915_power_domains *power_domains,
619 			     intel_wakeref_t wakeref,
620 			     int delay_ms)
621 {
622 	struct drm_i915_private *i915 = container_of(power_domains,
623 						     struct drm_i915_private,
624 						     display.power.domains);
625 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
626 	power_domains->async_put_wakeref = wakeref;
627 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
628 						    &power_domains->async_put_work,
629 						    msecs_to_jiffies(delay_ms)));
630 }
631 
632 static void
633 release_async_put_domains(struct i915_power_domains *power_domains,
634 			  struct intel_power_domain_mask *mask)
635 {
636 	struct drm_i915_private *dev_priv =
637 		container_of(power_domains, struct drm_i915_private,
638 			     display.power.domains);
639 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
640 	enum intel_display_power_domain domain;
641 	intel_wakeref_t wakeref;
642 
643 	/*
644 	 * The caller must hold already raw wakeref, upgrade that to a proper
645 	 * wakeref to make the state checker happy about the HW access during
646 	 * power well disabling.
647 	 */
648 	assert_rpm_raw_wakeref_held(rpm);
649 	wakeref = intel_runtime_pm_get(rpm);
650 
651 	for_each_power_domain(domain, mask) {
652 		/* Clear before put, so put's sanity check is happy. */
653 		async_put_domains_clear_domain(power_domains, domain);
654 		__intel_display_power_put_domain(dev_priv, domain);
655 	}
656 
657 	intel_runtime_pm_put(rpm, wakeref);
658 }
659 
660 static void
661 intel_display_power_put_async_work(struct work_struct *work)
662 {
663 	struct drm_i915_private *dev_priv =
664 		container_of(work, struct drm_i915_private,
665 			     display.power.domains.async_put_work.work);
666 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
667 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
668 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
669 	intel_wakeref_t old_work_wakeref = 0;
670 
671 	mutex_lock(&power_domains->lock);
672 
673 	/*
674 	 * Bail out if all the domain refs pending to be released were grabbed
675 	 * by subsequent gets or a flush_work.
676 	 */
677 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
678 	if (!old_work_wakeref)
679 		goto out_verify;
680 
681 	release_async_put_domains(power_domains,
682 				  &power_domains->async_put_domains[0]);
683 
684 	/* Requeue the work if more domains were async put meanwhile. */
685 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
686 		bitmap_copy(power_domains->async_put_domains[0].bits,
687 			    power_domains->async_put_domains[1].bits,
688 			    POWER_DOMAIN_NUM);
689 		bitmap_zero(power_domains->async_put_domains[1].bits,
690 			    POWER_DOMAIN_NUM);
691 		queue_async_put_domains_work(power_domains,
692 					     fetch_and_zero(&new_work_wakeref),
693 					     power_domains->async_put_next_delay);
694 		power_domains->async_put_next_delay = 0;
695 	} else {
696 		/*
697 		 * Cancel the work that got queued after this one got dequeued,
698 		 * since here we released the corresponding async-put reference.
699 		 */
700 		cancel_async_put_work(power_domains, false);
701 	}
702 
703 out_verify:
704 	verify_async_put_domains_state(power_domains);
705 
706 	mutex_unlock(&power_domains->lock);
707 
708 	if (old_work_wakeref)
709 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
710 	if (new_work_wakeref)
711 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
712 }
713 
714 /**
715  * __intel_display_power_put_async - release a power domain reference asynchronously
716  * @i915: i915 device instance
717  * @domain: power domain to reference
718  * @wakeref: wakeref acquired for the reference that is being released
719  * @delay_ms: delay of powering down the power domain
720  *
721  * This function drops the power domain reference obtained by
722  * intel_display_power_get*() and schedules a work to power down the
723  * corresponding hardware block if this is the last reference.
724  * The power down is delayed by @delay_ms if this is >= 0, or by a default
725  * 100 ms otherwise.
726  */
727 void __intel_display_power_put_async(struct drm_i915_private *i915,
728 				     enum intel_display_power_domain domain,
729 				     intel_wakeref_t wakeref,
730 				     int delay_ms)
731 {
732 	struct i915_power_domains *power_domains = &i915->display.power.domains;
733 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
734 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
735 
736 	delay_ms = delay_ms >= 0 ? delay_ms : 100;
737 
738 	mutex_lock(&power_domains->lock);
739 
740 	if (power_domains->domain_use_count[domain] > 1) {
741 		__intel_display_power_put_domain(i915, domain);
742 
743 		goto out_verify;
744 	}
745 
746 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
747 
748 	/* Let a pending work requeue itself or queue a new one. */
749 	if (power_domains->async_put_wakeref) {
750 		set_bit(domain, power_domains->async_put_domains[1].bits);
751 		power_domains->async_put_next_delay = max(power_domains->async_put_next_delay,
752 							  delay_ms);
753 	} else {
754 		set_bit(domain, power_domains->async_put_domains[0].bits);
755 		queue_async_put_domains_work(power_domains,
756 					     fetch_and_zero(&work_wakeref),
757 					     delay_ms);
758 	}
759 
760 out_verify:
761 	verify_async_put_domains_state(power_domains);
762 
763 	mutex_unlock(&power_domains->lock);
764 
765 	if (work_wakeref)
766 		intel_runtime_pm_put_raw(rpm, work_wakeref);
767 
768 	intel_runtime_pm_put(rpm, wakeref);
769 }
770 
771 /**
772  * intel_display_power_flush_work - flushes the async display power disabling work
773  * @i915: i915 device instance
774  *
775  * Flushes any pending work that was scheduled by a preceding
776  * intel_display_power_put_async() call, completing the disabling of the
777  * corresponding power domains.
778  *
779  * Note that the work handler function may still be running after this
780  * function returns; to ensure that the work handler isn't running use
781  * intel_display_power_flush_work_sync() instead.
782  */
783 void intel_display_power_flush_work(struct drm_i915_private *i915)
784 {
785 	struct i915_power_domains *power_domains = &i915->display.power.domains;
786 	struct intel_power_domain_mask async_put_mask;
787 	intel_wakeref_t work_wakeref;
788 
789 	mutex_lock(&power_domains->lock);
790 
791 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
792 	if (!work_wakeref)
793 		goto out_verify;
794 
795 	async_put_domains_mask(power_domains, &async_put_mask);
796 	release_async_put_domains(power_domains, &async_put_mask);
797 	cancel_async_put_work(power_domains, false);
798 
799 out_verify:
800 	verify_async_put_domains_state(power_domains);
801 
802 	mutex_unlock(&power_domains->lock);
803 
804 	if (work_wakeref)
805 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
806 }
807 
808 /**
809  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
810  * @i915: i915 device instance
811  *
812  * Like intel_display_power_flush_work(), but also ensure that the work
813  * handler function is not running any more when this function returns.
814  */
815 static void
816 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
817 {
818 	struct i915_power_domains *power_domains = &i915->display.power.domains;
819 
820 	intel_display_power_flush_work(i915);
821 	cancel_async_put_work(power_domains, true);
822 
823 	verify_async_put_domains_state(power_domains);
824 
825 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
826 }
827 
828 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
829 /**
830  * intel_display_power_put - release a power domain reference
831  * @dev_priv: i915 device instance
832  * @domain: power domain to reference
833  * @wakeref: wakeref acquired for the reference that is being released
834  *
835  * This function drops the power domain reference obtained by
836  * intel_display_power_get() and might power down the corresponding hardware
837  * block right away if this is the last reference.
838  */
839 void intel_display_power_put(struct drm_i915_private *dev_priv,
840 			     enum intel_display_power_domain domain,
841 			     intel_wakeref_t wakeref)
842 {
843 	__intel_display_power_put(dev_priv, domain);
844 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
845 }
846 #else
847 /**
848  * intel_display_power_put_unchecked - release an unchecked power domain reference
849  * @dev_priv: i915 device instance
850  * @domain: power domain to reference
851  *
852  * This function drops the power domain reference obtained by
853  * intel_display_power_get() and might power down the corresponding hardware
854  * block right away if this is the last reference.
855  *
856  * This function is only for the power domain code's internal use to suppress wakeref
857  * tracking when the correspondig debug kconfig option is disabled, should not
858  * be used otherwise.
859  */
860 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
861 				       enum intel_display_power_domain domain)
862 {
863 	__intel_display_power_put(dev_priv, domain);
864 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
865 }
866 #endif
867 
868 void
869 intel_display_power_get_in_set(struct drm_i915_private *i915,
870 			       struct intel_display_power_domain_set *power_domain_set,
871 			       enum intel_display_power_domain domain)
872 {
873 	intel_wakeref_t __maybe_unused wf;
874 
875 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
876 
877 	wf = intel_display_power_get(i915, domain);
878 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
879 	power_domain_set->wakerefs[domain] = wf;
880 #endif
881 	set_bit(domain, power_domain_set->mask.bits);
882 }
883 
884 bool
885 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
886 					  struct intel_display_power_domain_set *power_domain_set,
887 					  enum intel_display_power_domain domain)
888 {
889 	intel_wakeref_t wf;
890 
891 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
892 
893 	wf = intel_display_power_get_if_enabled(i915, domain);
894 	if (!wf)
895 		return false;
896 
897 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
898 	power_domain_set->wakerefs[domain] = wf;
899 #endif
900 	set_bit(domain, power_domain_set->mask.bits);
901 
902 	return true;
903 }
904 
905 void
906 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
907 				    struct intel_display_power_domain_set *power_domain_set,
908 				    struct intel_power_domain_mask *mask)
909 {
910 	enum intel_display_power_domain domain;
911 
912 	drm_WARN_ON(&i915->drm,
913 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
914 
915 	for_each_power_domain(domain, mask) {
916 		intel_wakeref_t __maybe_unused wf = -1;
917 
918 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
919 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
920 #endif
921 		intel_display_power_put(i915, domain, wf);
922 		clear_bit(domain, power_domain_set->mask.bits);
923 	}
924 }
925 
926 static int
927 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
928 				   int disable_power_well)
929 {
930 	if (disable_power_well >= 0)
931 		return !!disable_power_well;
932 
933 	return 1;
934 }
935 
936 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
937 			       int enable_dc)
938 {
939 	u32 mask;
940 	int requested_dc;
941 	int max_dc;
942 
943 	if (!HAS_DISPLAY(dev_priv))
944 		return 0;
945 
946 	if (DISPLAY_VER(dev_priv) >= 20)
947 		max_dc = 2;
948 	else if (IS_DG2(dev_priv))
949 		max_dc = 1;
950 	else if (IS_DG1(dev_priv))
951 		max_dc = 3;
952 	else if (DISPLAY_VER(dev_priv) >= 12)
953 		max_dc = 4;
954 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
955 		max_dc = 1;
956 	else if (DISPLAY_VER(dev_priv) >= 9)
957 		max_dc = 2;
958 	else
959 		max_dc = 0;
960 
961 	/*
962 	 * DC9 has a separate HW flow from the rest of the DC states,
963 	 * not depending on the DMC firmware. It's needed by system
964 	 * suspend/resume, so allow it unconditionally.
965 	 */
966 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
967 		DISPLAY_VER(dev_priv) >= 11 ?
968 	       DC_STATE_EN_DC9 : 0;
969 
970 	if (!dev_priv->display.params.disable_power_well)
971 		max_dc = 0;
972 
973 	if (enable_dc >= 0 && enable_dc <= max_dc) {
974 		requested_dc = enable_dc;
975 	} else if (enable_dc == -1) {
976 		requested_dc = max_dc;
977 	} else if (enable_dc > max_dc && enable_dc <= 4) {
978 		drm_dbg_kms(&dev_priv->drm,
979 			    "Adjusting requested max DC state (%d->%d)\n",
980 			    enable_dc, max_dc);
981 		requested_dc = max_dc;
982 	} else {
983 		drm_err(&dev_priv->drm,
984 			"Unexpected value for enable_dc (%d)\n", enable_dc);
985 		requested_dc = max_dc;
986 	}
987 
988 	switch (requested_dc) {
989 	case 4:
990 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
991 		break;
992 	case 3:
993 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
994 		break;
995 	case 2:
996 		mask |= DC_STATE_EN_UPTO_DC6;
997 		break;
998 	case 1:
999 		mask |= DC_STATE_EN_UPTO_DC5;
1000 		break;
1001 	}
1002 
1003 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
1004 
1005 	return mask;
1006 }
1007 
1008 /**
1009  * intel_power_domains_init - initializes the power domain structures
1010  * @dev_priv: i915 device instance
1011  *
1012  * Initializes the power domain structures for @dev_priv depending upon the
1013  * supported platform.
1014  */
1015 int intel_power_domains_init(struct drm_i915_private *dev_priv)
1016 {
1017 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1018 
1019 	dev_priv->display.params.disable_power_well =
1020 		sanitize_disable_power_well_option(dev_priv,
1021 						   dev_priv->display.params.disable_power_well);
1022 	power_domains->allowed_dc_mask =
1023 		get_allowed_dc_mask(dev_priv, dev_priv->display.params.enable_dc);
1024 
1025 	power_domains->target_dc_state =
1026 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1027 
1028 	mutex_init(&power_domains->lock);
1029 
1030 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1031 			  intel_display_power_put_async_work);
1032 
1033 	return intel_display_power_map_init(power_domains);
1034 }
1035 
1036 /**
1037  * intel_power_domains_cleanup - clean up power domains resources
1038  * @dev_priv: i915 device instance
1039  *
1040  * Release any resources acquired by intel_power_domains_init()
1041  */
1042 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1043 {
1044 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1045 }
1046 
1047 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1048 {
1049 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1050 	struct i915_power_well *power_well;
1051 
1052 	mutex_lock(&power_domains->lock);
1053 	for_each_power_well(dev_priv, power_well)
1054 		intel_power_well_sync_hw(dev_priv, power_well);
1055 	mutex_unlock(&power_domains->lock);
1056 }
1057 
1058 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1059 				enum dbuf_slice slice, bool enable)
1060 {
1061 	i915_reg_t reg = DBUF_CTL_S(slice);
1062 	bool state;
1063 
1064 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1065 		     enable ? DBUF_POWER_REQUEST : 0);
1066 	intel_de_posting_read(dev_priv, reg);
1067 	udelay(10);
1068 
1069 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1070 	drm_WARN(&dev_priv->drm, enable != state,
1071 		 "DBuf slice %d power %s timeout!\n",
1072 		 slice, str_enable_disable(enable));
1073 }
1074 
1075 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1076 			     u8 req_slices)
1077 {
1078 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1079 	u8 slice_mask = DISPLAY_INFO(dev_priv)->dbuf.slice_mask;
1080 	enum dbuf_slice slice;
1081 
1082 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1083 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1084 		 req_slices, slice_mask);
1085 
1086 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1087 		    req_slices);
1088 
1089 	/*
1090 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1091 	 * being called from intel_dp_detect for instance,
1092 	 * which causes assertion triggered by race condition,
1093 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1094 	 * were already updated, while dev_priv was not.
1095 	 */
1096 	mutex_lock(&power_domains->lock);
1097 
1098 	for_each_dbuf_slice(dev_priv, slice)
1099 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1100 
1101 	dev_priv->display.dbuf.enabled_slices = req_slices;
1102 
1103 	mutex_unlock(&power_domains->lock);
1104 }
1105 
1106 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1107 {
1108 	u8 slices_mask;
1109 
1110 	dev_priv->display.dbuf.enabled_slices =
1111 		intel_enabled_dbuf_slices_mask(dev_priv);
1112 
1113 	slices_mask = BIT(DBUF_S1) | dev_priv->display.dbuf.enabled_slices;
1114 
1115 	if (DISPLAY_VER(dev_priv) >= 14)
1116 		intel_pmdemand_program_dbuf(dev_priv, slices_mask);
1117 
1118 	/*
1119 	 * Just power up at least 1 slice, we will
1120 	 * figure out later which slices we have and what we need.
1121 	 */
1122 	gen9_dbuf_slices_update(dev_priv, slices_mask);
1123 }
1124 
1125 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1126 {
1127 	gen9_dbuf_slices_update(dev_priv, 0);
1128 
1129 	if (DISPLAY_VER(dev_priv) >= 14)
1130 		intel_pmdemand_program_dbuf(dev_priv, 0);
1131 }
1132 
1133 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1134 {
1135 	enum dbuf_slice slice;
1136 
1137 	if (IS_ALDERLAKE_P(dev_priv))
1138 		return;
1139 
1140 	for_each_dbuf_slice(dev_priv, slice)
1141 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1142 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1143 			     DBUF_TRACKER_STATE_SERVICE(8));
1144 }
1145 
1146 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1147 {
1148 	unsigned long abox_regs = DISPLAY_INFO(dev_priv)->abox_mask;
1149 	u32 mask, val, i;
1150 
1151 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1152 		return;
1153 
1154 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1155 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1156 		MBUS_ABOX_B_CREDIT_MASK |
1157 		MBUS_ABOX_BW_CREDIT_MASK;
1158 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1159 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1160 		MBUS_ABOX_B_CREDIT(1) |
1161 		MBUS_ABOX_BW_CREDIT(1);
1162 
1163 	/*
1164 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1165 	 * expect us to program the abox_ctl0 register as well, even though
1166 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1167 	 */
1168 	if (DISPLAY_VER(dev_priv) == 12)
1169 		abox_regs |= BIT(0);
1170 
1171 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1172 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1173 }
1174 
1175 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1176 {
1177 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1178 
1179 	/*
1180 	 * The LCPLL register should be turned on by the BIOS. For now
1181 	 * let's just check its state and print errors in case
1182 	 * something is wrong.  Don't even try to turn it on.
1183 	 */
1184 
1185 	if (val & LCPLL_CD_SOURCE_FCLK)
1186 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1187 
1188 	if (val & LCPLL_PLL_DISABLE)
1189 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1190 
1191 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1192 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1193 }
1194 
1195 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1196 {
1197 	struct intel_crtc *crtc;
1198 
1199 	for_each_intel_crtc(&dev_priv->drm, crtc)
1200 		I915_STATE_WARN(dev_priv, crtc->active,
1201 				"CRTC for pipe %c enabled\n",
1202 				pipe_name(crtc->pipe));
1203 
1204 	I915_STATE_WARN(dev_priv, intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1205 			"Display power well on\n");
1206 	I915_STATE_WARN(dev_priv,
1207 			intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1208 			"SPLL enabled\n");
1209 	I915_STATE_WARN(dev_priv,
1210 			intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1211 			"WRPLL1 enabled\n");
1212 	I915_STATE_WARN(dev_priv,
1213 			intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1214 			"WRPLL2 enabled\n");
1215 	I915_STATE_WARN(dev_priv,
1216 			intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1217 			"Panel power on\n");
1218 	I915_STATE_WARN(dev_priv,
1219 			intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1220 			"CPU PWM1 enabled\n");
1221 	if (IS_HASWELL(dev_priv))
1222 		I915_STATE_WARN(dev_priv,
1223 				intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1224 				"CPU PWM2 enabled\n");
1225 	I915_STATE_WARN(dev_priv,
1226 			intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1227 			"PCH PWM1 enabled\n");
1228 	I915_STATE_WARN(dev_priv,
1229 			(intel_de_read(dev_priv, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1230 			"Utility pin enabled in PWM mode\n");
1231 	I915_STATE_WARN(dev_priv,
1232 			intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1233 			"PCH GTC enabled\n");
1234 
1235 	/*
1236 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1237 	 * interrupts remain enabled. We used to check for that, but since it's
1238 	 * gen-specific and since we only disable LCPLL after we fully disable
1239 	 * the interrupts, the check below should be enough.
1240 	 */
1241 	I915_STATE_WARN(dev_priv, intel_irqs_enabled(dev_priv),
1242 			"IRQs enabled\n");
1243 }
1244 
1245 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1246 {
1247 	if (IS_HASWELL(dev_priv))
1248 		return intel_de_read(dev_priv, D_COMP_HSW);
1249 	else
1250 		return intel_de_read(dev_priv, D_COMP_BDW);
1251 }
1252 
1253 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1254 {
1255 	if (IS_HASWELL(dev_priv)) {
1256 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1257 			drm_dbg_kms(&dev_priv->drm,
1258 				    "Failed to write to D_COMP\n");
1259 	} else {
1260 		intel_de_write(dev_priv, D_COMP_BDW, val);
1261 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1262 	}
1263 }
1264 
1265 /*
1266  * This function implements pieces of two sequences from BSpec:
1267  * - Sequence for display software to disable LCPLL
1268  * - Sequence for display software to allow package C8+
1269  * The steps implemented here are just the steps that actually touch the LCPLL
1270  * register. Callers should take care of disabling all the display engine
1271  * functions, doing the mode unset, fixing interrupts, etc.
1272  */
1273 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1274 			      bool switch_to_fclk, bool allow_power_down)
1275 {
1276 	u32 val;
1277 
1278 	assert_can_disable_lcpll(dev_priv);
1279 
1280 	val = intel_de_read(dev_priv, LCPLL_CTL);
1281 
1282 	if (switch_to_fclk) {
1283 		val |= LCPLL_CD_SOURCE_FCLK;
1284 		intel_de_write(dev_priv, LCPLL_CTL, val);
1285 
1286 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1287 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1288 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1289 
1290 		val = intel_de_read(dev_priv, LCPLL_CTL);
1291 	}
1292 
1293 	val |= LCPLL_PLL_DISABLE;
1294 	intel_de_write(dev_priv, LCPLL_CTL, val);
1295 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1296 
1297 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1298 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1299 
1300 	val = hsw_read_dcomp(dev_priv);
1301 	val |= D_COMP_COMP_DISABLE;
1302 	hsw_write_dcomp(dev_priv, val);
1303 	ndelay(100);
1304 
1305 	if (wait_for((hsw_read_dcomp(dev_priv) &
1306 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1307 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1308 
1309 	if (allow_power_down) {
1310 		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1311 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1312 	}
1313 }
1314 
1315 /*
1316  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1317  * source.
1318  */
1319 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1320 {
1321 	u32 val;
1322 
1323 	val = intel_de_read(dev_priv, LCPLL_CTL);
1324 
1325 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1326 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1327 		return;
1328 
1329 	/*
1330 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1331 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1332 	 */
1333 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1334 
1335 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1336 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1337 		intel_de_write(dev_priv, LCPLL_CTL, val);
1338 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1339 	}
1340 
1341 	val = hsw_read_dcomp(dev_priv);
1342 	val |= D_COMP_COMP_FORCE;
1343 	val &= ~D_COMP_COMP_DISABLE;
1344 	hsw_write_dcomp(dev_priv, val);
1345 
1346 	val = intel_de_read(dev_priv, LCPLL_CTL);
1347 	val &= ~LCPLL_PLL_DISABLE;
1348 	intel_de_write(dev_priv, LCPLL_CTL, val);
1349 
1350 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1351 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1352 
1353 	if (val & LCPLL_CD_SOURCE_FCLK) {
1354 		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1355 
1356 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1357 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1358 			drm_err(&dev_priv->drm,
1359 				"Switching back to LCPLL failed\n");
1360 	}
1361 
1362 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1363 
1364 	intel_update_cdclk(dev_priv);
1365 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1366 }
1367 
1368 /*
1369  * Package states C8 and deeper are really deep PC states that can only be
1370  * reached when all the devices on the system allow it, so even if the graphics
1371  * device allows PC8+, it doesn't mean the system will actually get to these
1372  * states. Our driver only allows PC8+ when going into runtime PM.
1373  *
1374  * The requirements for PC8+ are that all the outputs are disabled, the power
1375  * well is disabled and most interrupts are disabled, and these are also
1376  * requirements for runtime PM. When these conditions are met, we manually do
1377  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1378  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1379  * hang the machine.
1380  *
1381  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1382  * the state of some registers, so when we come back from PC8+ we need to
1383  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1384  * need to take care of the registers kept by RC6. Notice that this happens even
1385  * if we don't put the device in PCI D3 state (which is what currently happens
1386  * because of the runtime PM support).
1387  *
1388  * For more, read "Display Sequences for Package C8" on the hardware
1389  * documentation.
1390  */
1391 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1392 {
1393 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1394 
1395 	if (HAS_PCH_LPT_LP(dev_priv))
1396 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1397 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1398 
1399 	lpt_disable_clkout_dp(dev_priv);
1400 	hsw_disable_lcpll(dev_priv, true, true);
1401 }
1402 
1403 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1404 {
1405 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1406 
1407 	hsw_restore_lcpll(dev_priv);
1408 	intel_init_pch_refclk(dev_priv);
1409 
1410 	/* Many display registers don't survive PC8+ */
1411 	intel_clock_gating_init(dev_priv);
1412 }
1413 
1414 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1415 				      bool enable)
1416 {
1417 	i915_reg_t reg;
1418 	u32 reset_bits;
1419 
1420 	if (IS_IVYBRIDGE(dev_priv)) {
1421 		reg = GEN7_MSG_CTL;
1422 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1423 	} else {
1424 		reg = HSW_NDE_RSTWRN_OPT;
1425 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1426 	}
1427 
1428 	if (DISPLAY_VER(dev_priv) >= 14)
1429 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1430 
1431 	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1432 }
1433 
1434 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1435 				  bool resume)
1436 {
1437 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1438 	struct i915_power_well *well;
1439 
1440 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1441 
1442 	/* enable PCH reset handshake */
1443 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1444 
1445 	if (!HAS_DISPLAY(dev_priv))
1446 		return;
1447 
1448 	/* enable PG1 and Misc I/O */
1449 	mutex_lock(&power_domains->lock);
1450 
1451 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1452 	intel_power_well_enable(dev_priv, well);
1453 
1454 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1455 	intel_power_well_enable(dev_priv, well);
1456 
1457 	mutex_unlock(&power_domains->lock);
1458 
1459 	intel_cdclk_init_hw(dev_priv);
1460 
1461 	gen9_dbuf_enable(dev_priv);
1462 
1463 	if (resume)
1464 		intel_dmc_load_program(dev_priv);
1465 }
1466 
1467 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1468 {
1469 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1470 	struct i915_power_well *well;
1471 
1472 	if (!HAS_DISPLAY(dev_priv))
1473 		return;
1474 
1475 	gen9_disable_dc_states(dev_priv);
1476 	/* TODO: disable DMC program */
1477 
1478 	gen9_dbuf_disable(dev_priv);
1479 
1480 	intel_cdclk_uninit_hw(dev_priv);
1481 
1482 	/* The spec doesn't call for removing the reset handshake flag */
1483 	/* disable PG1 and Misc I/O */
1484 
1485 	mutex_lock(&power_domains->lock);
1486 
1487 	/*
1488 	 * BSpec says to keep the MISC IO power well enabled here, only
1489 	 * remove our request for power well 1.
1490 	 * Note that even though the driver's request is removed power well 1
1491 	 * may stay enabled after this due to DMC's own request on it.
1492 	 */
1493 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1494 	intel_power_well_disable(dev_priv, well);
1495 
1496 	mutex_unlock(&power_domains->lock);
1497 
1498 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1499 }
1500 
1501 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1502 {
1503 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1504 	struct i915_power_well *well;
1505 
1506 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1507 
1508 	/*
1509 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1510 	 * or else the reset will hang because there is no PCH to respond.
1511 	 * Move the handshake programming to initialization sequence.
1512 	 * Previously was left up to BIOS.
1513 	 */
1514 	intel_pch_reset_handshake(dev_priv, false);
1515 
1516 	if (!HAS_DISPLAY(dev_priv))
1517 		return;
1518 
1519 	/* Enable PG1 */
1520 	mutex_lock(&power_domains->lock);
1521 
1522 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1523 	intel_power_well_enable(dev_priv, well);
1524 
1525 	mutex_unlock(&power_domains->lock);
1526 
1527 	intel_cdclk_init_hw(dev_priv);
1528 
1529 	gen9_dbuf_enable(dev_priv);
1530 
1531 	if (resume)
1532 		intel_dmc_load_program(dev_priv);
1533 }
1534 
1535 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1536 {
1537 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1538 	struct i915_power_well *well;
1539 
1540 	if (!HAS_DISPLAY(dev_priv))
1541 		return;
1542 
1543 	gen9_disable_dc_states(dev_priv);
1544 	/* TODO: disable DMC program */
1545 
1546 	gen9_dbuf_disable(dev_priv);
1547 
1548 	intel_cdclk_uninit_hw(dev_priv);
1549 
1550 	/* The spec doesn't call for removing the reset handshake flag */
1551 
1552 	/*
1553 	 * Disable PW1 (PG1).
1554 	 * Note that even though the driver's request is removed power well 1
1555 	 * may stay enabled after this due to DMC's own request on it.
1556 	 */
1557 	mutex_lock(&power_domains->lock);
1558 
1559 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1560 	intel_power_well_disable(dev_priv, well);
1561 
1562 	mutex_unlock(&power_domains->lock);
1563 
1564 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1565 }
1566 
1567 struct buddy_page_mask {
1568 	u32 page_mask;
1569 	u8 type;
1570 	u8 num_channels;
1571 };
1572 
1573 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1574 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1575 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1576 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1577 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1578 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1579 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1580 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1581 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1582 	{}
1583 };
1584 
1585 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1586 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1587 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1588 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1589 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1590 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1591 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1592 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1593 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1594 	{}
1595 };
1596 
1597 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1598 {
1599 	enum intel_dram_type type = dev_priv->dram_info.type;
1600 	u8 num_channels = dev_priv->dram_info.num_channels;
1601 	const struct buddy_page_mask *table;
1602 	unsigned long abox_mask = DISPLAY_INFO(dev_priv)->abox_mask;
1603 	int config, i;
1604 
1605 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1606 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1607 		return;
1608 
1609 	if (IS_ALDERLAKE_S(dev_priv) ||
1610 	    (IS_ROCKETLAKE(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)))
1611 		/* Wa_1409767108 */
1612 		table = wa_1409767108_buddy_page_masks;
1613 	else
1614 		table = tgl_buddy_page_masks;
1615 
1616 	for (config = 0; table[config].page_mask != 0; config++)
1617 		if (table[config].num_channels == num_channels &&
1618 		    table[config].type == type)
1619 			break;
1620 
1621 	if (table[config].page_mask == 0) {
1622 		drm_dbg(&dev_priv->drm,
1623 			"Unknown memory configuration; disabling address buddy logic.\n");
1624 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1625 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1626 				       BW_BUDDY_DISABLE);
1627 	} else {
1628 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1629 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1630 				       table[config].page_mask);
1631 
1632 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1633 			if (DISPLAY_VER(dev_priv) == 12)
1634 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1635 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1636 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1637 		}
1638 	}
1639 }
1640 
1641 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1642 				  bool resume)
1643 {
1644 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1645 	struct i915_power_well *well;
1646 
1647 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1648 
1649 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1650 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1651 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1652 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1653 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1654 
1655 	/* 1. Enable PCH reset handshake. */
1656 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1657 
1658 	if (!HAS_DISPLAY(dev_priv))
1659 		return;
1660 
1661 	/* 2. Initialize all combo phys */
1662 	intel_combo_phy_init(dev_priv);
1663 
1664 	/*
1665 	 * 3. Enable Power Well 1 (PG1).
1666 	 *    The AUX IO power wells will be enabled on demand.
1667 	 */
1668 	mutex_lock(&power_domains->lock);
1669 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1670 	intel_power_well_enable(dev_priv, well);
1671 	mutex_unlock(&power_domains->lock);
1672 
1673 	if (DISPLAY_VER(dev_priv) == 14)
1674 		intel_de_rmw(dev_priv, DC_STATE_EN,
1675 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1676 
1677 	/* 4. Enable CDCLK. */
1678 	intel_cdclk_init_hw(dev_priv);
1679 
1680 	if (DISPLAY_VER(dev_priv) >= 12)
1681 		gen12_dbuf_slices_config(dev_priv);
1682 
1683 	/* 5. Enable DBUF. */
1684 	gen9_dbuf_enable(dev_priv);
1685 
1686 	/* 6. Setup MBUS. */
1687 	icl_mbus_init(dev_priv);
1688 
1689 	/* 7. Program arbiter BW_BUDDY registers */
1690 	if (DISPLAY_VER(dev_priv) >= 12)
1691 		tgl_bw_buddy_init(dev_priv);
1692 
1693 	/* 8. Ensure PHYs have completed calibration and adaptation */
1694 	if (IS_DG2(dev_priv))
1695 		intel_snps_phy_wait_for_calibration(dev_priv);
1696 
1697 	if (resume)
1698 		intel_dmc_load_program(dev_priv);
1699 
1700 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p,dg2 */
1701 	if (IS_DISPLAY_IP_RANGE(dev_priv, IP_VER(12, 0), IP_VER(13, 0)))
1702 		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1703 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1704 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1705 
1706 	/* Wa_14011503030:xelpd */
1707 	if (DISPLAY_VER(dev_priv) == 13)
1708 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1709 }
1710 
1711 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1712 {
1713 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1714 	struct i915_power_well *well;
1715 
1716 	if (!HAS_DISPLAY(dev_priv))
1717 		return;
1718 
1719 	gen9_disable_dc_states(dev_priv);
1720 	intel_dmc_disable_program(dev_priv);
1721 
1722 	/* 1. Disable all display engine functions -> aready done */
1723 
1724 	/* 2. Disable DBUF */
1725 	gen9_dbuf_disable(dev_priv);
1726 
1727 	/* 3. Disable CD clock */
1728 	intel_cdclk_uninit_hw(dev_priv);
1729 
1730 	if (DISPLAY_VER(dev_priv) == 14)
1731 		intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1732 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1733 
1734 	/*
1735 	 * 4. Disable Power Well 1 (PG1).
1736 	 *    The AUX IO power wells are toggled on demand, so they are already
1737 	 *    disabled at this point.
1738 	 */
1739 	mutex_lock(&power_domains->lock);
1740 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1741 	intel_power_well_disable(dev_priv, well);
1742 	mutex_unlock(&power_domains->lock);
1743 
1744 	/* 5. */
1745 	intel_combo_phy_uninit(dev_priv);
1746 }
1747 
1748 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1749 {
1750 	struct i915_power_well *cmn_bc =
1751 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1752 	struct i915_power_well *cmn_d =
1753 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1754 
1755 	/*
1756 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1757 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1758 	 * instead maintain a shadow copy ourselves. Use the actual
1759 	 * power well state and lane status to reconstruct the
1760 	 * expected initial value.
1761 	 */
1762 	dev_priv->display.power.chv_phy_control =
1763 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1764 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1765 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1766 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1767 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1768 
1769 	/*
1770 	 * If all lanes are disabled we leave the override disabled
1771 	 * with all power down bits cleared to match the state we
1772 	 * would use after disabling the port. Otherwise enable the
1773 	 * override and set the lane powerdown bits accding to the
1774 	 * current lane status.
1775 	 */
1776 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1777 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1778 		unsigned int mask;
1779 
1780 		mask = status & DPLL_PORTB_READY_MASK;
1781 		if (mask == 0xf)
1782 			mask = 0x0;
1783 		else
1784 			dev_priv->display.power.chv_phy_control |=
1785 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1786 
1787 		dev_priv->display.power.chv_phy_control |=
1788 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1789 
1790 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1791 		if (mask == 0xf)
1792 			mask = 0x0;
1793 		else
1794 			dev_priv->display.power.chv_phy_control |=
1795 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1796 
1797 		dev_priv->display.power.chv_phy_control |=
1798 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1799 
1800 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1801 
1802 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1803 	} else {
1804 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1805 	}
1806 
1807 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1808 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1809 		unsigned int mask;
1810 
1811 		mask = status & DPLL_PORTD_READY_MASK;
1812 
1813 		if (mask == 0xf)
1814 			mask = 0x0;
1815 		else
1816 			dev_priv->display.power.chv_phy_control |=
1817 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1818 
1819 		dev_priv->display.power.chv_phy_control |=
1820 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1821 
1822 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1823 
1824 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1825 	} else {
1826 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1827 	}
1828 
1829 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1830 		    dev_priv->display.power.chv_phy_control);
1831 
1832 	/* Defer application of initial phy_control to enabling the powerwell */
1833 }
1834 
1835 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1836 {
1837 	struct i915_power_well *cmn =
1838 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1839 	struct i915_power_well *disp2d =
1840 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1841 
1842 	/* If the display might be already active skip this */
1843 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1844 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1845 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1846 		return;
1847 
1848 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1849 
1850 	/* cmnlane needs DPLL registers */
1851 	intel_power_well_enable(dev_priv, disp2d);
1852 
1853 	/*
1854 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1855 	 * Need to assert and de-assert PHY SB reset by gating the
1856 	 * common lane power, then un-gating it.
1857 	 * Simply ungating isn't enough to reset the PHY enough to get
1858 	 * ports and lanes running.
1859 	 */
1860 	intel_power_well_disable(dev_priv, cmn);
1861 }
1862 
1863 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1864 {
1865 	bool ret;
1866 
1867 	vlv_punit_get(dev_priv);
1868 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1869 	vlv_punit_put(dev_priv);
1870 
1871 	return ret;
1872 }
1873 
1874 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1875 {
1876 	drm_WARN(&dev_priv->drm,
1877 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1878 		 "VED not power gated\n");
1879 }
1880 
1881 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1882 {
1883 	static const struct pci_device_id isp_ids[] = {
1884 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1885 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1886 		{}
1887 	};
1888 
1889 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1890 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1891 		 "ISP not power gated\n");
1892 }
1893 
1894 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1895 
1896 /**
1897  * intel_power_domains_init_hw - initialize hardware power domain state
1898  * @i915: i915 device instance
1899  * @resume: Called from resume code paths or not
1900  *
1901  * This function initializes the hardware power domain state and enables all
1902  * power wells belonging to the INIT power domain. Power wells in other
1903  * domains (and not in the INIT domain) are referenced or disabled by
1904  * intel_modeset_readout_hw_state(). After that the reference count of each
1905  * power well must match its HW enabled state, see
1906  * intel_power_domains_verify_state().
1907  *
1908  * It will return with power domains disabled (to be enabled later by
1909  * intel_power_domains_enable()) and must be paired with
1910  * intel_power_domains_driver_remove().
1911  */
1912 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1913 {
1914 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1915 
1916 	power_domains->initializing = true;
1917 
1918 	if (DISPLAY_VER(i915) >= 11) {
1919 		icl_display_core_init(i915, resume);
1920 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1921 		bxt_display_core_init(i915, resume);
1922 	} else if (DISPLAY_VER(i915) == 9) {
1923 		skl_display_core_init(i915, resume);
1924 	} else if (IS_CHERRYVIEW(i915)) {
1925 		mutex_lock(&power_domains->lock);
1926 		chv_phy_control_init(i915);
1927 		mutex_unlock(&power_domains->lock);
1928 		assert_isp_power_gated(i915);
1929 	} else if (IS_VALLEYVIEW(i915)) {
1930 		mutex_lock(&power_domains->lock);
1931 		vlv_cmnlane_wa(i915);
1932 		mutex_unlock(&power_domains->lock);
1933 		assert_ved_power_gated(i915);
1934 		assert_isp_power_gated(i915);
1935 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1936 		hsw_assert_cdclk(i915);
1937 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1938 	} else if (IS_IVYBRIDGE(i915)) {
1939 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1940 	}
1941 
1942 	/*
1943 	 * Keep all power wells enabled for any dependent HW access during
1944 	 * initialization and to make sure we keep BIOS enabled display HW
1945 	 * resources powered until display HW readout is complete. We drop
1946 	 * this reference in intel_power_domains_enable().
1947 	 */
1948 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1949 	power_domains->init_wakeref =
1950 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1951 
1952 	/* Disable power support if the user asked so. */
1953 	if (!i915->display.params.disable_power_well) {
1954 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1955 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1956 										      POWER_DOMAIN_INIT);
1957 	}
1958 	intel_power_domains_sync_hw(i915);
1959 
1960 	power_domains->initializing = false;
1961 }
1962 
1963 /**
1964  * intel_power_domains_driver_remove - deinitialize hw power domain state
1965  * @i915: i915 device instance
1966  *
1967  * De-initializes the display power domain HW state. It also ensures that the
1968  * device stays powered up so that the driver can be reloaded.
1969  *
1970  * It must be called with power domains already disabled (after a call to
1971  * intel_power_domains_disable()) and must be paired with
1972  * intel_power_domains_init_hw().
1973  */
1974 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1975 {
1976 	intel_wakeref_t wakeref __maybe_unused =
1977 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1978 
1979 	/* Remove the refcount we took to keep power well support disabled. */
1980 	if (!i915->display.params.disable_power_well)
1981 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1982 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1983 
1984 	intel_display_power_flush_work_sync(i915);
1985 
1986 	intel_power_domains_verify_state(i915);
1987 
1988 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1989 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1990 }
1991 
1992 /**
1993  * intel_power_domains_sanitize_state - sanitize power domains state
1994  * @i915: i915 device instance
1995  *
1996  * Sanitize the power domains state during driver loading and system resume.
1997  * The function will disable all display power wells that BIOS has enabled
1998  * without a user for it (any user for a power well has taken a reference
1999  * on it by the time this function is called, after the state of all the
2000  * pipe, encoder, etc. HW resources have been sanitized).
2001  */
2002 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
2003 {
2004 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2005 	struct i915_power_well *power_well;
2006 
2007 	mutex_lock(&power_domains->lock);
2008 
2009 	for_each_power_well_reverse(i915, power_well) {
2010 		if (power_well->desc->always_on || power_well->count ||
2011 		    !intel_power_well_is_enabled(i915, power_well))
2012 			continue;
2013 
2014 		drm_dbg_kms(&i915->drm,
2015 			    "BIOS left unused %s power well enabled, disabling it\n",
2016 			    intel_power_well_name(power_well));
2017 		intel_power_well_disable(i915, power_well);
2018 	}
2019 
2020 	mutex_unlock(&power_domains->lock);
2021 }
2022 
2023 /**
2024  * intel_power_domains_enable - enable toggling of display power wells
2025  * @i915: i915 device instance
2026  *
2027  * Enable the ondemand enabling/disabling of the display power wells. Note that
2028  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
2029  * only at specific points of the display modeset sequence, thus they are not
2030  * affected by the intel_power_domains_enable()/disable() calls. The purpose
2031  * of these function is to keep the rest of power wells enabled until the end
2032  * of display HW readout (which will acquire the power references reflecting
2033  * the current HW state).
2034  */
2035 void intel_power_domains_enable(struct drm_i915_private *i915)
2036 {
2037 	intel_wakeref_t wakeref __maybe_unused =
2038 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
2039 
2040 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2041 	intel_power_domains_verify_state(i915);
2042 }
2043 
2044 /**
2045  * intel_power_domains_disable - disable toggling of display power wells
2046  * @i915: i915 device instance
2047  *
2048  * Disable the ondemand enabling/disabling of the display power wells. See
2049  * intel_power_domains_enable() for which power wells this call controls.
2050  */
2051 void intel_power_domains_disable(struct drm_i915_private *i915)
2052 {
2053 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2054 
2055 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2056 	power_domains->init_wakeref =
2057 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2058 
2059 	intel_power_domains_verify_state(i915);
2060 }
2061 
2062 /**
2063  * intel_power_domains_suspend - suspend power domain state
2064  * @i915: i915 device instance
2065  * @s2idle: specifies whether we go to idle, or deeper sleep
2066  *
2067  * This function prepares the hardware power domain state before entering
2068  * system suspend.
2069  *
2070  * It must be called with power domains already disabled (after a call to
2071  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2072  */
2073 void intel_power_domains_suspend(struct drm_i915_private *i915, bool s2idle)
2074 {
2075 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2076 	intel_wakeref_t wakeref __maybe_unused =
2077 		fetch_and_zero(&power_domains->init_wakeref);
2078 
2079 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2080 
2081 	/*
2082 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2083 	 * support don't manually deinit the power domains. This also means the
2084 	 * DMC firmware will stay active, it will power down any HW
2085 	 * resources as required and also enable deeper system power states
2086 	 * that would be blocked if the firmware was inactive.
2087 	 */
2088 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle &&
2089 	    intel_dmc_has_payload(i915)) {
2090 		intel_display_power_flush_work(i915);
2091 		intel_power_domains_verify_state(i915);
2092 		return;
2093 	}
2094 
2095 	/*
2096 	 * Even if power well support was disabled we still want to disable
2097 	 * power wells if power domains must be deinitialized for suspend.
2098 	 */
2099 	if (!i915->display.params.disable_power_well)
2100 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2101 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2102 
2103 	intel_display_power_flush_work(i915);
2104 	intel_power_domains_verify_state(i915);
2105 
2106 	if (DISPLAY_VER(i915) >= 11)
2107 		icl_display_core_uninit(i915);
2108 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2109 		bxt_display_core_uninit(i915);
2110 	else if (DISPLAY_VER(i915) == 9)
2111 		skl_display_core_uninit(i915);
2112 
2113 	power_domains->display_core_suspended = true;
2114 }
2115 
2116 /**
2117  * intel_power_domains_resume - resume power domain state
2118  * @i915: i915 device instance
2119  *
2120  * This function resume the hardware power domain state during system resume.
2121  *
2122  * It will return with power domain support disabled (to be enabled later by
2123  * intel_power_domains_enable()) and must be paired with
2124  * intel_power_domains_suspend().
2125  */
2126 void intel_power_domains_resume(struct drm_i915_private *i915)
2127 {
2128 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2129 
2130 	if (power_domains->display_core_suspended) {
2131 		intel_power_domains_init_hw(i915, true);
2132 		power_domains->display_core_suspended = false;
2133 	} else {
2134 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2135 		power_domains->init_wakeref =
2136 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2137 	}
2138 
2139 	intel_power_domains_verify_state(i915);
2140 }
2141 
2142 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2143 
2144 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2145 {
2146 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2147 	struct i915_power_well *power_well;
2148 
2149 	for_each_power_well(i915, power_well) {
2150 		enum intel_display_power_domain domain;
2151 
2152 		drm_dbg(&i915->drm, "%-25s %d\n",
2153 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2154 
2155 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2156 			drm_dbg(&i915->drm, "  %-23s %d\n",
2157 				intel_display_power_domain_str(domain),
2158 				power_domains->domain_use_count[domain]);
2159 	}
2160 }
2161 
2162 /**
2163  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2164  * @i915: i915 device instance
2165  *
2166  * Verify if the reference count of each power well matches its HW enabled
2167  * state and the total refcount of the domains it belongs to. This must be
2168  * called after modeset HW state sanitization, which is responsible for
2169  * acquiring reference counts for any power wells in use and disabling the
2170  * ones left on by BIOS but not required by any active output.
2171  */
2172 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2173 {
2174 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2175 	struct i915_power_well *power_well;
2176 	bool dump_domain_info;
2177 
2178 	mutex_lock(&power_domains->lock);
2179 
2180 	verify_async_put_domains_state(power_domains);
2181 
2182 	dump_domain_info = false;
2183 	for_each_power_well(i915, power_well) {
2184 		enum intel_display_power_domain domain;
2185 		int domains_count;
2186 		bool enabled;
2187 
2188 		enabled = intel_power_well_is_enabled(i915, power_well);
2189 		if ((intel_power_well_refcount(power_well) ||
2190 		     intel_power_well_is_always_on(power_well)) !=
2191 		    enabled)
2192 			drm_err(&i915->drm,
2193 				"power well %s state mismatch (refcount %d/enabled %d)",
2194 				intel_power_well_name(power_well),
2195 				intel_power_well_refcount(power_well), enabled);
2196 
2197 		domains_count = 0;
2198 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2199 			domains_count += power_domains->domain_use_count[domain];
2200 
2201 		if (intel_power_well_refcount(power_well) != domains_count) {
2202 			drm_err(&i915->drm,
2203 				"power well %s refcount/domain refcount mismatch "
2204 				"(refcount %d/domains refcount %d)\n",
2205 				intel_power_well_name(power_well),
2206 				intel_power_well_refcount(power_well),
2207 				domains_count);
2208 			dump_domain_info = true;
2209 		}
2210 	}
2211 
2212 	if (dump_domain_info) {
2213 		static bool dumped;
2214 
2215 		if (!dumped) {
2216 			intel_power_domains_dump_info(i915);
2217 			dumped = true;
2218 		}
2219 	}
2220 
2221 	mutex_unlock(&power_domains->lock);
2222 }
2223 
2224 #else
2225 
2226 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2227 {
2228 }
2229 
2230 #endif
2231 
2232 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2233 {
2234 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2235 	    IS_BROXTON(i915)) {
2236 		bxt_enable_dc9(i915);
2237 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2238 		hsw_enable_pc8(i915);
2239 	}
2240 
2241 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2242 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2243 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2244 }
2245 
2246 void intel_display_power_resume_early(struct drm_i915_private *i915)
2247 {
2248 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2249 	    IS_BROXTON(i915)) {
2250 		gen9_sanitize_dc_state(i915);
2251 		bxt_disable_dc9(i915);
2252 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2253 		hsw_disable_pc8(i915);
2254 	}
2255 
2256 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2257 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2258 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2259 }
2260 
2261 void intel_display_power_suspend(struct drm_i915_private *i915)
2262 {
2263 	if (DISPLAY_VER(i915) >= 11) {
2264 		icl_display_core_uninit(i915);
2265 		bxt_enable_dc9(i915);
2266 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2267 		bxt_display_core_uninit(i915);
2268 		bxt_enable_dc9(i915);
2269 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2270 		hsw_enable_pc8(i915);
2271 	}
2272 }
2273 
2274 void intel_display_power_resume(struct drm_i915_private *i915)
2275 {
2276 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2277 
2278 	if (DISPLAY_VER(i915) >= 11) {
2279 		bxt_disable_dc9(i915);
2280 		icl_display_core_init(i915, true);
2281 		if (intel_dmc_has_payload(i915)) {
2282 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2283 				skl_enable_dc6(i915);
2284 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2285 				gen9_enable_dc5(i915);
2286 		}
2287 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2288 		bxt_disable_dc9(i915);
2289 		bxt_display_core_init(i915, true);
2290 		if (intel_dmc_has_payload(i915) &&
2291 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2292 			gen9_enable_dc5(i915);
2293 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2294 		hsw_disable_pc8(i915);
2295 	}
2296 }
2297 
2298 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2299 {
2300 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2301 	int i;
2302 
2303 	mutex_lock(&power_domains->lock);
2304 
2305 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2306 	for (i = 0; i < power_domains->power_well_count; i++) {
2307 		struct i915_power_well *power_well;
2308 		enum intel_display_power_domain power_domain;
2309 
2310 		power_well = &power_domains->power_wells[i];
2311 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2312 			   intel_power_well_refcount(power_well));
2313 
2314 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2315 			seq_printf(m, "  %-23s %d\n",
2316 				   intel_display_power_domain_str(power_domain),
2317 				   power_domains->domain_use_count[power_domain]);
2318 	}
2319 
2320 	mutex_unlock(&power_domains->lock);
2321 }
2322 
2323 struct intel_ddi_port_domains {
2324 	enum port port_start;
2325 	enum port port_end;
2326 	enum aux_ch aux_ch_start;
2327 	enum aux_ch aux_ch_end;
2328 
2329 	enum intel_display_power_domain ddi_lanes;
2330 	enum intel_display_power_domain ddi_io;
2331 	enum intel_display_power_domain aux_io;
2332 	enum intel_display_power_domain aux_legacy_usbc;
2333 	enum intel_display_power_domain aux_tbt;
2334 };
2335 
2336 static const struct intel_ddi_port_domains
2337 i9xx_port_domains[] = {
2338 	{
2339 		.port_start = PORT_A,
2340 		.port_end = PORT_F,
2341 		.aux_ch_start = AUX_CH_A,
2342 		.aux_ch_end = AUX_CH_F,
2343 
2344 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2345 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2346 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2347 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2348 		.aux_tbt = POWER_DOMAIN_INVALID,
2349 	},
2350 };
2351 
2352 static const struct intel_ddi_port_domains
2353 d11_port_domains[] = {
2354 	{
2355 		.port_start = PORT_A,
2356 		.port_end = PORT_B,
2357 		.aux_ch_start = AUX_CH_A,
2358 		.aux_ch_end = AUX_CH_B,
2359 
2360 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2361 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2362 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2363 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2364 		.aux_tbt = POWER_DOMAIN_INVALID,
2365 	}, {
2366 		.port_start = PORT_C,
2367 		.port_end = PORT_F,
2368 		.aux_ch_start = AUX_CH_C,
2369 		.aux_ch_end = AUX_CH_F,
2370 
2371 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2372 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2373 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2374 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2375 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2376 	},
2377 };
2378 
2379 static const struct intel_ddi_port_domains
2380 d12_port_domains[] = {
2381 	{
2382 		.port_start = PORT_A,
2383 		.port_end = PORT_C,
2384 		.aux_ch_start = AUX_CH_A,
2385 		.aux_ch_end = AUX_CH_C,
2386 
2387 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2388 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2389 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2390 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2391 		.aux_tbt = POWER_DOMAIN_INVALID,
2392 	}, {
2393 		.port_start = PORT_TC1,
2394 		.port_end = PORT_TC6,
2395 		.aux_ch_start = AUX_CH_USBC1,
2396 		.aux_ch_end = AUX_CH_USBC6,
2397 
2398 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2399 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2400 		.aux_io = POWER_DOMAIN_INVALID,
2401 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2402 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2403 	},
2404 };
2405 
2406 static const struct intel_ddi_port_domains
2407 d13_port_domains[] = {
2408 	{
2409 		.port_start = PORT_A,
2410 		.port_end = PORT_C,
2411 		.aux_ch_start = AUX_CH_A,
2412 		.aux_ch_end = AUX_CH_C,
2413 
2414 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2415 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2416 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2417 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2418 		.aux_tbt = POWER_DOMAIN_INVALID,
2419 	}, {
2420 		.port_start = PORT_TC1,
2421 		.port_end = PORT_TC4,
2422 		.aux_ch_start = AUX_CH_USBC1,
2423 		.aux_ch_end = AUX_CH_USBC4,
2424 
2425 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2426 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2427 		.aux_io = POWER_DOMAIN_INVALID,
2428 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2429 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2430 	}, {
2431 		.port_start = PORT_D_XELPD,
2432 		.port_end = PORT_E_XELPD,
2433 		.aux_ch_start = AUX_CH_D_XELPD,
2434 		.aux_ch_end = AUX_CH_E_XELPD,
2435 
2436 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2437 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2438 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2439 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2440 		.aux_tbt = POWER_DOMAIN_INVALID,
2441 	},
2442 };
2443 
2444 static void
2445 intel_port_domains_for_platform(struct drm_i915_private *i915,
2446 				const struct intel_ddi_port_domains **domains,
2447 				int *domains_size)
2448 {
2449 	if (DISPLAY_VER(i915) >= 13) {
2450 		*domains = d13_port_domains;
2451 		*domains_size = ARRAY_SIZE(d13_port_domains);
2452 	} else if (DISPLAY_VER(i915) >= 12) {
2453 		*domains = d12_port_domains;
2454 		*domains_size = ARRAY_SIZE(d12_port_domains);
2455 	} else if (DISPLAY_VER(i915) >= 11) {
2456 		*domains = d11_port_domains;
2457 		*domains_size = ARRAY_SIZE(d11_port_domains);
2458 	} else {
2459 		*domains = i9xx_port_domains;
2460 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2461 	}
2462 }
2463 
2464 static const struct intel_ddi_port_domains *
2465 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2466 {
2467 	const struct intel_ddi_port_domains *domains;
2468 	int domains_size;
2469 	int i;
2470 
2471 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2472 	for (i = 0; i < domains_size; i++)
2473 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2474 			return &domains[i];
2475 
2476 	return NULL;
2477 }
2478 
2479 enum intel_display_power_domain
2480 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2481 {
2482 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2483 
2484 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2485 		return POWER_DOMAIN_PORT_DDI_IO_A;
2486 
2487 	return domains->ddi_io + (int)(port - domains->port_start);
2488 }
2489 
2490 enum intel_display_power_domain
2491 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2492 {
2493 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2494 
2495 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2496 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2497 
2498 	return domains->ddi_lanes + (int)(port - domains->port_start);
2499 }
2500 
2501 static const struct intel_ddi_port_domains *
2502 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2503 {
2504 	const struct intel_ddi_port_domains *domains;
2505 	int domains_size;
2506 	int i;
2507 
2508 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2509 	for (i = 0; i < domains_size; i++)
2510 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2511 			return &domains[i];
2512 
2513 	return NULL;
2514 }
2515 
2516 enum intel_display_power_domain
2517 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2518 {
2519 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2520 
2521 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2522 		return POWER_DOMAIN_AUX_IO_A;
2523 
2524 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2525 }
2526 
2527 enum intel_display_power_domain
2528 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2529 {
2530 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2531 
2532 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2533 		return POWER_DOMAIN_AUX_A;
2534 
2535 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2536 }
2537 
2538 enum intel_display_power_domain
2539 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2540 {
2541 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2542 
2543 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2544 		return POWER_DOMAIN_AUX_TBT1;
2545 
2546 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2547 }
2548