xref: /linux/drivers/gpu/drm/i915/display/intel_display_power.c (revision bcfe43f0ea77c42c2154fb79b99b7d1d82ac3231)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "i915_reg.h"
11 #include "intel_backlight_regs.h"
12 #include "intel_cdclk.h"
13 #include "intel_clock_gating.h"
14 #include "intel_combo_phy.h"
15 #include "intel_de.h"
16 #include "intel_display_power.h"
17 #include "intel_display_power_map.h"
18 #include "intel_display_power_well.h"
19 #include "intel_display_types.h"
20 #include "intel_dmc.h"
21 #include "intel_mchbar_regs.h"
22 #include "intel_pch_refclk.h"
23 #include "intel_pcode.h"
24 #include "intel_pmdemand.h"
25 #include "intel_pps_regs.h"
26 #include "intel_snps_phy.h"
27 #include "skl_watermark.h"
28 #include "skl_watermark_regs.h"
29 #include "vlv_sideband.h"
30 
31 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
32 	for_each_power_well(__dev_priv, __power_well)				\
33 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
34 
35 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
36 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
37 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
38 
39 static const char *
40 intel_display_power_domain_str(enum intel_display_power_domain domain)
41 {
42 	switch (domain) {
43 	case POWER_DOMAIN_DISPLAY_CORE:
44 		return "DISPLAY_CORE";
45 	case POWER_DOMAIN_PIPE_A:
46 		return "PIPE_A";
47 	case POWER_DOMAIN_PIPE_B:
48 		return "PIPE_B";
49 	case POWER_DOMAIN_PIPE_C:
50 		return "PIPE_C";
51 	case POWER_DOMAIN_PIPE_D:
52 		return "PIPE_D";
53 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
54 		return "PIPE_PANEL_FITTER_A";
55 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
56 		return "PIPE_PANEL_FITTER_B";
57 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
58 		return "PIPE_PANEL_FITTER_C";
59 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
60 		return "PIPE_PANEL_FITTER_D";
61 	case POWER_DOMAIN_TRANSCODER_A:
62 		return "TRANSCODER_A";
63 	case POWER_DOMAIN_TRANSCODER_B:
64 		return "TRANSCODER_B";
65 	case POWER_DOMAIN_TRANSCODER_C:
66 		return "TRANSCODER_C";
67 	case POWER_DOMAIN_TRANSCODER_D:
68 		return "TRANSCODER_D";
69 	case POWER_DOMAIN_TRANSCODER_EDP:
70 		return "TRANSCODER_EDP";
71 	case POWER_DOMAIN_TRANSCODER_DSI_A:
72 		return "TRANSCODER_DSI_A";
73 	case POWER_DOMAIN_TRANSCODER_DSI_C:
74 		return "TRANSCODER_DSI_C";
75 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
76 		return "TRANSCODER_VDSC_PW2";
77 	case POWER_DOMAIN_PORT_DDI_LANES_A:
78 		return "PORT_DDI_LANES_A";
79 	case POWER_DOMAIN_PORT_DDI_LANES_B:
80 		return "PORT_DDI_LANES_B";
81 	case POWER_DOMAIN_PORT_DDI_LANES_C:
82 		return "PORT_DDI_LANES_C";
83 	case POWER_DOMAIN_PORT_DDI_LANES_D:
84 		return "PORT_DDI_LANES_D";
85 	case POWER_DOMAIN_PORT_DDI_LANES_E:
86 		return "PORT_DDI_LANES_E";
87 	case POWER_DOMAIN_PORT_DDI_LANES_F:
88 		return "PORT_DDI_LANES_F";
89 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
90 		return "PORT_DDI_LANES_TC1";
91 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
92 		return "PORT_DDI_LANES_TC2";
93 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
94 		return "PORT_DDI_LANES_TC3";
95 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
96 		return "PORT_DDI_LANES_TC4";
97 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
98 		return "PORT_DDI_LANES_TC5";
99 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
100 		return "PORT_DDI_LANES_TC6";
101 	case POWER_DOMAIN_PORT_DDI_IO_A:
102 		return "PORT_DDI_IO_A";
103 	case POWER_DOMAIN_PORT_DDI_IO_B:
104 		return "PORT_DDI_IO_B";
105 	case POWER_DOMAIN_PORT_DDI_IO_C:
106 		return "PORT_DDI_IO_C";
107 	case POWER_DOMAIN_PORT_DDI_IO_D:
108 		return "PORT_DDI_IO_D";
109 	case POWER_DOMAIN_PORT_DDI_IO_E:
110 		return "PORT_DDI_IO_E";
111 	case POWER_DOMAIN_PORT_DDI_IO_F:
112 		return "PORT_DDI_IO_F";
113 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
114 		return "PORT_DDI_IO_TC1";
115 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
116 		return "PORT_DDI_IO_TC2";
117 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
118 		return "PORT_DDI_IO_TC3";
119 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
120 		return "PORT_DDI_IO_TC4";
121 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
122 		return "PORT_DDI_IO_TC5";
123 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
124 		return "PORT_DDI_IO_TC6";
125 	case POWER_DOMAIN_PORT_DSI:
126 		return "PORT_DSI";
127 	case POWER_DOMAIN_PORT_CRT:
128 		return "PORT_CRT";
129 	case POWER_DOMAIN_PORT_OTHER:
130 		return "PORT_OTHER";
131 	case POWER_DOMAIN_VGA:
132 		return "VGA";
133 	case POWER_DOMAIN_AUDIO_MMIO:
134 		return "AUDIO_MMIO";
135 	case POWER_DOMAIN_AUDIO_PLAYBACK:
136 		return "AUDIO_PLAYBACK";
137 	case POWER_DOMAIN_AUX_IO_A:
138 		return "AUX_IO_A";
139 	case POWER_DOMAIN_AUX_IO_B:
140 		return "AUX_IO_B";
141 	case POWER_DOMAIN_AUX_IO_C:
142 		return "AUX_IO_C";
143 	case POWER_DOMAIN_AUX_IO_D:
144 		return "AUX_IO_D";
145 	case POWER_DOMAIN_AUX_IO_E:
146 		return "AUX_IO_E";
147 	case POWER_DOMAIN_AUX_IO_F:
148 		return "AUX_IO_F";
149 	case POWER_DOMAIN_AUX_A:
150 		return "AUX_A";
151 	case POWER_DOMAIN_AUX_B:
152 		return "AUX_B";
153 	case POWER_DOMAIN_AUX_C:
154 		return "AUX_C";
155 	case POWER_DOMAIN_AUX_D:
156 		return "AUX_D";
157 	case POWER_DOMAIN_AUX_E:
158 		return "AUX_E";
159 	case POWER_DOMAIN_AUX_F:
160 		return "AUX_F";
161 	case POWER_DOMAIN_AUX_USBC1:
162 		return "AUX_USBC1";
163 	case POWER_DOMAIN_AUX_USBC2:
164 		return "AUX_USBC2";
165 	case POWER_DOMAIN_AUX_USBC3:
166 		return "AUX_USBC3";
167 	case POWER_DOMAIN_AUX_USBC4:
168 		return "AUX_USBC4";
169 	case POWER_DOMAIN_AUX_USBC5:
170 		return "AUX_USBC5";
171 	case POWER_DOMAIN_AUX_USBC6:
172 		return "AUX_USBC6";
173 	case POWER_DOMAIN_AUX_TBT1:
174 		return "AUX_TBT1";
175 	case POWER_DOMAIN_AUX_TBT2:
176 		return "AUX_TBT2";
177 	case POWER_DOMAIN_AUX_TBT3:
178 		return "AUX_TBT3";
179 	case POWER_DOMAIN_AUX_TBT4:
180 		return "AUX_TBT4";
181 	case POWER_DOMAIN_AUX_TBT5:
182 		return "AUX_TBT5";
183 	case POWER_DOMAIN_AUX_TBT6:
184 		return "AUX_TBT6";
185 	case POWER_DOMAIN_GMBUS:
186 		return "GMBUS";
187 	case POWER_DOMAIN_INIT:
188 		return "INIT";
189 	case POWER_DOMAIN_GT_IRQ:
190 		return "GT_IRQ";
191 	case POWER_DOMAIN_DC_OFF:
192 		return "DC_OFF";
193 	case POWER_DOMAIN_TC_COLD_OFF:
194 		return "TC_COLD_OFF";
195 	default:
196 		MISSING_CASE(domain);
197 		return "?";
198 	}
199 }
200 
201 static bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
202 					     enum intel_display_power_domain domain)
203 {
204 	struct i915_power_well *power_well;
205 	bool is_enabled;
206 
207 	if (pm_runtime_suspended(dev_priv->drm.dev))
208 		return false;
209 
210 	is_enabled = true;
211 
212 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
213 		if (intel_power_well_is_always_on(power_well))
214 			continue;
215 
216 		if (!intel_power_well_is_enabled_cached(power_well)) {
217 			is_enabled = false;
218 			break;
219 		}
220 	}
221 
222 	return is_enabled;
223 }
224 
225 /**
226  * intel_display_power_is_enabled - check for a power domain
227  * @dev_priv: i915 device instance
228  * @domain: power domain to check
229  *
230  * This function can be used to check the hw power domain state. It is mostly
231  * used in hardware state readout functions. Everywhere else code should rely
232  * upon explicit power domain reference counting to ensure that the hardware
233  * block is powered up before accessing it.
234  *
235  * Callers must hold the relevant modesetting locks to ensure that concurrent
236  * threads can't disable the power well while the caller tries to read a few
237  * registers.
238  *
239  * Returns:
240  * True when the power domain is enabled, false otherwise.
241  */
242 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
243 				    enum intel_display_power_domain domain)
244 {
245 	struct i915_power_domains *power_domains;
246 	bool ret;
247 
248 	power_domains = &dev_priv->display.power.domains;
249 
250 	mutex_lock(&power_domains->lock);
251 	ret = __intel_display_power_is_enabled(dev_priv, domain);
252 	mutex_unlock(&power_domains->lock);
253 
254 	return ret;
255 }
256 
257 static u32
258 sanitize_target_dc_state(struct drm_i915_private *i915,
259 			 u32 target_dc_state)
260 {
261 	struct i915_power_domains *power_domains = &i915->display.power.domains;
262 	static const u32 states[] = {
263 		DC_STATE_EN_UPTO_DC6,
264 		DC_STATE_EN_UPTO_DC5,
265 		DC_STATE_EN_DC3CO,
266 		DC_STATE_DISABLE,
267 	};
268 	int i;
269 
270 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
271 		if (target_dc_state != states[i])
272 			continue;
273 
274 		if (power_domains->allowed_dc_mask & target_dc_state)
275 			break;
276 
277 		target_dc_state = states[i + 1];
278 	}
279 
280 	return target_dc_state;
281 }
282 
283 /**
284  * intel_display_power_set_target_dc_state - Set target dc state.
285  * @dev_priv: i915 device
286  * @state: state which needs to be set as target_dc_state.
287  *
288  * This function set the "DC off" power well target_dc_state,
289  * based upon this target_dc_stste, "DC off" power well will
290  * enable desired DC state.
291  */
292 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
293 					     u32 state)
294 {
295 	struct i915_power_well *power_well;
296 	bool dc_off_enabled;
297 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
298 
299 	mutex_lock(&power_domains->lock);
300 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
301 
302 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
303 		goto unlock;
304 
305 	state = sanitize_target_dc_state(dev_priv, state);
306 
307 	if (state == power_domains->target_dc_state)
308 		goto unlock;
309 
310 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
311 	/*
312 	 * If DC off power well is disabled, need to enable and disable the
313 	 * DC off power well to effect target DC state.
314 	 */
315 	if (!dc_off_enabled)
316 		intel_power_well_enable(dev_priv, power_well);
317 
318 	power_domains->target_dc_state = state;
319 
320 	if (!dc_off_enabled)
321 		intel_power_well_disable(dev_priv, power_well);
322 
323 unlock:
324 	mutex_unlock(&power_domains->lock);
325 }
326 
327 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
328 				     struct intel_power_domain_mask *mask)
329 {
330 	bitmap_or(mask->bits,
331 		  power_domains->async_put_domains[0].bits,
332 		  power_domains->async_put_domains[1].bits,
333 		  POWER_DOMAIN_NUM);
334 }
335 
336 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
337 
338 static bool
339 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
340 {
341 	struct drm_i915_private *i915 = container_of(power_domains,
342 						     struct drm_i915_private,
343 						     display.power.domains);
344 
345 	return !drm_WARN_ON(&i915->drm,
346 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
347 					      power_domains->async_put_domains[1].bits,
348 					      POWER_DOMAIN_NUM));
349 }
350 
351 static bool
352 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
353 {
354 	struct drm_i915_private *i915 = container_of(power_domains,
355 						     struct drm_i915_private,
356 						     display.power.domains);
357 	struct intel_power_domain_mask async_put_mask;
358 	enum intel_display_power_domain domain;
359 	bool err = false;
360 
361 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
362 	__async_put_domains_mask(power_domains, &async_put_mask);
363 	err |= drm_WARN_ON(&i915->drm,
364 			   !!power_domains->async_put_wakeref !=
365 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
366 
367 	for_each_power_domain(domain, &async_put_mask)
368 		err |= drm_WARN_ON(&i915->drm,
369 				   power_domains->domain_use_count[domain] != 1);
370 
371 	return !err;
372 }
373 
374 static void print_power_domains(struct i915_power_domains *power_domains,
375 				const char *prefix, struct intel_power_domain_mask *mask)
376 {
377 	struct drm_i915_private *i915 = container_of(power_domains,
378 						     struct drm_i915_private,
379 						     display.power.domains);
380 	enum intel_display_power_domain domain;
381 
382 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
383 	for_each_power_domain(domain, mask)
384 		drm_dbg(&i915->drm, "%s use_count %d\n",
385 			intel_display_power_domain_str(domain),
386 			power_domains->domain_use_count[domain]);
387 }
388 
389 static void
390 print_async_put_domains_state(struct i915_power_domains *power_domains)
391 {
392 	struct drm_i915_private *i915 = container_of(power_domains,
393 						     struct drm_i915_private,
394 						     display.power.domains);
395 
396 	drm_dbg(&i915->drm, "async_put_wakeref: %s\n",
397 		str_yes_no(power_domains->async_put_wakeref));
398 
399 	print_power_domains(power_domains, "async_put_domains[0]",
400 			    &power_domains->async_put_domains[0]);
401 	print_power_domains(power_domains, "async_put_domains[1]",
402 			    &power_domains->async_put_domains[1]);
403 }
404 
405 static void
406 verify_async_put_domains_state(struct i915_power_domains *power_domains)
407 {
408 	if (!__async_put_domains_state_ok(power_domains))
409 		print_async_put_domains_state(power_domains);
410 }
411 
412 #else
413 
414 static void
415 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
416 {
417 }
418 
419 static void
420 verify_async_put_domains_state(struct i915_power_domains *power_domains)
421 {
422 }
423 
424 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
425 
426 static void async_put_domains_mask(struct i915_power_domains *power_domains,
427 				   struct intel_power_domain_mask *mask)
428 
429 {
430 	assert_async_put_domain_masks_disjoint(power_domains);
431 
432 	__async_put_domains_mask(power_domains, mask);
433 }
434 
435 static void
436 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
437 			       enum intel_display_power_domain domain)
438 {
439 	assert_async_put_domain_masks_disjoint(power_domains);
440 
441 	clear_bit(domain, power_domains->async_put_domains[0].bits);
442 	clear_bit(domain, power_domains->async_put_domains[1].bits);
443 }
444 
445 static void
446 cancel_async_put_work(struct i915_power_domains *power_domains, bool sync)
447 {
448 	if (sync)
449 		cancel_delayed_work_sync(&power_domains->async_put_work);
450 	else
451 		cancel_delayed_work(&power_domains->async_put_work);
452 
453 	power_domains->async_put_next_delay = 0;
454 }
455 
456 static bool
457 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
458 				       enum intel_display_power_domain domain)
459 {
460 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
461 	struct intel_power_domain_mask async_put_mask;
462 	bool ret = false;
463 
464 	async_put_domains_mask(power_domains, &async_put_mask);
465 	if (!test_bit(domain, async_put_mask.bits))
466 		goto out_verify;
467 
468 	async_put_domains_clear_domain(power_domains, domain);
469 
470 	ret = true;
471 
472 	async_put_domains_mask(power_domains, &async_put_mask);
473 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
474 		goto out_verify;
475 
476 	cancel_async_put_work(power_domains, false);
477 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
478 				 fetch_and_zero(&power_domains->async_put_wakeref));
479 out_verify:
480 	verify_async_put_domains_state(power_domains);
481 
482 	return ret;
483 }
484 
485 static void
486 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
487 				 enum intel_display_power_domain domain)
488 {
489 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
490 	struct i915_power_well *power_well;
491 
492 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
493 		return;
494 
495 	for_each_power_domain_well(dev_priv, power_well, domain)
496 		intel_power_well_get(dev_priv, power_well);
497 
498 	power_domains->domain_use_count[domain]++;
499 }
500 
501 /**
502  * intel_display_power_get - grab a power domain reference
503  * @dev_priv: i915 device instance
504  * @domain: power domain to reference
505  *
506  * This function grabs a power domain reference for @domain and ensures that the
507  * power domain and all its parents are powered up. Therefore users should only
508  * grab a reference to the innermost power domain they need.
509  *
510  * Any power domain reference obtained by this function must have a symmetric
511  * call to intel_display_power_put() to release the reference again.
512  */
513 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
514 					enum intel_display_power_domain domain)
515 {
516 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
517 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
518 
519 	mutex_lock(&power_domains->lock);
520 	__intel_display_power_get_domain(dev_priv, domain);
521 	mutex_unlock(&power_domains->lock);
522 
523 	return wakeref;
524 }
525 
526 /**
527  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
528  * @dev_priv: i915 device instance
529  * @domain: power domain to reference
530  *
531  * This function grabs a power domain reference for @domain and ensures that the
532  * power domain and all its parents are powered up. Therefore users should only
533  * grab a reference to the innermost power domain they need.
534  *
535  * Any power domain reference obtained by this function must have a symmetric
536  * call to intel_display_power_put() to release the reference again.
537  */
538 intel_wakeref_t
539 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
540 				   enum intel_display_power_domain domain)
541 {
542 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
543 	intel_wakeref_t wakeref;
544 	bool is_enabled;
545 
546 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
547 	if (!wakeref)
548 		return NULL;
549 
550 	mutex_lock(&power_domains->lock);
551 
552 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
553 		__intel_display_power_get_domain(dev_priv, domain);
554 		is_enabled = true;
555 	} else {
556 		is_enabled = false;
557 	}
558 
559 	mutex_unlock(&power_domains->lock);
560 
561 	if (!is_enabled) {
562 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
563 		wakeref = NULL;
564 	}
565 
566 	return wakeref;
567 }
568 
569 static void
570 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
571 				 enum intel_display_power_domain domain)
572 {
573 	struct i915_power_domains *power_domains;
574 	struct i915_power_well *power_well;
575 	const char *name = intel_display_power_domain_str(domain);
576 	struct intel_power_domain_mask async_put_mask;
577 
578 	power_domains = &dev_priv->display.power.domains;
579 
580 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
581 		 "Use count on domain %s is already zero\n",
582 		 name);
583 	async_put_domains_mask(power_domains, &async_put_mask);
584 	drm_WARN(&dev_priv->drm,
585 		 test_bit(domain, async_put_mask.bits),
586 		 "Async disabling of domain %s is pending\n",
587 		 name);
588 
589 	power_domains->domain_use_count[domain]--;
590 
591 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
592 		intel_power_well_put(dev_priv, power_well);
593 }
594 
595 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
596 				      enum intel_display_power_domain domain)
597 {
598 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
599 
600 	mutex_lock(&power_domains->lock);
601 	__intel_display_power_put_domain(dev_priv, domain);
602 	mutex_unlock(&power_domains->lock);
603 }
604 
605 static void
606 queue_async_put_domains_work(struct i915_power_domains *power_domains,
607 			     intel_wakeref_t wakeref,
608 			     int delay_ms)
609 {
610 	struct drm_i915_private *i915 = container_of(power_domains,
611 						     struct drm_i915_private,
612 						     display.power.domains);
613 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
614 	power_domains->async_put_wakeref = wakeref;
615 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
616 						    &power_domains->async_put_work,
617 						    msecs_to_jiffies(delay_ms)));
618 }
619 
620 static void
621 release_async_put_domains(struct i915_power_domains *power_domains,
622 			  struct intel_power_domain_mask *mask)
623 {
624 	struct drm_i915_private *dev_priv =
625 		container_of(power_domains, struct drm_i915_private,
626 			     display.power.domains);
627 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
628 	enum intel_display_power_domain domain;
629 	intel_wakeref_t wakeref;
630 
631 	wakeref = intel_runtime_pm_get_noresume(rpm);
632 
633 	for_each_power_domain(domain, mask) {
634 		/* Clear before put, so put's sanity check is happy. */
635 		async_put_domains_clear_domain(power_domains, domain);
636 		__intel_display_power_put_domain(dev_priv, domain);
637 	}
638 
639 	intel_runtime_pm_put(rpm, wakeref);
640 }
641 
642 static void
643 intel_display_power_put_async_work(struct work_struct *work)
644 {
645 	struct drm_i915_private *dev_priv =
646 		container_of(work, struct drm_i915_private,
647 			     display.power.domains.async_put_work.work);
648 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
649 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
650 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
651 	intel_wakeref_t old_work_wakeref = NULL;
652 
653 	mutex_lock(&power_domains->lock);
654 
655 	/*
656 	 * Bail out if all the domain refs pending to be released were grabbed
657 	 * by subsequent gets or a flush_work.
658 	 */
659 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
660 	if (!old_work_wakeref)
661 		goto out_verify;
662 
663 	release_async_put_domains(power_domains,
664 				  &power_domains->async_put_domains[0]);
665 
666 	/*
667 	 * Cancel the work that got queued after this one got dequeued,
668 	 * since here we released the corresponding async-put reference.
669 	 */
670 	cancel_async_put_work(power_domains, false);
671 
672 	/* Requeue the work if more domains were async put meanwhile. */
673 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
674 		bitmap_copy(power_domains->async_put_domains[0].bits,
675 			    power_domains->async_put_domains[1].bits,
676 			    POWER_DOMAIN_NUM);
677 		bitmap_zero(power_domains->async_put_domains[1].bits,
678 			    POWER_DOMAIN_NUM);
679 		queue_async_put_domains_work(power_domains,
680 					     fetch_and_zero(&new_work_wakeref),
681 					     power_domains->async_put_next_delay);
682 		power_domains->async_put_next_delay = 0;
683 	}
684 
685 out_verify:
686 	verify_async_put_domains_state(power_domains);
687 
688 	mutex_unlock(&power_domains->lock);
689 
690 	if (old_work_wakeref)
691 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
692 	if (new_work_wakeref)
693 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
694 }
695 
696 /**
697  * __intel_display_power_put_async - release a power domain reference asynchronously
698  * @i915: i915 device instance
699  * @domain: power domain to reference
700  * @wakeref: wakeref acquired for the reference that is being released
701  * @delay_ms: delay of powering down the power domain
702  *
703  * This function drops the power domain reference obtained by
704  * intel_display_power_get*() and schedules a work to power down the
705  * corresponding hardware block if this is the last reference.
706  * The power down is delayed by @delay_ms if this is >= 0, or by a default
707  * 100 ms otherwise.
708  */
709 void __intel_display_power_put_async(struct drm_i915_private *i915,
710 				     enum intel_display_power_domain domain,
711 				     intel_wakeref_t wakeref,
712 				     int delay_ms)
713 {
714 	struct i915_power_domains *power_domains = &i915->display.power.domains;
715 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
716 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
717 
718 	delay_ms = delay_ms >= 0 ? delay_ms : 100;
719 
720 	mutex_lock(&power_domains->lock);
721 
722 	if (power_domains->domain_use_count[domain] > 1) {
723 		__intel_display_power_put_domain(i915, domain);
724 
725 		goto out_verify;
726 	}
727 
728 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
729 
730 	/* Let a pending work requeue itself or queue a new one. */
731 	if (power_domains->async_put_wakeref) {
732 		set_bit(domain, power_domains->async_put_domains[1].bits);
733 		power_domains->async_put_next_delay = max(power_domains->async_put_next_delay,
734 							  delay_ms);
735 	} else {
736 		set_bit(domain, power_domains->async_put_domains[0].bits);
737 		queue_async_put_domains_work(power_domains,
738 					     fetch_and_zero(&work_wakeref),
739 					     delay_ms);
740 	}
741 
742 out_verify:
743 	verify_async_put_domains_state(power_domains);
744 
745 	mutex_unlock(&power_domains->lock);
746 
747 	if (work_wakeref)
748 		intel_runtime_pm_put_raw(rpm, work_wakeref);
749 
750 	intel_runtime_pm_put(rpm, wakeref);
751 }
752 
753 /**
754  * intel_display_power_flush_work - flushes the async display power disabling work
755  * @i915: i915 device instance
756  *
757  * Flushes any pending work that was scheduled by a preceding
758  * intel_display_power_put_async() call, completing the disabling of the
759  * corresponding power domains.
760  *
761  * Note that the work handler function may still be running after this
762  * function returns; to ensure that the work handler isn't running use
763  * intel_display_power_flush_work_sync() instead.
764  */
765 void intel_display_power_flush_work(struct drm_i915_private *i915)
766 {
767 	struct i915_power_domains *power_domains = &i915->display.power.domains;
768 	struct intel_power_domain_mask async_put_mask;
769 	intel_wakeref_t work_wakeref;
770 
771 	mutex_lock(&power_domains->lock);
772 
773 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
774 	if (!work_wakeref)
775 		goto out_verify;
776 
777 	async_put_domains_mask(power_domains, &async_put_mask);
778 	release_async_put_domains(power_domains, &async_put_mask);
779 	cancel_async_put_work(power_domains, false);
780 
781 out_verify:
782 	verify_async_put_domains_state(power_domains);
783 
784 	mutex_unlock(&power_domains->lock);
785 
786 	if (work_wakeref)
787 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
788 }
789 
790 /**
791  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
792  * @i915: i915 device instance
793  *
794  * Like intel_display_power_flush_work(), but also ensure that the work
795  * handler function is not running any more when this function returns.
796  */
797 static void
798 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
799 {
800 	struct i915_power_domains *power_domains = &i915->display.power.domains;
801 
802 	intel_display_power_flush_work(i915);
803 	cancel_async_put_work(power_domains, true);
804 
805 	verify_async_put_domains_state(power_domains);
806 
807 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
808 }
809 
810 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
811 /**
812  * intel_display_power_put - release a power domain reference
813  * @dev_priv: i915 device instance
814  * @domain: power domain to reference
815  * @wakeref: wakeref acquired for the reference that is being released
816  *
817  * This function drops the power domain reference obtained by
818  * intel_display_power_get() and might power down the corresponding hardware
819  * block right away if this is the last reference.
820  */
821 void intel_display_power_put(struct drm_i915_private *dev_priv,
822 			     enum intel_display_power_domain domain,
823 			     intel_wakeref_t wakeref)
824 {
825 	__intel_display_power_put(dev_priv, domain);
826 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
827 }
828 #else
829 /**
830  * intel_display_power_put_unchecked - release an unchecked power domain reference
831  * @dev_priv: i915 device instance
832  * @domain: power domain to reference
833  *
834  * This function drops the power domain reference obtained by
835  * intel_display_power_get() and might power down the corresponding hardware
836  * block right away if this is the last reference.
837  *
838  * This function is only for the power domain code's internal use to suppress wakeref
839  * tracking when the correspondig debug kconfig option is disabled, should not
840  * be used otherwise.
841  */
842 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
843 				       enum intel_display_power_domain domain)
844 {
845 	__intel_display_power_put(dev_priv, domain);
846 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
847 }
848 #endif
849 
850 void
851 intel_display_power_get_in_set(struct drm_i915_private *i915,
852 			       struct intel_display_power_domain_set *power_domain_set,
853 			       enum intel_display_power_domain domain)
854 {
855 	intel_wakeref_t __maybe_unused wf;
856 
857 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
858 
859 	wf = intel_display_power_get(i915, domain);
860 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
861 	power_domain_set->wakerefs[domain] = wf;
862 #endif
863 	set_bit(domain, power_domain_set->mask.bits);
864 }
865 
866 bool
867 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
868 					  struct intel_display_power_domain_set *power_domain_set,
869 					  enum intel_display_power_domain domain)
870 {
871 	intel_wakeref_t wf;
872 
873 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
874 
875 	wf = intel_display_power_get_if_enabled(i915, domain);
876 	if (!wf)
877 		return false;
878 
879 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
880 	power_domain_set->wakerefs[domain] = wf;
881 #endif
882 	set_bit(domain, power_domain_set->mask.bits);
883 
884 	return true;
885 }
886 
887 void
888 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
889 				    struct intel_display_power_domain_set *power_domain_set,
890 				    struct intel_power_domain_mask *mask)
891 {
892 	enum intel_display_power_domain domain;
893 
894 	drm_WARN_ON(&i915->drm,
895 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
896 
897 	for_each_power_domain(domain, mask) {
898 		intel_wakeref_t __maybe_unused wf = INTEL_WAKEREF_DEF;
899 
900 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
901 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
902 #endif
903 		intel_display_power_put(i915, domain, wf);
904 		clear_bit(domain, power_domain_set->mask.bits);
905 	}
906 }
907 
908 static int
909 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
910 				   int disable_power_well)
911 {
912 	if (disable_power_well >= 0)
913 		return !!disable_power_well;
914 
915 	return 1;
916 }
917 
918 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
919 			       int enable_dc)
920 {
921 	u32 mask;
922 	int requested_dc;
923 	int max_dc;
924 
925 	if (!HAS_DISPLAY(dev_priv))
926 		return 0;
927 
928 	if (DISPLAY_VER(dev_priv) >= 20)
929 		max_dc = 2;
930 	else if (IS_DG2(dev_priv))
931 		max_dc = 1;
932 	else if (IS_DG1(dev_priv))
933 		max_dc = 3;
934 	else if (DISPLAY_VER(dev_priv) >= 12)
935 		max_dc = 4;
936 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
937 		max_dc = 1;
938 	else if (DISPLAY_VER(dev_priv) >= 9)
939 		max_dc = 2;
940 	else
941 		max_dc = 0;
942 
943 	/*
944 	 * DC9 has a separate HW flow from the rest of the DC states,
945 	 * not depending on the DMC firmware. It's needed by system
946 	 * suspend/resume, so allow it unconditionally.
947 	 */
948 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
949 		DISPLAY_VER(dev_priv) >= 11 ?
950 	       DC_STATE_EN_DC9 : 0;
951 
952 	if (!dev_priv->display.params.disable_power_well)
953 		max_dc = 0;
954 
955 	if (enable_dc >= 0 && enable_dc <= max_dc) {
956 		requested_dc = enable_dc;
957 	} else if (enable_dc == -1) {
958 		requested_dc = max_dc;
959 	} else if (enable_dc > max_dc && enable_dc <= 4) {
960 		drm_dbg_kms(&dev_priv->drm,
961 			    "Adjusting requested max DC state (%d->%d)\n",
962 			    enable_dc, max_dc);
963 		requested_dc = max_dc;
964 	} else {
965 		drm_err(&dev_priv->drm,
966 			"Unexpected value for enable_dc (%d)\n", enable_dc);
967 		requested_dc = max_dc;
968 	}
969 
970 	switch (requested_dc) {
971 	case 4:
972 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
973 		break;
974 	case 3:
975 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
976 		break;
977 	case 2:
978 		mask |= DC_STATE_EN_UPTO_DC6;
979 		break;
980 	case 1:
981 		mask |= DC_STATE_EN_UPTO_DC5;
982 		break;
983 	}
984 
985 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
986 
987 	return mask;
988 }
989 
990 /**
991  * intel_power_domains_init - initializes the power domain structures
992  * @dev_priv: i915 device instance
993  *
994  * Initializes the power domain structures for @dev_priv depending upon the
995  * supported platform.
996  */
997 int intel_power_domains_init(struct drm_i915_private *dev_priv)
998 {
999 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1000 
1001 	dev_priv->display.params.disable_power_well =
1002 		sanitize_disable_power_well_option(dev_priv,
1003 						   dev_priv->display.params.disable_power_well);
1004 	power_domains->allowed_dc_mask =
1005 		get_allowed_dc_mask(dev_priv, dev_priv->display.params.enable_dc);
1006 
1007 	power_domains->target_dc_state =
1008 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1009 
1010 	mutex_init(&power_domains->lock);
1011 
1012 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1013 			  intel_display_power_put_async_work);
1014 
1015 	return intel_display_power_map_init(power_domains);
1016 }
1017 
1018 /**
1019  * intel_power_domains_cleanup - clean up power domains resources
1020  * @dev_priv: i915 device instance
1021  *
1022  * Release any resources acquired by intel_power_domains_init()
1023  */
1024 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1025 {
1026 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1027 }
1028 
1029 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1030 {
1031 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1032 	struct i915_power_well *power_well;
1033 
1034 	mutex_lock(&power_domains->lock);
1035 	for_each_power_well(dev_priv, power_well)
1036 		intel_power_well_sync_hw(dev_priv, power_well);
1037 	mutex_unlock(&power_domains->lock);
1038 }
1039 
1040 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1041 				enum dbuf_slice slice, bool enable)
1042 {
1043 	i915_reg_t reg = DBUF_CTL_S(slice);
1044 	bool state;
1045 
1046 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1047 		     enable ? DBUF_POWER_REQUEST : 0);
1048 	intel_de_posting_read(dev_priv, reg);
1049 	udelay(10);
1050 
1051 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1052 	drm_WARN(&dev_priv->drm, enable != state,
1053 		 "DBuf slice %d power %s timeout!\n",
1054 		 slice, str_enable_disable(enable));
1055 }
1056 
1057 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1058 			     u8 req_slices)
1059 {
1060 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1061 	u8 slice_mask = DISPLAY_INFO(dev_priv)->dbuf.slice_mask;
1062 	enum dbuf_slice slice;
1063 
1064 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1065 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1066 		 req_slices, slice_mask);
1067 
1068 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1069 		    req_slices);
1070 
1071 	/*
1072 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1073 	 * being called from intel_dp_detect for instance,
1074 	 * which causes assertion triggered by race condition,
1075 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1076 	 * were already updated, while dev_priv was not.
1077 	 */
1078 	mutex_lock(&power_domains->lock);
1079 
1080 	for_each_dbuf_slice(dev_priv, slice)
1081 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1082 
1083 	dev_priv->display.dbuf.enabled_slices = req_slices;
1084 
1085 	mutex_unlock(&power_domains->lock);
1086 }
1087 
1088 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1089 {
1090 	u8 slices_mask;
1091 
1092 	dev_priv->display.dbuf.enabled_slices =
1093 		intel_enabled_dbuf_slices_mask(dev_priv);
1094 
1095 	slices_mask = BIT(DBUF_S1) | dev_priv->display.dbuf.enabled_slices;
1096 
1097 	if (DISPLAY_VER(dev_priv) >= 14)
1098 		intel_pmdemand_program_dbuf(dev_priv, slices_mask);
1099 
1100 	/*
1101 	 * Just power up at least 1 slice, we will
1102 	 * figure out later which slices we have and what we need.
1103 	 */
1104 	gen9_dbuf_slices_update(dev_priv, slices_mask);
1105 }
1106 
1107 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1108 {
1109 	gen9_dbuf_slices_update(dev_priv, 0);
1110 
1111 	if (DISPLAY_VER(dev_priv) >= 14)
1112 		intel_pmdemand_program_dbuf(dev_priv, 0);
1113 }
1114 
1115 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1116 {
1117 	enum dbuf_slice slice;
1118 
1119 	if (IS_ALDERLAKE_P(dev_priv))
1120 		return;
1121 
1122 	for_each_dbuf_slice(dev_priv, slice)
1123 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1124 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1125 			     DBUF_TRACKER_STATE_SERVICE(8));
1126 }
1127 
1128 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1129 {
1130 	unsigned long abox_regs = DISPLAY_INFO(dev_priv)->abox_mask;
1131 	u32 mask, val, i;
1132 
1133 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1134 		return;
1135 
1136 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1137 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1138 		MBUS_ABOX_B_CREDIT_MASK |
1139 		MBUS_ABOX_BW_CREDIT_MASK;
1140 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1141 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1142 		MBUS_ABOX_B_CREDIT(1) |
1143 		MBUS_ABOX_BW_CREDIT(1);
1144 
1145 	/*
1146 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1147 	 * expect us to program the abox_ctl0 register as well, even though
1148 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1149 	 */
1150 	if (DISPLAY_VER(dev_priv) == 12)
1151 		abox_regs |= BIT(0);
1152 
1153 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1154 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1155 }
1156 
1157 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1158 {
1159 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1160 
1161 	/*
1162 	 * The LCPLL register should be turned on by the BIOS. For now
1163 	 * let's just check its state and print errors in case
1164 	 * something is wrong.  Don't even try to turn it on.
1165 	 */
1166 
1167 	if (val & LCPLL_CD_SOURCE_FCLK)
1168 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1169 
1170 	if (val & LCPLL_PLL_DISABLE)
1171 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1172 
1173 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1174 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1175 }
1176 
1177 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1178 {
1179 	struct intel_crtc *crtc;
1180 
1181 	for_each_intel_crtc(&dev_priv->drm, crtc)
1182 		I915_STATE_WARN(dev_priv, crtc->active,
1183 				"CRTC for pipe %c enabled\n",
1184 				pipe_name(crtc->pipe));
1185 
1186 	I915_STATE_WARN(dev_priv, intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1187 			"Display power well on\n");
1188 	I915_STATE_WARN(dev_priv,
1189 			intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1190 			"SPLL enabled\n");
1191 	I915_STATE_WARN(dev_priv,
1192 			intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1193 			"WRPLL1 enabled\n");
1194 	I915_STATE_WARN(dev_priv,
1195 			intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1196 			"WRPLL2 enabled\n");
1197 	I915_STATE_WARN(dev_priv,
1198 			intel_de_read(dev_priv, PP_STATUS(dev_priv, 0)) & PP_ON,
1199 			"Panel power on\n");
1200 	I915_STATE_WARN(dev_priv,
1201 			intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1202 			"CPU PWM1 enabled\n");
1203 	if (IS_HASWELL(dev_priv))
1204 		I915_STATE_WARN(dev_priv,
1205 				intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1206 				"CPU PWM2 enabled\n");
1207 	I915_STATE_WARN(dev_priv,
1208 			intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1209 			"PCH PWM1 enabled\n");
1210 	I915_STATE_WARN(dev_priv,
1211 			(intel_de_read(dev_priv, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1212 			"Utility pin enabled in PWM mode\n");
1213 	I915_STATE_WARN(dev_priv,
1214 			intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1215 			"PCH GTC enabled\n");
1216 
1217 	/*
1218 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1219 	 * interrupts remain enabled. We used to check for that, but since it's
1220 	 * gen-specific and since we only disable LCPLL after we fully disable
1221 	 * the interrupts, the check below should be enough.
1222 	 */
1223 	I915_STATE_WARN(dev_priv, intel_irqs_enabled(dev_priv),
1224 			"IRQs enabled\n");
1225 }
1226 
1227 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1228 {
1229 	if (IS_HASWELL(dev_priv))
1230 		return intel_de_read(dev_priv, D_COMP_HSW);
1231 	else
1232 		return intel_de_read(dev_priv, D_COMP_BDW);
1233 }
1234 
1235 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1236 {
1237 	if (IS_HASWELL(dev_priv)) {
1238 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1239 			drm_dbg_kms(&dev_priv->drm,
1240 				    "Failed to write to D_COMP\n");
1241 	} else {
1242 		intel_de_write(dev_priv, D_COMP_BDW, val);
1243 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1244 	}
1245 }
1246 
1247 /*
1248  * This function implements pieces of two sequences from BSpec:
1249  * - Sequence for display software to disable LCPLL
1250  * - Sequence for display software to allow package C8+
1251  * The steps implemented here are just the steps that actually touch the LCPLL
1252  * register. Callers should take care of disabling all the display engine
1253  * functions, doing the mode unset, fixing interrupts, etc.
1254  */
1255 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1256 			      bool switch_to_fclk, bool allow_power_down)
1257 {
1258 	u32 val;
1259 
1260 	assert_can_disable_lcpll(dev_priv);
1261 
1262 	val = intel_de_read(dev_priv, LCPLL_CTL);
1263 
1264 	if (switch_to_fclk) {
1265 		val |= LCPLL_CD_SOURCE_FCLK;
1266 		intel_de_write(dev_priv, LCPLL_CTL, val);
1267 
1268 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1269 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1270 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1271 
1272 		val = intel_de_read(dev_priv, LCPLL_CTL);
1273 	}
1274 
1275 	val |= LCPLL_PLL_DISABLE;
1276 	intel_de_write(dev_priv, LCPLL_CTL, val);
1277 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1278 
1279 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1280 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1281 
1282 	val = hsw_read_dcomp(dev_priv);
1283 	val |= D_COMP_COMP_DISABLE;
1284 	hsw_write_dcomp(dev_priv, val);
1285 	ndelay(100);
1286 
1287 	if (wait_for((hsw_read_dcomp(dev_priv) &
1288 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1289 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1290 
1291 	if (allow_power_down) {
1292 		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1293 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1294 	}
1295 }
1296 
1297 /*
1298  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1299  * source.
1300  */
1301 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1302 {
1303 	struct intel_display *display = &dev_priv->display;
1304 	u32 val;
1305 
1306 	val = intel_de_read(dev_priv, LCPLL_CTL);
1307 
1308 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1309 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1310 		return;
1311 
1312 	/*
1313 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1314 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1315 	 */
1316 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1317 
1318 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1319 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1320 		intel_de_write(dev_priv, LCPLL_CTL, val);
1321 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1322 	}
1323 
1324 	val = hsw_read_dcomp(dev_priv);
1325 	val |= D_COMP_COMP_FORCE;
1326 	val &= ~D_COMP_COMP_DISABLE;
1327 	hsw_write_dcomp(dev_priv, val);
1328 
1329 	val = intel_de_read(dev_priv, LCPLL_CTL);
1330 	val &= ~LCPLL_PLL_DISABLE;
1331 	intel_de_write(dev_priv, LCPLL_CTL, val);
1332 
1333 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1334 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1335 
1336 	if (val & LCPLL_CD_SOURCE_FCLK) {
1337 		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1338 
1339 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1340 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1341 			drm_err(&dev_priv->drm,
1342 				"Switching back to LCPLL failed\n");
1343 	}
1344 
1345 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1346 
1347 	intel_update_cdclk(display);
1348 	intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK");
1349 }
1350 
1351 /*
1352  * Package states C8 and deeper are really deep PC states that can only be
1353  * reached when all the devices on the system allow it, so even if the graphics
1354  * device allows PC8+, it doesn't mean the system will actually get to these
1355  * states. Our driver only allows PC8+ when going into runtime PM.
1356  *
1357  * The requirements for PC8+ are that all the outputs are disabled, the power
1358  * well is disabled and most interrupts are disabled, and these are also
1359  * requirements for runtime PM. When these conditions are met, we manually do
1360  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1361  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1362  * hang the machine.
1363  *
1364  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1365  * the state of some registers, so when we come back from PC8+ we need to
1366  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1367  * need to take care of the registers kept by RC6. Notice that this happens even
1368  * if we don't put the device in PCI D3 state (which is what currently happens
1369  * because of the runtime PM support).
1370  *
1371  * For more, read "Display Sequences for Package C8" on the hardware
1372  * documentation.
1373  */
1374 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1375 {
1376 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1377 
1378 	if (HAS_PCH_LPT_LP(dev_priv))
1379 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1380 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1381 
1382 	lpt_disable_clkout_dp(dev_priv);
1383 	hsw_disable_lcpll(dev_priv, true, true);
1384 }
1385 
1386 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1387 {
1388 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1389 
1390 	hsw_restore_lcpll(dev_priv);
1391 	intel_init_pch_refclk(dev_priv);
1392 
1393 	/* Many display registers don't survive PC8+ */
1394 	intel_clock_gating_init(dev_priv);
1395 }
1396 
1397 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1398 				      bool enable)
1399 {
1400 	i915_reg_t reg;
1401 	u32 reset_bits;
1402 
1403 	if (IS_IVYBRIDGE(dev_priv)) {
1404 		reg = GEN7_MSG_CTL;
1405 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1406 	} else {
1407 		reg = HSW_NDE_RSTWRN_OPT;
1408 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1409 	}
1410 
1411 	if (DISPLAY_VER(dev_priv) >= 14)
1412 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1413 
1414 	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1415 }
1416 
1417 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1418 				  bool resume)
1419 {
1420 	struct intel_display *display = &dev_priv->display;
1421 	struct i915_power_domains *power_domains = &display->power.domains;
1422 	struct i915_power_well *well;
1423 
1424 	gen9_set_dc_state(display, DC_STATE_DISABLE);
1425 
1426 	/* enable PCH reset handshake */
1427 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1428 
1429 	if (!HAS_DISPLAY(dev_priv))
1430 		return;
1431 
1432 	/* enable PG1 and Misc I/O */
1433 	mutex_lock(&power_domains->lock);
1434 
1435 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1436 	intel_power_well_enable(dev_priv, well);
1437 
1438 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1439 	intel_power_well_enable(dev_priv, well);
1440 
1441 	mutex_unlock(&power_domains->lock);
1442 
1443 	intel_cdclk_init_hw(display);
1444 
1445 	gen9_dbuf_enable(dev_priv);
1446 
1447 	if (resume)
1448 		intel_dmc_load_program(display);
1449 }
1450 
1451 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1452 {
1453 	struct intel_display *display = &dev_priv->display;
1454 	struct i915_power_domains *power_domains = &display->power.domains;
1455 	struct i915_power_well *well;
1456 
1457 	if (!HAS_DISPLAY(dev_priv))
1458 		return;
1459 
1460 	gen9_disable_dc_states(display);
1461 	/* TODO: disable DMC program */
1462 
1463 	gen9_dbuf_disable(dev_priv);
1464 
1465 	intel_cdclk_uninit_hw(display);
1466 
1467 	/* The spec doesn't call for removing the reset handshake flag */
1468 	/* disable PG1 and Misc I/O */
1469 
1470 	mutex_lock(&power_domains->lock);
1471 
1472 	/*
1473 	 * BSpec says to keep the MISC IO power well enabled here, only
1474 	 * remove our request for power well 1.
1475 	 * Note that even though the driver's request is removed power well 1
1476 	 * may stay enabled after this due to DMC's own request on it.
1477 	 */
1478 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1479 	intel_power_well_disable(dev_priv, well);
1480 
1481 	mutex_unlock(&power_domains->lock);
1482 
1483 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1484 }
1485 
1486 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1487 {
1488 	struct intel_display *display = &dev_priv->display;
1489 	struct i915_power_domains *power_domains = &display->power.domains;
1490 	struct i915_power_well *well;
1491 
1492 	gen9_set_dc_state(display, DC_STATE_DISABLE);
1493 
1494 	/*
1495 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1496 	 * or else the reset will hang because there is no PCH to respond.
1497 	 * Move the handshake programming to initialization sequence.
1498 	 * Previously was left up to BIOS.
1499 	 */
1500 	intel_pch_reset_handshake(dev_priv, false);
1501 
1502 	if (!HAS_DISPLAY(dev_priv))
1503 		return;
1504 
1505 	/* Enable PG1 */
1506 	mutex_lock(&power_domains->lock);
1507 
1508 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1509 	intel_power_well_enable(dev_priv, well);
1510 
1511 	mutex_unlock(&power_domains->lock);
1512 
1513 	intel_cdclk_init_hw(display);
1514 
1515 	gen9_dbuf_enable(dev_priv);
1516 
1517 	if (resume)
1518 		intel_dmc_load_program(display);
1519 }
1520 
1521 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1522 {
1523 	struct intel_display *display = &dev_priv->display;
1524 	struct i915_power_domains *power_domains = &display->power.domains;
1525 	struct i915_power_well *well;
1526 
1527 	if (!HAS_DISPLAY(dev_priv))
1528 		return;
1529 
1530 	gen9_disable_dc_states(display);
1531 	/* TODO: disable DMC program */
1532 
1533 	gen9_dbuf_disable(dev_priv);
1534 
1535 	intel_cdclk_uninit_hw(display);
1536 
1537 	/* The spec doesn't call for removing the reset handshake flag */
1538 
1539 	/*
1540 	 * Disable PW1 (PG1).
1541 	 * Note that even though the driver's request is removed power well 1
1542 	 * may stay enabled after this due to DMC's own request on it.
1543 	 */
1544 	mutex_lock(&power_domains->lock);
1545 
1546 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1547 	intel_power_well_disable(dev_priv, well);
1548 
1549 	mutex_unlock(&power_domains->lock);
1550 
1551 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1552 }
1553 
1554 struct buddy_page_mask {
1555 	u32 page_mask;
1556 	u8 type;
1557 	u8 num_channels;
1558 };
1559 
1560 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1561 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1562 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1563 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1564 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1565 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1566 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1567 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1568 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1569 	{}
1570 };
1571 
1572 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1573 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1574 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1575 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1576 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1577 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1578 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1579 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1580 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1581 	{}
1582 };
1583 
1584 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1585 {
1586 	enum intel_dram_type type = dev_priv->dram_info.type;
1587 	u8 num_channels = dev_priv->dram_info.num_channels;
1588 	const struct buddy_page_mask *table;
1589 	unsigned long abox_mask = DISPLAY_INFO(dev_priv)->abox_mask;
1590 	int config, i;
1591 
1592 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1593 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1594 		return;
1595 
1596 	if (IS_ALDERLAKE_S(dev_priv) ||
1597 	    (IS_ROCKETLAKE(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)))
1598 		/* Wa_1409767108 */
1599 		table = wa_1409767108_buddy_page_masks;
1600 	else
1601 		table = tgl_buddy_page_masks;
1602 
1603 	for (config = 0; table[config].page_mask != 0; config++)
1604 		if (table[config].num_channels == num_channels &&
1605 		    table[config].type == type)
1606 			break;
1607 
1608 	if (table[config].page_mask == 0) {
1609 		drm_dbg(&dev_priv->drm,
1610 			"Unknown memory configuration; disabling address buddy logic.\n");
1611 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1612 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1613 				       BW_BUDDY_DISABLE);
1614 	} else {
1615 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1616 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1617 				       table[config].page_mask);
1618 
1619 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1620 			if (DISPLAY_VER(dev_priv) == 12)
1621 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1622 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1623 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1624 		}
1625 	}
1626 }
1627 
1628 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1629 				  bool resume)
1630 {
1631 	struct intel_display *display = &dev_priv->display;
1632 	struct i915_power_domains *power_domains = &display->power.domains;
1633 	struct i915_power_well *well;
1634 
1635 	gen9_set_dc_state(display, DC_STATE_DISABLE);
1636 
1637 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1638 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1639 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1640 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1641 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1642 
1643 	/* 1. Enable PCH reset handshake. */
1644 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1645 
1646 	if (!HAS_DISPLAY(dev_priv))
1647 		return;
1648 
1649 	/* 2. Initialize all combo phys */
1650 	intel_combo_phy_init(dev_priv);
1651 
1652 	/*
1653 	 * 3. Enable Power Well 1 (PG1).
1654 	 *    The AUX IO power wells will be enabled on demand.
1655 	 */
1656 	mutex_lock(&power_domains->lock);
1657 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1658 	intel_power_well_enable(dev_priv, well);
1659 	mutex_unlock(&power_domains->lock);
1660 
1661 	if (DISPLAY_VER(dev_priv) == 14)
1662 		intel_de_rmw(dev_priv, DC_STATE_EN,
1663 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1664 
1665 	/* 4. Enable CDCLK. */
1666 	intel_cdclk_init_hw(display);
1667 
1668 	if (DISPLAY_VER(dev_priv) >= 12)
1669 		gen12_dbuf_slices_config(dev_priv);
1670 
1671 	/* 5. Enable DBUF. */
1672 	gen9_dbuf_enable(dev_priv);
1673 
1674 	/* 6. Setup MBUS. */
1675 	icl_mbus_init(dev_priv);
1676 
1677 	/* 7. Program arbiter BW_BUDDY registers */
1678 	if (DISPLAY_VER(dev_priv) >= 12)
1679 		tgl_bw_buddy_init(dev_priv);
1680 
1681 	/* 8. Ensure PHYs have completed calibration and adaptation */
1682 	if (IS_DG2(dev_priv))
1683 		intel_snps_phy_wait_for_calibration(dev_priv);
1684 
1685 	/* 9. XE2_HPD: Program CHICKEN_MISC_2 before any cursor or planes are enabled */
1686 	if (DISPLAY_VER_FULL(dev_priv) == IP_VER(14, 1))
1687 		intel_de_rmw(dev_priv, CHICKEN_MISC_2, BMG_DARB_HALF_BLK_END_BURST, 1);
1688 
1689 	if (resume)
1690 		intel_dmc_load_program(display);
1691 
1692 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p,dg2 */
1693 	if (IS_DISPLAY_VER_FULL(dev_priv, IP_VER(12, 0), IP_VER(13, 0)))
1694 		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1695 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1696 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1697 
1698 	/* Wa_14011503030:xelpd */
1699 	if (DISPLAY_VER(dev_priv) == 13)
1700 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1701 
1702 	/* Wa_15013987218 */
1703 	if (DISPLAY_VER(dev_priv) == 20) {
1704 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1705 			     0, PCH_GMBUSUNIT_CLOCK_GATE_DISABLE);
1706 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1707 			     PCH_GMBUSUNIT_CLOCK_GATE_DISABLE, 0);
1708 	}
1709 }
1710 
1711 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1712 {
1713 	struct intel_display *display = &dev_priv->display;
1714 	struct i915_power_domains *power_domains = &display->power.domains;
1715 	struct i915_power_well *well;
1716 
1717 	if (!HAS_DISPLAY(dev_priv))
1718 		return;
1719 
1720 	gen9_disable_dc_states(display);
1721 	intel_dmc_disable_program(display);
1722 
1723 	/* 1. Disable all display engine functions -> aready done */
1724 
1725 	/* 2. Disable DBUF */
1726 	gen9_dbuf_disable(dev_priv);
1727 
1728 	/* 3. Disable CD clock */
1729 	intel_cdclk_uninit_hw(display);
1730 
1731 	if (DISPLAY_VER(dev_priv) == 14)
1732 		intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1733 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1734 
1735 	/*
1736 	 * 4. Disable Power Well 1 (PG1).
1737 	 *    The AUX IO power wells are toggled on demand, so they are already
1738 	 *    disabled at this point.
1739 	 */
1740 	mutex_lock(&power_domains->lock);
1741 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1742 	intel_power_well_disable(dev_priv, well);
1743 	mutex_unlock(&power_domains->lock);
1744 
1745 	/* 5. */
1746 	intel_combo_phy_uninit(dev_priv);
1747 }
1748 
1749 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1750 {
1751 	struct i915_power_well *cmn_bc =
1752 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1753 	struct i915_power_well *cmn_d =
1754 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1755 
1756 	/*
1757 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1758 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1759 	 * instead maintain a shadow copy ourselves. Use the actual
1760 	 * power well state and lane status to reconstruct the
1761 	 * expected initial value.
1762 	 */
1763 	dev_priv->display.power.chv_phy_control =
1764 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1765 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1766 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1767 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1768 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1769 
1770 	/*
1771 	 * If all lanes are disabled we leave the override disabled
1772 	 * with all power down bits cleared to match the state we
1773 	 * would use after disabling the port. Otherwise enable the
1774 	 * override and set the lane powerdown bits accding to the
1775 	 * current lane status.
1776 	 */
1777 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1778 		u32 status = intel_de_read(dev_priv, DPLL(dev_priv, PIPE_A));
1779 		unsigned int mask;
1780 
1781 		mask = status & DPLL_PORTB_READY_MASK;
1782 		if (mask == 0xf)
1783 			mask = 0x0;
1784 		else
1785 			dev_priv->display.power.chv_phy_control |=
1786 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1787 
1788 		dev_priv->display.power.chv_phy_control |=
1789 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1790 
1791 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1792 		if (mask == 0xf)
1793 			mask = 0x0;
1794 		else
1795 			dev_priv->display.power.chv_phy_control |=
1796 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1797 
1798 		dev_priv->display.power.chv_phy_control |=
1799 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1800 
1801 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1802 
1803 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1804 	} else {
1805 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1806 	}
1807 
1808 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1809 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1810 		unsigned int mask;
1811 
1812 		mask = status & DPLL_PORTD_READY_MASK;
1813 
1814 		if (mask == 0xf)
1815 			mask = 0x0;
1816 		else
1817 			dev_priv->display.power.chv_phy_control |=
1818 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1819 
1820 		dev_priv->display.power.chv_phy_control |=
1821 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1822 
1823 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1824 
1825 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1826 	} else {
1827 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1828 	}
1829 
1830 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1831 		    dev_priv->display.power.chv_phy_control);
1832 
1833 	/* Defer application of initial phy_control to enabling the powerwell */
1834 }
1835 
1836 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1837 {
1838 	struct i915_power_well *cmn =
1839 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1840 	struct i915_power_well *disp2d =
1841 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1842 
1843 	/* If the display might be already active skip this */
1844 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1845 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1846 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1847 		return;
1848 
1849 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1850 
1851 	/* cmnlane needs DPLL registers */
1852 	intel_power_well_enable(dev_priv, disp2d);
1853 
1854 	/*
1855 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1856 	 * Need to assert and de-assert PHY SB reset by gating the
1857 	 * common lane power, then un-gating it.
1858 	 * Simply ungating isn't enough to reset the PHY enough to get
1859 	 * ports and lanes running.
1860 	 */
1861 	intel_power_well_disable(dev_priv, cmn);
1862 }
1863 
1864 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1865 {
1866 	bool ret;
1867 
1868 	vlv_punit_get(dev_priv);
1869 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1870 	vlv_punit_put(dev_priv);
1871 
1872 	return ret;
1873 }
1874 
1875 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1876 {
1877 	drm_WARN(&dev_priv->drm,
1878 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1879 		 "VED not power gated\n");
1880 }
1881 
1882 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1883 {
1884 	static const struct pci_device_id isp_ids[] = {
1885 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1886 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1887 		{}
1888 	};
1889 
1890 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1891 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1892 		 "ISP not power gated\n");
1893 }
1894 
1895 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1896 
1897 /**
1898  * intel_power_domains_init_hw - initialize hardware power domain state
1899  * @i915: i915 device instance
1900  * @resume: Called from resume code paths or not
1901  *
1902  * This function initializes the hardware power domain state and enables all
1903  * power wells belonging to the INIT power domain. Power wells in other
1904  * domains (and not in the INIT domain) are referenced or disabled by
1905  * intel_modeset_readout_hw_state(). After that the reference count of each
1906  * power well must match its HW enabled state, see
1907  * intel_power_domains_verify_state().
1908  *
1909  * It will return with power domains disabled (to be enabled later by
1910  * intel_power_domains_enable()) and must be paired with
1911  * intel_power_domains_driver_remove().
1912  */
1913 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1914 {
1915 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1916 
1917 	power_domains->initializing = true;
1918 
1919 	if (DISPLAY_VER(i915) >= 11) {
1920 		icl_display_core_init(i915, resume);
1921 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1922 		bxt_display_core_init(i915, resume);
1923 	} else if (DISPLAY_VER(i915) == 9) {
1924 		skl_display_core_init(i915, resume);
1925 	} else if (IS_CHERRYVIEW(i915)) {
1926 		mutex_lock(&power_domains->lock);
1927 		chv_phy_control_init(i915);
1928 		mutex_unlock(&power_domains->lock);
1929 		assert_isp_power_gated(i915);
1930 	} else if (IS_VALLEYVIEW(i915)) {
1931 		mutex_lock(&power_domains->lock);
1932 		vlv_cmnlane_wa(i915);
1933 		mutex_unlock(&power_domains->lock);
1934 		assert_ved_power_gated(i915);
1935 		assert_isp_power_gated(i915);
1936 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1937 		hsw_assert_cdclk(i915);
1938 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1939 	} else if (IS_IVYBRIDGE(i915)) {
1940 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1941 	}
1942 
1943 	/*
1944 	 * Keep all power wells enabled for any dependent HW access during
1945 	 * initialization and to make sure we keep BIOS enabled display HW
1946 	 * resources powered until display HW readout is complete. We drop
1947 	 * this reference in intel_power_domains_enable().
1948 	 */
1949 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1950 	power_domains->init_wakeref =
1951 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1952 
1953 	/* Disable power support if the user asked so. */
1954 	if (!i915->display.params.disable_power_well) {
1955 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1956 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1957 										      POWER_DOMAIN_INIT);
1958 	}
1959 	intel_power_domains_sync_hw(i915);
1960 
1961 	power_domains->initializing = false;
1962 }
1963 
1964 /**
1965  * intel_power_domains_driver_remove - deinitialize hw power domain state
1966  * @i915: i915 device instance
1967  *
1968  * De-initializes the display power domain HW state. It also ensures that the
1969  * device stays powered up so that the driver can be reloaded.
1970  *
1971  * It must be called with power domains already disabled (after a call to
1972  * intel_power_domains_disable()) and must be paired with
1973  * intel_power_domains_init_hw().
1974  */
1975 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1976 {
1977 	intel_wakeref_t wakeref __maybe_unused =
1978 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1979 
1980 	/* Remove the refcount we took to keep power well support disabled. */
1981 	if (!i915->display.params.disable_power_well)
1982 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1983 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1984 
1985 	intel_display_power_flush_work_sync(i915);
1986 
1987 	intel_power_domains_verify_state(i915);
1988 
1989 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1990 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1991 }
1992 
1993 /**
1994  * intel_power_domains_sanitize_state - sanitize power domains state
1995  * @i915: i915 device instance
1996  *
1997  * Sanitize the power domains state during driver loading and system resume.
1998  * The function will disable all display power wells that BIOS has enabled
1999  * without a user for it (any user for a power well has taken a reference
2000  * on it by the time this function is called, after the state of all the
2001  * pipe, encoder, etc. HW resources have been sanitized).
2002  */
2003 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
2004 {
2005 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2006 	struct i915_power_well *power_well;
2007 
2008 	mutex_lock(&power_domains->lock);
2009 
2010 	for_each_power_well_reverse(i915, power_well) {
2011 		if (power_well->desc->always_on || power_well->count ||
2012 		    !intel_power_well_is_enabled(i915, power_well))
2013 			continue;
2014 
2015 		drm_dbg_kms(&i915->drm,
2016 			    "BIOS left unused %s power well enabled, disabling it\n",
2017 			    intel_power_well_name(power_well));
2018 		intel_power_well_disable(i915, power_well);
2019 	}
2020 
2021 	mutex_unlock(&power_domains->lock);
2022 }
2023 
2024 /**
2025  * intel_power_domains_enable - enable toggling of display power wells
2026  * @i915: i915 device instance
2027  *
2028  * Enable the ondemand enabling/disabling of the display power wells. Note that
2029  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
2030  * only at specific points of the display modeset sequence, thus they are not
2031  * affected by the intel_power_domains_enable()/disable() calls. The purpose
2032  * of these function is to keep the rest of power wells enabled until the end
2033  * of display HW readout (which will acquire the power references reflecting
2034  * the current HW state).
2035  */
2036 void intel_power_domains_enable(struct drm_i915_private *i915)
2037 {
2038 	intel_wakeref_t wakeref __maybe_unused =
2039 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
2040 
2041 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2042 	intel_power_domains_verify_state(i915);
2043 }
2044 
2045 /**
2046  * intel_power_domains_disable - disable toggling of display power wells
2047  * @i915: i915 device instance
2048  *
2049  * Disable the ondemand enabling/disabling of the display power wells. See
2050  * intel_power_domains_enable() for which power wells this call controls.
2051  */
2052 void intel_power_domains_disable(struct drm_i915_private *i915)
2053 {
2054 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2055 
2056 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2057 	power_domains->init_wakeref =
2058 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2059 
2060 	intel_power_domains_verify_state(i915);
2061 }
2062 
2063 /**
2064  * intel_power_domains_suspend - suspend power domain state
2065  * @i915: i915 device instance
2066  * @s2idle: specifies whether we go to idle, or deeper sleep
2067  *
2068  * This function prepares the hardware power domain state before entering
2069  * system suspend.
2070  *
2071  * It must be called with power domains already disabled (after a call to
2072  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2073  */
2074 void intel_power_domains_suspend(struct drm_i915_private *i915, bool s2idle)
2075 {
2076 	struct intel_display *display = &i915->display;
2077 	struct i915_power_domains *power_domains = &display->power.domains;
2078 	intel_wakeref_t wakeref __maybe_unused =
2079 		fetch_and_zero(&power_domains->init_wakeref);
2080 
2081 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2082 
2083 	/*
2084 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2085 	 * support don't manually deinit the power domains. This also means the
2086 	 * DMC firmware will stay active, it will power down any HW
2087 	 * resources as required and also enable deeper system power states
2088 	 * that would be blocked if the firmware was inactive.
2089 	 */
2090 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle &&
2091 	    intel_dmc_has_payload(display)) {
2092 		intel_display_power_flush_work(i915);
2093 		intel_power_domains_verify_state(i915);
2094 		return;
2095 	}
2096 
2097 	/*
2098 	 * Even if power well support was disabled we still want to disable
2099 	 * power wells if power domains must be deinitialized for suspend.
2100 	 */
2101 	if (!i915->display.params.disable_power_well)
2102 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2103 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2104 
2105 	intel_display_power_flush_work(i915);
2106 	intel_power_domains_verify_state(i915);
2107 
2108 	if (DISPLAY_VER(i915) >= 11)
2109 		icl_display_core_uninit(i915);
2110 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2111 		bxt_display_core_uninit(i915);
2112 	else if (DISPLAY_VER(i915) == 9)
2113 		skl_display_core_uninit(i915);
2114 
2115 	power_domains->display_core_suspended = true;
2116 }
2117 
2118 /**
2119  * intel_power_domains_resume - resume power domain state
2120  * @i915: i915 device instance
2121  *
2122  * This function resume the hardware power domain state during system resume.
2123  *
2124  * It will return with power domain support disabled (to be enabled later by
2125  * intel_power_domains_enable()) and must be paired with
2126  * intel_power_domains_suspend().
2127  */
2128 void intel_power_domains_resume(struct drm_i915_private *i915)
2129 {
2130 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2131 
2132 	if (power_domains->display_core_suspended) {
2133 		intel_power_domains_init_hw(i915, true);
2134 		power_domains->display_core_suspended = false;
2135 	} else {
2136 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2137 		power_domains->init_wakeref =
2138 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2139 	}
2140 
2141 	intel_power_domains_verify_state(i915);
2142 }
2143 
2144 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2145 
2146 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2147 {
2148 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2149 	struct i915_power_well *power_well;
2150 
2151 	for_each_power_well(i915, power_well) {
2152 		enum intel_display_power_domain domain;
2153 
2154 		drm_dbg(&i915->drm, "%-25s %d\n",
2155 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2156 
2157 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2158 			drm_dbg(&i915->drm, "  %-23s %d\n",
2159 				intel_display_power_domain_str(domain),
2160 				power_domains->domain_use_count[domain]);
2161 	}
2162 }
2163 
2164 /**
2165  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2166  * @i915: i915 device instance
2167  *
2168  * Verify if the reference count of each power well matches its HW enabled
2169  * state and the total refcount of the domains it belongs to. This must be
2170  * called after modeset HW state sanitization, which is responsible for
2171  * acquiring reference counts for any power wells in use and disabling the
2172  * ones left on by BIOS but not required by any active output.
2173  */
2174 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2175 {
2176 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2177 	struct i915_power_well *power_well;
2178 	bool dump_domain_info;
2179 
2180 	mutex_lock(&power_domains->lock);
2181 
2182 	verify_async_put_domains_state(power_domains);
2183 
2184 	dump_domain_info = false;
2185 	for_each_power_well(i915, power_well) {
2186 		enum intel_display_power_domain domain;
2187 		int domains_count;
2188 		bool enabled;
2189 
2190 		enabled = intel_power_well_is_enabled(i915, power_well);
2191 		if ((intel_power_well_refcount(power_well) ||
2192 		     intel_power_well_is_always_on(power_well)) !=
2193 		    enabled)
2194 			drm_err(&i915->drm,
2195 				"power well %s state mismatch (refcount %d/enabled %d)",
2196 				intel_power_well_name(power_well),
2197 				intel_power_well_refcount(power_well), enabled);
2198 
2199 		domains_count = 0;
2200 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2201 			domains_count += power_domains->domain_use_count[domain];
2202 
2203 		if (intel_power_well_refcount(power_well) != domains_count) {
2204 			drm_err(&i915->drm,
2205 				"power well %s refcount/domain refcount mismatch "
2206 				"(refcount %d/domains refcount %d)\n",
2207 				intel_power_well_name(power_well),
2208 				intel_power_well_refcount(power_well),
2209 				domains_count);
2210 			dump_domain_info = true;
2211 		}
2212 	}
2213 
2214 	if (dump_domain_info) {
2215 		static bool dumped;
2216 
2217 		if (!dumped) {
2218 			intel_power_domains_dump_info(i915);
2219 			dumped = true;
2220 		}
2221 	}
2222 
2223 	mutex_unlock(&power_domains->lock);
2224 }
2225 
2226 #else
2227 
2228 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2229 {
2230 }
2231 
2232 #endif
2233 
2234 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2235 {
2236 	struct intel_display *display = &i915->display;
2237 
2238 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2239 	    IS_BROXTON(i915)) {
2240 		bxt_enable_dc9(display);
2241 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2242 		hsw_enable_pc8(i915);
2243 	}
2244 
2245 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2246 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2247 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2248 }
2249 
2250 void intel_display_power_resume_early(struct drm_i915_private *i915)
2251 {
2252 	struct intel_display *display = &i915->display;
2253 
2254 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2255 	    IS_BROXTON(i915)) {
2256 		gen9_sanitize_dc_state(display);
2257 		bxt_disable_dc9(display);
2258 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2259 		hsw_disable_pc8(i915);
2260 	}
2261 
2262 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2263 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2264 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2265 }
2266 
2267 void intel_display_power_suspend(struct drm_i915_private *i915)
2268 {
2269 	struct intel_display *display = &i915->display;
2270 
2271 	if (DISPLAY_VER(i915) >= 11) {
2272 		icl_display_core_uninit(i915);
2273 		bxt_enable_dc9(display);
2274 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2275 		bxt_display_core_uninit(i915);
2276 		bxt_enable_dc9(display);
2277 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2278 		hsw_enable_pc8(i915);
2279 	}
2280 }
2281 
2282 void intel_display_power_resume(struct drm_i915_private *i915)
2283 {
2284 	struct intel_display *display = &i915->display;
2285 	struct i915_power_domains *power_domains = &display->power.domains;
2286 
2287 	if (DISPLAY_VER(i915) >= 11) {
2288 		bxt_disable_dc9(display);
2289 		icl_display_core_init(i915, true);
2290 		if (intel_dmc_has_payload(display)) {
2291 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2292 				skl_enable_dc6(display);
2293 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2294 				gen9_enable_dc5(display);
2295 		}
2296 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2297 		bxt_disable_dc9(display);
2298 		bxt_display_core_init(i915, true);
2299 		if (intel_dmc_has_payload(display) &&
2300 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2301 			gen9_enable_dc5(display);
2302 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2303 		hsw_disable_pc8(i915);
2304 	}
2305 }
2306 
2307 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2308 {
2309 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2310 	int i;
2311 
2312 	mutex_lock(&power_domains->lock);
2313 
2314 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2315 	for (i = 0; i < power_domains->power_well_count; i++) {
2316 		struct i915_power_well *power_well;
2317 		enum intel_display_power_domain power_domain;
2318 
2319 		power_well = &power_domains->power_wells[i];
2320 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2321 			   intel_power_well_refcount(power_well));
2322 
2323 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2324 			seq_printf(m, "  %-23s %d\n",
2325 				   intel_display_power_domain_str(power_domain),
2326 				   power_domains->domain_use_count[power_domain]);
2327 	}
2328 
2329 	mutex_unlock(&power_domains->lock);
2330 }
2331 
2332 struct intel_ddi_port_domains {
2333 	enum port port_start;
2334 	enum port port_end;
2335 	enum aux_ch aux_ch_start;
2336 	enum aux_ch aux_ch_end;
2337 
2338 	enum intel_display_power_domain ddi_lanes;
2339 	enum intel_display_power_domain ddi_io;
2340 	enum intel_display_power_domain aux_io;
2341 	enum intel_display_power_domain aux_legacy_usbc;
2342 	enum intel_display_power_domain aux_tbt;
2343 };
2344 
2345 static const struct intel_ddi_port_domains
2346 i9xx_port_domains[] = {
2347 	{
2348 		.port_start = PORT_A,
2349 		.port_end = PORT_F,
2350 		.aux_ch_start = AUX_CH_A,
2351 		.aux_ch_end = AUX_CH_F,
2352 
2353 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2354 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2355 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2356 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2357 		.aux_tbt = POWER_DOMAIN_INVALID,
2358 	},
2359 };
2360 
2361 static const struct intel_ddi_port_domains
2362 d11_port_domains[] = {
2363 	{
2364 		.port_start = PORT_A,
2365 		.port_end = PORT_B,
2366 		.aux_ch_start = AUX_CH_A,
2367 		.aux_ch_end = AUX_CH_B,
2368 
2369 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2370 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2371 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2372 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2373 		.aux_tbt = POWER_DOMAIN_INVALID,
2374 	}, {
2375 		.port_start = PORT_C,
2376 		.port_end = PORT_F,
2377 		.aux_ch_start = AUX_CH_C,
2378 		.aux_ch_end = AUX_CH_F,
2379 
2380 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2381 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2382 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2383 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2384 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2385 	},
2386 };
2387 
2388 static const struct intel_ddi_port_domains
2389 d12_port_domains[] = {
2390 	{
2391 		.port_start = PORT_A,
2392 		.port_end = PORT_C,
2393 		.aux_ch_start = AUX_CH_A,
2394 		.aux_ch_end = AUX_CH_C,
2395 
2396 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2397 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2398 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2399 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2400 		.aux_tbt = POWER_DOMAIN_INVALID,
2401 	}, {
2402 		.port_start = PORT_TC1,
2403 		.port_end = PORT_TC6,
2404 		.aux_ch_start = AUX_CH_USBC1,
2405 		.aux_ch_end = AUX_CH_USBC6,
2406 
2407 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2408 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2409 		.aux_io = POWER_DOMAIN_INVALID,
2410 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2411 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2412 	},
2413 };
2414 
2415 static const struct intel_ddi_port_domains
2416 d13_port_domains[] = {
2417 	{
2418 		.port_start = PORT_A,
2419 		.port_end = PORT_C,
2420 		.aux_ch_start = AUX_CH_A,
2421 		.aux_ch_end = AUX_CH_C,
2422 
2423 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2424 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2425 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2426 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2427 		.aux_tbt = POWER_DOMAIN_INVALID,
2428 	}, {
2429 		.port_start = PORT_TC1,
2430 		.port_end = PORT_TC4,
2431 		.aux_ch_start = AUX_CH_USBC1,
2432 		.aux_ch_end = AUX_CH_USBC4,
2433 
2434 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2435 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2436 		.aux_io = POWER_DOMAIN_INVALID,
2437 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2438 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2439 	}, {
2440 		.port_start = PORT_D_XELPD,
2441 		.port_end = PORT_E_XELPD,
2442 		.aux_ch_start = AUX_CH_D_XELPD,
2443 		.aux_ch_end = AUX_CH_E_XELPD,
2444 
2445 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2446 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2447 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2448 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2449 		.aux_tbt = POWER_DOMAIN_INVALID,
2450 	},
2451 };
2452 
2453 static void
2454 intel_port_domains_for_platform(struct drm_i915_private *i915,
2455 				const struct intel_ddi_port_domains **domains,
2456 				int *domains_size)
2457 {
2458 	if (DISPLAY_VER(i915) >= 13) {
2459 		*domains = d13_port_domains;
2460 		*domains_size = ARRAY_SIZE(d13_port_domains);
2461 	} else if (DISPLAY_VER(i915) >= 12) {
2462 		*domains = d12_port_domains;
2463 		*domains_size = ARRAY_SIZE(d12_port_domains);
2464 	} else if (DISPLAY_VER(i915) >= 11) {
2465 		*domains = d11_port_domains;
2466 		*domains_size = ARRAY_SIZE(d11_port_domains);
2467 	} else {
2468 		*domains = i9xx_port_domains;
2469 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2470 	}
2471 }
2472 
2473 static const struct intel_ddi_port_domains *
2474 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2475 {
2476 	const struct intel_ddi_port_domains *domains;
2477 	int domains_size;
2478 	int i;
2479 
2480 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2481 	for (i = 0; i < domains_size; i++)
2482 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2483 			return &domains[i];
2484 
2485 	return NULL;
2486 }
2487 
2488 enum intel_display_power_domain
2489 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2490 {
2491 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2492 
2493 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2494 		return POWER_DOMAIN_PORT_DDI_IO_A;
2495 
2496 	return domains->ddi_io + (int)(port - domains->port_start);
2497 }
2498 
2499 enum intel_display_power_domain
2500 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2501 {
2502 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2503 
2504 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2505 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2506 
2507 	return domains->ddi_lanes + (int)(port - domains->port_start);
2508 }
2509 
2510 static const struct intel_ddi_port_domains *
2511 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2512 {
2513 	const struct intel_ddi_port_domains *domains;
2514 	int domains_size;
2515 	int i;
2516 
2517 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2518 	for (i = 0; i < domains_size; i++)
2519 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2520 			return &domains[i];
2521 
2522 	return NULL;
2523 }
2524 
2525 enum intel_display_power_domain
2526 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2527 {
2528 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2529 
2530 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2531 		return POWER_DOMAIN_AUX_IO_A;
2532 
2533 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2534 }
2535 
2536 enum intel_display_power_domain
2537 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2538 {
2539 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2540 
2541 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2542 		return POWER_DOMAIN_AUX_A;
2543 
2544 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2545 }
2546 
2547 enum intel_display_power_domain
2548 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2549 {
2550 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2551 
2552 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2553 		return POWER_DOMAIN_AUX_TBT1;
2554 
2555 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2556 }
2557