xref: /linux/drivers/gpu/drm/i915/display/intel_display_power.c (revision a4871e6201c46c8e1d04308265b4b4c5753c8209)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "i915_reg.h"
11 #include "intel_backlight_regs.h"
12 #include "intel_cdclk.h"
13 #include "intel_clock_gating.h"
14 #include "intel_combo_phy.h"
15 #include "intel_de.h"
16 #include "intel_display_power.h"
17 #include "intel_display_power_map.h"
18 #include "intel_display_power_well.h"
19 #include "intel_display_rpm.h"
20 #include "intel_display_types.h"
21 #include "intel_dmc.h"
22 #include "intel_mchbar_regs.h"
23 #include "intel_pch_refclk.h"
24 #include "intel_pcode.h"
25 #include "intel_pmdemand.h"
26 #include "intel_pps_regs.h"
27 #include "intel_snps_phy.h"
28 #include "skl_watermark.h"
29 #include "skl_watermark_regs.h"
30 #include "vlv_sideband.h"
31 
32 #define for_each_power_domain_well(__display, __power_well, __domain)	\
33 	for_each_power_well((__display), __power_well)			\
34 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
35 
36 #define for_each_power_domain_well_reverse(__display, __power_well, __domain) \
37 	for_each_power_well_reverse((__display), __power_well) \
38 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
39 
40 static const char *
41 intel_display_power_domain_str(enum intel_display_power_domain domain)
42 {
43 	switch (domain) {
44 	case POWER_DOMAIN_DISPLAY_CORE:
45 		return "DISPLAY_CORE";
46 	case POWER_DOMAIN_PIPE_A:
47 		return "PIPE_A";
48 	case POWER_DOMAIN_PIPE_B:
49 		return "PIPE_B";
50 	case POWER_DOMAIN_PIPE_C:
51 		return "PIPE_C";
52 	case POWER_DOMAIN_PIPE_D:
53 		return "PIPE_D";
54 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
55 		return "PIPE_PANEL_FITTER_A";
56 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
57 		return "PIPE_PANEL_FITTER_B";
58 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
59 		return "PIPE_PANEL_FITTER_C";
60 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
61 		return "PIPE_PANEL_FITTER_D";
62 	case POWER_DOMAIN_TRANSCODER_A:
63 		return "TRANSCODER_A";
64 	case POWER_DOMAIN_TRANSCODER_B:
65 		return "TRANSCODER_B";
66 	case POWER_DOMAIN_TRANSCODER_C:
67 		return "TRANSCODER_C";
68 	case POWER_DOMAIN_TRANSCODER_D:
69 		return "TRANSCODER_D";
70 	case POWER_DOMAIN_TRANSCODER_EDP:
71 		return "TRANSCODER_EDP";
72 	case POWER_DOMAIN_TRANSCODER_DSI_A:
73 		return "TRANSCODER_DSI_A";
74 	case POWER_DOMAIN_TRANSCODER_DSI_C:
75 		return "TRANSCODER_DSI_C";
76 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
77 		return "TRANSCODER_VDSC_PW2";
78 	case POWER_DOMAIN_PORT_DDI_LANES_A:
79 		return "PORT_DDI_LANES_A";
80 	case POWER_DOMAIN_PORT_DDI_LANES_B:
81 		return "PORT_DDI_LANES_B";
82 	case POWER_DOMAIN_PORT_DDI_LANES_C:
83 		return "PORT_DDI_LANES_C";
84 	case POWER_DOMAIN_PORT_DDI_LANES_D:
85 		return "PORT_DDI_LANES_D";
86 	case POWER_DOMAIN_PORT_DDI_LANES_E:
87 		return "PORT_DDI_LANES_E";
88 	case POWER_DOMAIN_PORT_DDI_LANES_F:
89 		return "PORT_DDI_LANES_F";
90 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
91 		return "PORT_DDI_LANES_TC1";
92 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
93 		return "PORT_DDI_LANES_TC2";
94 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
95 		return "PORT_DDI_LANES_TC3";
96 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
97 		return "PORT_DDI_LANES_TC4";
98 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
99 		return "PORT_DDI_LANES_TC5";
100 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
101 		return "PORT_DDI_LANES_TC6";
102 	case POWER_DOMAIN_PORT_DDI_IO_A:
103 		return "PORT_DDI_IO_A";
104 	case POWER_DOMAIN_PORT_DDI_IO_B:
105 		return "PORT_DDI_IO_B";
106 	case POWER_DOMAIN_PORT_DDI_IO_C:
107 		return "PORT_DDI_IO_C";
108 	case POWER_DOMAIN_PORT_DDI_IO_D:
109 		return "PORT_DDI_IO_D";
110 	case POWER_DOMAIN_PORT_DDI_IO_E:
111 		return "PORT_DDI_IO_E";
112 	case POWER_DOMAIN_PORT_DDI_IO_F:
113 		return "PORT_DDI_IO_F";
114 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
115 		return "PORT_DDI_IO_TC1";
116 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
117 		return "PORT_DDI_IO_TC2";
118 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
119 		return "PORT_DDI_IO_TC3";
120 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
121 		return "PORT_DDI_IO_TC4";
122 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
123 		return "PORT_DDI_IO_TC5";
124 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
125 		return "PORT_DDI_IO_TC6";
126 	case POWER_DOMAIN_PORT_DSI:
127 		return "PORT_DSI";
128 	case POWER_DOMAIN_PORT_CRT:
129 		return "PORT_CRT";
130 	case POWER_DOMAIN_PORT_OTHER:
131 		return "PORT_OTHER";
132 	case POWER_DOMAIN_VGA:
133 		return "VGA";
134 	case POWER_DOMAIN_AUDIO_MMIO:
135 		return "AUDIO_MMIO";
136 	case POWER_DOMAIN_AUDIO_PLAYBACK:
137 		return "AUDIO_PLAYBACK";
138 	case POWER_DOMAIN_AUX_IO_A:
139 		return "AUX_IO_A";
140 	case POWER_DOMAIN_AUX_IO_B:
141 		return "AUX_IO_B";
142 	case POWER_DOMAIN_AUX_IO_C:
143 		return "AUX_IO_C";
144 	case POWER_DOMAIN_AUX_IO_D:
145 		return "AUX_IO_D";
146 	case POWER_DOMAIN_AUX_IO_E:
147 		return "AUX_IO_E";
148 	case POWER_DOMAIN_AUX_IO_F:
149 		return "AUX_IO_F";
150 	case POWER_DOMAIN_AUX_A:
151 		return "AUX_A";
152 	case POWER_DOMAIN_AUX_B:
153 		return "AUX_B";
154 	case POWER_DOMAIN_AUX_C:
155 		return "AUX_C";
156 	case POWER_DOMAIN_AUX_D:
157 		return "AUX_D";
158 	case POWER_DOMAIN_AUX_E:
159 		return "AUX_E";
160 	case POWER_DOMAIN_AUX_F:
161 		return "AUX_F";
162 	case POWER_DOMAIN_AUX_USBC1:
163 		return "AUX_USBC1";
164 	case POWER_DOMAIN_AUX_USBC2:
165 		return "AUX_USBC2";
166 	case POWER_DOMAIN_AUX_USBC3:
167 		return "AUX_USBC3";
168 	case POWER_DOMAIN_AUX_USBC4:
169 		return "AUX_USBC4";
170 	case POWER_DOMAIN_AUX_USBC5:
171 		return "AUX_USBC5";
172 	case POWER_DOMAIN_AUX_USBC6:
173 		return "AUX_USBC6";
174 	case POWER_DOMAIN_AUX_TBT1:
175 		return "AUX_TBT1";
176 	case POWER_DOMAIN_AUX_TBT2:
177 		return "AUX_TBT2";
178 	case POWER_DOMAIN_AUX_TBT3:
179 		return "AUX_TBT3";
180 	case POWER_DOMAIN_AUX_TBT4:
181 		return "AUX_TBT4";
182 	case POWER_DOMAIN_AUX_TBT5:
183 		return "AUX_TBT5";
184 	case POWER_DOMAIN_AUX_TBT6:
185 		return "AUX_TBT6";
186 	case POWER_DOMAIN_GMBUS:
187 		return "GMBUS";
188 	case POWER_DOMAIN_INIT:
189 		return "INIT";
190 	case POWER_DOMAIN_GT_IRQ:
191 		return "GT_IRQ";
192 	case POWER_DOMAIN_DC_OFF:
193 		return "DC_OFF";
194 	case POWER_DOMAIN_TC_COLD_OFF:
195 		return "TC_COLD_OFF";
196 	default:
197 		MISSING_CASE(domain);
198 		return "?";
199 	}
200 }
201 
202 static bool __intel_display_power_is_enabled(struct intel_display *display,
203 					     enum intel_display_power_domain domain)
204 {
205 	struct i915_power_well *power_well;
206 	bool is_enabled;
207 
208 	if (intel_display_rpm_suspended(display))
209 		return false;
210 
211 	is_enabled = true;
212 
213 	for_each_power_domain_well_reverse(display, power_well, domain) {
214 		if (intel_power_well_is_always_on(power_well))
215 			continue;
216 
217 		if (!intel_power_well_is_enabled_cached(power_well)) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @display: display device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct intel_display *display,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains = &display->power.domains;
247 	bool ret;
248 
249 	mutex_lock(&power_domains->lock);
250 	ret = __intel_display_power_is_enabled(display, domain);
251 	mutex_unlock(&power_domains->lock);
252 
253 	return ret;
254 }
255 
256 static u32
257 sanitize_target_dc_state(struct intel_display *display,
258 			 u32 target_dc_state)
259 {
260 	struct i915_power_domains *power_domains = &display->power.domains;
261 	static const u32 states[] = {
262 		DC_STATE_EN_UPTO_DC6,
263 		DC_STATE_EN_UPTO_DC5,
264 		DC_STATE_EN_DC3CO,
265 		DC_STATE_DISABLE,
266 	};
267 	int i;
268 
269 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
270 		if (target_dc_state != states[i])
271 			continue;
272 
273 		if (power_domains->allowed_dc_mask & target_dc_state)
274 			break;
275 
276 		target_dc_state = states[i + 1];
277 	}
278 
279 	return target_dc_state;
280 }
281 
282 /**
283  * intel_display_power_set_target_dc_state - Set target dc state.
284  * @display: display device
285  * @state: state which needs to be set as target_dc_state.
286  *
287  * This function set the "DC off" power well target_dc_state,
288  * based upon this target_dc_stste, "DC off" power well will
289  * enable desired DC state.
290  */
291 void intel_display_power_set_target_dc_state(struct intel_display *display,
292 					     u32 state)
293 {
294 	struct i915_power_well *power_well;
295 	bool dc_off_enabled;
296 	struct i915_power_domains *power_domains = &display->power.domains;
297 
298 	mutex_lock(&power_domains->lock);
299 	power_well = lookup_power_well(display, SKL_DISP_DC_OFF);
300 
301 	if (drm_WARN_ON(display->drm, !power_well))
302 		goto unlock;
303 
304 	state = sanitize_target_dc_state(display, state);
305 
306 	if (state == power_domains->target_dc_state)
307 		goto unlock;
308 
309 	dc_off_enabled = intel_power_well_is_enabled(display, power_well);
310 	/*
311 	 * If DC off power well is disabled, need to enable and disable the
312 	 * DC off power well to effect target DC state.
313 	 */
314 	if (!dc_off_enabled)
315 		intel_power_well_enable(display, power_well);
316 
317 	power_domains->target_dc_state = state;
318 
319 	if (!dc_off_enabled)
320 		intel_power_well_disable(display, power_well);
321 
322 unlock:
323 	mutex_unlock(&power_domains->lock);
324 }
325 
326 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
327 				     struct intel_power_domain_mask *mask)
328 {
329 	bitmap_or(mask->bits,
330 		  power_domains->async_put_domains[0].bits,
331 		  power_domains->async_put_domains[1].bits,
332 		  POWER_DOMAIN_NUM);
333 }
334 
335 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
336 
337 static bool
338 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
339 {
340 	struct intel_display *display = container_of(power_domains,
341 						     struct intel_display,
342 						     power.domains);
343 
344 	return !drm_WARN_ON(display->drm,
345 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
346 					      power_domains->async_put_domains[1].bits,
347 					      POWER_DOMAIN_NUM));
348 }
349 
350 static bool
351 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
352 {
353 	struct intel_display *display = container_of(power_domains,
354 						     struct intel_display,
355 						     power.domains);
356 	struct intel_power_domain_mask async_put_mask;
357 	enum intel_display_power_domain domain;
358 	bool err = false;
359 
360 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
361 	__async_put_domains_mask(power_domains, &async_put_mask);
362 	err |= drm_WARN_ON(display->drm,
363 			   !!power_domains->async_put_wakeref !=
364 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
365 
366 	for_each_power_domain(domain, &async_put_mask)
367 		err |= drm_WARN_ON(display->drm,
368 				   power_domains->domain_use_count[domain] != 1);
369 
370 	return !err;
371 }
372 
373 static void print_power_domains(struct i915_power_domains *power_domains,
374 				const char *prefix, struct intel_power_domain_mask *mask)
375 {
376 	struct intel_display *display = container_of(power_domains,
377 						     struct intel_display,
378 						     power.domains);
379 	enum intel_display_power_domain domain;
380 
381 	drm_dbg_kms(display->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
382 	for_each_power_domain(domain, mask)
383 		drm_dbg_kms(display->drm, "%s use_count %d\n",
384 			    intel_display_power_domain_str(domain),
385 			    power_domains->domain_use_count[domain]);
386 }
387 
388 static void
389 print_async_put_domains_state(struct i915_power_domains *power_domains)
390 {
391 	struct intel_display *display = container_of(power_domains,
392 						     struct intel_display,
393 						     power.domains);
394 
395 	drm_dbg_kms(display->drm, "async_put_wakeref: %s\n",
396 		    str_yes_no(power_domains->async_put_wakeref));
397 
398 	print_power_domains(power_domains, "async_put_domains[0]",
399 			    &power_domains->async_put_domains[0]);
400 	print_power_domains(power_domains, "async_put_domains[1]",
401 			    &power_domains->async_put_domains[1]);
402 }
403 
404 static void
405 verify_async_put_domains_state(struct i915_power_domains *power_domains)
406 {
407 	if (!__async_put_domains_state_ok(power_domains))
408 		print_async_put_domains_state(power_domains);
409 }
410 
411 #else
412 
413 static void
414 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
415 {
416 }
417 
418 static void
419 verify_async_put_domains_state(struct i915_power_domains *power_domains)
420 {
421 }
422 
423 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
424 
425 static void async_put_domains_mask(struct i915_power_domains *power_domains,
426 				   struct intel_power_domain_mask *mask)
427 
428 {
429 	assert_async_put_domain_masks_disjoint(power_domains);
430 
431 	__async_put_domains_mask(power_domains, mask);
432 }
433 
434 static void
435 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
436 			       enum intel_display_power_domain domain)
437 {
438 	assert_async_put_domain_masks_disjoint(power_domains);
439 
440 	clear_bit(domain, power_domains->async_put_domains[0].bits);
441 	clear_bit(domain, power_domains->async_put_domains[1].bits);
442 }
443 
444 static void
445 cancel_async_put_work(struct i915_power_domains *power_domains, bool sync)
446 {
447 	if (sync)
448 		cancel_delayed_work_sync(&power_domains->async_put_work);
449 	else
450 		cancel_delayed_work(&power_domains->async_put_work);
451 
452 	power_domains->async_put_next_delay = 0;
453 }
454 
455 static bool
456 intel_display_power_grab_async_put_ref(struct intel_display *display,
457 				       enum intel_display_power_domain domain)
458 {
459 	struct i915_power_domains *power_domains = &display->power.domains;
460 	struct intel_power_domain_mask async_put_mask;
461 	bool ret = false;
462 
463 	async_put_domains_mask(power_domains, &async_put_mask);
464 	if (!test_bit(domain, async_put_mask.bits))
465 		goto out_verify;
466 
467 	async_put_domains_clear_domain(power_domains, domain);
468 
469 	ret = true;
470 
471 	async_put_domains_mask(power_domains, &async_put_mask);
472 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
473 		goto out_verify;
474 
475 	cancel_async_put_work(power_domains, false);
476 	intel_display_rpm_put_raw(display,
477 				  fetch_and_zero(&power_domains->async_put_wakeref));
478 out_verify:
479 	verify_async_put_domains_state(power_domains);
480 
481 	return ret;
482 }
483 
484 static void
485 __intel_display_power_get_domain(struct intel_display *display,
486 				 enum intel_display_power_domain domain)
487 {
488 	struct i915_power_domains *power_domains = &display->power.domains;
489 	struct i915_power_well *power_well;
490 
491 	if (intel_display_power_grab_async_put_ref(display, domain))
492 		return;
493 
494 	for_each_power_domain_well(display, power_well, domain)
495 		intel_power_well_get(display, power_well);
496 
497 	power_domains->domain_use_count[domain]++;
498 }
499 
500 /**
501  * intel_display_power_get - grab a power domain reference
502  * @display: display device instance
503  * @domain: power domain to reference
504  *
505  * This function grabs a power domain reference for @domain and ensures that the
506  * power domain and all its parents are powered up. Therefore users should only
507  * grab a reference to the innermost power domain they need.
508  *
509  * Any power domain reference obtained by this function must have a symmetric
510  * call to intel_display_power_put() to release the reference again.
511  */
512 intel_wakeref_t intel_display_power_get(struct intel_display *display,
513 					enum intel_display_power_domain domain)
514 {
515 	struct i915_power_domains *power_domains = &display->power.domains;
516 	struct ref_tracker *wakeref;
517 
518 	wakeref = intel_display_rpm_get(display);
519 
520 	mutex_lock(&power_domains->lock);
521 	__intel_display_power_get_domain(display, domain);
522 	mutex_unlock(&power_domains->lock);
523 
524 	return wakeref;
525 }
526 
527 /**
528  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
529  * @display: display device instance
530  * @domain: power domain to reference
531  *
532  * This function grabs a power domain reference for @domain and ensures that the
533  * power domain and all its parents are powered up. Therefore users should only
534  * grab a reference to the innermost power domain they need.
535  *
536  * Any power domain reference obtained by this function must have a symmetric
537  * call to intel_display_power_put() to release the reference again.
538  */
539 intel_wakeref_t
540 intel_display_power_get_if_enabled(struct intel_display *display,
541 				   enum intel_display_power_domain domain)
542 {
543 	struct i915_power_domains *power_domains = &display->power.domains;
544 	struct ref_tracker *wakeref;
545 	bool is_enabled;
546 
547 	wakeref = intel_display_rpm_get_if_in_use(display);
548 	if (!wakeref)
549 		return NULL;
550 
551 	mutex_lock(&power_domains->lock);
552 
553 	if (__intel_display_power_is_enabled(display, domain)) {
554 		__intel_display_power_get_domain(display, domain);
555 		is_enabled = true;
556 	} else {
557 		is_enabled = false;
558 	}
559 
560 	mutex_unlock(&power_domains->lock);
561 
562 	if (!is_enabled) {
563 		intel_display_rpm_put(display, wakeref);
564 		wakeref = NULL;
565 	}
566 
567 	return wakeref;
568 }
569 
570 static void
571 __intel_display_power_put_domain(struct intel_display *display,
572 				 enum intel_display_power_domain domain)
573 {
574 	struct i915_power_domains *power_domains = &display->power.domains;
575 	struct i915_power_well *power_well;
576 	const char *name = intel_display_power_domain_str(domain);
577 	struct intel_power_domain_mask async_put_mask;
578 
579 	drm_WARN(display->drm, !power_domains->domain_use_count[domain],
580 		 "Use count on domain %s is already zero\n",
581 		 name);
582 	async_put_domains_mask(power_domains, &async_put_mask);
583 	drm_WARN(display->drm,
584 		 test_bit(domain, async_put_mask.bits),
585 		 "Async disabling of domain %s is pending\n",
586 		 name);
587 
588 	power_domains->domain_use_count[domain]--;
589 
590 	for_each_power_domain_well_reverse(display, power_well, domain)
591 		intel_power_well_put(display, power_well);
592 }
593 
594 static void __intel_display_power_put(struct intel_display *display,
595 				      enum intel_display_power_domain domain)
596 {
597 	struct i915_power_domains *power_domains = &display->power.domains;
598 
599 	mutex_lock(&power_domains->lock);
600 	__intel_display_power_put_domain(display, domain);
601 	mutex_unlock(&power_domains->lock);
602 }
603 
604 static void
605 queue_async_put_domains_work(struct i915_power_domains *power_domains,
606 			     intel_wakeref_t wakeref,
607 			     int delay_ms)
608 {
609 	struct intel_display *display = container_of(power_domains,
610 						     struct intel_display,
611 						     power.domains);
612 	drm_WARN_ON(display->drm, power_domains->async_put_wakeref);
613 	power_domains->async_put_wakeref = wakeref;
614 	drm_WARN_ON(display->drm, !queue_delayed_work(system_unbound_wq,
615 						      &power_domains->async_put_work,
616 						      msecs_to_jiffies(delay_ms)));
617 }
618 
619 static void
620 release_async_put_domains(struct i915_power_domains *power_domains,
621 			  struct intel_power_domain_mask *mask)
622 {
623 	struct intel_display *display = container_of(power_domains,
624 						     struct intel_display,
625 						     power.domains);
626 	enum intel_display_power_domain domain;
627 	struct ref_tracker *wakeref;
628 
629 	wakeref = intel_display_rpm_get_noresume(display);
630 
631 	for_each_power_domain(domain, mask) {
632 		/* Clear before put, so put's sanity check is happy. */
633 		async_put_domains_clear_domain(power_domains, domain);
634 		__intel_display_power_put_domain(display, domain);
635 	}
636 
637 	intel_display_rpm_put(display, wakeref);
638 }
639 
640 static void
641 intel_display_power_put_async_work(struct work_struct *work)
642 {
643 	struct intel_display *display = container_of(work, struct intel_display,
644 						     power.domains.async_put_work.work);
645 	struct i915_power_domains *power_domains = &display->power.domains;
646 	struct ref_tracker *new_work_wakeref, *old_work_wakeref = NULL;
647 
648 	new_work_wakeref = intel_display_rpm_get_raw(display);
649 
650 	mutex_lock(&power_domains->lock);
651 
652 	/*
653 	 * Bail out if all the domain refs pending to be released were grabbed
654 	 * by subsequent gets or a flush_work.
655 	 */
656 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
657 	if (!old_work_wakeref)
658 		goto out_verify;
659 
660 	release_async_put_domains(power_domains,
661 				  &power_domains->async_put_domains[0]);
662 
663 	/*
664 	 * Cancel the work that got queued after this one got dequeued,
665 	 * since here we released the corresponding async-put reference.
666 	 */
667 	cancel_async_put_work(power_domains, false);
668 
669 	/* Requeue the work if more domains were async put meanwhile. */
670 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
671 		bitmap_copy(power_domains->async_put_domains[0].bits,
672 			    power_domains->async_put_domains[1].bits,
673 			    POWER_DOMAIN_NUM);
674 		bitmap_zero(power_domains->async_put_domains[1].bits,
675 			    POWER_DOMAIN_NUM);
676 		queue_async_put_domains_work(power_domains,
677 					     fetch_and_zero(&new_work_wakeref),
678 					     power_domains->async_put_next_delay);
679 		power_domains->async_put_next_delay = 0;
680 	}
681 
682 out_verify:
683 	verify_async_put_domains_state(power_domains);
684 
685 	mutex_unlock(&power_domains->lock);
686 
687 	if (old_work_wakeref)
688 		intel_display_rpm_put_raw(display, old_work_wakeref);
689 	if (new_work_wakeref)
690 		intel_display_rpm_put_raw(display, new_work_wakeref);
691 }
692 
693 /**
694  * __intel_display_power_put_async - release a power domain reference asynchronously
695  * @display: display device instance
696  * @domain: power domain to reference
697  * @wakeref: wakeref acquired for the reference that is being released
698  * @delay_ms: delay of powering down the power domain
699  *
700  * This function drops the power domain reference obtained by
701  * intel_display_power_get*() and schedules a work to power down the
702  * corresponding hardware block if this is the last reference.
703  * The power down is delayed by @delay_ms if this is >= 0, or by a default
704  * 100 ms otherwise.
705  */
706 void __intel_display_power_put_async(struct intel_display *display,
707 				     enum intel_display_power_domain domain,
708 				     intel_wakeref_t wakeref,
709 				     int delay_ms)
710 {
711 	struct i915_power_domains *power_domains = &display->power.domains;
712 	struct ref_tracker *work_wakeref;
713 
714 	work_wakeref = intel_display_rpm_get_raw(display);
715 
716 	delay_ms = delay_ms >= 0 ? delay_ms : 100;
717 
718 	mutex_lock(&power_domains->lock);
719 
720 	if (power_domains->domain_use_count[domain] > 1) {
721 		__intel_display_power_put_domain(display, domain);
722 
723 		goto out_verify;
724 	}
725 
726 	drm_WARN_ON(display->drm, power_domains->domain_use_count[domain] != 1);
727 
728 	/* Let a pending work requeue itself or queue a new one. */
729 	if (power_domains->async_put_wakeref) {
730 		set_bit(domain, power_domains->async_put_domains[1].bits);
731 		power_domains->async_put_next_delay = max(power_domains->async_put_next_delay,
732 							  delay_ms);
733 	} else {
734 		set_bit(domain, power_domains->async_put_domains[0].bits);
735 		queue_async_put_domains_work(power_domains,
736 					     fetch_and_zero(&work_wakeref),
737 					     delay_ms);
738 	}
739 
740 out_verify:
741 	verify_async_put_domains_state(power_domains);
742 
743 	mutex_unlock(&power_domains->lock);
744 
745 	if (work_wakeref)
746 		intel_display_rpm_put_raw(display, work_wakeref);
747 
748 	intel_display_rpm_put(display, wakeref);
749 }
750 
751 /**
752  * intel_display_power_flush_work - flushes the async display power disabling work
753  * @display: display device instance
754  *
755  * Flushes any pending work that was scheduled by a preceding
756  * intel_display_power_put_async() call, completing the disabling of the
757  * corresponding power domains.
758  *
759  * Note that the work handler function may still be running after this
760  * function returns; to ensure that the work handler isn't running use
761  * intel_display_power_flush_work_sync() instead.
762  */
763 void intel_display_power_flush_work(struct intel_display *display)
764 {
765 	struct i915_power_domains *power_domains = &display->power.domains;
766 	struct intel_power_domain_mask async_put_mask;
767 	intel_wakeref_t work_wakeref;
768 
769 	mutex_lock(&power_domains->lock);
770 
771 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
772 	if (!work_wakeref)
773 		goto out_verify;
774 
775 	async_put_domains_mask(power_domains, &async_put_mask);
776 	release_async_put_domains(power_domains, &async_put_mask);
777 	cancel_async_put_work(power_domains, false);
778 
779 out_verify:
780 	verify_async_put_domains_state(power_domains);
781 
782 	mutex_unlock(&power_domains->lock);
783 
784 	if (work_wakeref)
785 		intel_display_rpm_put_raw(display, work_wakeref);
786 }
787 
788 /**
789  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
790  * @display: display device instance
791  *
792  * Like intel_display_power_flush_work(), but also ensure that the work
793  * handler function is not running any more when this function returns.
794  */
795 static void
796 intel_display_power_flush_work_sync(struct intel_display *display)
797 {
798 	struct i915_power_domains *power_domains = &display->power.domains;
799 
800 	intel_display_power_flush_work(display);
801 	cancel_async_put_work(power_domains, true);
802 
803 	verify_async_put_domains_state(power_domains);
804 
805 	drm_WARN_ON(display->drm, power_domains->async_put_wakeref);
806 }
807 
808 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
809 /**
810  * intel_display_power_put - release a power domain reference
811  * @display: display device instance
812  * @domain: power domain to reference
813  * @wakeref: wakeref acquired for the reference that is being released
814  *
815  * This function drops the power domain reference obtained by
816  * intel_display_power_get() and might power down the corresponding hardware
817  * block right away if this is the last reference.
818  */
819 void intel_display_power_put(struct intel_display *display,
820 			     enum intel_display_power_domain domain,
821 			     intel_wakeref_t wakeref)
822 {
823 	__intel_display_power_put(display, domain);
824 	intel_display_rpm_put(display, wakeref);
825 }
826 #else
827 /**
828  * intel_display_power_put_unchecked - release an unchecked power domain reference
829  * @display: display device instance
830  * @domain: power domain to reference
831  *
832  * This function drops the power domain reference obtained by
833  * intel_display_power_get() and might power down the corresponding hardware
834  * block right away if this is the last reference.
835  *
836  * This function is only for the power domain code's internal use to suppress wakeref
837  * tracking when the corresponding debug kconfig option is disabled, should not
838  * be used otherwise.
839  */
840 void intel_display_power_put_unchecked(struct intel_display *display,
841 				       enum intel_display_power_domain domain)
842 {
843 	__intel_display_power_put(display, domain);
844 	intel_display_rpm_put_unchecked(display);
845 }
846 #endif
847 
848 void
849 intel_display_power_get_in_set(struct intel_display *display,
850 			       struct intel_display_power_domain_set *power_domain_set,
851 			       enum intel_display_power_domain domain)
852 {
853 	intel_wakeref_t __maybe_unused wf;
854 
855 	drm_WARN_ON(display->drm, test_bit(domain, power_domain_set->mask.bits));
856 
857 	wf = intel_display_power_get(display, domain);
858 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
859 	power_domain_set->wakerefs[domain] = wf;
860 #endif
861 	set_bit(domain, power_domain_set->mask.bits);
862 }
863 
864 bool
865 intel_display_power_get_in_set_if_enabled(struct intel_display *display,
866 					  struct intel_display_power_domain_set *power_domain_set,
867 					  enum intel_display_power_domain domain)
868 {
869 	intel_wakeref_t wf;
870 
871 	drm_WARN_ON(display->drm, test_bit(domain, power_domain_set->mask.bits));
872 
873 	wf = intel_display_power_get_if_enabled(display, domain);
874 	if (!wf)
875 		return false;
876 
877 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
878 	power_domain_set->wakerefs[domain] = wf;
879 #endif
880 	set_bit(domain, power_domain_set->mask.bits);
881 
882 	return true;
883 }
884 
885 void
886 intel_display_power_put_mask_in_set(struct intel_display *display,
887 				    struct intel_display_power_domain_set *power_domain_set,
888 				    struct intel_power_domain_mask *mask)
889 {
890 	enum intel_display_power_domain domain;
891 
892 	drm_WARN_ON(display->drm,
893 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
894 
895 	for_each_power_domain(domain, mask) {
896 		intel_wakeref_t __maybe_unused wf = INTEL_WAKEREF_DEF;
897 
898 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
899 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
900 #endif
901 		intel_display_power_put(display, domain, wf);
902 		clear_bit(domain, power_domain_set->mask.bits);
903 	}
904 }
905 
906 static int
907 sanitize_disable_power_well_option(int disable_power_well)
908 {
909 	if (disable_power_well >= 0)
910 		return !!disable_power_well;
911 
912 	return 1;
913 }
914 
915 static u32 get_allowed_dc_mask(struct intel_display *display, int enable_dc)
916 {
917 	u32 mask;
918 	int requested_dc;
919 	int max_dc;
920 
921 	if (!HAS_DISPLAY(display))
922 		return 0;
923 
924 	if (DISPLAY_VER(display) >= 20)
925 		max_dc = 2;
926 	else if (display->platform.dg2)
927 		max_dc = 1;
928 	else if (display->platform.dg1)
929 		max_dc = 3;
930 	else if (DISPLAY_VER(display) >= 12)
931 		max_dc = 4;
932 	else if (display->platform.geminilake || display->platform.broxton)
933 		max_dc = 1;
934 	else if (DISPLAY_VER(display) >= 9)
935 		max_dc = 2;
936 	else
937 		max_dc = 0;
938 
939 	/*
940 	 * DC9 has a separate HW flow from the rest of the DC states,
941 	 * not depending on the DMC firmware. It's needed by system
942 	 * suspend/resume, so allow it unconditionally.
943 	 */
944 	mask = display->platform.geminilake || display->platform.broxton ||
945 		DISPLAY_VER(display) >= 11 ? DC_STATE_EN_DC9 : 0;
946 
947 	if (!display->params.disable_power_well)
948 		max_dc = 0;
949 
950 	if (enable_dc >= 0 && enable_dc <= max_dc) {
951 		requested_dc = enable_dc;
952 	} else if (enable_dc == -1) {
953 		requested_dc = max_dc;
954 	} else if (enable_dc > max_dc && enable_dc <= 4) {
955 		drm_dbg_kms(display->drm,
956 			    "Adjusting requested max DC state (%d->%d)\n",
957 			    enable_dc, max_dc);
958 		requested_dc = max_dc;
959 	} else {
960 		drm_err(display->drm,
961 			"Unexpected value for enable_dc (%d)\n", enable_dc);
962 		requested_dc = max_dc;
963 	}
964 
965 	switch (requested_dc) {
966 	case 4:
967 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
968 		break;
969 	case 3:
970 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
971 		break;
972 	case 2:
973 		mask |= DC_STATE_EN_UPTO_DC6;
974 		break;
975 	case 1:
976 		mask |= DC_STATE_EN_UPTO_DC5;
977 		break;
978 	}
979 
980 	drm_dbg_kms(display->drm, "Allowed DC state mask %02x\n", mask);
981 
982 	return mask;
983 }
984 
985 /**
986  * intel_power_domains_init - initializes the power domain structures
987  * @display: display device instance
988  *
989  * Initializes the power domain structures for @display depending upon the
990  * supported platform.
991  */
992 int intel_power_domains_init(struct intel_display *display)
993 {
994 	struct i915_power_domains *power_domains = &display->power.domains;
995 
996 	display->params.disable_power_well =
997 		sanitize_disable_power_well_option(display->params.disable_power_well);
998 	power_domains->allowed_dc_mask =
999 		get_allowed_dc_mask(display, display->params.enable_dc);
1000 
1001 	power_domains->target_dc_state =
1002 		sanitize_target_dc_state(display, DC_STATE_EN_UPTO_DC6);
1003 
1004 	mutex_init(&power_domains->lock);
1005 
1006 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1007 			  intel_display_power_put_async_work);
1008 
1009 	return intel_display_power_map_init(power_domains);
1010 }
1011 
1012 /**
1013  * intel_power_domains_cleanup - clean up power domains resources
1014  * @display: display device instance
1015  *
1016  * Release any resources acquired by intel_power_domains_init()
1017  */
1018 void intel_power_domains_cleanup(struct intel_display *display)
1019 {
1020 	intel_display_power_map_cleanup(&display->power.domains);
1021 }
1022 
1023 static void intel_power_domains_sync_hw(struct intel_display *display)
1024 {
1025 	struct i915_power_domains *power_domains = &display->power.domains;
1026 	struct i915_power_well *power_well;
1027 
1028 	mutex_lock(&power_domains->lock);
1029 	for_each_power_well(display, power_well)
1030 		intel_power_well_sync_hw(display, power_well);
1031 	mutex_unlock(&power_domains->lock);
1032 }
1033 
1034 static void gen9_dbuf_slice_set(struct intel_display *display,
1035 				enum dbuf_slice slice, bool enable)
1036 {
1037 	i915_reg_t reg = DBUF_CTL_S(slice);
1038 	bool state;
1039 
1040 	intel_de_rmw(display, reg, DBUF_POWER_REQUEST,
1041 		     enable ? DBUF_POWER_REQUEST : 0);
1042 	intel_de_posting_read(display, reg);
1043 	udelay(10);
1044 
1045 	state = intel_de_read(display, reg) & DBUF_POWER_STATE;
1046 	drm_WARN(display->drm, enable != state,
1047 		 "DBuf slice %d power %s timeout!\n",
1048 		 slice, str_enable_disable(enable));
1049 }
1050 
1051 void gen9_dbuf_slices_update(struct intel_display *display,
1052 			     u8 req_slices)
1053 {
1054 	struct i915_power_domains *power_domains = &display->power.domains;
1055 	u8 slice_mask = DISPLAY_INFO(display)->dbuf.slice_mask;
1056 	enum dbuf_slice slice;
1057 
1058 	drm_WARN(display->drm, req_slices & ~slice_mask,
1059 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1060 		 req_slices, slice_mask);
1061 
1062 	drm_dbg_kms(display->drm, "Updating dbuf slices to 0x%x\n",
1063 		    req_slices);
1064 
1065 	/*
1066 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1067 	 * being called from intel_dp_detect for instance,
1068 	 * which causes assertion triggered by race condition,
1069 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1070 	 * were already updated, while dev_priv was not.
1071 	 */
1072 	mutex_lock(&power_domains->lock);
1073 
1074 	for_each_dbuf_slice(display, slice)
1075 		gen9_dbuf_slice_set(display, slice, req_slices & BIT(slice));
1076 
1077 	display->dbuf.enabled_slices = req_slices;
1078 
1079 	mutex_unlock(&power_domains->lock);
1080 }
1081 
1082 static void gen9_dbuf_enable(struct intel_display *display)
1083 {
1084 	u8 slices_mask;
1085 
1086 	display->dbuf.enabled_slices = intel_enabled_dbuf_slices_mask(display);
1087 
1088 	slices_mask = BIT(DBUF_S1) | display->dbuf.enabled_slices;
1089 
1090 	if (DISPLAY_VER(display) >= 14)
1091 		intel_pmdemand_program_dbuf(display, slices_mask);
1092 
1093 	/*
1094 	 * Just power up at least 1 slice, we will
1095 	 * figure out later which slices we have and what we need.
1096 	 */
1097 	gen9_dbuf_slices_update(display, slices_mask);
1098 }
1099 
1100 static void gen9_dbuf_disable(struct intel_display *display)
1101 {
1102 	gen9_dbuf_slices_update(display, 0);
1103 
1104 	if (DISPLAY_VER(display) >= 14)
1105 		intel_pmdemand_program_dbuf(display, 0);
1106 }
1107 
1108 static void gen12_dbuf_slices_config(struct intel_display *display)
1109 {
1110 	enum dbuf_slice slice;
1111 
1112 	for_each_dbuf_slice(display, slice)
1113 		intel_de_rmw(display, DBUF_CTL_S(slice),
1114 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1115 			     DBUF_TRACKER_STATE_SERVICE(8));
1116 }
1117 
1118 static void icl_mbus_init(struct intel_display *display)
1119 {
1120 	unsigned long abox_regs = DISPLAY_INFO(display)->abox_mask;
1121 	u32 mask, val, i;
1122 
1123 	if (display->platform.alderlake_p || DISPLAY_VER(display) >= 14)
1124 		return;
1125 
1126 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1127 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1128 		MBUS_ABOX_B_CREDIT_MASK |
1129 		MBUS_ABOX_BW_CREDIT_MASK;
1130 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1131 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1132 		MBUS_ABOX_B_CREDIT(1) |
1133 		MBUS_ABOX_BW_CREDIT(1);
1134 
1135 	/*
1136 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1137 	 * expect us to program the abox_ctl0 register as well, even though
1138 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1139 	 */
1140 	if (DISPLAY_VER(display) == 12)
1141 		abox_regs |= BIT(0);
1142 
1143 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1144 		intel_de_rmw(display, MBUS_ABOX_CTL(i), mask, val);
1145 }
1146 
1147 static void hsw_assert_cdclk(struct intel_display *display)
1148 {
1149 	u32 val = intel_de_read(display, LCPLL_CTL);
1150 
1151 	/*
1152 	 * The LCPLL register should be turned on by the BIOS. For now
1153 	 * let's just check its state and print errors in case
1154 	 * something is wrong.  Don't even try to turn it on.
1155 	 */
1156 
1157 	if (val & LCPLL_CD_SOURCE_FCLK)
1158 		drm_err(display->drm, "CDCLK source is not LCPLL\n");
1159 
1160 	if (val & LCPLL_PLL_DISABLE)
1161 		drm_err(display->drm, "LCPLL is disabled\n");
1162 
1163 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1164 		drm_err(display->drm, "LCPLL not using non-SSC reference\n");
1165 }
1166 
1167 static void assert_can_disable_lcpll(struct intel_display *display)
1168 {
1169 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1170 	struct intel_crtc *crtc;
1171 
1172 	for_each_intel_crtc(display->drm, crtc)
1173 		INTEL_DISPLAY_STATE_WARN(display, crtc->active,
1174 					 "CRTC for pipe %c enabled\n",
1175 					 pipe_name(crtc->pipe));
1176 
1177 	INTEL_DISPLAY_STATE_WARN(display, intel_de_read(display, HSW_PWR_WELL_CTL2),
1178 				 "Display power well on\n");
1179 	INTEL_DISPLAY_STATE_WARN(display,
1180 				 intel_de_read(display, SPLL_CTL) & SPLL_PLL_ENABLE,
1181 				 "SPLL enabled\n");
1182 	INTEL_DISPLAY_STATE_WARN(display,
1183 				 intel_de_read(display, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1184 				 "WRPLL1 enabled\n");
1185 	INTEL_DISPLAY_STATE_WARN(display,
1186 				 intel_de_read(display, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1187 				 "WRPLL2 enabled\n");
1188 	INTEL_DISPLAY_STATE_WARN(display,
1189 				 intel_de_read(display, PP_STATUS(display, 0)) & PP_ON,
1190 				 "Panel power on\n");
1191 	INTEL_DISPLAY_STATE_WARN(display,
1192 				 intel_de_read(display, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1193 				 "CPU PWM1 enabled\n");
1194 	if (display->platform.haswell)
1195 		INTEL_DISPLAY_STATE_WARN(display,
1196 					 intel_de_read(display, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1197 					 "CPU PWM2 enabled\n");
1198 	INTEL_DISPLAY_STATE_WARN(display,
1199 				 intel_de_read(display, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1200 				 "PCH PWM1 enabled\n");
1201 	INTEL_DISPLAY_STATE_WARN(display,
1202 				 (intel_de_read(display, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1203 				 "Utility pin enabled in PWM mode\n");
1204 	INTEL_DISPLAY_STATE_WARN(display,
1205 				 intel_de_read(display, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1206 				 "PCH GTC enabled\n");
1207 
1208 	/*
1209 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1210 	 * interrupts remain enabled. We used to check for that, but since it's
1211 	 * gen-specific and since we only disable LCPLL after we fully disable
1212 	 * the interrupts, the check below should be enough.
1213 	 */
1214 	INTEL_DISPLAY_STATE_WARN(display, intel_irqs_enabled(dev_priv),
1215 				 "IRQs enabled\n");
1216 }
1217 
1218 static u32 hsw_read_dcomp(struct intel_display *display)
1219 {
1220 	if (display->platform.haswell)
1221 		return intel_de_read(display, D_COMP_HSW);
1222 	else
1223 		return intel_de_read(display, D_COMP_BDW);
1224 }
1225 
1226 static void hsw_write_dcomp(struct intel_display *display, u32 val)
1227 {
1228 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1229 
1230 	if (display->platform.haswell) {
1231 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1232 			drm_dbg_kms(display->drm, "Failed to write to D_COMP\n");
1233 	} else {
1234 		intel_de_write(display, D_COMP_BDW, val);
1235 		intel_de_posting_read(display, D_COMP_BDW);
1236 	}
1237 }
1238 
1239 /*
1240  * This function implements pieces of two sequences from BSpec:
1241  * - Sequence for display software to disable LCPLL
1242  * - Sequence for display software to allow package C8+
1243  * The steps implemented here are just the steps that actually touch the LCPLL
1244  * register. Callers should take care of disabling all the display engine
1245  * functions, doing the mode unset, fixing interrupts, etc.
1246  */
1247 static void hsw_disable_lcpll(struct intel_display *display,
1248 			      bool switch_to_fclk, bool allow_power_down)
1249 {
1250 	u32 val;
1251 
1252 	assert_can_disable_lcpll(display);
1253 
1254 	val = intel_de_read(display, LCPLL_CTL);
1255 
1256 	if (switch_to_fclk) {
1257 		val |= LCPLL_CD_SOURCE_FCLK;
1258 		intel_de_write(display, LCPLL_CTL, val);
1259 
1260 		if (wait_for_us(intel_de_read(display, LCPLL_CTL) &
1261 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1262 			drm_err(display->drm, "Switching to FCLK failed\n");
1263 
1264 		val = intel_de_read(display, LCPLL_CTL);
1265 	}
1266 
1267 	val |= LCPLL_PLL_DISABLE;
1268 	intel_de_write(display, LCPLL_CTL, val);
1269 	intel_de_posting_read(display, LCPLL_CTL);
1270 
1271 	if (intel_de_wait_for_clear(display, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1272 		drm_err(display->drm, "LCPLL still locked\n");
1273 
1274 	val = hsw_read_dcomp(display);
1275 	val |= D_COMP_COMP_DISABLE;
1276 	hsw_write_dcomp(display, val);
1277 	ndelay(100);
1278 
1279 	if (wait_for((hsw_read_dcomp(display) &
1280 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1281 		drm_err(display->drm, "D_COMP RCOMP still in progress\n");
1282 
1283 	if (allow_power_down) {
1284 		intel_de_rmw(display, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1285 		intel_de_posting_read(display, LCPLL_CTL);
1286 	}
1287 }
1288 
1289 /*
1290  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1291  * source.
1292  */
1293 static void hsw_restore_lcpll(struct intel_display *display)
1294 {
1295 	struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm);
1296 	u32 val;
1297 
1298 	val = intel_de_read(display, LCPLL_CTL);
1299 
1300 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1301 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1302 		return;
1303 
1304 	/*
1305 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1306 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1307 	 */
1308 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1309 
1310 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1311 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1312 		intel_de_write(display, LCPLL_CTL, val);
1313 		intel_de_posting_read(display, LCPLL_CTL);
1314 	}
1315 
1316 	val = hsw_read_dcomp(display);
1317 	val |= D_COMP_COMP_FORCE;
1318 	val &= ~D_COMP_COMP_DISABLE;
1319 	hsw_write_dcomp(display, val);
1320 
1321 	val = intel_de_read(display, LCPLL_CTL);
1322 	val &= ~LCPLL_PLL_DISABLE;
1323 	intel_de_write(display, LCPLL_CTL, val);
1324 
1325 	if (intel_de_wait_for_set(display, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1326 		drm_err(display->drm, "LCPLL not locked yet\n");
1327 
1328 	if (val & LCPLL_CD_SOURCE_FCLK) {
1329 		intel_de_rmw(display, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1330 
1331 		if (wait_for_us((intel_de_read(display, LCPLL_CTL) &
1332 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1333 			drm_err(display->drm,
1334 				"Switching back to LCPLL failed\n");
1335 	}
1336 
1337 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1338 
1339 	intel_update_cdclk(display);
1340 	intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK");
1341 }
1342 
1343 /*
1344  * Package states C8 and deeper are really deep PC states that can only be
1345  * reached when all the devices on the system allow it, so even if the graphics
1346  * device allows PC8+, it doesn't mean the system will actually get to these
1347  * states. Our driver only allows PC8+ when going into runtime PM.
1348  *
1349  * The requirements for PC8+ are that all the outputs are disabled, the power
1350  * well is disabled and most interrupts are disabled, and these are also
1351  * requirements for runtime PM. When these conditions are met, we manually do
1352  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1353  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1354  * hang the machine.
1355  *
1356  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1357  * the state of some registers, so when we come back from PC8+ we need to
1358  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1359  * need to take care of the registers kept by RC6. Notice that this happens even
1360  * if we don't put the device in PCI D3 state (which is what currently happens
1361  * because of the runtime PM support).
1362  *
1363  * For more, read "Display Sequences for Package C8" on the hardware
1364  * documentation.
1365  */
1366 static void hsw_enable_pc8(struct intel_display *display)
1367 {
1368 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1369 
1370 	drm_dbg_kms(display->drm, "Enabling package C8+\n");
1371 
1372 	if (HAS_PCH_LPT_LP(dev_priv))
1373 		intel_de_rmw(display, SOUTH_DSPCLK_GATE_D,
1374 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1375 
1376 	lpt_disable_clkout_dp(display);
1377 	hsw_disable_lcpll(display, true, true);
1378 }
1379 
1380 static void hsw_disable_pc8(struct intel_display *display)
1381 {
1382 	struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm);
1383 
1384 	drm_dbg_kms(display->drm, "Disabling package C8+\n");
1385 
1386 	hsw_restore_lcpll(display);
1387 	intel_init_pch_refclk(display);
1388 
1389 	/* Many display registers don't survive PC8+ */
1390 #ifdef I915 /* FIXME */
1391 	intel_clock_gating_init(dev_priv);
1392 #endif
1393 }
1394 
1395 static void intel_pch_reset_handshake(struct intel_display *display,
1396 				      bool enable)
1397 {
1398 	i915_reg_t reg;
1399 	u32 reset_bits;
1400 
1401 	if (display->platform.ivybridge) {
1402 		reg = GEN7_MSG_CTL;
1403 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1404 	} else {
1405 		reg = HSW_NDE_RSTWRN_OPT;
1406 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1407 	}
1408 
1409 	if (DISPLAY_VER(display) >= 14)
1410 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1411 
1412 	intel_de_rmw(display, reg, reset_bits, enable ? reset_bits : 0);
1413 }
1414 
1415 static void skl_display_core_init(struct intel_display *display,
1416 				  bool resume)
1417 {
1418 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1419 	struct i915_power_domains *power_domains = &display->power.domains;
1420 	struct i915_power_well *well;
1421 
1422 	gen9_set_dc_state(display, DC_STATE_DISABLE);
1423 
1424 	/* enable PCH reset handshake */
1425 	intel_pch_reset_handshake(display, !HAS_PCH_NOP(dev_priv));
1426 
1427 	if (!HAS_DISPLAY(display))
1428 		return;
1429 
1430 	/* enable PG1 and Misc I/O */
1431 	mutex_lock(&power_domains->lock);
1432 
1433 	well = lookup_power_well(display, SKL_DISP_PW_1);
1434 	intel_power_well_enable(display, well);
1435 
1436 	well = lookup_power_well(display, SKL_DISP_PW_MISC_IO);
1437 	intel_power_well_enable(display, well);
1438 
1439 	mutex_unlock(&power_domains->lock);
1440 
1441 	intel_cdclk_init_hw(display);
1442 
1443 	gen9_dbuf_enable(display);
1444 
1445 	if (resume)
1446 		intel_dmc_load_program(display);
1447 }
1448 
1449 static void skl_display_core_uninit(struct intel_display *display)
1450 {
1451 	struct i915_power_domains *power_domains = &display->power.domains;
1452 	struct i915_power_well *well;
1453 
1454 	if (!HAS_DISPLAY(display))
1455 		return;
1456 
1457 	gen9_disable_dc_states(display);
1458 	/* TODO: disable DMC program */
1459 
1460 	gen9_dbuf_disable(display);
1461 
1462 	intel_cdclk_uninit_hw(display);
1463 
1464 	/* The spec doesn't call for removing the reset handshake flag */
1465 	/* disable PG1 and Misc I/O */
1466 
1467 	mutex_lock(&power_domains->lock);
1468 
1469 	/*
1470 	 * BSpec says to keep the MISC IO power well enabled here, only
1471 	 * remove our request for power well 1.
1472 	 * Note that even though the driver's request is removed power well 1
1473 	 * may stay enabled after this due to DMC's own request on it.
1474 	 */
1475 	well = lookup_power_well(display, SKL_DISP_PW_1);
1476 	intel_power_well_disable(display, well);
1477 
1478 	mutex_unlock(&power_domains->lock);
1479 
1480 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1481 }
1482 
1483 static void bxt_display_core_init(struct intel_display *display, bool resume)
1484 {
1485 	struct i915_power_domains *power_domains = &display->power.domains;
1486 	struct i915_power_well *well;
1487 
1488 	gen9_set_dc_state(display, DC_STATE_DISABLE);
1489 
1490 	/*
1491 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1492 	 * or else the reset will hang because there is no PCH to respond.
1493 	 * Move the handshake programming to initialization sequence.
1494 	 * Previously was left up to BIOS.
1495 	 */
1496 	intel_pch_reset_handshake(display, false);
1497 
1498 	if (!HAS_DISPLAY(display))
1499 		return;
1500 
1501 	/* Enable PG1 */
1502 	mutex_lock(&power_domains->lock);
1503 
1504 	well = lookup_power_well(display, SKL_DISP_PW_1);
1505 	intel_power_well_enable(display, well);
1506 
1507 	mutex_unlock(&power_domains->lock);
1508 
1509 	intel_cdclk_init_hw(display);
1510 
1511 	gen9_dbuf_enable(display);
1512 
1513 	if (resume)
1514 		intel_dmc_load_program(display);
1515 }
1516 
1517 static void bxt_display_core_uninit(struct intel_display *display)
1518 {
1519 	struct i915_power_domains *power_domains = &display->power.domains;
1520 	struct i915_power_well *well;
1521 
1522 	if (!HAS_DISPLAY(display))
1523 		return;
1524 
1525 	gen9_disable_dc_states(display);
1526 	/* TODO: disable DMC program */
1527 
1528 	gen9_dbuf_disable(display);
1529 
1530 	intel_cdclk_uninit_hw(display);
1531 
1532 	/* The spec doesn't call for removing the reset handshake flag */
1533 
1534 	/*
1535 	 * Disable PW1 (PG1).
1536 	 * Note that even though the driver's request is removed power well 1
1537 	 * may stay enabled after this due to DMC's own request on it.
1538 	 */
1539 	mutex_lock(&power_domains->lock);
1540 
1541 	well = lookup_power_well(display, SKL_DISP_PW_1);
1542 	intel_power_well_disable(display, well);
1543 
1544 	mutex_unlock(&power_domains->lock);
1545 
1546 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1547 }
1548 
1549 struct buddy_page_mask {
1550 	u32 page_mask;
1551 	u8 type;
1552 	u8 num_channels;
1553 };
1554 
1555 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1556 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1557 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1558 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1559 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1560 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1561 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1562 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1563 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1564 	{}
1565 };
1566 
1567 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1568 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1569 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1570 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1571 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1572 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1573 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1574 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1575 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1576 	{}
1577 };
1578 
1579 static void tgl_bw_buddy_init(struct intel_display *display)
1580 {
1581 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1582 	enum intel_dram_type type = dev_priv->dram_info.type;
1583 	u8 num_channels = dev_priv->dram_info.num_channels;
1584 	const struct buddy_page_mask *table;
1585 	unsigned long abox_mask = DISPLAY_INFO(display)->abox_mask;
1586 	int config, i;
1587 
1588 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1589 	if (display->platform.dgfx && !display->platform.dg1)
1590 		return;
1591 
1592 	if (display->platform.alderlake_s ||
1593 	    (display->platform.rocketlake && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)))
1594 		/* Wa_1409767108 */
1595 		table = wa_1409767108_buddy_page_masks;
1596 	else
1597 		table = tgl_buddy_page_masks;
1598 
1599 	for (config = 0; table[config].page_mask != 0; config++)
1600 		if (table[config].num_channels == num_channels &&
1601 		    table[config].type == type)
1602 			break;
1603 
1604 	if (table[config].page_mask == 0) {
1605 		drm_dbg_kms(display->drm,
1606 			    "Unknown memory configuration; disabling address buddy logic.\n");
1607 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1608 			intel_de_write(display, BW_BUDDY_CTL(i),
1609 				       BW_BUDDY_DISABLE);
1610 	} else {
1611 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1612 			intel_de_write(display, BW_BUDDY_PAGE_MASK(i),
1613 				       table[config].page_mask);
1614 
1615 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1616 			if (DISPLAY_VER(display) == 12)
1617 				intel_de_rmw(display, BW_BUDDY_CTL(i),
1618 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1619 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1620 		}
1621 	}
1622 }
1623 
1624 static void icl_display_core_init(struct intel_display *display,
1625 				  bool resume)
1626 {
1627 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1628 	struct i915_power_domains *power_domains = &display->power.domains;
1629 	struct i915_power_well *well;
1630 
1631 	gen9_set_dc_state(display, DC_STATE_DISABLE);
1632 
1633 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1634 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1635 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1636 		intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 0,
1637 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1638 
1639 	/* 1. Enable PCH reset handshake. */
1640 	intel_pch_reset_handshake(display, !HAS_PCH_NOP(dev_priv));
1641 
1642 	if (!HAS_DISPLAY(display))
1643 		return;
1644 
1645 	/* 2. Initialize all combo phys */
1646 	intel_combo_phy_init(display);
1647 
1648 	/*
1649 	 * 3. Enable Power Well 1 (PG1).
1650 	 *    The AUX IO power wells will be enabled on demand.
1651 	 */
1652 	mutex_lock(&power_domains->lock);
1653 	well = lookup_power_well(display, SKL_DISP_PW_1);
1654 	intel_power_well_enable(display, well);
1655 	mutex_unlock(&power_domains->lock);
1656 
1657 	if (DISPLAY_VER(display) == 14)
1658 		intel_de_rmw(display, DC_STATE_EN,
1659 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1660 
1661 	/* 4. Enable CDCLK. */
1662 	intel_cdclk_init_hw(display);
1663 
1664 	if (DISPLAY_VER(display) == 12 || display->platform.dg2)
1665 		gen12_dbuf_slices_config(display);
1666 
1667 	/* 5. Enable DBUF. */
1668 	gen9_dbuf_enable(display);
1669 
1670 	/* 6. Setup MBUS. */
1671 	icl_mbus_init(display);
1672 
1673 	/* 7. Program arbiter BW_BUDDY registers */
1674 	if (DISPLAY_VER(display) >= 12)
1675 		tgl_bw_buddy_init(display);
1676 
1677 	/* 8. Ensure PHYs have completed calibration and adaptation */
1678 	if (display->platform.dg2)
1679 		intel_snps_phy_wait_for_calibration(display);
1680 
1681 	/* 9. XE2_HPD: Program CHICKEN_MISC_2 before any cursor or planes are enabled */
1682 	if (DISPLAY_VERx100(display) == 1401)
1683 		intel_de_rmw(display, CHICKEN_MISC_2, BMG_DARB_HALF_BLK_END_BURST, 1);
1684 
1685 	if (resume)
1686 		intel_dmc_load_program(display);
1687 
1688 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p,dg2 */
1689 	if (IS_DISPLAY_VERx100(display, 1200, 1300))
1690 		intel_de_rmw(display, GEN11_CHICKEN_DCPR_2, 0,
1691 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1692 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1693 
1694 	/* Wa_14011503030:xelpd */
1695 	if (DISPLAY_VER(display) == 13)
1696 		intel_de_write(display, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1697 
1698 	/* Wa_15013987218 */
1699 	if (DISPLAY_VER(display) == 20) {
1700 		intel_de_rmw(display, SOUTH_DSPCLK_GATE_D,
1701 			     0, PCH_GMBUSUNIT_CLOCK_GATE_DISABLE);
1702 		intel_de_rmw(display, SOUTH_DSPCLK_GATE_D,
1703 			     PCH_GMBUSUNIT_CLOCK_GATE_DISABLE, 0);
1704 	}
1705 }
1706 
1707 static void icl_display_core_uninit(struct intel_display *display)
1708 {
1709 	struct i915_power_domains *power_domains = &display->power.domains;
1710 	struct i915_power_well *well;
1711 
1712 	if (!HAS_DISPLAY(display))
1713 		return;
1714 
1715 	gen9_disable_dc_states(display);
1716 	intel_dmc_disable_program(display);
1717 
1718 	/* 1. Disable all display engine functions -> already done */
1719 
1720 	/* 2. Disable DBUF */
1721 	gen9_dbuf_disable(display);
1722 
1723 	/* 3. Disable CD clock */
1724 	intel_cdclk_uninit_hw(display);
1725 
1726 	if (DISPLAY_VER(display) == 14)
1727 		intel_de_rmw(display, DC_STATE_EN, 0,
1728 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1729 
1730 	/*
1731 	 * 4. Disable Power Well 1 (PG1).
1732 	 *    The AUX IO power wells are toggled on demand, so they are already
1733 	 *    disabled at this point.
1734 	 */
1735 	mutex_lock(&power_domains->lock);
1736 	well = lookup_power_well(display, SKL_DISP_PW_1);
1737 	intel_power_well_disable(display, well);
1738 	mutex_unlock(&power_domains->lock);
1739 
1740 	/* 5. */
1741 	intel_combo_phy_uninit(display);
1742 }
1743 
1744 static void chv_phy_control_init(struct intel_display *display)
1745 {
1746 	struct i915_power_well *cmn_bc =
1747 		lookup_power_well(display, VLV_DISP_PW_DPIO_CMN_BC);
1748 	struct i915_power_well *cmn_d =
1749 		lookup_power_well(display, CHV_DISP_PW_DPIO_CMN_D);
1750 
1751 	/*
1752 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1753 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1754 	 * instead maintain a shadow copy ourselves. Use the actual
1755 	 * power well state and lane status to reconstruct the
1756 	 * expected initial value.
1757 	 */
1758 	display->power.chv_phy_control =
1759 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1760 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1761 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1762 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1763 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1764 
1765 	/*
1766 	 * If all lanes are disabled we leave the override disabled
1767 	 * with all power down bits cleared to match the state we
1768 	 * would use after disabling the port. Otherwise enable the
1769 	 * override and set the lane powerdown bits accding to the
1770 	 * current lane status.
1771 	 */
1772 	if (intel_power_well_is_enabled(display, cmn_bc)) {
1773 		u32 status = intel_de_read(display, DPLL(display, PIPE_A));
1774 		unsigned int mask;
1775 
1776 		mask = status & DPLL_PORTB_READY_MASK;
1777 		if (mask == 0xf)
1778 			mask = 0x0;
1779 		else
1780 			display->power.chv_phy_control |=
1781 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1782 
1783 		display->power.chv_phy_control |=
1784 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1785 
1786 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1787 		if (mask == 0xf)
1788 			mask = 0x0;
1789 		else
1790 			display->power.chv_phy_control |=
1791 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1792 
1793 		display->power.chv_phy_control |=
1794 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1795 
1796 		display->power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1797 
1798 		display->power.chv_phy_assert[DPIO_PHY0] = false;
1799 	} else {
1800 		display->power.chv_phy_assert[DPIO_PHY0] = true;
1801 	}
1802 
1803 	if (intel_power_well_is_enabled(display, cmn_d)) {
1804 		u32 status = intel_de_read(display, DPIO_PHY_STATUS);
1805 		unsigned int mask;
1806 
1807 		mask = status & DPLL_PORTD_READY_MASK;
1808 
1809 		if (mask == 0xf)
1810 			mask = 0x0;
1811 		else
1812 			display->power.chv_phy_control |=
1813 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1814 
1815 		display->power.chv_phy_control |=
1816 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1817 
1818 		display->power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1819 
1820 		display->power.chv_phy_assert[DPIO_PHY1] = false;
1821 	} else {
1822 		display->power.chv_phy_assert[DPIO_PHY1] = true;
1823 	}
1824 
1825 	drm_dbg_kms(display->drm, "Initial PHY_CONTROL=0x%08x\n",
1826 		    display->power.chv_phy_control);
1827 
1828 	/* Defer application of initial phy_control to enabling the powerwell */
1829 }
1830 
1831 static void vlv_cmnlane_wa(struct intel_display *display)
1832 {
1833 	struct i915_power_well *cmn =
1834 		lookup_power_well(display, VLV_DISP_PW_DPIO_CMN_BC);
1835 	struct i915_power_well *disp2d =
1836 		lookup_power_well(display, VLV_DISP_PW_DISP2D);
1837 
1838 	/* If the display might be already active skip this */
1839 	if (intel_power_well_is_enabled(display, cmn) &&
1840 	    intel_power_well_is_enabled(display, disp2d) &&
1841 	    intel_de_read(display, DPIO_CTL) & DPIO_CMNRST)
1842 		return;
1843 
1844 	drm_dbg_kms(display->drm, "toggling display PHY side reset\n");
1845 
1846 	/* cmnlane needs DPLL registers */
1847 	intel_power_well_enable(display, disp2d);
1848 
1849 	/*
1850 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1851 	 * Need to assert and de-assert PHY SB reset by gating the
1852 	 * common lane power, then un-gating it.
1853 	 * Simply ungating isn't enough to reset the PHY enough to get
1854 	 * ports and lanes running.
1855 	 */
1856 	intel_power_well_disable(display, cmn);
1857 }
1858 
1859 static bool vlv_punit_is_power_gated(struct intel_display *display, u32 reg0)
1860 {
1861 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1862 	bool ret;
1863 
1864 	vlv_punit_get(dev_priv);
1865 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1866 	vlv_punit_put(dev_priv);
1867 
1868 	return ret;
1869 }
1870 
1871 static void assert_ved_power_gated(struct intel_display *display)
1872 {
1873 	drm_WARN(display->drm,
1874 		 !vlv_punit_is_power_gated(display, PUNIT_REG_VEDSSPM0),
1875 		 "VED not power gated\n");
1876 }
1877 
1878 static void assert_isp_power_gated(struct intel_display *display)
1879 {
1880 	static const struct pci_device_id isp_ids[] = {
1881 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1882 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1883 		{}
1884 	};
1885 
1886 	drm_WARN(display->drm, !pci_dev_present(isp_ids) &&
1887 		 !vlv_punit_is_power_gated(display, PUNIT_REG_ISPSSPM0),
1888 		 "ISP not power gated\n");
1889 }
1890 
1891 static void intel_power_domains_verify_state(struct intel_display *display);
1892 
1893 /**
1894  * intel_power_domains_init_hw - initialize hardware power domain state
1895  * @display: display device instance
1896  * @resume: Called from resume code paths or not
1897  *
1898  * This function initializes the hardware power domain state and enables all
1899  * power wells belonging to the INIT power domain. Power wells in other
1900  * domains (and not in the INIT domain) are referenced or disabled by
1901  * intel_modeset_readout_hw_state(). After that the reference count of each
1902  * power well must match its HW enabled state, see
1903  * intel_power_domains_verify_state().
1904  *
1905  * It will return with power domains disabled (to be enabled later by
1906  * intel_power_domains_enable()) and must be paired with
1907  * intel_power_domains_driver_remove().
1908  */
1909 void intel_power_domains_init_hw(struct intel_display *display, bool resume)
1910 {
1911 	struct drm_i915_private *i915 = to_i915(display->drm);
1912 	struct i915_power_domains *power_domains = &display->power.domains;
1913 
1914 	power_domains->initializing = true;
1915 
1916 	if (DISPLAY_VER(display) >= 11) {
1917 		icl_display_core_init(display, resume);
1918 	} else if (display->platform.geminilake || display->platform.broxton) {
1919 		bxt_display_core_init(display, resume);
1920 	} else if (DISPLAY_VER(display) == 9) {
1921 		skl_display_core_init(display, resume);
1922 	} else if (display->platform.cherryview) {
1923 		mutex_lock(&power_domains->lock);
1924 		chv_phy_control_init(display);
1925 		mutex_unlock(&power_domains->lock);
1926 		assert_isp_power_gated(display);
1927 	} else if (display->platform.valleyview) {
1928 		mutex_lock(&power_domains->lock);
1929 		vlv_cmnlane_wa(display);
1930 		mutex_unlock(&power_domains->lock);
1931 		assert_ved_power_gated(display);
1932 		assert_isp_power_gated(display);
1933 	} else if (display->platform.broadwell || display->platform.haswell) {
1934 		hsw_assert_cdclk(display);
1935 		intel_pch_reset_handshake(display, !HAS_PCH_NOP(i915));
1936 	} else if (display->platform.ivybridge) {
1937 		intel_pch_reset_handshake(display, !HAS_PCH_NOP(i915));
1938 	}
1939 
1940 	/*
1941 	 * Keep all power wells enabled for any dependent HW access during
1942 	 * initialization and to make sure we keep BIOS enabled display HW
1943 	 * resources powered until display HW readout is complete. We drop
1944 	 * this reference in intel_power_domains_enable().
1945 	 */
1946 	drm_WARN_ON(display->drm, power_domains->init_wakeref);
1947 	power_domains->init_wakeref =
1948 		intel_display_power_get(display, POWER_DOMAIN_INIT);
1949 
1950 	/* Disable power support if the user asked so. */
1951 	if (!display->params.disable_power_well) {
1952 		drm_WARN_ON(display->drm, power_domains->disable_wakeref);
1953 		display->power.domains.disable_wakeref = intel_display_power_get(display,
1954 										 POWER_DOMAIN_INIT);
1955 	}
1956 	intel_power_domains_sync_hw(display);
1957 
1958 	power_domains->initializing = false;
1959 }
1960 
1961 /**
1962  * intel_power_domains_driver_remove - deinitialize hw power domain state
1963  * @display: display device instance
1964  *
1965  * De-initializes the display power domain HW state. It also ensures that the
1966  * device stays powered up so that the driver can be reloaded.
1967  *
1968  * It must be called with power domains already disabled (after a call to
1969  * intel_power_domains_disable()) and must be paired with
1970  * intel_power_domains_init_hw().
1971  */
1972 void intel_power_domains_driver_remove(struct intel_display *display)
1973 {
1974 	intel_wakeref_t wakeref __maybe_unused =
1975 		fetch_and_zero(&display->power.domains.init_wakeref);
1976 
1977 	/* Remove the refcount we took to keep power well support disabled. */
1978 	if (!display->params.disable_power_well)
1979 		intel_display_power_put(display, POWER_DOMAIN_INIT,
1980 					fetch_and_zero(&display->power.domains.disable_wakeref));
1981 
1982 	intel_display_power_flush_work_sync(display);
1983 
1984 	intel_power_domains_verify_state(display);
1985 
1986 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1987 	intel_display_rpm_put(display, wakeref);
1988 }
1989 
1990 /**
1991  * intel_power_domains_sanitize_state - sanitize power domains state
1992  * @display: display device instance
1993  *
1994  * Sanitize the power domains state during driver loading and system resume.
1995  * The function will disable all display power wells that BIOS has enabled
1996  * without a user for it (any user for a power well has taken a reference
1997  * on it by the time this function is called, after the state of all the
1998  * pipe, encoder, etc. HW resources have been sanitized).
1999  */
2000 void intel_power_domains_sanitize_state(struct intel_display *display)
2001 {
2002 	struct i915_power_domains *power_domains = &display->power.domains;
2003 	struct i915_power_well *power_well;
2004 
2005 	mutex_lock(&power_domains->lock);
2006 
2007 	for_each_power_well_reverse(display, power_well) {
2008 		if (power_well->desc->always_on || power_well->count ||
2009 		    !intel_power_well_is_enabled(display, power_well))
2010 			continue;
2011 
2012 		drm_dbg_kms(display->drm,
2013 			    "BIOS left unused %s power well enabled, disabling it\n",
2014 			    intel_power_well_name(power_well));
2015 		intel_power_well_disable(display, power_well);
2016 	}
2017 
2018 	mutex_unlock(&power_domains->lock);
2019 }
2020 
2021 /**
2022  * intel_power_domains_enable - enable toggling of display power wells
2023  * @display: display device instance
2024  *
2025  * Enable the ondemand enabling/disabling of the display power wells. Note that
2026  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
2027  * only at specific points of the display modeset sequence, thus they are not
2028  * affected by the intel_power_domains_enable()/disable() calls. The purpose
2029  * of these function is to keep the rest of power wells enabled until the end
2030  * of display HW readout (which will acquire the power references reflecting
2031  * the current HW state).
2032  */
2033 void intel_power_domains_enable(struct intel_display *display)
2034 {
2035 	intel_wakeref_t wakeref __maybe_unused =
2036 		fetch_and_zero(&display->power.domains.init_wakeref);
2037 
2038 	intel_display_power_put(display, POWER_DOMAIN_INIT, wakeref);
2039 	intel_power_domains_verify_state(display);
2040 }
2041 
2042 /**
2043  * intel_power_domains_disable - disable toggling of display power wells
2044  * @display: display device instance
2045  *
2046  * Disable the ondemand enabling/disabling of the display power wells. See
2047  * intel_power_domains_enable() for which power wells this call controls.
2048  */
2049 void intel_power_domains_disable(struct intel_display *display)
2050 {
2051 	struct i915_power_domains *power_domains = &display->power.domains;
2052 
2053 	drm_WARN_ON(display->drm, power_domains->init_wakeref);
2054 	power_domains->init_wakeref =
2055 		intel_display_power_get(display, POWER_DOMAIN_INIT);
2056 
2057 	intel_power_domains_verify_state(display);
2058 }
2059 
2060 /**
2061  * intel_power_domains_suspend - suspend power domain state
2062  * @display: display device instance
2063  * @s2idle: specifies whether we go to idle, or deeper sleep
2064  *
2065  * This function prepares the hardware power domain state before entering
2066  * system suspend.
2067  *
2068  * It must be called with power domains already disabled (after a call to
2069  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2070  */
2071 void intel_power_domains_suspend(struct intel_display *display, bool s2idle)
2072 {
2073 	struct i915_power_domains *power_domains = &display->power.domains;
2074 	intel_wakeref_t wakeref __maybe_unused =
2075 		fetch_and_zero(&power_domains->init_wakeref);
2076 
2077 	intel_display_power_put(display, POWER_DOMAIN_INIT, wakeref);
2078 
2079 	/*
2080 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2081 	 * support don't manually deinit the power domains. This also means the
2082 	 * DMC firmware will stay active, it will power down any HW
2083 	 * resources as required and also enable deeper system power states
2084 	 * that would be blocked if the firmware was inactive.
2085 	 */
2086 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle &&
2087 	    intel_dmc_has_payload(display)) {
2088 		intel_display_power_flush_work(display);
2089 		intel_power_domains_verify_state(display);
2090 		return;
2091 	}
2092 
2093 	/*
2094 	 * Even if power well support was disabled we still want to disable
2095 	 * power wells if power domains must be deinitialized for suspend.
2096 	 */
2097 	if (!display->params.disable_power_well)
2098 		intel_display_power_put(display, POWER_DOMAIN_INIT,
2099 					fetch_and_zero(&display->power.domains.disable_wakeref));
2100 
2101 	intel_display_power_flush_work(display);
2102 	intel_power_domains_verify_state(display);
2103 
2104 	if (DISPLAY_VER(display) >= 11)
2105 		icl_display_core_uninit(display);
2106 	else if (display->platform.geminilake || display->platform.broxton)
2107 		bxt_display_core_uninit(display);
2108 	else if (DISPLAY_VER(display) == 9)
2109 		skl_display_core_uninit(display);
2110 
2111 	power_domains->display_core_suspended = true;
2112 }
2113 
2114 /**
2115  * intel_power_domains_resume - resume power domain state
2116  * @display: display device instance
2117  *
2118  * This function resume the hardware power domain state during system resume.
2119  *
2120  * It will return with power domain support disabled (to be enabled later by
2121  * intel_power_domains_enable()) and must be paired with
2122  * intel_power_domains_suspend().
2123  */
2124 void intel_power_domains_resume(struct intel_display *display)
2125 {
2126 	struct i915_power_domains *power_domains = &display->power.domains;
2127 
2128 	if (power_domains->display_core_suspended) {
2129 		intel_power_domains_init_hw(display, true);
2130 		power_domains->display_core_suspended = false;
2131 	} else {
2132 		drm_WARN_ON(display->drm, power_domains->init_wakeref);
2133 		power_domains->init_wakeref =
2134 			intel_display_power_get(display, POWER_DOMAIN_INIT);
2135 	}
2136 
2137 	intel_power_domains_verify_state(display);
2138 }
2139 
2140 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2141 
2142 static void intel_power_domains_dump_info(struct intel_display *display)
2143 {
2144 	struct i915_power_domains *power_domains = &display->power.domains;
2145 	struct i915_power_well *power_well;
2146 
2147 	for_each_power_well(display, power_well) {
2148 		enum intel_display_power_domain domain;
2149 
2150 		drm_dbg_kms(display->drm, "%-25s %d\n",
2151 			    intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2152 
2153 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2154 			drm_dbg_kms(display->drm, "  %-23s %d\n",
2155 				    intel_display_power_domain_str(domain),
2156 				    power_domains->domain_use_count[domain]);
2157 	}
2158 }
2159 
2160 /**
2161  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2162  * @display: display device instance
2163  *
2164  * Verify if the reference count of each power well matches its HW enabled
2165  * state and the total refcount of the domains it belongs to. This must be
2166  * called after modeset HW state sanitization, which is responsible for
2167  * acquiring reference counts for any power wells in use and disabling the
2168  * ones left on by BIOS but not required by any active output.
2169  */
2170 static void intel_power_domains_verify_state(struct intel_display *display)
2171 {
2172 	struct i915_power_domains *power_domains = &display->power.domains;
2173 	struct i915_power_well *power_well;
2174 	bool dump_domain_info;
2175 
2176 	mutex_lock(&power_domains->lock);
2177 
2178 	verify_async_put_domains_state(power_domains);
2179 
2180 	dump_domain_info = false;
2181 	for_each_power_well(display, power_well) {
2182 		enum intel_display_power_domain domain;
2183 		int domains_count;
2184 		bool enabled;
2185 
2186 		enabled = intel_power_well_is_enabled(display, power_well);
2187 		if ((intel_power_well_refcount(power_well) ||
2188 		     intel_power_well_is_always_on(power_well)) !=
2189 		    enabled)
2190 			drm_err(display->drm,
2191 				"power well %s state mismatch (refcount %d/enabled %d)",
2192 				intel_power_well_name(power_well),
2193 				intel_power_well_refcount(power_well), enabled);
2194 
2195 		domains_count = 0;
2196 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2197 			domains_count += power_domains->domain_use_count[domain];
2198 
2199 		if (intel_power_well_refcount(power_well) != domains_count) {
2200 			drm_err(display->drm,
2201 				"power well %s refcount/domain refcount mismatch "
2202 				"(refcount %d/domains refcount %d)\n",
2203 				intel_power_well_name(power_well),
2204 				intel_power_well_refcount(power_well),
2205 				domains_count);
2206 			dump_domain_info = true;
2207 		}
2208 	}
2209 
2210 	if (dump_domain_info) {
2211 		static bool dumped;
2212 
2213 		if (!dumped) {
2214 			intel_power_domains_dump_info(display);
2215 			dumped = true;
2216 		}
2217 	}
2218 
2219 	mutex_unlock(&power_domains->lock);
2220 }
2221 
2222 #else
2223 
2224 static void intel_power_domains_verify_state(struct intel_display *display)
2225 {
2226 }
2227 
2228 #endif
2229 
2230 void intel_display_power_suspend_late(struct intel_display *display, bool s2idle)
2231 {
2232 	struct drm_i915_private *i915 = to_i915(display->drm);
2233 
2234 	intel_power_domains_suspend(display, s2idle);
2235 
2236 	if (DISPLAY_VER(display) >= 11 || display->platform.geminilake ||
2237 	    display->platform.broxton) {
2238 		bxt_enable_dc9(display);
2239 	} else if (display->platform.haswell || display->platform.broadwell) {
2240 		hsw_enable_pc8(display);
2241 	}
2242 
2243 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2244 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2245 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2246 }
2247 
2248 void intel_display_power_resume_early(struct intel_display *display)
2249 {
2250 	struct drm_i915_private *i915 = to_i915(display->drm);
2251 
2252 	if (DISPLAY_VER(display) >= 11 || display->platform.geminilake ||
2253 	    display->platform.broxton) {
2254 		gen9_sanitize_dc_state(display);
2255 		bxt_disable_dc9(display);
2256 	} else if (display->platform.haswell || display->platform.broadwell) {
2257 		hsw_disable_pc8(display);
2258 	}
2259 
2260 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2261 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2262 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2263 
2264 	intel_power_domains_resume(display);
2265 }
2266 
2267 void intel_display_power_suspend(struct intel_display *display)
2268 {
2269 	if (DISPLAY_VER(display) >= 11) {
2270 		icl_display_core_uninit(display);
2271 		bxt_enable_dc9(display);
2272 	} else if (display->platform.geminilake || display->platform.broxton) {
2273 		bxt_display_core_uninit(display);
2274 		bxt_enable_dc9(display);
2275 	} else if (display->platform.haswell || display->platform.broadwell) {
2276 		hsw_enable_pc8(display);
2277 	}
2278 }
2279 
2280 void intel_display_power_resume(struct intel_display *display)
2281 {
2282 	struct i915_power_domains *power_domains = &display->power.domains;
2283 
2284 	if (DISPLAY_VER(display) >= 11) {
2285 		bxt_disable_dc9(display);
2286 		icl_display_core_init(display, true);
2287 		if (intel_dmc_has_payload(display)) {
2288 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2289 				skl_enable_dc6(display);
2290 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2291 				gen9_enable_dc5(display);
2292 		}
2293 	} else if (display->platform.geminilake || display->platform.broxton) {
2294 		bxt_disable_dc9(display);
2295 		bxt_display_core_init(display, true);
2296 		if (intel_dmc_has_payload(display) &&
2297 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2298 			gen9_enable_dc5(display);
2299 	} else if (display->platform.haswell || display->platform.broadwell) {
2300 		hsw_disable_pc8(display);
2301 	}
2302 }
2303 
2304 void intel_display_power_debug(struct intel_display *display, struct seq_file *m)
2305 {
2306 	struct i915_power_domains *power_domains = &display->power.domains;
2307 	int i;
2308 
2309 	mutex_lock(&power_domains->lock);
2310 
2311 	seq_printf(m, "Runtime power status: %s\n",
2312 		   str_enabled_disabled(!power_domains->init_wakeref));
2313 
2314 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2315 	for (i = 0; i < power_domains->power_well_count; i++) {
2316 		struct i915_power_well *power_well;
2317 		enum intel_display_power_domain power_domain;
2318 
2319 		power_well = &power_domains->power_wells[i];
2320 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2321 			   intel_power_well_refcount(power_well));
2322 
2323 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2324 			seq_printf(m, "  %-23s %d\n",
2325 				   intel_display_power_domain_str(power_domain),
2326 				   power_domains->domain_use_count[power_domain]);
2327 	}
2328 
2329 	mutex_unlock(&power_domains->lock);
2330 }
2331 
2332 struct intel_ddi_port_domains {
2333 	enum port port_start;
2334 	enum port port_end;
2335 	enum aux_ch aux_ch_start;
2336 	enum aux_ch aux_ch_end;
2337 
2338 	enum intel_display_power_domain ddi_lanes;
2339 	enum intel_display_power_domain ddi_io;
2340 	enum intel_display_power_domain aux_io;
2341 	enum intel_display_power_domain aux_legacy_usbc;
2342 	enum intel_display_power_domain aux_tbt;
2343 };
2344 
2345 static const struct intel_ddi_port_domains
2346 i9xx_port_domains[] = {
2347 	{
2348 		.port_start = PORT_A,
2349 		.port_end = PORT_F,
2350 		.aux_ch_start = AUX_CH_A,
2351 		.aux_ch_end = AUX_CH_F,
2352 
2353 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2354 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2355 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2356 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2357 		.aux_tbt = POWER_DOMAIN_INVALID,
2358 	},
2359 };
2360 
2361 static const struct intel_ddi_port_domains
2362 d11_port_domains[] = {
2363 	{
2364 		.port_start = PORT_A,
2365 		.port_end = PORT_B,
2366 		.aux_ch_start = AUX_CH_A,
2367 		.aux_ch_end = AUX_CH_B,
2368 
2369 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2370 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2371 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2372 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2373 		.aux_tbt = POWER_DOMAIN_INVALID,
2374 	}, {
2375 		.port_start = PORT_C,
2376 		.port_end = PORT_F,
2377 		.aux_ch_start = AUX_CH_C,
2378 		.aux_ch_end = AUX_CH_F,
2379 
2380 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2381 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2382 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2383 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2384 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2385 	},
2386 };
2387 
2388 static const struct intel_ddi_port_domains
2389 d12_port_domains[] = {
2390 	{
2391 		.port_start = PORT_A,
2392 		.port_end = PORT_C,
2393 		.aux_ch_start = AUX_CH_A,
2394 		.aux_ch_end = AUX_CH_C,
2395 
2396 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2397 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2398 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2399 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2400 		.aux_tbt = POWER_DOMAIN_INVALID,
2401 	}, {
2402 		.port_start = PORT_TC1,
2403 		.port_end = PORT_TC6,
2404 		.aux_ch_start = AUX_CH_USBC1,
2405 		.aux_ch_end = AUX_CH_USBC6,
2406 
2407 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2408 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2409 		.aux_io = POWER_DOMAIN_INVALID,
2410 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2411 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2412 	},
2413 };
2414 
2415 static const struct intel_ddi_port_domains
2416 d13_port_domains[] = {
2417 	{
2418 		.port_start = PORT_A,
2419 		.port_end = PORT_C,
2420 		.aux_ch_start = AUX_CH_A,
2421 		.aux_ch_end = AUX_CH_C,
2422 
2423 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2424 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2425 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2426 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2427 		.aux_tbt = POWER_DOMAIN_INVALID,
2428 	}, {
2429 		.port_start = PORT_TC1,
2430 		.port_end = PORT_TC4,
2431 		.aux_ch_start = AUX_CH_USBC1,
2432 		.aux_ch_end = AUX_CH_USBC4,
2433 
2434 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2435 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2436 		.aux_io = POWER_DOMAIN_INVALID,
2437 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2438 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2439 	}, {
2440 		.port_start = PORT_D_XELPD,
2441 		.port_end = PORT_E_XELPD,
2442 		.aux_ch_start = AUX_CH_D_XELPD,
2443 		.aux_ch_end = AUX_CH_E_XELPD,
2444 
2445 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2446 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2447 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2448 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2449 		.aux_tbt = POWER_DOMAIN_INVALID,
2450 	},
2451 };
2452 
2453 static void
2454 intel_port_domains_for_platform(struct intel_display *display,
2455 				const struct intel_ddi_port_domains **domains,
2456 				int *domains_size)
2457 {
2458 	if (DISPLAY_VER(display) >= 13) {
2459 		*domains = d13_port_domains;
2460 		*domains_size = ARRAY_SIZE(d13_port_domains);
2461 	} else if (DISPLAY_VER(display) >= 12) {
2462 		*domains = d12_port_domains;
2463 		*domains_size = ARRAY_SIZE(d12_port_domains);
2464 	} else if (DISPLAY_VER(display) >= 11) {
2465 		*domains = d11_port_domains;
2466 		*domains_size = ARRAY_SIZE(d11_port_domains);
2467 	} else {
2468 		*domains = i9xx_port_domains;
2469 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2470 	}
2471 }
2472 
2473 static const struct intel_ddi_port_domains *
2474 intel_port_domains_for_port(struct intel_display *display, enum port port)
2475 {
2476 	const struct intel_ddi_port_domains *domains;
2477 	int domains_size;
2478 	int i;
2479 
2480 	intel_port_domains_for_platform(display, &domains, &domains_size);
2481 	for (i = 0; i < domains_size; i++)
2482 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2483 			return &domains[i];
2484 
2485 	return NULL;
2486 }
2487 
2488 enum intel_display_power_domain
2489 intel_display_power_ddi_io_domain(struct intel_display *display, enum port port)
2490 {
2491 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(display, port);
2492 
2493 	if (drm_WARN_ON(display->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2494 		return POWER_DOMAIN_PORT_DDI_IO_A;
2495 
2496 	return domains->ddi_io + (int)(port - domains->port_start);
2497 }
2498 
2499 enum intel_display_power_domain
2500 intel_display_power_ddi_lanes_domain(struct intel_display *display, enum port port)
2501 {
2502 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(display, port);
2503 
2504 	if (drm_WARN_ON(display->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2505 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2506 
2507 	return domains->ddi_lanes + (int)(port - domains->port_start);
2508 }
2509 
2510 static const struct intel_ddi_port_domains *
2511 intel_port_domains_for_aux_ch(struct intel_display *display, enum aux_ch aux_ch)
2512 {
2513 	const struct intel_ddi_port_domains *domains;
2514 	int domains_size;
2515 	int i;
2516 
2517 	intel_port_domains_for_platform(display, &domains, &domains_size);
2518 	for (i = 0; i < domains_size; i++)
2519 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2520 			return &domains[i];
2521 
2522 	return NULL;
2523 }
2524 
2525 enum intel_display_power_domain
2526 intel_display_power_aux_io_domain(struct intel_display *display, enum aux_ch aux_ch)
2527 {
2528 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch);
2529 
2530 	if (drm_WARN_ON(display->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2531 		return POWER_DOMAIN_AUX_IO_A;
2532 
2533 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2534 }
2535 
2536 enum intel_display_power_domain
2537 intel_display_power_legacy_aux_domain(struct intel_display *display, enum aux_ch aux_ch)
2538 {
2539 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch);
2540 
2541 	if (drm_WARN_ON(display->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2542 		return POWER_DOMAIN_AUX_A;
2543 
2544 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2545 }
2546 
2547 enum intel_display_power_domain
2548 intel_display_power_tbt_aux_domain(struct intel_display *display, enum aux_ch aux_ch)
2549 {
2550 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(display, aux_ch);
2551 
2552 	if (drm_WARN_ON(display->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2553 		return POWER_DOMAIN_AUX_TBT1;
2554 
2555 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2556 }
2557