1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include "i915_drv.h" 9 #include "i915_irq.h" 10 #include "intel_backlight_regs.h" 11 #include "intel_cdclk.h" 12 #include "intel_combo_phy.h" 13 #include "intel_de.h" 14 #include "intel_display_power.h" 15 #include "intel_display_power_map.h" 16 #include "intel_display_power_well.h" 17 #include "intel_display_types.h" 18 #include "intel_dmc.h" 19 #include "intel_mchbar_regs.h" 20 #include "intel_pch_refclk.h" 21 #include "intel_pcode.h" 22 #include "intel_snps_phy.h" 23 #include "skl_watermark.h" 24 #include "vlv_sideband.h" 25 26 #define for_each_power_domain_well(__dev_priv, __power_well, __domain) \ 27 for_each_power_well(__dev_priv, __power_well) \ 28 for_each_if(test_bit((__domain), (__power_well)->domains.bits)) 29 30 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \ 31 for_each_power_well_reverse(__dev_priv, __power_well) \ 32 for_each_if(test_bit((__domain), (__power_well)->domains.bits)) 33 34 const char * 35 intel_display_power_domain_str(enum intel_display_power_domain domain) 36 { 37 switch (domain) { 38 case POWER_DOMAIN_DISPLAY_CORE: 39 return "DISPLAY_CORE"; 40 case POWER_DOMAIN_PIPE_A: 41 return "PIPE_A"; 42 case POWER_DOMAIN_PIPE_B: 43 return "PIPE_B"; 44 case POWER_DOMAIN_PIPE_C: 45 return "PIPE_C"; 46 case POWER_DOMAIN_PIPE_D: 47 return "PIPE_D"; 48 case POWER_DOMAIN_PIPE_PANEL_FITTER_A: 49 return "PIPE_PANEL_FITTER_A"; 50 case POWER_DOMAIN_PIPE_PANEL_FITTER_B: 51 return "PIPE_PANEL_FITTER_B"; 52 case POWER_DOMAIN_PIPE_PANEL_FITTER_C: 53 return "PIPE_PANEL_FITTER_C"; 54 case POWER_DOMAIN_PIPE_PANEL_FITTER_D: 55 return "PIPE_PANEL_FITTER_D"; 56 case POWER_DOMAIN_TRANSCODER_A: 57 return "TRANSCODER_A"; 58 case POWER_DOMAIN_TRANSCODER_B: 59 return "TRANSCODER_B"; 60 case POWER_DOMAIN_TRANSCODER_C: 61 return "TRANSCODER_C"; 62 case POWER_DOMAIN_TRANSCODER_D: 63 return "TRANSCODER_D"; 64 case POWER_DOMAIN_TRANSCODER_EDP: 65 return "TRANSCODER_EDP"; 66 case POWER_DOMAIN_TRANSCODER_DSI_A: 67 return "TRANSCODER_DSI_A"; 68 case POWER_DOMAIN_TRANSCODER_DSI_C: 69 return "TRANSCODER_DSI_C"; 70 case POWER_DOMAIN_TRANSCODER_VDSC_PW2: 71 return "TRANSCODER_VDSC_PW2"; 72 case POWER_DOMAIN_PORT_DDI_LANES_A: 73 return "PORT_DDI_LANES_A"; 74 case POWER_DOMAIN_PORT_DDI_LANES_B: 75 return "PORT_DDI_LANES_B"; 76 case POWER_DOMAIN_PORT_DDI_LANES_C: 77 return "PORT_DDI_LANES_C"; 78 case POWER_DOMAIN_PORT_DDI_LANES_D: 79 return "PORT_DDI_LANES_D"; 80 case POWER_DOMAIN_PORT_DDI_LANES_E: 81 return "PORT_DDI_LANES_E"; 82 case POWER_DOMAIN_PORT_DDI_LANES_F: 83 return "PORT_DDI_LANES_F"; 84 case POWER_DOMAIN_PORT_DDI_LANES_TC1: 85 return "PORT_DDI_LANES_TC1"; 86 case POWER_DOMAIN_PORT_DDI_LANES_TC2: 87 return "PORT_DDI_LANES_TC2"; 88 case POWER_DOMAIN_PORT_DDI_LANES_TC3: 89 return "PORT_DDI_LANES_TC3"; 90 case POWER_DOMAIN_PORT_DDI_LANES_TC4: 91 return "PORT_DDI_LANES_TC4"; 92 case POWER_DOMAIN_PORT_DDI_LANES_TC5: 93 return "PORT_DDI_LANES_TC5"; 94 case POWER_DOMAIN_PORT_DDI_LANES_TC6: 95 return "PORT_DDI_LANES_TC6"; 96 case POWER_DOMAIN_PORT_DDI_IO_A: 97 return "PORT_DDI_IO_A"; 98 case POWER_DOMAIN_PORT_DDI_IO_B: 99 return "PORT_DDI_IO_B"; 100 case POWER_DOMAIN_PORT_DDI_IO_C: 101 return "PORT_DDI_IO_C"; 102 case POWER_DOMAIN_PORT_DDI_IO_D: 103 return "PORT_DDI_IO_D"; 104 case POWER_DOMAIN_PORT_DDI_IO_E: 105 return "PORT_DDI_IO_E"; 106 case POWER_DOMAIN_PORT_DDI_IO_F: 107 return "PORT_DDI_IO_F"; 108 case POWER_DOMAIN_PORT_DDI_IO_TC1: 109 return "PORT_DDI_IO_TC1"; 110 case POWER_DOMAIN_PORT_DDI_IO_TC2: 111 return "PORT_DDI_IO_TC2"; 112 case POWER_DOMAIN_PORT_DDI_IO_TC3: 113 return "PORT_DDI_IO_TC3"; 114 case POWER_DOMAIN_PORT_DDI_IO_TC4: 115 return "PORT_DDI_IO_TC4"; 116 case POWER_DOMAIN_PORT_DDI_IO_TC5: 117 return "PORT_DDI_IO_TC5"; 118 case POWER_DOMAIN_PORT_DDI_IO_TC6: 119 return "PORT_DDI_IO_TC6"; 120 case POWER_DOMAIN_PORT_DSI: 121 return "PORT_DSI"; 122 case POWER_DOMAIN_PORT_CRT: 123 return "PORT_CRT"; 124 case POWER_DOMAIN_PORT_OTHER: 125 return "PORT_OTHER"; 126 case POWER_DOMAIN_VGA: 127 return "VGA"; 128 case POWER_DOMAIN_AUDIO_MMIO: 129 return "AUDIO_MMIO"; 130 case POWER_DOMAIN_AUDIO_PLAYBACK: 131 return "AUDIO_PLAYBACK"; 132 case POWER_DOMAIN_AUX_A: 133 return "AUX_A"; 134 case POWER_DOMAIN_AUX_B: 135 return "AUX_B"; 136 case POWER_DOMAIN_AUX_C: 137 return "AUX_C"; 138 case POWER_DOMAIN_AUX_D: 139 return "AUX_D"; 140 case POWER_DOMAIN_AUX_E: 141 return "AUX_E"; 142 case POWER_DOMAIN_AUX_F: 143 return "AUX_F"; 144 case POWER_DOMAIN_AUX_USBC1: 145 return "AUX_USBC1"; 146 case POWER_DOMAIN_AUX_USBC2: 147 return "AUX_USBC2"; 148 case POWER_DOMAIN_AUX_USBC3: 149 return "AUX_USBC3"; 150 case POWER_DOMAIN_AUX_USBC4: 151 return "AUX_USBC4"; 152 case POWER_DOMAIN_AUX_USBC5: 153 return "AUX_USBC5"; 154 case POWER_DOMAIN_AUX_USBC6: 155 return "AUX_USBC6"; 156 case POWER_DOMAIN_AUX_IO_A: 157 return "AUX_IO_A"; 158 case POWER_DOMAIN_AUX_TBT1: 159 return "AUX_TBT1"; 160 case POWER_DOMAIN_AUX_TBT2: 161 return "AUX_TBT2"; 162 case POWER_DOMAIN_AUX_TBT3: 163 return "AUX_TBT3"; 164 case POWER_DOMAIN_AUX_TBT4: 165 return "AUX_TBT4"; 166 case POWER_DOMAIN_AUX_TBT5: 167 return "AUX_TBT5"; 168 case POWER_DOMAIN_AUX_TBT6: 169 return "AUX_TBT6"; 170 case POWER_DOMAIN_GMBUS: 171 return "GMBUS"; 172 case POWER_DOMAIN_INIT: 173 return "INIT"; 174 case POWER_DOMAIN_MODESET: 175 return "MODESET"; 176 case POWER_DOMAIN_GT_IRQ: 177 return "GT_IRQ"; 178 case POWER_DOMAIN_DC_OFF: 179 return "DC_OFF"; 180 case POWER_DOMAIN_TC_COLD_OFF: 181 return "TC_COLD_OFF"; 182 default: 183 MISSING_CASE(domain); 184 return "?"; 185 } 186 } 187 188 /** 189 * __intel_display_power_is_enabled - unlocked check for a power domain 190 * @dev_priv: i915 device instance 191 * @domain: power domain to check 192 * 193 * This is the unlocked version of intel_display_power_is_enabled() and should 194 * only be used from error capture and recovery code where deadlocks are 195 * possible. 196 * 197 * Returns: 198 * True when the power domain is enabled, false otherwise. 199 */ 200 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv, 201 enum intel_display_power_domain domain) 202 { 203 struct i915_power_well *power_well; 204 bool is_enabled; 205 206 if (dev_priv->runtime_pm.suspended) 207 return false; 208 209 is_enabled = true; 210 211 for_each_power_domain_well_reverse(dev_priv, power_well, domain) { 212 if (intel_power_well_is_always_on(power_well)) 213 continue; 214 215 if (!intel_power_well_is_enabled_cached(power_well)) { 216 is_enabled = false; 217 break; 218 } 219 } 220 221 return is_enabled; 222 } 223 224 /** 225 * intel_display_power_is_enabled - check for a power domain 226 * @dev_priv: i915 device instance 227 * @domain: power domain to check 228 * 229 * This function can be used to check the hw power domain state. It is mostly 230 * used in hardware state readout functions. Everywhere else code should rely 231 * upon explicit power domain reference counting to ensure that the hardware 232 * block is powered up before accessing it. 233 * 234 * Callers must hold the relevant modesetting locks to ensure that concurrent 235 * threads can't disable the power well while the caller tries to read a few 236 * registers. 237 * 238 * Returns: 239 * True when the power domain is enabled, false otherwise. 240 */ 241 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv, 242 enum intel_display_power_domain domain) 243 { 244 struct i915_power_domains *power_domains; 245 bool ret; 246 247 power_domains = &dev_priv->display.power.domains; 248 249 mutex_lock(&power_domains->lock); 250 ret = __intel_display_power_is_enabled(dev_priv, domain); 251 mutex_unlock(&power_domains->lock); 252 253 return ret; 254 } 255 256 static u32 257 sanitize_target_dc_state(struct drm_i915_private *dev_priv, 258 u32 target_dc_state) 259 { 260 static const u32 states[] = { 261 DC_STATE_EN_UPTO_DC6, 262 DC_STATE_EN_UPTO_DC5, 263 DC_STATE_EN_DC3CO, 264 DC_STATE_DISABLE, 265 }; 266 int i; 267 268 for (i = 0; i < ARRAY_SIZE(states) - 1; i++) { 269 if (target_dc_state != states[i]) 270 continue; 271 272 if (dev_priv->display.dmc.allowed_dc_mask & target_dc_state) 273 break; 274 275 target_dc_state = states[i + 1]; 276 } 277 278 return target_dc_state; 279 } 280 281 /** 282 * intel_display_power_set_target_dc_state - Set target dc state. 283 * @dev_priv: i915 device 284 * @state: state which needs to be set as target_dc_state. 285 * 286 * This function set the "DC off" power well target_dc_state, 287 * based upon this target_dc_stste, "DC off" power well will 288 * enable desired DC state. 289 */ 290 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv, 291 u32 state) 292 { 293 struct i915_power_well *power_well; 294 bool dc_off_enabled; 295 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 296 297 mutex_lock(&power_domains->lock); 298 power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF); 299 300 if (drm_WARN_ON(&dev_priv->drm, !power_well)) 301 goto unlock; 302 303 state = sanitize_target_dc_state(dev_priv, state); 304 305 if (state == dev_priv->display.dmc.target_dc_state) 306 goto unlock; 307 308 dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well); 309 /* 310 * If DC off power well is disabled, need to enable and disable the 311 * DC off power well to effect target DC state. 312 */ 313 if (!dc_off_enabled) 314 intel_power_well_enable(dev_priv, power_well); 315 316 dev_priv->display.dmc.target_dc_state = state; 317 318 if (!dc_off_enabled) 319 intel_power_well_disable(dev_priv, power_well); 320 321 unlock: 322 mutex_unlock(&power_domains->lock); 323 } 324 325 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0)) 326 327 static void __async_put_domains_mask(struct i915_power_domains *power_domains, 328 struct intel_power_domain_mask *mask) 329 { 330 bitmap_or(mask->bits, 331 power_domains->async_put_domains[0].bits, 332 power_domains->async_put_domains[1].bits, 333 POWER_DOMAIN_NUM); 334 } 335 336 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 337 338 static bool 339 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) 340 { 341 struct drm_i915_private *i915 = container_of(power_domains, 342 struct drm_i915_private, 343 display.power.domains); 344 345 return !drm_WARN_ON(&i915->drm, 346 bitmap_intersects(power_domains->async_put_domains[0].bits, 347 power_domains->async_put_domains[1].bits, 348 POWER_DOMAIN_NUM)); 349 } 350 351 static bool 352 __async_put_domains_state_ok(struct i915_power_domains *power_domains) 353 { 354 struct drm_i915_private *i915 = container_of(power_domains, 355 struct drm_i915_private, 356 display.power.domains); 357 struct intel_power_domain_mask async_put_mask; 358 enum intel_display_power_domain domain; 359 bool err = false; 360 361 err |= !assert_async_put_domain_masks_disjoint(power_domains); 362 __async_put_domains_mask(power_domains, &async_put_mask); 363 err |= drm_WARN_ON(&i915->drm, 364 !!power_domains->async_put_wakeref != 365 !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)); 366 367 for_each_power_domain(domain, &async_put_mask) 368 err |= drm_WARN_ON(&i915->drm, 369 power_domains->domain_use_count[domain] != 1); 370 371 return !err; 372 } 373 374 static void print_power_domains(struct i915_power_domains *power_domains, 375 const char *prefix, struct intel_power_domain_mask *mask) 376 { 377 struct drm_i915_private *i915 = container_of(power_domains, 378 struct drm_i915_private, 379 display.power.domains); 380 enum intel_display_power_domain domain; 381 382 drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM)); 383 for_each_power_domain(domain, mask) 384 drm_dbg(&i915->drm, "%s use_count %d\n", 385 intel_display_power_domain_str(domain), 386 power_domains->domain_use_count[domain]); 387 } 388 389 static void 390 print_async_put_domains_state(struct i915_power_domains *power_domains) 391 { 392 struct drm_i915_private *i915 = container_of(power_domains, 393 struct drm_i915_private, 394 display.power.domains); 395 396 drm_dbg(&i915->drm, "async_put_wakeref %u\n", 397 power_domains->async_put_wakeref); 398 399 print_power_domains(power_domains, "async_put_domains[0]", 400 &power_domains->async_put_domains[0]); 401 print_power_domains(power_domains, "async_put_domains[1]", 402 &power_domains->async_put_domains[1]); 403 } 404 405 static void 406 verify_async_put_domains_state(struct i915_power_domains *power_domains) 407 { 408 if (!__async_put_domains_state_ok(power_domains)) 409 print_async_put_domains_state(power_domains); 410 } 411 412 #else 413 414 static void 415 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) 416 { 417 } 418 419 static void 420 verify_async_put_domains_state(struct i915_power_domains *power_domains) 421 { 422 } 423 424 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */ 425 426 static void async_put_domains_mask(struct i915_power_domains *power_domains, 427 struct intel_power_domain_mask *mask) 428 429 { 430 assert_async_put_domain_masks_disjoint(power_domains); 431 432 __async_put_domains_mask(power_domains, mask); 433 } 434 435 static void 436 async_put_domains_clear_domain(struct i915_power_domains *power_domains, 437 enum intel_display_power_domain domain) 438 { 439 assert_async_put_domain_masks_disjoint(power_domains); 440 441 clear_bit(domain, power_domains->async_put_domains[0].bits); 442 clear_bit(domain, power_domains->async_put_domains[1].bits); 443 } 444 445 static bool 446 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv, 447 enum intel_display_power_domain domain) 448 { 449 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 450 struct intel_power_domain_mask async_put_mask; 451 bool ret = false; 452 453 async_put_domains_mask(power_domains, &async_put_mask); 454 if (!test_bit(domain, async_put_mask.bits)) 455 goto out_verify; 456 457 async_put_domains_clear_domain(power_domains, domain); 458 459 ret = true; 460 461 async_put_domains_mask(power_domains, &async_put_mask); 462 if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)) 463 goto out_verify; 464 465 cancel_delayed_work(&power_domains->async_put_work); 466 intel_runtime_pm_put_raw(&dev_priv->runtime_pm, 467 fetch_and_zero(&power_domains->async_put_wakeref)); 468 out_verify: 469 verify_async_put_domains_state(power_domains); 470 471 return ret; 472 } 473 474 static void 475 __intel_display_power_get_domain(struct drm_i915_private *dev_priv, 476 enum intel_display_power_domain domain) 477 { 478 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 479 struct i915_power_well *power_well; 480 481 if (intel_display_power_grab_async_put_ref(dev_priv, domain)) 482 return; 483 484 for_each_power_domain_well(dev_priv, power_well, domain) 485 intel_power_well_get(dev_priv, power_well); 486 487 power_domains->domain_use_count[domain]++; 488 } 489 490 /** 491 * intel_display_power_get - grab a power domain reference 492 * @dev_priv: i915 device instance 493 * @domain: power domain to reference 494 * 495 * This function grabs a power domain reference for @domain and ensures that the 496 * power domain and all its parents are powered up. Therefore users should only 497 * grab a reference to the innermost power domain they need. 498 * 499 * Any power domain reference obtained by this function must have a symmetric 500 * call to intel_display_power_put() to release the reference again. 501 */ 502 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv, 503 enum intel_display_power_domain domain) 504 { 505 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 506 intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 507 508 mutex_lock(&power_domains->lock); 509 __intel_display_power_get_domain(dev_priv, domain); 510 mutex_unlock(&power_domains->lock); 511 512 return wakeref; 513 } 514 515 /** 516 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain 517 * @dev_priv: i915 device instance 518 * @domain: power domain to reference 519 * 520 * This function grabs a power domain reference for @domain and ensures that the 521 * power domain and all its parents are powered up. Therefore users should only 522 * grab a reference to the innermost power domain they need. 523 * 524 * Any power domain reference obtained by this function must have a symmetric 525 * call to intel_display_power_put() to release the reference again. 526 */ 527 intel_wakeref_t 528 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv, 529 enum intel_display_power_domain domain) 530 { 531 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 532 intel_wakeref_t wakeref; 533 bool is_enabled; 534 535 wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm); 536 if (!wakeref) 537 return false; 538 539 mutex_lock(&power_domains->lock); 540 541 if (__intel_display_power_is_enabled(dev_priv, domain)) { 542 __intel_display_power_get_domain(dev_priv, domain); 543 is_enabled = true; 544 } else { 545 is_enabled = false; 546 } 547 548 mutex_unlock(&power_domains->lock); 549 550 if (!is_enabled) { 551 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 552 wakeref = 0; 553 } 554 555 return wakeref; 556 } 557 558 static void 559 __intel_display_power_put_domain(struct drm_i915_private *dev_priv, 560 enum intel_display_power_domain domain) 561 { 562 struct i915_power_domains *power_domains; 563 struct i915_power_well *power_well; 564 const char *name = intel_display_power_domain_str(domain); 565 struct intel_power_domain_mask async_put_mask; 566 567 power_domains = &dev_priv->display.power.domains; 568 569 drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain], 570 "Use count on domain %s is already zero\n", 571 name); 572 async_put_domains_mask(power_domains, &async_put_mask); 573 drm_WARN(&dev_priv->drm, 574 test_bit(domain, async_put_mask.bits), 575 "Async disabling of domain %s is pending\n", 576 name); 577 578 power_domains->domain_use_count[domain]--; 579 580 for_each_power_domain_well_reverse(dev_priv, power_well, domain) 581 intel_power_well_put(dev_priv, power_well); 582 } 583 584 static void __intel_display_power_put(struct drm_i915_private *dev_priv, 585 enum intel_display_power_domain domain) 586 { 587 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 588 589 mutex_lock(&power_domains->lock); 590 __intel_display_power_put_domain(dev_priv, domain); 591 mutex_unlock(&power_domains->lock); 592 } 593 594 static void 595 queue_async_put_domains_work(struct i915_power_domains *power_domains, 596 intel_wakeref_t wakeref) 597 { 598 struct drm_i915_private *i915 = container_of(power_domains, 599 struct drm_i915_private, 600 display.power.domains); 601 drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref); 602 power_domains->async_put_wakeref = wakeref; 603 drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq, 604 &power_domains->async_put_work, 605 msecs_to_jiffies(100))); 606 } 607 608 static void 609 release_async_put_domains(struct i915_power_domains *power_domains, 610 struct intel_power_domain_mask *mask) 611 { 612 struct drm_i915_private *dev_priv = 613 container_of(power_domains, struct drm_i915_private, 614 display.power.domains); 615 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm; 616 enum intel_display_power_domain domain; 617 intel_wakeref_t wakeref; 618 619 /* 620 * The caller must hold already raw wakeref, upgrade that to a proper 621 * wakeref to make the state checker happy about the HW access during 622 * power well disabling. 623 */ 624 assert_rpm_raw_wakeref_held(rpm); 625 wakeref = intel_runtime_pm_get(rpm); 626 627 for_each_power_domain(domain, mask) { 628 /* Clear before put, so put's sanity check is happy. */ 629 async_put_domains_clear_domain(power_domains, domain); 630 __intel_display_power_put_domain(dev_priv, domain); 631 } 632 633 intel_runtime_pm_put(rpm, wakeref); 634 } 635 636 static void 637 intel_display_power_put_async_work(struct work_struct *work) 638 { 639 struct drm_i915_private *dev_priv = 640 container_of(work, struct drm_i915_private, 641 display.power.domains.async_put_work.work); 642 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 643 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm; 644 intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm); 645 intel_wakeref_t old_work_wakeref = 0; 646 647 mutex_lock(&power_domains->lock); 648 649 /* 650 * Bail out if all the domain refs pending to be released were grabbed 651 * by subsequent gets or a flush_work. 652 */ 653 old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); 654 if (!old_work_wakeref) 655 goto out_verify; 656 657 release_async_put_domains(power_domains, 658 &power_domains->async_put_domains[0]); 659 660 /* Requeue the work if more domains were async put meanwhile. */ 661 if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) { 662 bitmap_copy(power_domains->async_put_domains[0].bits, 663 power_domains->async_put_domains[1].bits, 664 POWER_DOMAIN_NUM); 665 bitmap_zero(power_domains->async_put_domains[1].bits, 666 POWER_DOMAIN_NUM); 667 queue_async_put_domains_work(power_domains, 668 fetch_and_zero(&new_work_wakeref)); 669 } else { 670 /* 671 * Cancel the work that got queued after this one got dequeued, 672 * since here we released the corresponding async-put reference. 673 */ 674 cancel_delayed_work(&power_domains->async_put_work); 675 } 676 677 out_verify: 678 verify_async_put_domains_state(power_domains); 679 680 mutex_unlock(&power_domains->lock); 681 682 if (old_work_wakeref) 683 intel_runtime_pm_put_raw(rpm, old_work_wakeref); 684 if (new_work_wakeref) 685 intel_runtime_pm_put_raw(rpm, new_work_wakeref); 686 } 687 688 /** 689 * intel_display_power_put_async - release a power domain reference asynchronously 690 * @i915: i915 device instance 691 * @domain: power domain to reference 692 * @wakeref: wakeref acquired for the reference that is being released 693 * 694 * This function drops the power domain reference obtained by 695 * intel_display_power_get*() and schedules a work to power down the 696 * corresponding hardware block if this is the last reference. 697 */ 698 void __intel_display_power_put_async(struct drm_i915_private *i915, 699 enum intel_display_power_domain domain, 700 intel_wakeref_t wakeref) 701 { 702 struct i915_power_domains *power_domains = &i915->display.power.domains; 703 struct intel_runtime_pm *rpm = &i915->runtime_pm; 704 intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm); 705 706 mutex_lock(&power_domains->lock); 707 708 if (power_domains->domain_use_count[domain] > 1) { 709 __intel_display_power_put_domain(i915, domain); 710 711 goto out_verify; 712 } 713 714 drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1); 715 716 /* Let a pending work requeue itself or queue a new one. */ 717 if (power_domains->async_put_wakeref) { 718 set_bit(domain, power_domains->async_put_domains[1].bits); 719 } else { 720 set_bit(domain, power_domains->async_put_domains[0].bits); 721 queue_async_put_domains_work(power_domains, 722 fetch_and_zero(&work_wakeref)); 723 } 724 725 out_verify: 726 verify_async_put_domains_state(power_domains); 727 728 mutex_unlock(&power_domains->lock); 729 730 if (work_wakeref) 731 intel_runtime_pm_put_raw(rpm, work_wakeref); 732 733 intel_runtime_pm_put(rpm, wakeref); 734 } 735 736 /** 737 * intel_display_power_flush_work - flushes the async display power disabling work 738 * @i915: i915 device instance 739 * 740 * Flushes any pending work that was scheduled by a preceding 741 * intel_display_power_put_async() call, completing the disabling of the 742 * corresponding power domains. 743 * 744 * Note that the work handler function may still be running after this 745 * function returns; to ensure that the work handler isn't running use 746 * intel_display_power_flush_work_sync() instead. 747 */ 748 void intel_display_power_flush_work(struct drm_i915_private *i915) 749 { 750 struct i915_power_domains *power_domains = &i915->display.power.domains; 751 struct intel_power_domain_mask async_put_mask; 752 intel_wakeref_t work_wakeref; 753 754 mutex_lock(&power_domains->lock); 755 756 work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); 757 if (!work_wakeref) 758 goto out_verify; 759 760 async_put_domains_mask(power_domains, &async_put_mask); 761 release_async_put_domains(power_domains, &async_put_mask); 762 cancel_delayed_work(&power_domains->async_put_work); 763 764 out_verify: 765 verify_async_put_domains_state(power_domains); 766 767 mutex_unlock(&power_domains->lock); 768 769 if (work_wakeref) 770 intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref); 771 } 772 773 /** 774 * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work 775 * @i915: i915 device instance 776 * 777 * Like intel_display_power_flush_work(), but also ensure that the work 778 * handler function is not running any more when this function returns. 779 */ 780 static void 781 intel_display_power_flush_work_sync(struct drm_i915_private *i915) 782 { 783 struct i915_power_domains *power_domains = &i915->display.power.domains; 784 785 intel_display_power_flush_work(i915); 786 cancel_delayed_work_sync(&power_domains->async_put_work); 787 788 verify_async_put_domains_state(power_domains); 789 790 drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref); 791 } 792 793 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 794 /** 795 * intel_display_power_put - release a power domain reference 796 * @dev_priv: i915 device instance 797 * @domain: power domain to reference 798 * @wakeref: wakeref acquired for the reference that is being released 799 * 800 * This function drops the power domain reference obtained by 801 * intel_display_power_get() and might power down the corresponding hardware 802 * block right away if this is the last reference. 803 */ 804 void intel_display_power_put(struct drm_i915_private *dev_priv, 805 enum intel_display_power_domain domain, 806 intel_wakeref_t wakeref) 807 { 808 __intel_display_power_put(dev_priv, domain); 809 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 810 } 811 #else 812 /** 813 * intel_display_power_put_unchecked - release an unchecked power domain reference 814 * @dev_priv: i915 device instance 815 * @domain: power domain to reference 816 * 817 * This function drops the power domain reference obtained by 818 * intel_display_power_get() and might power down the corresponding hardware 819 * block right away if this is the last reference. 820 * 821 * This function is only for the power domain code's internal use to suppress wakeref 822 * tracking when the correspondig debug kconfig option is disabled, should not 823 * be used otherwise. 824 */ 825 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv, 826 enum intel_display_power_domain domain) 827 { 828 __intel_display_power_put(dev_priv, domain); 829 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); 830 } 831 #endif 832 833 void 834 intel_display_power_get_in_set(struct drm_i915_private *i915, 835 struct intel_display_power_domain_set *power_domain_set, 836 enum intel_display_power_domain domain) 837 { 838 intel_wakeref_t __maybe_unused wf; 839 840 drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits)); 841 842 wf = intel_display_power_get(i915, domain); 843 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 844 power_domain_set->wakerefs[domain] = wf; 845 #endif 846 set_bit(domain, power_domain_set->mask.bits); 847 } 848 849 bool 850 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915, 851 struct intel_display_power_domain_set *power_domain_set, 852 enum intel_display_power_domain domain) 853 { 854 intel_wakeref_t wf; 855 856 drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits)); 857 858 wf = intel_display_power_get_if_enabled(i915, domain); 859 if (!wf) 860 return false; 861 862 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 863 power_domain_set->wakerefs[domain] = wf; 864 #endif 865 set_bit(domain, power_domain_set->mask.bits); 866 867 return true; 868 } 869 870 void 871 intel_display_power_put_mask_in_set(struct drm_i915_private *i915, 872 struct intel_display_power_domain_set *power_domain_set, 873 struct intel_power_domain_mask *mask) 874 { 875 enum intel_display_power_domain domain; 876 877 drm_WARN_ON(&i915->drm, 878 !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM)); 879 880 for_each_power_domain(domain, mask) { 881 intel_wakeref_t __maybe_unused wf = -1; 882 883 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 884 wf = fetch_and_zero(&power_domain_set->wakerefs[domain]); 885 #endif 886 intel_display_power_put(i915, domain, wf); 887 clear_bit(domain, power_domain_set->mask.bits); 888 } 889 } 890 891 static int 892 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv, 893 int disable_power_well) 894 { 895 if (disable_power_well >= 0) 896 return !!disable_power_well; 897 898 return 1; 899 } 900 901 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv, 902 int enable_dc) 903 { 904 u32 mask; 905 int requested_dc; 906 int max_dc; 907 908 if (!HAS_DISPLAY(dev_priv)) 909 return 0; 910 911 if (IS_DG2(dev_priv)) 912 max_dc = 1; 913 else if (IS_DG1(dev_priv)) 914 max_dc = 3; 915 else if (DISPLAY_VER(dev_priv) >= 12) 916 max_dc = 4; 917 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 918 max_dc = 1; 919 else if (DISPLAY_VER(dev_priv) >= 9) 920 max_dc = 2; 921 else 922 max_dc = 0; 923 924 /* 925 * DC9 has a separate HW flow from the rest of the DC states, 926 * not depending on the DMC firmware. It's needed by system 927 * suspend/resume, so allow it unconditionally. 928 */ 929 mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) || 930 DISPLAY_VER(dev_priv) >= 11 ? 931 DC_STATE_EN_DC9 : 0; 932 933 if (!dev_priv->params.disable_power_well) 934 max_dc = 0; 935 936 if (enable_dc >= 0 && enable_dc <= max_dc) { 937 requested_dc = enable_dc; 938 } else if (enable_dc == -1) { 939 requested_dc = max_dc; 940 } else if (enable_dc > max_dc && enable_dc <= 4) { 941 drm_dbg_kms(&dev_priv->drm, 942 "Adjusting requested max DC state (%d->%d)\n", 943 enable_dc, max_dc); 944 requested_dc = max_dc; 945 } else { 946 drm_err(&dev_priv->drm, 947 "Unexpected value for enable_dc (%d)\n", enable_dc); 948 requested_dc = max_dc; 949 } 950 951 switch (requested_dc) { 952 case 4: 953 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6; 954 break; 955 case 3: 956 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5; 957 break; 958 case 2: 959 mask |= DC_STATE_EN_UPTO_DC6; 960 break; 961 case 1: 962 mask |= DC_STATE_EN_UPTO_DC5; 963 break; 964 } 965 966 drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask); 967 968 return mask; 969 } 970 971 /** 972 * intel_power_domains_init - initializes the power domain structures 973 * @dev_priv: i915 device instance 974 * 975 * Initializes the power domain structures for @dev_priv depending upon the 976 * supported platform. 977 */ 978 int intel_power_domains_init(struct drm_i915_private *dev_priv) 979 { 980 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 981 982 dev_priv->params.disable_power_well = 983 sanitize_disable_power_well_option(dev_priv, 984 dev_priv->params.disable_power_well); 985 dev_priv->display.dmc.allowed_dc_mask = 986 get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc); 987 988 dev_priv->display.dmc.target_dc_state = 989 sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); 990 991 mutex_init(&power_domains->lock); 992 993 INIT_DELAYED_WORK(&power_domains->async_put_work, 994 intel_display_power_put_async_work); 995 996 return intel_display_power_map_init(power_domains); 997 } 998 999 /** 1000 * intel_power_domains_cleanup - clean up power domains resources 1001 * @dev_priv: i915 device instance 1002 * 1003 * Release any resources acquired by intel_power_domains_init() 1004 */ 1005 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv) 1006 { 1007 intel_display_power_map_cleanup(&dev_priv->display.power.domains); 1008 } 1009 1010 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv) 1011 { 1012 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1013 struct i915_power_well *power_well; 1014 1015 mutex_lock(&power_domains->lock); 1016 for_each_power_well(dev_priv, power_well) 1017 intel_power_well_sync_hw(dev_priv, power_well); 1018 mutex_unlock(&power_domains->lock); 1019 } 1020 1021 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv, 1022 enum dbuf_slice slice, bool enable) 1023 { 1024 i915_reg_t reg = DBUF_CTL_S(slice); 1025 bool state; 1026 1027 intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST, 1028 enable ? DBUF_POWER_REQUEST : 0); 1029 intel_de_posting_read(dev_priv, reg); 1030 udelay(10); 1031 1032 state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE; 1033 drm_WARN(&dev_priv->drm, enable != state, 1034 "DBuf slice %d power %s timeout!\n", 1035 slice, str_enable_disable(enable)); 1036 } 1037 1038 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv, 1039 u8 req_slices) 1040 { 1041 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1042 u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask; 1043 enum dbuf_slice slice; 1044 1045 drm_WARN(&dev_priv->drm, req_slices & ~slice_mask, 1046 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n", 1047 req_slices, slice_mask); 1048 1049 drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n", 1050 req_slices); 1051 1052 /* 1053 * Might be running this in parallel to gen9_dc_off_power_well_enable 1054 * being called from intel_dp_detect for instance, 1055 * which causes assertion triggered by race condition, 1056 * as gen9_assert_dbuf_enabled might preempt this when registers 1057 * were already updated, while dev_priv was not. 1058 */ 1059 mutex_lock(&power_domains->lock); 1060 1061 for_each_dbuf_slice(dev_priv, slice) 1062 gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice)); 1063 1064 dev_priv->display.dbuf.enabled_slices = req_slices; 1065 1066 mutex_unlock(&power_domains->lock); 1067 } 1068 1069 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv) 1070 { 1071 dev_priv->display.dbuf.enabled_slices = 1072 intel_enabled_dbuf_slices_mask(dev_priv); 1073 1074 /* 1075 * Just power up at least 1 slice, we will 1076 * figure out later which slices we have and what we need. 1077 */ 1078 gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) | 1079 dev_priv->display.dbuf.enabled_slices); 1080 } 1081 1082 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv) 1083 { 1084 gen9_dbuf_slices_update(dev_priv, 0); 1085 } 1086 1087 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv) 1088 { 1089 enum dbuf_slice slice; 1090 1091 if (IS_ALDERLAKE_P(dev_priv)) 1092 return; 1093 1094 for_each_dbuf_slice(dev_priv, slice) 1095 intel_de_rmw(dev_priv, DBUF_CTL_S(slice), 1096 DBUF_TRACKER_STATE_SERVICE_MASK, 1097 DBUF_TRACKER_STATE_SERVICE(8)); 1098 } 1099 1100 static void icl_mbus_init(struct drm_i915_private *dev_priv) 1101 { 1102 unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask; 1103 u32 mask, val, i; 1104 1105 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) 1106 return; 1107 1108 mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK | 1109 MBUS_ABOX_BT_CREDIT_POOL2_MASK | 1110 MBUS_ABOX_B_CREDIT_MASK | 1111 MBUS_ABOX_BW_CREDIT_MASK; 1112 val = MBUS_ABOX_BT_CREDIT_POOL1(16) | 1113 MBUS_ABOX_BT_CREDIT_POOL2(16) | 1114 MBUS_ABOX_B_CREDIT(1) | 1115 MBUS_ABOX_BW_CREDIT(1); 1116 1117 /* 1118 * gen12 platforms that use abox1 and abox2 for pixel data reads still 1119 * expect us to program the abox_ctl0 register as well, even though 1120 * we don't have to program other instance-0 registers like BW_BUDDY. 1121 */ 1122 if (DISPLAY_VER(dev_priv) == 12) 1123 abox_regs |= BIT(0); 1124 1125 for_each_set_bit(i, &abox_regs, sizeof(abox_regs)) 1126 intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val); 1127 } 1128 1129 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv) 1130 { 1131 u32 val = intel_de_read(dev_priv, LCPLL_CTL); 1132 1133 /* 1134 * The LCPLL register should be turned on by the BIOS. For now 1135 * let's just check its state and print errors in case 1136 * something is wrong. Don't even try to turn it on. 1137 */ 1138 1139 if (val & LCPLL_CD_SOURCE_FCLK) 1140 drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n"); 1141 1142 if (val & LCPLL_PLL_DISABLE) 1143 drm_err(&dev_priv->drm, "LCPLL is disabled\n"); 1144 1145 if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC) 1146 drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n"); 1147 } 1148 1149 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) 1150 { 1151 struct drm_device *dev = &dev_priv->drm; 1152 struct intel_crtc *crtc; 1153 1154 for_each_intel_crtc(dev, crtc) 1155 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n", 1156 pipe_name(crtc->pipe)); 1157 1158 I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2), 1159 "Display power well on\n"); 1160 I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE, 1161 "SPLL enabled\n"); 1162 I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, 1163 "WRPLL1 enabled\n"); 1164 I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, 1165 "WRPLL2 enabled\n"); 1166 I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON, 1167 "Panel power on\n"); 1168 I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, 1169 "CPU PWM1 enabled\n"); 1170 if (IS_HASWELL(dev_priv)) 1171 I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, 1172 "CPU PWM2 enabled\n"); 1173 I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, 1174 "PCH PWM1 enabled\n"); 1175 I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE, 1176 "Utility pin enabled\n"); 1177 I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE, 1178 "PCH GTC enabled\n"); 1179 1180 /* 1181 * In theory we can still leave IRQs enabled, as long as only the HPD 1182 * interrupts remain enabled. We used to check for that, but since it's 1183 * gen-specific and since we only disable LCPLL after we fully disable 1184 * the interrupts, the check below should be enough. 1185 */ 1186 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); 1187 } 1188 1189 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv) 1190 { 1191 if (IS_HASWELL(dev_priv)) 1192 return intel_de_read(dev_priv, D_COMP_HSW); 1193 else 1194 return intel_de_read(dev_priv, D_COMP_BDW); 1195 } 1196 1197 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val) 1198 { 1199 if (IS_HASWELL(dev_priv)) { 1200 if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val)) 1201 drm_dbg_kms(&dev_priv->drm, 1202 "Failed to write to D_COMP\n"); 1203 } else { 1204 intel_de_write(dev_priv, D_COMP_BDW, val); 1205 intel_de_posting_read(dev_priv, D_COMP_BDW); 1206 } 1207 } 1208 1209 /* 1210 * This function implements pieces of two sequences from BSpec: 1211 * - Sequence for display software to disable LCPLL 1212 * - Sequence for display software to allow package C8+ 1213 * The steps implemented here are just the steps that actually touch the LCPLL 1214 * register. Callers should take care of disabling all the display engine 1215 * functions, doing the mode unset, fixing interrupts, etc. 1216 */ 1217 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, 1218 bool switch_to_fclk, bool allow_power_down) 1219 { 1220 u32 val; 1221 1222 assert_can_disable_lcpll(dev_priv); 1223 1224 val = intel_de_read(dev_priv, LCPLL_CTL); 1225 1226 if (switch_to_fclk) { 1227 val |= LCPLL_CD_SOURCE_FCLK; 1228 intel_de_write(dev_priv, LCPLL_CTL, val); 1229 1230 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) & 1231 LCPLL_CD_SOURCE_FCLK_DONE, 1)) 1232 drm_err(&dev_priv->drm, "Switching to FCLK failed\n"); 1233 1234 val = intel_de_read(dev_priv, LCPLL_CTL); 1235 } 1236 1237 val |= LCPLL_PLL_DISABLE; 1238 intel_de_write(dev_priv, LCPLL_CTL, val); 1239 intel_de_posting_read(dev_priv, LCPLL_CTL); 1240 1241 if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1)) 1242 drm_err(&dev_priv->drm, "LCPLL still locked\n"); 1243 1244 val = hsw_read_dcomp(dev_priv); 1245 val |= D_COMP_COMP_DISABLE; 1246 hsw_write_dcomp(dev_priv, val); 1247 ndelay(100); 1248 1249 if (wait_for((hsw_read_dcomp(dev_priv) & 1250 D_COMP_RCOMP_IN_PROGRESS) == 0, 1)) 1251 drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n"); 1252 1253 if (allow_power_down) { 1254 val = intel_de_read(dev_priv, LCPLL_CTL); 1255 val |= LCPLL_POWER_DOWN_ALLOW; 1256 intel_de_write(dev_priv, LCPLL_CTL, val); 1257 intel_de_posting_read(dev_priv, LCPLL_CTL); 1258 } 1259 } 1260 1261 /* 1262 * Fully restores LCPLL, disallowing power down and switching back to LCPLL 1263 * source. 1264 */ 1265 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) 1266 { 1267 u32 val; 1268 1269 val = intel_de_read(dev_priv, LCPLL_CTL); 1270 1271 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | 1272 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) 1273 return; 1274 1275 /* 1276 * Make sure we're not on PC8 state before disabling PC8, otherwise 1277 * we'll hang the machine. To prevent PC8 state, just enable force_wake. 1278 */ 1279 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); 1280 1281 if (val & LCPLL_POWER_DOWN_ALLOW) { 1282 val &= ~LCPLL_POWER_DOWN_ALLOW; 1283 intel_de_write(dev_priv, LCPLL_CTL, val); 1284 intel_de_posting_read(dev_priv, LCPLL_CTL); 1285 } 1286 1287 val = hsw_read_dcomp(dev_priv); 1288 val |= D_COMP_COMP_FORCE; 1289 val &= ~D_COMP_COMP_DISABLE; 1290 hsw_write_dcomp(dev_priv, val); 1291 1292 val = intel_de_read(dev_priv, LCPLL_CTL); 1293 val &= ~LCPLL_PLL_DISABLE; 1294 intel_de_write(dev_priv, LCPLL_CTL, val); 1295 1296 if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5)) 1297 drm_err(&dev_priv->drm, "LCPLL not locked yet\n"); 1298 1299 if (val & LCPLL_CD_SOURCE_FCLK) { 1300 val = intel_de_read(dev_priv, LCPLL_CTL); 1301 val &= ~LCPLL_CD_SOURCE_FCLK; 1302 intel_de_write(dev_priv, LCPLL_CTL, val); 1303 1304 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) & 1305 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) 1306 drm_err(&dev_priv->drm, 1307 "Switching back to LCPLL failed\n"); 1308 } 1309 1310 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); 1311 1312 intel_update_cdclk(dev_priv); 1313 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK"); 1314 } 1315 1316 /* 1317 * Package states C8 and deeper are really deep PC states that can only be 1318 * reached when all the devices on the system allow it, so even if the graphics 1319 * device allows PC8+, it doesn't mean the system will actually get to these 1320 * states. Our driver only allows PC8+ when going into runtime PM. 1321 * 1322 * The requirements for PC8+ are that all the outputs are disabled, the power 1323 * well is disabled and most interrupts are disabled, and these are also 1324 * requirements for runtime PM. When these conditions are met, we manually do 1325 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk 1326 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard 1327 * hang the machine. 1328 * 1329 * When we really reach PC8 or deeper states (not just when we allow it) we lose 1330 * the state of some registers, so when we come back from PC8+ we need to 1331 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't 1332 * need to take care of the registers kept by RC6. Notice that this happens even 1333 * if we don't put the device in PCI D3 state (which is what currently happens 1334 * because of the runtime PM support). 1335 * 1336 * For more, read "Display Sequences for Package C8" on the hardware 1337 * documentation. 1338 */ 1339 static void hsw_enable_pc8(struct drm_i915_private *dev_priv) 1340 { 1341 u32 val; 1342 1343 drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n"); 1344 1345 if (HAS_PCH_LPT_LP(dev_priv)) { 1346 val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D); 1347 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; 1348 intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val); 1349 } 1350 1351 lpt_disable_clkout_dp(dev_priv); 1352 hsw_disable_lcpll(dev_priv, true, true); 1353 } 1354 1355 static void hsw_disable_pc8(struct drm_i915_private *dev_priv) 1356 { 1357 u32 val; 1358 1359 drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n"); 1360 1361 hsw_restore_lcpll(dev_priv); 1362 intel_init_pch_refclk(dev_priv); 1363 1364 if (HAS_PCH_LPT_LP(dev_priv)) { 1365 val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D); 1366 val |= PCH_LP_PARTITION_LEVEL_DISABLE; 1367 intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val); 1368 } 1369 } 1370 1371 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv, 1372 bool enable) 1373 { 1374 i915_reg_t reg; 1375 u32 reset_bits, val; 1376 1377 if (IS_IVYBRIDGE(dev_priv)) { 1378 reg = GEN7_MSG_CTL; 1379 reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK; 1380 } else { 1381 reg = HSW_NDE_RSTWRN_OPT; 1382 reset_bits = RESET_PCH_HANDSHAKE_ENABLE; 1383 } 1384 1385 if (DISPLAY_VER(dev_priv) >= 14) 1386 reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN; 1387 1388 val = intel_de_read(dev_priv, reg); 1389 1390 if (enable) 1391 val |= reset_bits; 1392 else 1393 val &= ~reset_bits; 1394 1395 intel_de_write(dev_priv, reg, val); 1396 } 1397 1398 static void skl_display_core_init(struct drm_i915_private *dev_priv, 1399 bool resume) 1400 { 1401 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1402 struct i915_power_well *well; 1403 1404 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); 1405 1406 /* enable PCH reset handshake */ 1407 intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv)); 1408 1409 if (!HAS_DISPLAY(dev_priv)) 1410 return; 1411 1412 /* enable PG1 and Misc I/O */ 1413 mutex_lock(&power_domains->lock); 1414 1415 well = lookup_power_well(dev_priv, SKL_DISP_PW_1); 1416 intel_power_well_enable(dev_priv, well); 1417 1418 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO); 1419 intel_power_well_enable(dev_priv, well); 1420 1421 mutex_unlock(&power_domains->lock); 1422 1423 intel_cdclk_init_hw(dev_priv); 1424 1425 gen9_dbuf_enable(dev_priv); 1426 1427 if (resume) 1428 intel_dmc_load_program(dev_priv); 1429 } 1430 1431 static void skl_display_core_uninit(struct drm_i915_private *dev_priv) 1432 { 1433 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1434 struct i915_power_well *well; 1435 1436 if (!HAS_DISPLAY(dev_priv)) 1437 return; 1438 1439 gen9_disable_dc_states(dev_priv); 1440 /* TODO: disable DMC program */ 1441 1442 gen9_dbuf_disable(dev_priv); 1443 1444 intel_cdclk_uninit_hw(dev_priv); 1445 1446 /* The spec doesn't call for removing the reset handshake flag */ 1447 /* disable PG1 and Misc I/O */ 1448 1449 mutex_lock(&power_domains->lock); 1450 1451 /* 1452 * BSpec says to keep the MISC IO power well enabled here, only 1453 * remove our request for power well 1. 1454 * Note that even though the driver's request is removed power well 1 1455 * may stay enabled after this due to DMC's own request on it. 1456 */ 1457 well = lookup_power_well(dev_priv, SKL_DISP_PW_1); 1458 intel_power_well_disable(dev_priv, well); 1459 1460 mutex_unlock(&power_domains->lock); 1461 1462 usleep_range(10, 30); /* 10 us delay per Bspec */ 1463 } 1464 1465 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume) 1466 { 1467 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1468 struct i915_power_well *well; 1469 1470 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); 1471 1472 /* 1473 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT 1474 * or else the reset will hang because there is no PCH to respond. 1475 * Move the handshake programming to initialization sequence. 1476 * Previously was left up to BIOS. 1477 */ 1478 intel_pch_reset_handshake(dev_priv, false); 1479 1480 if (!HAS_DISPLAY(dev_priv)) 1481 return; 1482 1483 /* Enable PG1 */ 1484 mutex_lock(&power_domains->lock); 1485 1486 well = lookup_power_well(dev_priv, SKL_DISP_PW_1); 1487 intel_power_well_enable(dev_priv, well); 1488 1489 mutex_unlock(&power_domains->lock); 1490 1491 intel_cdclk_init_hw(dev_priv); 1492 1493 gen9_dbuf_enable(dev_priv); 1494 1495 if (resume) 1496 intel_dmc_load_program(dev_priv); 1497 } 1498 1499 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv) 1500 { 1501 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1502 struct i915_power_well *well; 1503 1504 if (!HAS_DISPLAY(dev_priv)) 1505 return; 1506 1507 gen9_disable_dc_states(dev_priv); 1508 /* TODO: disable DMC program */ 1509 1510 gen9_dbuf_disable(dev_priv); 1511 1512 intel_cdclk_uninit_hw(dev_priv); 1513 1514 /* The spec doesn't call for removing the reset handshake flag */ 1515 1516 /* 1517 * Disable PW1 (PG1). 1518 * Note that even though the driver's request is removed power well 1 1519 * may stay enabled after this due to DMC's own request on it. 1520 */ 1521 mutex_lock(&power_domains->lock); 1522 1523 well = lookup_power_well(dev_priv, SKL_DISP_PW_1); 1524 intel_power_well_disable(dev_priv, well); 1525 1526 mutex_unlock(&power_domains->lock); 1527 1528 usleep_range(10, 30); /* 10 us delay per Bspec */ 1529 } 1530 1531 struct buddy_page_mask { 1532 u32 page_mask; 1533 u8 type; 1534 u8 num_channels; 1535 }; 1536 1537 static const struct buddy_page_mask tgl_buddy_page_masks[] = { 1538 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF }, 1539 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF }, 1540 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C }, 1541 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C }, 1542 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F }, 1543 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E }, 1544 { .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 }, 1545 { .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 }, 1546 {} 1547 }; 1548 1549 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = { 1550 { .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 }, 1551 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 }, 1552 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 }, 1553 { .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 }, 1554 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 }, 1555 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 }, 1556 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 }, 1557 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 }, 1558 {} 1559 }; 1560 1561 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv) 1562 { 1563 enum intel_dram_type type = dev_priv->dram_info.type; 1564 u8 num_channels = dev_priv->dram_info.num_channels; 1565 const struct buddy_page_mask *table; 1566 unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask; 1567 int config, i; 1568 1569 /* BW_BUDDY registers are not used on dgpu's beyond DG1 */ 1570 if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv)) 1571 return; 1572 1573 if (IS_ALDERLAKE_S(dev_priv) || 1574 IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) || 1575 IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) || 1576 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) 1577 /* Wa_1409767108:tgl,dg1,adl-s */ 1578 table = wa_1409767108_buddy_page_masks; 1579 else 1580 table = tgl_buddy_page_masks; 1581 1582 for (config = 0; table[config].page_mask != 0; config++) 1583 if (table[config].num_channels == num_channels && 1584 table[config].type == type) 1585 break; 1586 1587 if (table[config].page_mask == 0) { 1588 drm_dbg(&dev_priv->drm, 1589 "Unknown memory configuration; disabling address buddy logic.\n"); 1590 for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) 1591 intel_de_write(dev_priv, BW_BUDDY_CTL(i), 1592 BW_BUDDY_DISABLE); 1593 } else { 1594 for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) { 1595 intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i), 1596 table[config].page_mask); 1597 1598 /* Wa_22010178259:tgl,dg1,rkl,adl-s */ 1599 if (DISPLAY_VER(dev_priv) == 12) 1600 intel_de_rmw(dev_priv, BW_BUDDY_CTL(i), 1601 BW_BUDDY_TLB_REQ_TIMER_MASK, 1602 BW_BUDDY_TLB_REQ_TIMER(0x8)); 1603 } 1604 } 1605 } 1606 1607 static void icl_display_core_init(struct drm_i915_private *dev_priv, 1608 bool resume) 1609 { 1610 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1611 struct i915_power_well *well; 1612 u32 val; 1613 1614 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); 1615 1616 /* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */ 1617 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && 1618 INTEL_PCH_TYPE(dev_priv) < PCH_DG1) 1619 intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0, 1620 PCH_DPMGUNIT_CLOCK_GATE_DISABLE); 1621 1622 /* 1. Enable PCH reset handshake. */ 1623 intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv)); 1624 1625 if (!HAS_DISPLAY(dev_priv)) 1626 return; 1627 1628 /* 2. Initialize all combo phys */ 1629 intel_combo_phy_init(dev_priv); 1630 1631 /* 1632 * 3. Enable Power Well 1 (PG1). 1633 * The AUX IO power wells will be enabled on demand. 1634 */ 1635 mutex_lock(&power_domains->lock); 1636 well = lookup_power_well(dev_priv, SKL_DISP_PW_1); 1637 intel_power_well_enable(dev_priv, well); 1638 mutex_unlock(&power_domains->lock); 1639 1640 /* 4. Enable CDCLK. */ 1641 intel_cdclk_init_hw(dev_priv); 1642 1643 if (DISPLAY_VER(dev_priv) >= 12) 1644 gen12_dbuf_slices_config(dev_priv); 1645 1646 /* 5. Enable DBUF. */ 1647 gen9_dbuf_enable(dev_priv); 1648 1649 /* 6. Setup MBUS. */ 1650 icl_mbus_init(dev_priv); 1651 1652 /* 7. Program arbiter BW_BUDDY registers */ 1653 if (DISPLAY_VER(dev_priv) >= 12) 1654 tgl_bw_buddy_init(dev_priv); 1655 1656 /* 8. Ensure PHYs have completed calibration and adaptation */ 1657 if (IS_DG2(dev_priv)) 1658 intel_snps_phy_wait_for_calibration(dev_priv); 1659 1660 if (resume) 1661 intel_dmc_load_program(dev_priv); 1662 1663 /* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */ 1664 if (DISPLAY_VER(dev_priv) >= 12) { 1665 val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM | 1666 DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR; 1667 intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val); 1668 } 1669 1670 /* Wa_14011503030:xelpd */ 1671 if (DISPLAY_VER(dev_priv) >= 13) 1672 intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0); 1673 } 1674 1675 static void icl_display_core_uninit(struct drm_i915_private *dev_priv) 1676 { 1677 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 1678 struct i915_power_well *well; 1679 1680 if (!HAS_DISPLAY(dev_priv)) 1681 return; 1682 1683 gen9_disable_dc_states(dev_priv); 1684 intel_dmc_disable_program(dev_priv); 1685 1686 /* 1. Disable all display engine functions -> aready done */ 1687 1688 /* 2. Disable DBUF */ 1689 gen9_dbuf_disable(dev_priv); 1690 1691 /* 3. Disable CD clock */ 1692 intel_cdclk_uninit_hw(dev_priv); 1693 1694 /* 1695 * 4. Disable Power Well 1 (PG1). 1696 * The AUX IO power wells are toggled on demand, so they are already 1697 * disabled at this point. 1698 */ 1699 mutex_lock(&power_domains->lock); 1700 well = lookup_power_well(dev_priv, SKL_DISP_PW_1); 1701 intel_power_well_disable(dev_priv, well); 1702 mutex_unlock(&power_domains->lock); 1703 1704 /* 5. */ 1705 intel_combo_phy_uninit(dev_priv); 1706 } 1707 1708 static void chv_phy_control_init(struct drm_i915_private *dev_priv) 1709 { 1710 struct i915_power_well *cmn_bc = 1711 lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); 1712 struct i915_power_well *cmn_d = 1713 lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D); 1714 1715 /* 1716 * DISPLAY_PHY_CONTROL can get corrupted if read. As a 1717 * workaround never ever read DISPLAY_PHY_CONTROL, and 1718 * instead maintain a shadow copy ourselves. Use the actual 1719 * power well state and lane status to reconstruct the 1720 * expected initial value. 1721 */ 1722 dev_priv->display.power.chv_phy_control = 1723 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) | 1724 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) | 1725 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) | 1726 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) | 1727 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0); 1728 1729 /* 1730 * If all lanes are disabled we leave the override disabled 1731 * with all power down bits cleared to match the state we 1732 * would use after disabling the port. Otherwise enable the 1733 * override and set the lane powerdown bits accding to the 1734 * current lane status. 1735 */ 1736 if (intel_power_well_is_enabled(dev_priv, cmn_bc)) { 1737 u32 status = intel_de_read(dev_priv, DPLL(PIPE_A)); 1738 unsigned int mask; 1739 1740 mask = status & DPLL_PORTB_READY_MASK; 1741 if (mask == 0xf) 1742 mask = 0x0; 1743 else 1744 dev_priv->display.power.chv_phy_control |= 1745 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0); 1746 1747 dev_priv->display.power.chv_phy_control |= 1748 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0); 1749 1750 mask = (status & DPLL_PORTC_READY_MASK) >> 4; 1751 if (mask == 0xf) 1752 mask = 0x0; 1753 else 1754 dev_priv->display.power.chv_phy_control |= 1755 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1); 1756 1757 dev_priv->display.power.chv_phy_control |= 1758 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1); 1759 1760 dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0); 1761 1762 dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false; 1763 } else { 1764 dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true; 1765 } 1766 1767 if (intel_power_well_is_enabled(dev_priv, cmn_d)) { 1768 u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS); 1769 unsigned int mask; 1770 1771 mask = status & DPLL_PORTD_READY_MASK; 1772 1773 if (mask == 0xf) 1774 mask = 0x0; 1775 else 1776 dev_priv->display.power.chv_phy_control |= 1777 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0); 1778 1779 dev_priv->display.power.chv_phy_control |= 1780 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0); 1781 1782 dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1); 1783 1784 dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false; 1785 } else { 1786 dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true; 1787 } 1788 1789 drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n", 1790 dev_priv->display.power.chv_phy_control); 1791 1792 /* Defer application of initial phy_control to enabling the powerwell */ 1793 } 1794 1795 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv) 1796 { 1797 struct i915_power_well *cmn = 1798 lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); 1799 struct i915_power_well *disp2d = 1800 lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D); 1801 1802 /* If the display might be already active skip this */ 1803 if (intel_power_well_is_enabled(dev_priv, cmn) && 1804 intel_power_well_is_enabled(dev_priv, disp2d) && 1805 intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST) 1806 return; 1807 1808 drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n"); 1809 1810 /* cmnlane needs DPLL registers */ 1811 intel_power_well_enable(dev_priv, disp2d); 1812 1813 /* 1814 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: 1815 * Need to assert and de-assert PHY SB reset by gating the 1816 * common lane power, then un-gating it. 1817 * Simply ungating isn't enough to reset the PHY enough to get 1818 * ports and lanes running. 1819 */ 1820 intel_power_well_disable(dev_priv, cmn); 1821 } 1822 1823 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0) 1824 { 1825 bool ret; 1826 1827 vlv_punit_get(dev_priv); 1828 ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE; 1829 vlv_punit_put(dev_priv); 1830 1831 return ret; 1832 } 1833 1834 static void assert_ved_power_gated(struct drm_i915_private *dev_priv) 1835 { 1836 drm_WARN(&dev_priv->drm, 1837 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0), 1838 "VED not power gated\n"); 1839 } 1840 1841 static void assert_isp_power_gated(struct drm_i915_private *dev_priv) 1842 { 1843 static const struct pci_device_id isp_ids[] = { 1844 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)}, 1845 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)}, 1846 {} 1847 }; 1848 1849 drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) && 1850 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0), 1851 "ISP not power gated\n"); 1852 } 1853 1854 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv); 1855 1856 /** 1857 * intel_power_domains_init_hw - initialize hardware power domain state 1858 * @i915: i915 device instance 1859 * @resume: Called from resume code paths or not 1860 * 1861 * This function initializes the hardware power domain state and enables all 1862 * power wells belonging to the INIT power domain. Power wells in other 1863 * domains (and not in the INIT domain) are referenced or disabled by 1864 * intel_modeset_readout_hw_state(). After that the reference count of each 1865 * power well must match its HW enabled state, see 1866 * intel_power_domains_verify_state(). 1867 * 1868 * It will return with power domains disabled (to be enabled later by 1869 * intel_power_domains_enable()) and must be paired with 1870 * intel_power_domains_driver_remove(). 1871 */ 1872 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume) 1873 { 1874 struct i915_power_domains *power_domains = &i915->display.power.domains; 1875 1876 power_domains->initializing = true; 1877 1878 if (DISPLAY_VER(i915) >= 11) { 1879 icl_display_core_init(i915, resume); 1880 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { 1881 bxt_display_core_init(i915, resume); 1882 } else if (DISPLAY_VER(i915) == 9) { 1883 skl_display_core_init(i915, resume); 1884 } else if (IS_CHERRYVIEW(i915)) { 1885 mutex_lock(&power_domains->lock); 1886 chv_phy_control_init(i915); 1887 mutex_unlock(&power_domains->lock); 1888 assert_isp_power_gated(i915); 1889 } else if (IS_VALLEYVIEW(i915)) { 1890 mutex_lock(&power_domains->lock); 1891 vlv_cmnlane_wa(i915); 1892 mutex_unlock(&power_domains->lock); 1893 assert_ved_power_gated(i915); 1894 assert_isp_power_gated(i915); 1895 } else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) { 1896 hsw_assert_cdclk(i915); 1897 intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915)); 1898 } else if (IS_IVYBRIDGE(i915)) { 1899 intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915)); 1900 } 1901 1902 /* 1903 * Keep all power wells enabled for any dependent HW access during 1904 * initialization and to make sure we keep BIOS enabled display HW 1905 * resources powered until display HW readout is complete. We drop 1906 * this reference in intel_power_domains_enable(). 1907 */ 1908 drm_WARN_ON(&i915->drm, power_domains->init_wakeref); 1909 power_domains->init_wakeref = 1910 intel_display_power_get(i915, POWER_DOMAIN_INIT); 1911 1912 /* Disable power support if the user asked so. */ 1913 if (!i915->params.disable_power_well) { 1914 drm_WARN_ON(&i915->drm, power_domains->disable_wakeref); 1915 i915->display.power.domains.disable_wakeref = intel_display_power_get(i915, 1916 POWER_DOMAIN_INIT); 1917 } 1918 intel_power_domains_sync_hw(i915); 1919 1920 power_domains->initializing = false; 1921 } 1922 1923 /** 1924 * intel_power_domains_driver_remove - deinitialize hw power domain state 1925 * @i915: i915 device instance 1926 * 1927 * De-initializes the display power domain HW state. It also ensures that the 1928 * device stays powered up so that the driver can be reloaded. 1929 * 1930 * It must be called with power domains already disabled (after a call to 1931 * intel_power_domains_disable()) and must be paired with 1932 * intel_power_domains_init_hw(). 1933 */ 1934 void intel_power_domains_driver_remove(struct drm_i915_private *i915) 1935 { 1936 intel_wakeref_t wakeref __maybe_unused = 1937 fetch_and_zero(&i915->display.power.domains.init_wakeref); 1938 1939 /* Remove the refcount we took to keep power well support disabled. */ 1940 if (!i915->params.disable_power_well) 1941 intel_display_power_put(i915, POWER_DOMAIN_INIT, 1942 fetch_and_zero(&i915->display.power.domains.disable_wakeref)); 1943 1944 intel_display_power_flush_work_sync(i915); 1945 1946 intel_power_domains_verify_state(i915); 1947 1948 /* Keep the power well enabled, but cancel its rpm wakeref. */ 1949 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1950 } 1951 1952 /** 1953 * intel_power_domains_sanitize_state - sanitize power domains state 1954 * @i915: i915 device instance 1955 * 1956 * Sanitize the power domains state during driver loading and system resume. 1957 * The function will disable all display power wells that BIOS has enabled 1958 * without a user for it (any user for a power well has taken a reference 1959 * on it by the time this function is called, after the state of all the 1960 * pipe, encoder, etc. HW resources have been sanitized). 1961 */ 1962 void intel_power_domains_sanitize_state(struct drm_i915_private *i915) 1963 { 1964 struct i915_power_domains *power_domains = &i915->display.power.domains; 1965 struct i915_power_well *power_well; 1966 1967 mutex_lock(&power_domains->lock); 1968 1969 for_each_power_well_reverse(i915, power_well) { 1970 if (power_well->desc->always_on || power_well->count || 1971 !intel_power_well_is_enabled(i915, power_well)) 1972 continue; 1973 1974 drm_dbg_kms(&i915->drm, 1975 "BIOS left unused %s power well enabled, disabling it\n", 1976 intel_power_well_name(power_well)); 1977 intel_power_well_disable(i915, power_well); 1978 } 1979 1980 mutex_unlock(&power_domains->lock); 1981 } 1982 1983 /** 1984 * intel_power_domains_enable - enable toggling of display power wells 1985 * @i915: i915 device instance 1986 * 1987 * Enable the ondemand enabling/disabling of the display power wells. Note that 1988 * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled 1989 * only at specific points of the display modeset sequence, thus they are not 1990 * affected by the intel_power_domains_enable()/disable() calls. The purpose 1991 * of these function is to keep the rest of power wells enabled until the end 1992 * of display HW readout (which will acquire the power references reflecting 1993 * the current HW state). 1994 */ 1995 void intel_power_domains_enable(struct drm_i915_private *i915) 1996 { 1997 intel_wakeref_t wakeref __maybe_unused = 1998 fetch_and_zero(&i915->display.power.domains.init_wakeref); 1999 2000 intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref); 2001 intel_power_domains_verify_state(i915); 2002 } 2003 2004 /** 2005 * intel_power_domains_disable - disable toggling of display power wells 2006 * @i915: i915 device instance 2007 * 2008 * Disable the ondemand enabling/disabling of the display power wells. See 2009 * intel_power_domains_enable() for which power wells this call controls. 2010 */ 2011 void intel_power_domains_disable(struct drm_i915_private *i915) 2012 { 2013 struct i915_power_domains *power_domains = &i915->display.power.domains; 2014 2015 drm_WARN_ON(&i915->drm, power_domains->init_wakeref); 2016 power_domains->init_wakeref = 2017 intel_display_power_get(i915, POWER_DOMAIN_INIT); 2018 2019 intel_power_domains_verify_state(i915); 2020 } 2021 2022 /** 2023 * intel_power_domains_suspend - suspend power domain state 2024 * @i915: i915 device instance 2025 * @suspend_mode: specifies the target suspend state (idle, mem, hibernation) 2026 * 2027 * This function prepares the hardware power domain state before entering 2028 * system suspend. 2029 * 2030 * It must be called with power domains already disabled (after a call to 2031 * intel_power_domains_disable()) and paired with intel_power_domains_resume(). 2032 */ 2033 void intel_power_domains_suspend(struct drm_i915_private *i915, 2034 enum i915_drm_suspend_mode suspend_mode) 2035 { 2036 struct i915_power_domains *power_domains = &i915->display.power.domains; 2037 intel_wakeref_t wakeref __maybe_unused = 2038 fetch_and_zero(&power_domains->init_wakeref); 2039 2040 intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref); 2041 2042 /* 2043 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9 2044 * support don't manually deinit the power domains. This also means the 2045 * DMC firmware will stay active, it will power down any HW 2046 * resources as required and also enable deeper system power states 2047 * that would be blocked if the firmware was inactive. 2048 */ 2049 if (!(i915->display.dmc.allowed_dc_mask & DC_STATE_EN_DC9) && 2050 suspend_mode == I915_DRM_SUSPEND_IDLE && 2051 intel_dmc_has_payload(i915)) { 2052 intel_display_power_flush_work(i915); 2053 intel_power_domains_verify_state(i915); 2054 return; 2055 } 2056 2057 /* 2058 * Even if power well support was disabled we still want to disable 2059 * power wells if power domains must be deinitialized for suspend. 2060 */ 2061 if (!i915->params.disable_power_well) 2062 intel_display_power_put(i915, POWER_DOMAIN_INIT, 2063 fetch_and_zero(&i915->display.power.domains.disable_wakeref)); 2064 2065 intel_display_power_flush_work(i915); 2066 intel_power_domains_verify_state(i915); 2067 2068 if (DISPLAY_VER(i915) >= 11) 2069 icl_display_core_uninit(i915); 2070 else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) 2071 bxt_display_core_uninit(i915); 2072 else if (DISPLAY_VER(i915) == 9) 2073 skl_display_core_uninit(i915); 2074 2075 power_domains->display_core_suspended = true; 2076 } 2077 2078 /** 2079 * intel_power_domains_resume - resume power domain state 2080 * @i915: i915 device instance 2081 * 2082 * This function resume the hardware power domain state during system resume. 2083 * 2084 * It will return with power domain support disabled (to be enabled later by 2085 * intel_power_domains_enable()) and must be paired with 2086 * intel_power_domains_suspend(). 2087 */ 2088 void intel_power_domains_resume(struct drm_i915_private *i915) 2089 { 2090 struct i915_power_domains *power_domains = &i915->display.power.domains; 2091 2092 if (power_domains->display_core_suspended) { 2093 intel_power_domains_init_hw(i915, true); 2094 power_domains->display_core_suspended = false; 2095 } else { 2096 drm_WARN_ON(&i915->drm, power_domains->init_wakeref); 2097 power_domains->init_wakeref = 2098 intel_display_power_get(i915, POWER_DOMAIN_INIT); 2099 } 2100 2101 intel_power_domains_verify_state(i915); 2102 } 2103 2104 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 2105 2106 static void intel_power_domains_dump_info(struct drm_i915_private *i915) 2107 { 2108 struct i915_power_domains *power_domains = &i915->display.power.domains; 2109 struct i915_power_well *power_well; 2110 2111 for_each_power_well(i915, power_well) { 2112 enum intel_display_power_domain domain; 2113 2114 drm_dbg(&i915->drm, "%-25s %d\n", 2115 intel_power_well_name(power_well), intel_power_well_refcount(power_well)); 2116 2117 for_each_power_domain(domain, intel_power_well_domains(power_well)) 2118 drm_dbg(&i915->drm, " %-23s %d\n", 2119 intel_display_power_domain_str(domain), 2120 power_domains->domain_use_count[domain]); 2121 } 2122 } 2123 2124 /** 2125 * intel_power_domains_verify_state - verify the HW/SW state for all power wells 2126 * @i915: i915 device instance 2127 * 2128 * Verify if the reference count of each power well matches its HW enabled 2129 * state and the total refcount of the domains it belongs to. This must be 2130 * called after modeset HW state sanitization, which is responsible for 2131 * acquiring reference counts for any power wells in use and disabling the 2132 * ones left on by BIOS but not required by any active output. 2133 */ 2134 static void intel_power_domains_verify_state(struct drm_i915_private *i915) 2135 { 2136 struct i915_power_domains *power_domains = &i915->display.power.domains; 2137 struct i915_power_well *power_well; 2138 bool dump_domain_info; 2139 2140 mutex_lock(&power_domains->lock); 2141 2142 verify_async_put_domains_state(power_domains); 2143 2144 dump_domain_info = false; 2145 for_each_power_well(i915, power_well) { 2146 enum intel_display_power_domain domain; 2147 int domains_count; 2148 bool enabled; 2149 2150 enabled = intel_power_well_is_enabled(i915, power_well); 2151 if ((intel_power_well_refcount(power_well) || 2152 intel_power_well_is_always_on(power_well)) != 2153 enabled) 2154 drm_err(&i915->drm, 2155 "power well %s state mismatch (refcount %d/enabled %d)", 2156 intel_power_well_name(power_well), 2157 intel_power_well_refcount(power_well), enabled); 2158 2159 domains_count = 0; 2160 for_each_power_domain(domain, intel_power_well_domains(power_well)) 2161 domains_count += power_domains->domain_use_count[domain]; 2162 2163 if (intel_power_well_refcount(power_well) != domains_count) { 2164 drm_err(&i915->drm, 2165 "power well %s refcount/domain refcount mismatch " 2166 "(refcount %d/domains refcount %d)\n", 2167 intel_power_well_name(power_well), 2168 intel_power_well_refcount(power_well), 2169 domains_count); 2170 dump_domain_info = true; 2171 } 2172 } 2173 2174 if (dump_domain_info) { 2175 static bool dumped; 2176 2177 if (!dumped) { 2178 intel_power_domains_dump_info(i915); 2179 dumped = true; 2180 } 2181 } 2182 2183 mutex_unlock(&power_domains->lock); 2184 } 2185 2186 #else 2187 2188 static void intel_power_domains_verify_state(struct drm_i915_private *i915) 2189 { 2190 } 2191 2192 #endif 2193 2194 void intel_display_power_suspend_late(struct drm_i915_private *i915) 2195 { 2196 if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) || 2197 IS_BROXTON(i915)) { 2198 bxt_enable_dc9(i915); 2199 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { 2200 hsw_enable_pc8(i915); 2201 } 2202 2203 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ 2204 if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1) 2205 intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS); 2206 } 2207 2208 void intel_display_power_resume_early(struct drm_i915_private *i915) 2209 { 2210 if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) || 2211 IS_BROXTON(i915)) { 2212 gen9_sanitize_dc_state(i915); 2213 bxt_disable_dc9(i915); 2214 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { 2215 hsw_disable_pc8(i915); 2216 } 2217 2218 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ 2219 if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1) 2220 intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0); 2221 } 2222 2223 void intel_display_power_suspend(struct drm_i915_private *i915) 2224 { 2225 if (DISPLAY_VER(i915) >= 11) { 2226 icl_display_core_uninit(i915); 2227 bxt_enable_dc9(i915); 2228 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { 2229 bxt_display_core_uninit(i915); 2230 bxt_enable_dc9(i915); 2231 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { 2232 hsw_enable_pc8(i915); 2233 } 2234 } 2235 2236 void intel_display_power_resume(struct drm_i915_private *i915) 2237 { 2238 if (DISPLAY_VER(i915) >= 11) { 2239 bxt_disable_dc9(i915); 2240 icl_display_core_init(i915, true); 2241 if (intel_dmc_has_payload(i915)) { 2242 if (i915->display.dmc.allowed_dc_mask & 2243 DC_STATE_EN_UPTO_DC6) 2244 skl_enable_dc6(i915); 2245 else if (i915->display.dmc.allowed_dc_mask & 2246 DC_STATE_EN_UPTO_DC5) 2247 gen9_enable_dc5(i915); 2248 } 2249 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { 2250 bxt_disable_dc9(i915); 2251 bxt_display_core_init(i915, true); 2252 if (intel_dmc_has_payload(i915) && 2253 (i915->display.dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)) 2254 gen9_enable_dc5(i915); 2255 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { 2256 hsw_disable_pc8(i915); 2257 } 2258 } 2259 2260 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m) 2261 { 2262 struct i915_power_domains *power_domains = &i915->display.power.domains; 2263 int i; 2264 2265 mutex_lock(&power_domains->lock); 2266 2267 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); 2268 for (i = 0; i < power_domains->power_well_count; i++) { 2269 struct i915_power_well *power_well; 2270 enum intel_display_power_domain power_domain; 2271 2272 power_well = &power_domains->power_wells[i]; 2273 seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well), 2274 intel_power_well_refcount(power_well)); 2275 2276 for_each_power_domain(power_domain, intel_power_well_domains(power_well)) 2277 seq_printf(m, " %-23s %d\n", 2278 intel_display_power_domain_str(power_domain), 2279 power_domains->domain_use_count[power_domain]); 2280 } 2281 2282 mutex_unlock(&power_domains->lock); 2283 } 2284 2285 struct intel_ddi_port_domains { 2286 enum port port_start; 2287 enum port port_end; 2288 enum aux_ch aux_ch_start; 2289 enum aux_ch aux_ch_end; 2290 2291 enum intel_display_power_domain ddi_lanes; 2292 enum intel_display_power_domain ddi_io; 2293 enum intel_display_power_domain aux_legacy_usbc; 2294 enum intel_display_power_domain aux_tbt; 2295 }; 2296 2297 static const struct intel_ddi_port_domains 2298 i9xx_port_domains[] = { 2299 { 2300 .port_start = PORT_A, 2301 .port_end = PORT_F, 2302 .aux_ch_start = AUX_CH_A, 2303 .aux_ch_end = AUX_CH_F, 2304 2305 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2306 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2307 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2308 .aux_tbt = POWER_DOMAIN_INVALID, 2309 }, 2310 }; 2311 2312 static const struct intel_ddi_port_domains 2313 d11_port_domains[] = { 2314 { 2315 .port_start = PORT_A, 2316 .port_end = PORT_B, 2317 .aux_ch_start = AUX_CH_A, 2318 .aux_ch_end = AUX_CH_B, 2319 2320 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2321 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2322 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2323 .aux_tbt = POWER_DOMAIN_INVALID, 2324 }, { 2325 .port_start = PORT_C, 2326 .port_end = PORT_F, 2327 .aux_ch_start = AUX_CH_C, 2328 .aux_ch_end = AUX_CH_F, 2329 2330 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C, 2331 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_C, 2332 .aux_legacy_usbc = POWER_DOMAIN_AUX_C, 2333 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2334 }, 2335 }; 2336 2337 static const struct intel_ddi_port_domains 2338 d12_port_domains[] = { 2339 { 2340 .port_start = PORT_A, 2341 .port_end = PORT_C, 2342 .aux_ch_start = AUX_CH_A, 2343 .aux_ch_end = AUX_CH_C, 2344 2345 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2346 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2347 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2348 .aux_tbt = POWER_DOMAIN_INVALID, 2349 }, { 2350 .port_start = PORT_TC1, 2351 .port_end = PORT_TC6, 2352 .aux_ch_start = AUX_CH_USBC1, 2353 .aux_ch_end = AUX_CH_USBC6, 2354 2355 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, 2356 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, 2357 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, 2358 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2359 }, 2360 }; 2361 2362 static const struct intel_ddi_port_domains 2363 d13_port_domains[] = { 2364 { 2365 .port_start = PORT_A, 2366 .port_end = PORT_C, 2367 .aux_ch_start = AUX_CH_A, 2368 .aux_ch_end = AUX_CH_C, 2369 2370 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, 2371 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, 2372 .aux_legacy_usbc = POWER_DOMAIN_AUX_A, 2373 .aux_tbt = POWER_DOMAIN_INVALID, 2374 }, { 2375 .port_start = PORT_TC1, 2376 .port_end = PORT_TC4, 2377 .aux_ch_start = AUX_CH_USBC1, 2378 .aux_ch_end = AUX_CH_USBC4, 2379 2380 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, 2381 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, 2382 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, 2383 .aux_tbt = POWER_DOMAIN_AUX_TBT1, 2384 }, { 2385 .port_start = PORT_D_XELPD, 2386 .port_end = PORT_E_XELPD, 2387 .aux_ch_start = AUX_CH_D_XELPD, 2388 .aux_ch_end = AUX_CH_E_XELPD, 2389 2390 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D, 2391 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_D, 2392 .aux_legacy_usbc = POWER_DOMAIN_AUX_D, 2393 .aux_tbt = POWER_DOMAIN_INVALID, 2394 }, 2395 }; 2396 2397 static void 2398 intel_port_domains_for_platform(struct drm_i915_private *i915, 2399 const struct intel_ddi_port_domains **domains, 2400 int *domains_size) 2401 { 2402 if (DISPLAY_VER(i915) >= 13) { 2403 *domains = d13_port_domains; 2404 *domains_size = ARRAY_SIZE(d13_port_domains); 2405 } else if (DISPLAY_VER(i915) >= 12) { 2406 *domains = d12_port_domains; 2407 *domains_size = ARRAY_SIZE(d12_port_domains); 2408 } else if (DISPLAY_VER(i915) >= 11) { 2409 *domains = d11_port_domains; 2410 *domains_size = ARRAY_SIZE(d11_port_domains); 2411 } else { 2412 *domains = i9xx_port_domains; 2413 *domains_size = ARRAY_SIZE(i9xx_port_domains); 2414 } 2415 } 2416 2417 static const struct intel_ddi_port_domains * 2418 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port) 2419 { 2420 const struct intel_ddi_port_domains *domains; 2421 int domains_size; 2422 int i; 2423 2424 intel_port_domains_for_platform(i915, &domains, &domains_size); 2425 for (i = 0; i < domains_size; i++) 2426 if (port >= domains[i].port_start && port <= domains[i].port_end) 2427 return &domains[i]; 2428 2429 return NULL; 2430 } 2431 2432 enum intel_display_power_domain 2433 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port) 2434 { 2435 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port); 2436 2437 if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID)) 2438 return POWER_DOMAIN_PORT_DDI_IO_A; 2439 2440 return domains->ddi_io + (int)(port - domains->port_start); 2441 } 2442 2443 enum intel_display_power_domain 2444 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port) 2445 { 2446 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port); 2447 2448 if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID)) 2449 return POWER_DOMAIN_PORT_DDI_LANES_A; 2450 2451 return domains->ddi_lanes + (int)(port - domains->port_start); 2452 } 2453 2454 static const struct intel_ddi_port_domains * 2455 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch) 2456 { 2457 const struct intel_ddi_port_domains *domains; 2458 int domains_size; 2459 int i; 2460 2461 intel_port_domains_for_platform(i915, &domains, &domains_size); 2462 for (i = 0; i < domains_size; i++) 2463 if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end) 2464 return &domains[i]; 2465 2466 return NULL; 2467 } 2468 2469 enum intel_display_power_domain 2470 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch) 2471 { 2472 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch); 2473 2474 if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)) 2475 return POWER_DOMAIN_AUX_A; 2476 2477 return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start); 2478 } 2479 2480 enum intel_display_power_domain 2481 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch) 2482 { 2483 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch); 2484 2485 if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID)) 2486 return POWER_DOMAIN_AUX_TBT1; 2487 2488 return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start); 2489 } 2490