xref: /linux/drivers/gpu/drm/i915/display/intel_cx0_phy.c (revision c156ef573efe4230ef3dc1ff2ec0038fe0eb217f)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 
9 #include "i915_drv.h"
10 #include "i915_reg.h"
11 #include "intel_cx0_phy.h"
12 #include "intel_cx0_phy_regs.h"
13 #include "intel_ddi.h"
14 #include "intel_ddi_buf_trans.h"
15 #include "intel_de.h"
16 #include "intel_display_types.h"
17 #include "intel_dp.h"
18 #include "intel_hdmi.h"
19 #include "intel_panel.h"
20 #include "intel_psr.h"
21 #include "intel_snps_hdmi_pll.h"
22 #include "intel_tc.h"
23 
24 #define MB_WRITE_COMMITTED      true
25 #define MB_WRITE_UNCOMMITTED    false
26 
27 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
28 	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
29 		for_each_if((__lane_mask) & BIT(__lane))
30 
31 #define INTEL_CX0_LANE0		BIT(0)
32 #define INTEL_CX0_LANE1		BIT(1)
33 #define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
34 
35 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
36 {
37 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
38 	enum phy phy = intel_encoder_to_phy(encoder);
39 
40 	if (IS_PANTHERLAKE(i915) && phy == PHY_A)
41 		return true;
42 
43 	if ((IS_LUNARLAKE(i915) || IS_METEORLAKE(i915)) && phy < PHY_C)
44 		return true;
45 
46 	return false;
47 }
48 
49 static int lane_mask_to_lane(u8 lane_mask)
50 {
51 	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
52 		    hweight8(lane_mask) != 1))
53 		return 0;
54 
55 	return ilog2(lane_mask);
56 }
57 
58 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
59 {
60 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
61 
62 	if (!intel_tc_port_in_dp_alt_mode(dig_port))
63 		return INTEL_CX0_BOTH_LANES;
64 
65 	/*
66 	 * In DP-alt with pin assignment D, only PHY lane 0 is owned
67 	 * by display and lane 1 is owned by USB.
68 	 */
69 	return intel_tc_port_max_lane_count(dig_port) > 2
70 		? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
71 }
72 
73 static void
74 assert_dc_off(struct intel_display *display)
75 {
76 	struct drm_i915_private *i915 = to_i915(display->drm);
77 	bool enabled;
78 
79 	enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
80 	drm_WARN_ON(display->drm, !enabled);
81 }
82 
83 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
84 {
85 	struct intel_display *display = to_intel_display(encoder);
86 	int lane;
87 
88 	for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
89 		intel_de_rmw(display,
90 			     XELPDP_PORT_MSGBUS_TIMER(display, encoder->port, lane),
91 			     XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
92 			     XELPDP_PORT_MSGBUS_TIMER_VAL);
93 }
94 
95 /*
96  * Prepare HW for CX0 phy transactions.
97  *
98  * It is required that PSR and DC5/6 are disabled before any CX0 message
99  * bus transaction is executed.
100  *
101  * We also do the msgbus timer programming here to ensure that the timer
102  * is already programmed before any access to the msgbus.
103  */
104 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
105 {
106 	intel_wakeref_t wakeref;
107 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
108 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
109 
110 	intel_psr_pause(intel_dp);
111 	wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
112 	intel_cx0_program_msgbus_timer(encoder);
113 
114 	return wakeref;
115 }
116 
117 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
118 {
119 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
120 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
121 
122 	intel_psr_resume(intel_dp);
123 	intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
124 }
125 
126 static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
127 					    int lane)
128 {
129 	struct intel_display *display = to_intel_display(encoder);
130 
131 	intel_de_rmw(display,
132 		     XELPDP_PORT_P2M_MSGBUS_STATUS(display, encoder->port, lane),
133 		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
134 }
135 
136 static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
137 {
138 	struct intel_display *display = to_intel_display(encoder);
139 	enum port port = encoder->port;
140 	enum phy phy = intel_encoder_to_phy(encoder);
141 
142 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
143 		       XELPDP_PORT_M2P_TRANSACTION_RESET);
144 
145 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
146 				    XELPDP_PORT_M2P_TRANSACTION_RESET,
147 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
148 		drm_err_once(display->drm,
149 			     "Failed to bring PHY %c to idle.\n",
150 			     phy_name(phy));
151 		return;
152 	}
153 
154 	intel_clear_response_ready_flag(encoder, lane);
155 }
156 
157 static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
158 				  int command, int lane, u32 *val)
159 {
160 	struct intel_display *display = to_intel_display(encoder);
161 	enum port port = encoder->port;
162 	enum phy phy = intel_encoder_to_phy(encoder);
163 
164 	if (intel_de_wait_custom(display,
165 				 XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane),
166 				 XELPDP_PORT_P2M_RESPONSE_READY,
167 				 XELPDP_PORT_P2M_RESPONSE_READY,
168 				 XELPDP_MSGBUS_TIMEOUT_FAST_US,
169 				 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
170 		drm_dbg_kms(display->drm,
171 			    "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
172 			    phy_name(phy), *val);
173 
174 		if (!(intel_de_read(display, XELPDP_PORT_MSGBUS_TIMER(display, port, lane)) &
175 		      XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
176 			drm_dbg_kms(display->drm,
177 				    "PHY %c Hardware did not detect a timeout\n",
178 				    phy_name(phy));
179 
180 		intel_cx0_bus_reset(encoder, lane);
181 		return -ETIMEDOUT;
182 	}
183 
184 	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
185 		drm_dbg_kms(display->drm,
186 			    "PHY %c Error occurred during %s command. Status: 0x%x\n",
187 			    phy_name(phy),
188 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
189 		intel_cx0_bus_reset(encoder, lane);
190 		return -EINVAL;
191 	}
192 
193 	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
194 		drm_dbg_kms(display->drm,
195 			    "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n",
196 			    phy_name(phy),
197 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
198 		intel_cx0_bus_reset(encoder, lane);
199 		return -EINVAL;
200 	}
201 
202 	return 0;
203 }
204 
205 static int __intel_cx0_read_once(struct intel_encoder *encoder,
206 				 int lane, u16 addr)
207 {
208 	struct intel_display *display = to_intel_display(encoder);
209 	enum port port = encoder->port;
210 	enum phy phy = intel_encoder_to_phy(encoder);
211 	int ack;
212 	u32 val;
213 
214 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
215 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
216 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
217 		drm_dbg_kms(display->drm,
218 			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
219 		intel_cx0_bus_reset(encoder, lane);
220 		return -ETIMEDOUT;
221 	}
222 
223 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
224 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
225 		       XELPDP_PORT_M2P_COMMAND_READ |
226 		       XELPDP_PORT_M2P_ADDRESS(addr));
227 
228 	ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
229 	if (ack < 0)
230 		return ack;
231 
232 	intel_clear_response_ready_flag(encoder, lane);
233 
234 	/*
235 	 * FIXME: Workaround to let HW to settle
236 	 * down and let the message bus to end up
237 	 * in a known state
238 	 */
239 	if (DISPLAY_VER(display) < 30)
240 		intel_cx0_bus_reset(encoder, lane);
241 
242 	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
243 }
244 
245 static u8 __intel_cx0_read(struct intel_encoder *encoder,
246 			   int lane, u16 addr)
247 {
248 	struct intel_display *display = to_intel_display(encoder);
249 	enum phy phy = intel_encoder_to_phy(encoder);
250 	int i, status;
251 
252 	assert_dc_off(display);
253 
254 	/* 3 tries is assumed to be enough to read successfully */
255 	for (i = 0; i < 3; i++) {
256 		status = __intel_cx0_read_once(encoder, lane, addr);
257 
258 		if (status >= 0)
259 			return status;
260 	}
261 
262 	drm_err_once(display->drm,
263 		     "PHY %c Read %04x failed after %d retries.\n",
264 		     phy_name(phy), addr, i);
265 
266 	return 0;
267 }
268 
269 static u8 intel_cx0_read(struct intel_encoder *encoder,
270 			 u8 lane_mask, u16 addr)
271 {
272 	int lane = lane_mask_to_lane(lane_mask);
273 
274 	return __intel_cx0_read(encoder, lane, addr);
275 }
276 
277 static int __intel_cx0_write_once(struct intel_encoder *encoder,
278 				  int lane, u16 addr, u8 data, bool committed)
279 {
280 	struct intel_display *display = to_intel_display(encoder);
281 	enum port port = encoder->port;
282 	enum phy phy = intel_encoder_to_phy(encoder);
283 	int ack;
284 	u32 val;
285 
286 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
287 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
288 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
289 		drm_dbg_kms(display->drm,
290 			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
291 		intel_cx0_bus_reset(encoder, lane);
292 		return -ETIMEDOUT;
293 	}
294 
295 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
296 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
297 		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
298 				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
299 		       XELPDP_PORT_M2P_DATA(data) |
300 		       XELPDP_PORT_M2P_ADDRESS(addr));
301 
302 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
303 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
304 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
305 		drm_dbg_kms(display->drm,
306 			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
307 		intel_cx0_bus_reset(encoder, lane);
308 		return -ETIMEDOUT;
309 	}
310 
311 	if (committed) {
312 		ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
313 		if (ack < 0)
314 			return ack;
315 	} else if ((intel_de_read(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane)) &
316 		    XELPDP_PORT_P2M_ERROR_SET)) {
317 		drm_dbg_kms(display->drm,
318 			    "PHY %c Error occurred during write command.\n", phy_name(phy));
319 		intel_cx0_bus_reset(encoder, lane);
320 		return -EINVAL;
321 	}
322 
323 	intel_clear_response_ready_flag(encoder, lane);
324 
325 	/*
326 	 * FIXME: Workaround to let HW to settle
327 	 * down and let the message bus to end up
328 	 * in a known state
329 	 */
330 	if (DISPLAY_VER(display) < 30)
331 		intel_cx0_bus_reset(encoder, lane);
332 
333 	return 0;
334 }
335 
336 static void __intel_cx0_write(struct intel_encoder *encoder,
337 			      int lane, u16 addr, u8 data, bool committed)
338 {
339 	struct intel_display *display = to_intel_display(encoder);
340 	enum phy phy = intel_encoder_to_phy(encoder);
341 	int i, status;
342 
343 	assert_dc_off(display);
344 
345 	/* 3 tries is assumed to be enough to write successfully */
346 	for (i = 0; i < 3; i++) {
347 		status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
348 
349 		if (status == 0)
350 			return;
351 	}
352 
353 	drm_err_once(display->drm,
354 		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
355 }
356 
357 static void intel_cx0_write(struct intel_encoder *encoder,
358 			    u8 lane_mask, u16 addr, u8 data, bool committed)
359 {
360 	int lane;
361 
362 	for_each_cx0_lane_in_mask(lane_mask, lane)
363 		__intel_cx0_write(encoder, lane, addr, data, committed);
364 }
365 
366 static void intel_c20_sram_write(struct intel_encoder *encoder,
367 				 int lane, u16 addr, u16 data)
368 {
369 	struct intel_display *display = to_intel_display(encoder);
370 
371 	assert_dc_off(display);
372 
373 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
374 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
375 
376 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
377 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
378 }
379 
380 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
381 			       int lane, u16 addr)
382 {
383 	struct intel_display *display = to_intel_display(encoder);
384 	u16 val;
385 
386 	assert_dc_off(display);
387 
388 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
389 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
390 
391 	val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
392 	val <<= 8;
393 	val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
394 
395 	return val;
396 }
397 
398 static void __intel_cx0_rmw(struct intel_encoder *encoder,
399 			    int lane, u16 addr, u8 clear, u8 set, bool committed)
400 {
401 	u8 old, val;
402 
403 	old = __intel_cx0_read(encoder, lane, addr);
404 	val = (old & ~clear) | set;
405 
406 	if (val != old)
407 		__intel_cx0_write(encoder, lane, addr, val, committed);
408 }
409 
410 static void intel_cx0_rmw(struct intel_encoder *encoder,
411 			  u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
412 {
413 	u8 lane;
414 
415 	for_each_cx0_lane_in_mask(lane_mask, lane)
416 		__intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
417 }
418 
419 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
420 {
421 	if (intel_crtc_has_dp_encoder(crtc_state)) {
422 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
423 		    (crtc_state->port_clock == 540000 ||
424 		     crtc_state->port_clock == 810000))
425 			return 5;
426 		else
427 			return 4;
428 	} else {
429 		return 5;
430 	}
431 }
432 
433 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
434 {
435 	if (intel_crtc_has_dp_encoder(crtc_state)) {
436 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
437 		    (crtc_state->port_clock == 540000 ||
438 		     crtc_state->port_clock == 810000))
439 			return 5;
440 		else
441 			return 2;
442 	} else {
443 		return 6;
444 	}
445 }
446 
447 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
448 				     const struct intel_crtc_state *crtc_state)
449 {
450 	struct intel_display *display = to_intel_display(encoder);
451 	const struct intel_ddi_buf_trans *trans;
452 	u8 owned_lane_mask;
453 	intel_wakeref_t wakeref;
454 	int n_entries, ln;
455 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
456 
457 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
458 		return;
459 
460 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
461 
462 	wakeref = intel_cx0_phy_transaction_begin(encoder);
463 
464 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
465 	if (drm_WARN_ON_ONCE(display->drm, !trans)) {
466 		intel_cx0_phy_transaction_end(encoder, wakeref);
467 		return;
468 	}
469 
470 	if (intel_encoder_is_c10phy(encoder)) {
471 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
472 			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
473 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
474 			      C10_CMN3_TXVBOOST_MASK,
475 			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
476 			      MB_WRITE_UNCOMMITTED);
477 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
478 			      C10_TX1_TERMCTL_MASK,
479 			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
480 			      MB_WRITE_COMMITTED);
481 	}
482 
483 	for (ln = 0; ln < crtc_state->lane_count; ln++) {
484 		int level = intel_ddi_level(encoder, crtc_state, ln);
485 		int lane = ln / 2;
486 		int tx = ln % 2;
487 		u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
488 
489 		if (!(lane_mask & owned_lane_mask))
490 			continue;
491 
492 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
493 			      C10_PHY_OVRD_LEVEL_MASK,
494 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
495 			      MB_WRITE_COMMITTED);
496 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
497 			      C10_PHY_OVRD_LEVEL_MASK,
498 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
499 			      MB_WRITE_COMMITTED);
500 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
501 			      C10_PHY_OVRD_LEVEL_MASK,
502 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
503 			      MB_WRITE_COMMITTED);
504 	}
505 
506 	/* Write Override enables in 0xD71 */
507 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
508 		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
509 		      MB_WRITE_COMMITTED);
510 
511 	if (intel_encoder_is_c10phy(encoder))
512 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
513 			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
514 
515 	intel_cx0_phy_transaction_end(encoder, wakeref);
516 }
517 
518 /*
519  * Basic DP link rates with 38.4 MHz reference clock.
520  * Note: The tables below are with SSC. In non-ssc
521  * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
522  * programmed 0.
523  */
524 
525 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
526 	.clock = 162000,
527 	.tx = 0x10,
528 	.cmn = 0x21,
529 	.pll[0] = 0xB4,
530 	.pll[1] = 0,
531 	.pll[2] = 0x30,
532 	.pll[3] = 0x1,
533 	.pll[4] = 0x26,
534 	.pll[5] = 0x0C,
535 	.pll[6] = 0x98,
536 	.pll[7] = 0x46,
537 	.pll[8] = 0x1,
538 	.pll[9] = 0x1,
539 	.pll[10] = 0,
540 	.pll[11] = 0,
541 	.pll[12] = 0xC0,
542 	.pll[13] = 0,
543 	.pll[14] = 0,
544 	.pll[15] = 0x2,
545 	.pll[16] = 0x84,
546 	.pll[17] = 0x4F,
547 	.pll[18] = 0xE5,
548 	.pll[19] = 0x23,
549 };
550 
551 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
552 	.clock = 216000,
553 	.tx = 0x10,
554 	.cmn = 0x21,
555 	.pll[0] = 0x4,
556 	.pll[1] = 0,
557 	.pll[2] = 0xA2,
558 	.pll[3] = 0x1,
559 	.pll[4] = 0x33,
560 	.pll[5] = 0x10,
561 	.pll[6] = 0x75,
562 	.pll[7] = 0xB3,
563 	.pll[8] = 0x1,
564 	.pll[9] = 0x1,
565 	.pll[10] = 0,
566 	.pll[11] = 0,
567 	.pll[12] = 0,
568 	.pll[13] = 0,
569 	.pll[14] = 0,
570 	.pll[15] = 0x2,
571 	.pll[16] = 0x85,
572 	.pll[17] = 0x0F,
573 	.pll[18] = 0xE6,
574 	.pll[19] = 0x23,
575 };
576 
577 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
578 	.clock = 243000,
579 	.tx = 0x10,
580 	.cmn = 0x21,
581 	.pll[0] = 0x34,
582 	.pll[1] = 0,
583 	.pll[2] = 0xDA,
584 	.pll[3] = 0x1,
585 	.pll[4] = 0x39,
586 	.pll[5] = 0x12,
587 	.pll[6] = 0xE3,
588 	.pll[7] = 0xE9,
589 	.pll[8] = 0x1,
590 	.pll[9] = 0x1,
591 	.pll[10] = 0,
592 	.pll[11] = 0,
593 	.pll[12] = 0x20,
594 	.pll[13] = 0,
595 	.pll[14] = 0,
596 	.pll[15] = 0x2,
597 	.pll[16] = 0x85,
598 	.pll[17] = 0x8F,
599 	.pll[18] = 0xE6,
600 	.pll[19] = 0x23,
601 };
602 
603 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
604 	.clock = 270000,
605 	.tx = 0x10,
606 	.cmn = 0x21,
607 	.pll[0] = 0xF4,
608 	.pll[1] = 0,
609 	.pll[2] = 0xF8,
610 	.pll[3] = 0x0,
611 	.pll[4] = 0x20,
612 	.pll[5] = 0x0A,
613 	.pll[6] = 0x29,
614 	.pll[7] = 0x10,
615 	.pll[8] = 0x1,   /* Verify */
616 	.pll[9] = 0x1,
617 	.pll[10] = 0,
618 	.pll[11] = 0,
619 	.pll[12] = 0xA0,
620 	.pll[13] = 0,
621 	.pll[14] = 0,
622 	.pll[15] = 0x1,
623 	.pll[16] = 0x84,
624 	.pll[17] = 0x4F,
625 	.pll[18] = 0xE5,
626 	.pll[19] = 0x23,
627 };
628 
629 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
630 	.clock = 324000,
631 	.tx = 0x10,
632 	.cmn = 0x21,
633 	.pll[0] = 0xB4,
634 	.pll[1] = 0,
635 	.pll[2] = 0x30,
636 	.pll[3] = 0x1,
637 	.pll[4] = 0x26,
638 	.pll[5] = 0x0C,
639 	.pll[6] = 0x98,
640 	.pll[7] = 0x46,
641 	.pll[8] = 0x1,
642 	.pll[9] = 0x1,
643 	.pll[10] = 0,
644 	.pll[11] = 0,
645 	.pll[12] = 0xC0,
646 	.pll[13] = 0,
647 	.pll[14] = 0,
648 	.pll[15] = 0x1,
649 	.pll[16] = 0x85,
650 	.pll[17] = 0x4F,
651 	.pll[18] = 0xE6,
652 	.pll[19] = 0x23,
653 };
654 
655 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
656 	.clock = 432000,
657 	.tx = 0x10,
658 	.cmn = 0x21,
659 	.pll[0] = 0x4,
660 	.pll[1] = 0,
661 	.pll[2] = 0xA2,
662 	.pll[3] = 0x1,
663 	.pll[4] = 0x33,
664 	.pll[5] = 0x10,
665 	.pll[6] = 0x75,
666 	.pll[7] = 0xB3,
667 	.pll[8] = 0x1,
668 	.pll[9] = 0x1,
669 	.pll[10] = 0,
670 	.pll[11] = 0,
671 	.pll[12] = 0,
672 	.pll[13] = 0,
673 	.pll[14] = 0,
674 	.pll[15] = 0x1,
675 	.pll[16] = 0x85,
676 	.pll[17] = 0x0F,
677 	.pll[18] = 0xE6,
678 	.pll[19] = 0x23,
679 };
680 
681 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
682 	.clock = 540000,
683 	.tx = 0x10,
684 	.cmn = 0x21,
685 	.pll[0] = 0xF4,
686 	.pll[1] = 0,
687 	.pll[2] = 0xF8,
688 	.pll[3] = 0,
689 	.pll[4] = 0x20,
690 	.pll[5] = 0x0A,
691 	.pll[6] = 0x29,
692 	.pll[7] = 0x10,
693 	.pll[8] = 0x1,
694 	.pll[9] = 0x1,
695 	.pll[10] = 0,
696 	.pll[11] = 0,
697 	.pll[12] = 0xA0,
698 	.pll[13] = 0,
699 	.pll[14] = 0,
700 	.pll[15] = 0,
701 	.pll[16] = 0x84,
702 	.pll[17] = 0x4F,
703 	.pll[18] = 0xE5,
704 	.pll[19] = 0x23,
705 };
706 
707 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
708 	.clock = 675000,
709 	.tx = 0x10,
710 	.cmn = 0x21,
711 	.pll[0] = 0xB4,
712 	.pll[1] = 0,
713 	.pll[2] = 0x3E,
714 	.pll[3] = 0x1,
715 	.pll[4] = 0xA8,
716 	.pll[5] = 0x0C,
717 	.pll[6] = 0x33,
718 	.pll[7] = 0x54,
719 	.pll[8] = 0x1,
720 	.pll[9] = 0x1,
721 	.pll[10] = 0,
722 	.pll[11] = 0,
723 	.pll[12] = 0xC8,
724 	.pll[13] = 0,
725 	.pll[14] = 0,
726 	.pll[15] = 0,
727 	.pll[16] = 0x85,
728 	.pll[17] = 0x8F,
729 	.pll[18] = 0xE6,
730 	.pll[19] = 0x23,
731 };
732 
733 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
734 	.clock = 810000,
735 	.tx = 0x10,
736 	.cmn = 0x21,
737 	.pll[0] = 0x34,
738 	.pll[1] = 0,
739 	.pll[2] = 0x84,
740 	.pll[3] = 0x1,
741 	.pll[4] = 0x30,
742 	.pll[5] = 0x0F,
743 	.pll[6] = 0x3D,
744 	.pll[7] = 0x98,
745 	.pll[8] = 0x1,
746 	.pll[9] = 0x1,
747 	.pll[10] = 0,
748 	.pll[11] = 0,
749 	.pll[12] = 0xF0,
750 	.pll[13] = 0,
751 	.pll[14] = 0,
752 	.pll[15] = 0,
753 	.pll[16] = 0x84,
754 	.pll[17] = 0x0F,
755 	.pll[18] = 0xE5,
756 	.pll[19] = 0x23,
757 };
758 
759 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
760 	&mtl_c10_dp_rbr,
761 	&mtl_c10_dp_hbr1,
762 	&mtl_c10_dp_hbr2,
763 	&mtl_c10_dp_hbr3,
764 	NULL,
765 };
766 
767 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
768 	&mtl_c10_dp_rbr,
769 	&mtl_c10_edp_r216,
770 	&mtl_c10_edp_r243,
771 	&mtl_c10_dp_hbr1,
772 	&mtl_c10_edp_r324,
773 	&mtl_c10_edp_r432,
774 	&mtl_c10_dp_hbr2,
775 	&mtl_c10_edp_r675,
776 	&mtl_c10_dp_hbr3,
777 	NULL,
778 };
779 
780 /* C20 basic DP 1.4 tables */
781 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
782 	.clock = 162000,
783 	.tx = {	0xbe88, /* tx cfg0 */
784 		0x5800, /* tx cfg1 */
785 		0x0000, /* tx cfg2 */
786 		},
787 	.cmn = {0x0500, /* cmn cfg0*/
788 		0x0005, /* cmn cfg1 */
789 		0x0000, /* cmn cfg2 */
790 		0x0000, /* cmn cfg3 */
791 		},
792 	.mpllb = { 0x50a8,	/* mpllb cfg0 */
793 		0x2120,		/* mpllb cfg1 */
794 		0xcd9a,		/* mpllb cfg2 */
795 		0xbfc1,		/* mpllb cfg3 */
796 		0x5ab8,         /* mpllb cfg4 */
797 		0x4c34,         /* mpllb cfg5 */
798 		0x2000,		/* mpllb cfg6 */
799 		0x0001,		/* mpllb cfg7 */
800 		0x6000,		/* mpllb cfg8 */
801 		0x0000,		/* mpllb cfg9 */
802 		0x0000,		/* mpllb cfg10 */
803 		},
804 };
805 
806 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
807 	.clock = 270000,
808 	.tx = {	0xbe88, /* tx cfg0 */
809 		0x4800, /* tx cfg1 */
810 		0x0000, /* tx cfg2 */
811 		},
812 	.cmn = {0x0500, /* cmn cfg0*/
813 		0x0005, /* cmn cfg1 */
814 		0x0000, /* cmn cfg2 */
815 		0x0000, /* cmn cfg3 */
816 		},
817 	.mpllb = { 0x308c,	/* mpllb cfg0 */
818 		0x2110,		/* mpllb cfg1 */
819 		0xcc9c,		/* mpllb cfg2 */
820 		0xbfc1,		/* mpllb cfg3 */
821 		0x4b9a,         /* mpllb cfg4 */
822 		0x3f81,         /* mpllb cfg5 */
823 		0x2000,		/* mpllb cfg6 */
824 		0x0001,		/* mpllb cfg7 */
825 		0x5000,		/* mpllb cfg8 */
826 		0x0000,		/* mpllb cfg9 */
827 		0x0000,		/* mpllb cfg10 */
828 		},
829 };
830 
831 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
832 	.clock = 540000,
833 	.tx = {	0xbe88, /* tx cfg0 */
834 		0x4800, /* tx cfg1 */
835 		0x0000, /* tx cfg2 */
836 		},
837 	.cmn = {0x0500, /* cmn cfg0*/
838 		0x0005, /* cmn cfg1 */
839 		0x0000, /* cmn cfg2 */
840 		0x0000, /* cmn cfg3 */
841 		},
842 	.mpllb = { 0x108c,	/* mpllb cfg0 */
843 		0x2108,		/* mpllb cfg1 */
844 		0xcc9c,		/* mpllb cfg2 */
845 		0xbfc1,		/* mpllb cfg3 */
846 		0x4b9a,         /* mpllb cfg4 */
847 		0x3f81,         /* mpllb cfg5 */
848 		0x2000,		/* mpllb cfg6 */
849 		0x0001,		/* mpllb cfg7 */
850 		0x5000,		/* mpllb cfg8 */
851 		0x0000,		/* mpllb cfg9 */
852 		0x0000,		/* mpllb cfg10 */
853 		},
854 };
855 
856 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
857 	.clock = 810000,
858 	.tx = {	0xbe88, /* tx cfg0 */
859 		0x4800, /* tx cfg1 */
860 		0x0000, /* tx cfg2 */
861 		},
862 	.cmn = {0x0500, /* cmn cfg0*/
863 		0x0005, /* cmn cfg1 */
864 		0x0000, /* cmn cfg2 */
865 		0x0000, /* cmn cfg3 */
866 		},
867 	.mpllb = { 0x10d2,	/* mpllb cfg0 */
868 		0x2108,		/* mpllb cfg1 */
869 		0x8d98,		/* mpllb cfg2 */
870 		0xbfc1,		/* mpllb cfg3 */
871 		0x7166,         /* mpllb cfg4 */
872 		0x5f42,         /* mpllb cfg5 */
873 		0x2000,		/* mpllb cfg6 */
874 		0x0001,		/* mpllb cfg7 */
875 		0x7800,		/* mpllb cfg8 */
876 		0x0000,		/* mpllb cfg9 */
877 		0x0000,		/* mpllb cfg10 */
878 		},
879 };
880 
881 /* C20 basic DP 2.0 tables */
882 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
883 	.clock = 1000000, /* 10 Gbps */
884 	.tx = {	0xbe21, /* tx cfg0 */
885 		0xe800, /* tx cfg1 */
886 		0x0000, /* tx cfg2 */
887 		},
888 	.cmn = {0x0700, /* cmn cfg0*/
889 		0x0005, /* cmn cfg1 */
890 		0x0000, /* cmn cfg2 */
891 		0x0000, /* cmn cfg3 */
892 		},
893 	.mplla = { 0x3104,	/* mplla cfg0 */
894 		0xd105,		/* mplla cfg1 */
895 		0xc025,		/* mplla cfg2 */
896 		0xc025,		/* mplla cfg3 */
897 		0x8c00,		/* mplla cfg4 */
898 		0x759a,		/* mplla cfg5 */
899 		0x4000,		/* mplla cfg6 */
900 		0x0003,		/* mplla cfg7 */
901 		0x3555,		/* mplla cfg8 */
902 		0x0001,		/* mplla cfg9 */
903 		},
904 };
905 
906 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
907 	.clock = 1350000, /* 13.5 Gbps */
908 	.tx = {	0xbea0, /* tx cfg0 */
909 		0x4800, /* tx cfg1 */
910 		0x0000, /* tx cfg2 */
911 		},
912 	.cmn = {0x0500, /* cmn cfg0*/
913 		0x0005, /* cmn cfg1 */
914 		0x0000, /* cmn cfg2 */
915 		0x0000, /* cmn cfg3 */
916 		},
917 	.mpllb = { 0x015f,	/* mpllb cfg0 */
918 		0x2205,		/* mpllb cfg1 */
919 		0x1b17,		/* mpllb cfg2 */
920 		0xffc1,		/* mpllb cfg3 */
921 		0xe100,		/* mpllb cfg4 */
922 		0xbd00,		/* mpllb cfg5 */
923 		0x2000,		/* mpllb cfg6 */
924 		0x0001,		/* mpllb cfg7 */
925 		0x4800,		/* mpllb cfg8 */
926 		0x0000,		/* mpllb cfg9 */
927 		0x0000,		/* mpllb cfg10 */
928 		},
929 };
930 
931 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
932 	.clock = 2000000, /* 20 Gbps */
933 	.tx = {	0xbe20, /* tx cfg0 */
934 		0x4800, /* tx cfg1 */
935 		0x0000, /* tx cfg2 */
936 		},
937 	.cmn = {0x0500, /* cmn cfg0*/
938 		0x0005, /* cmn cfg1 */
939 		0x0000, /* cmn cfg2 */
940 		0x0000, /* cmn cfg3 */
941 		},
942 	.mplla = { 0x3104,	/* mplla cfg0 */
943 		0xd105,		/* mplla cfg1 */
944 		0x9217,		/* mplla cfg2 */
945 		0x9217,		/* mplla cfg3 */
946 		0x8c00,		/* mplla cfg4 */
947 		0x759a,		/* mplla cfg5 */
948 		0x4000,		/* mplla cfg6 */
949 		0x0003,		/* mplla cfg7 */
950 		0x3555,		/* mplla cfg8 */
951 		0x0001,		/* mplla cfg9 */
952 		},
953 };
954 
955 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
956 	&mtl_c20_dp_rbr,
957 	&mtl_c20_dp_hbr1,
958 	&mtl_c20_dp_hbr2,
959 	&mtl_c20_dp_hbr3,
960 	&mtl_c20_dp_uhbr10,
961 	&mtl_c20_dp_uhbr13_5,
962 	&mtl_c20_dp_uhbr20,
963 	NULL,
964 };
965 
966 /*
967  * eDP link rates with 38.4 MHz reference clock.
968  */
969 
970 static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
971 	.clock = 216000,
972 	.tx = { 0xbe88,
973 		0x4800,
974 		0x0000,
975 		},
976 	.cmn = { 0x0500,
977 		 0x0005,
978 		 0x0000,
979 		 0x0000,
980 		},
981 	.mpllb = { 0x50e1,
982 		   0x2120,
983 		   0x8e18,
984 		   0xbfc1,
985 		   0x9000,
986 		   0x78f6,
987 		   0x0000,
988 		   0x0000,
989 		   0x0000,
990 		   0x0000,
991 		   0x0000,
992 		  },
993 };
994 
995 static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
996 	.clock = 243000,
997 	.tx = { 0xbe88,
998 		0x4800,
999 		0x0000,
1000 		},
1001 	.cmn = { 0x0500,
1002 		 0x0005,
1003 		 0x0000,
1004 		 0x0000,
1005 		},
1006 	.mpllb = { 0x50fd,
1007 		   0x2120,
1008 		   0x8f18,
1009 		   0xbfc1,
1010 		   0xa200,
1011 		   0x8814,
1012 		   0x2000,
1013 		   0x0001,
1014 		   0x1000,
1015 		   0x0000,
1016 		   0x0000,
1017 		  },
1018 };
1019 
1020 static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
1021 	.clock = 324000,
1022 	.tx = { 0xbe88,
1023 		0x4800,
1024 		0x0000,
1025 		},
1026 	.cmn = { 0x0500,
1027 		 0x0005,
1028 		 0x0000,
1029 		 0x0000,
1030 		},
1031 	.mpllb = { 0x30a8,
1032 		   0x2110,
1033 		   0xcd9a,
1034 		   0xbfc1,
1035 		   0x6c00,
1036 		   0x5ab8,
1037 		   0x2000,
1038 		   0x0001,
1039 		   0x6000,
1040 		   0x0000,
1041 		   0x0000,
1042 		  },
1043 };
1044 
1045 static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
1046 	.clock = 432000,
1047 	.tx = { 0xbe88,
1048 		0x4800,
1049 		0x0000,
1050 		},
1051 	.cmn = { 0x0500,
1052 		 0x0005,
1053 		 0x0000,
1054 		 0x0000,
1055 		},
1056 	.mpllb = { 0x30e1,
1057 		   0x2110,
1058 		   0x8e18,
1059 		   0xbfc1,
1060 		   0x9000,
1061 		   0x78f6,
1062 		   0x0000,
1063 		   0x0000,
1064 		   0x0000,
1065 		   0x0000,
1066 		   0x0000,
1067 		  },
1068 };
1069 
1070 static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
1071 	.clock = 675000,
1072 	.tx = { 0xbe88,
1073 		0x4800,
1074 		0x0000,
1075 		},
1076 	.cmn = { 0x0500,
1077 		 0x0005,
1078 		 0x0000,
1079 		 0x0000,
1080 		},
1081 	.mpllb = { 0x10af,
1082 		   0x2108,
1083 		   0xce1a,
1084 		   0xbfc1,
1085 		   0x7080,
1086 		   0x5e80,
1087 		   0x2000,
1088 		   0x0001,
1089 		   0x6400,
1090 		   0x0000,
1091 		   0x0000,
1092 		  },
1093 };
1094 
1095 static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
1096 	&mtl_c20_dp_rbr,
1097 	&xe2hpd_c20_edp_r216,
1098 	&xe2hpd_c20_edp_r243,
1099 	&mtl_c20_dp_hbr1,
1100 	&xe2hpd_c20_edp_r324,
1101 	&xe2hpd_c20_edp_r432,
1102 	&mtl_c20_dp_hbr2,
1103 	&xe2hpd_c20_edp_r675,
1104 	&mtl_c20_dp_hbr3,
1105 	NULL,
1106 };
1107 
1108 static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
1109 	.clock = 1350000, /* 13.5 Gbps */
1110 	.tx = {	0xbea0, /* tx cfg0 */
1111 		0x4800, /* tx cfg1 */
1112 		0x0000, /* tx cfg2 */
1113 		},
1114 	.cmn = {0x0500, /* cmn cfg0*/
1115 		0x0005, /* cmn cfg1 */
1116 		0x0000, /* cmn cfg2 */
1117 		0x0000, /* cmn cfg3 */
1118 		},
1119 	.mpllb = { 0x015f,	/* mpllb cfg0 */
1120 		0x2205,		/* mpllb cfg1 */
1121 		0x1b17,		/* mpllb cfg2 */
1122 		0xffc1,		/* mpllb cfg3 */
1123 		0xbd00,		/* mpllb cfg4 */
1124 		0x9ec3,		/* mpllb cfg5 */
1125 		0x2000,		/* mpllb cfg6 */
1126 		0x0001,		/* mpllb cfg7 */
1127 		0x4800,		/* mpllb cfg8 */
1128 		0x0000,		/* mpllb cfg9 */
1129 		0x0000,		/* mpllb cfg10 */
1130 		},
1131 };
1132 
1133 static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
1134 	&mtl_c20_dp_rbr,
1135 	&mtl_c20_dp_hbr1,
1136 	&mtl_c20_dp_hbr2,
1137 	&mtl_c20_dp_hbr3,
1138 	&mtl_c20_dp_uhbr10,
1139 	&xe2hpd_c20_dp_uhbr13_5,
1140 	NULL,
1141 };
1142 
1143 static const struct intel_c20pll_state * const xe3lpd_c20_dp_edp_tables[] = {
1144 	&mtl_c20_dp_rbr,
1145 	&xe2hpd_c20_edp_r216,
1146 	&xe2hpd_c20_edp_r243,
1147 	&mtl_c20_dp_hbr1,
1148 	&xe2hpd_c20_edp_r324,
1149 	&xe2hpd_c20_edp_r432,
1150 	&mtl_c20_dp_hbr2,
1151 	&xe2hpd_c20_edp_r675,
1152 	&mtl_c20_dp_hbr3,
1153 	&mtl_c20_dp_uhbr10,
1154 	&xe2hpd_c20_dp_uhbr13_5,
1155 	&mtl_c20_dp_uhbr20,
1156 	NULL,
1157 };
1158 
1159 /*
1160  * HDMI link rates with 38.4 MHz reference clock.
1161  */
1162 
1163 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
1164 	.clock = 25200,
1165 	.tx = 0x10,
1166 	.cmn = 0x1,
1167 	.pll[0] = 0x4,
1168 	.pll[1] = 0,
1169 	.pll[2] = 0xB2,
1170 	.pll[3] = 0,
1171 	.pll[4] = 0,
1172 	.pll[5] = 0,
1173 	.pll[6] = 0,
1174 	.pll[7] = 0,
1175 	.pll[8] = 0x20,
1176 	.pll[9] = 0x1,
1177 	.pll[10] = 0,
1178 	.pll[11] = 0,
1179 	.pll[12] = 0,
1180 	.pll[13] = 0,
1181 	.pll[14] = 0,
1182 	.pll[15] = 0xD,
1183 	.pll[16] = 0x6,
1184 	.pll[17] = 0x8F,
1185 	.pll[18] = 0x84,
1186 	.pll[19] = 0x23,
1187 };
1188 
1189 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
1190 	.clock = 27000,
1191 	.tx = 0x10,
1192 	.cmn = 0x1,
1193 	.pll[0] = 0x34,
1194 	.pll[1] = 0,
1195 	.pll[2] = 0xC0,
1196 	.pll[3] = 0,
1197 	.pll[4] = 0,
1198 	.pll[5] = 0,
1199 	.pll[6] = 0,
1200 	.pll[7] = 0,
1201 	.pll[8] = 0x20,
1202 	.pll[9] = 0x1,
1203 	.pll[10] = 0,
1204 	.pll[11] = 0,
1205 	.pll[12] = 0x80,
1206 	.pll[13] = 0,
1207 	.pll[14] = 0,
1208 	.pll[15] = 0xD,
1209 	.pll[16] = 0x6,
1210 	.pll[17] = 0xCF,
1211 	.pll[18] = 0x84,
1212 	.pll[19] = 0x23,
1213 };
1214 
1215 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1216 	.clock = 74250,
1217 	.tx = 0x10,
1218 	.cmn = 0x1,
1219 	.pll[0] = 0xF4,
1220 	.pll[1] = 0,
1221 	.pll[2] = 0x7A,
1222 	.pll[3] = 0,
1223 	.pll[4] = 0,
1224 	.pll[5] = 0,
1225 	.pll[6] = 0,
1226 	.pll[7] = 0,
1227 	.pll[8] = 0x20,
1228 	.pll[9] = 0x1,
1229 	.pll[10] = 0,
1230 	.pll[11] = 0,
1231 	.pll[12] = 0x58,
1232 	.pll[13] = 0,
1233 	.pll[14] = 0,
1234 	.pll[15] = 0xB,
1235 	.pll[16] = 0x6,
1236 	.pll[17] = 0xF,
1237 	.pll[18] = 0x85,
1238 	.pll[19] = 0x23,
1239 };
1240 
1241 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1242 	.clock = 148500,
1243 	.tx = 0x10,
1244 	.cmn = 0x1,
1245 	.pll[0] = 0xF4,
1246 	.pll[1] = 0,
1247 	.pll[2] = 0x7A,
1248 	.pll[3] = 0,
1249 	.pll[4] = 0,
1250 	.pll[5] = 0,
1251 	.pll[6] = 0,
1252 	.pll[7] = 0,
1253 	.pll[8] = 0x20,
1254 	.pll[9] = 0x1,
1255 	.pll[10] = 0,
1256 	.pll[11] = 0,
1257 	.pll[12] = 0x58,
1258 	.pll[13] = 0,
1259 	.pll[14] = 0,
1260 	.pll[15] = 0xA,
1261 	.pll[16] = 0x6,
1262 	.pll[17] = 0xF,
1263 	.pll[18] = 0x85,
1264 	.pll[19] = 0x23,
1265 };
1266 
1267 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1268 	.clock = 594000,
1269 	.tx = 0x10,
1270 	.cmn = 0x1,
1271 	.pll[0] = 0xF4,
1272 	.pll[1] = 0,
1273 	.pll[2] = 0x7A,
1274 	.pll[3] = 0,
1275 	.pll[4] = 0,
1276 	.pll[5] = 0,
1277 	.pll[6] = 0,
1278 	.pll[7] = 0,
1279 	.pll[8] = 0x20,
1280 	.pll[9] = 0x1,
1281 	.pll[10] = 0,
1282 	.pll[11] = 0,
1283 	.pll[12] = 0x58,
1284 	.pll[13] = 0,
1285 	.pll[14] = 0,
1286 	.pll[15] = 0x8,
1287 	.pll[16] = 0x6,
1288 	.pll[17] = 0xF,
1289 	.pll[18] = 0x85,
1290 	.pll[19] = 0x23,
1291 };
1292 
1293 /* Precomputed C10 HDMI PLL tables */
1294 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1295 	.clock = 27027,
1296 	.tx = 0x10,
1297 	.cmn = 0x1,
1298 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1299 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1300 	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1301 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1302 };
1303 
1304 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1305 	.clock = 28320,
1306 	.tx = 0x10,
1307 	.cmn = 0x1,
1308 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1309 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1310 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1311 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1312 };
1313 
1314 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1315 	.clock = 30240,
1316 	.tx = 0x10,
1317 	.cmn = 0x1,
1318 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1319 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1320 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1321 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1322 };
1323 
1324 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1325 	.clock = 31500,
1326 	.tx = 0x10,
1327 	.cmn = 0x1,
1328 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1329 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1330 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1331 	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1332 };
1333 
1334 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1335 	.clock = 36000,
1336 	.tx = 0x10,
1337 	.cmn = 0x1,
1338 	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1339 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1340 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1341 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1342 };
1343 
1344 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1345 	.clock = 40000,
1346 	.tx = 0x10,
1347 	.cmn = 0x1,
1348 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1349 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1350 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1351 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1352 };
1353 
1354 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1355 	.clock = 49500,
1356 	.tx = 0x10,
1357 	.cmn = 0x1,
1358 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1359 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1360 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1361 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1362 };
1363 
1364 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1365 	.clock = 50000,
1366 	.tx = 0x10,
1367 	.cmn = 0x1,
1368 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1369 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1370 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1371 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1372 };
1373 
1374 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1375 	.clock = 57284,
1376 	.tx = 0x10,
1377 	.cmn = 0x1,
1378 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1379 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1380 	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1381 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1382 };
1383 
1384 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1385 	.clock = 58000,
1386 	.tx = 0x10,
1387 	.cmn = 0x1,
1388 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1389 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1390 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1391 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1392 };
1393 
1394 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1395 	.clock = 65000,
1396 	.tx = 0x10,
1397 	.cmn = 0x1,
1398 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1399 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1400 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1401 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1402 };
1403 
1404 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1405 	.clock = 71000,
1406 	.tx = 0x10,
1407 	.cmn = 0x1,
1408 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1409 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1410 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1411 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1412 };
1413 
1414 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1415 	.clock = 74176,
1416 	.tx = 0x10,
1417 	.cmn = 0x1,
1418 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1419 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1420 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1421 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1422 };
1423 
1424 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1425 	.clock = 75000,
1426 	.tx = 0x10,
1427 	.cmn = 0x1,
1428 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1429 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1430 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1431 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1432 };
1433 
1434 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1435 	.clock = 78750,
1436 	.tx = 0x10,
1437 	.cmn = 0x1,
1438 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1439 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1440 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1441 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1442 };
1443 
1444 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1445 	.clock = 85500,
1446 	.tx = 0x10,
1447 	.cmn = 0x1,
1448 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1449 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1450 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1451 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1452 };
1453 
1454 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1455 	.clock = 88750,
1456 	.tx = 0x10,
1457 	.cmn = 0x1,
1458 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1459 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1460 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1461 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1462 };
1463 
1464 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1465 	.clock = 106500,
1466 	.tx = 0x10,
1467 	.cmn = 0x1,
1468 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1469 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1470 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1471 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1472 };
1473 
1474 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1475 	.clock = 108000,
1476 	.tx = 0x10,
1477 	.cmn = 0x1,
1478 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1479 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1480 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1481 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1482 };
1483 
1484 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1485 	.clock = 115500,
1486 	.tx = 0x10,
1487 	.cmn = 0x1,
1488 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1489 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1490 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1491 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1492 };
1493 
1494 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1495 	.clock = 119000,
1496 	.tx = 0x10,
1497 	.cmn = 0x1,
1498 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1499 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1500 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1501 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1502 };
1503 
1504 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1505 	.clock = 135000,
1506 	.tx = 0x10,
1507 	.cmn = 0x1,
1508 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1509 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1510 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1511 	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1512 };
1513 
1514 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1515 	.clock = 138500,
1516 	.tx = 0x10,
1517 	.cmn = 0x1,
1518 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1519 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1520 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1521 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1522 };
1523 
1524 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1525 	.clock = 147160,
1526 	.tx = 0x10,
1527 	.cmn = 0x1,
1528 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1529 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1530 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1531 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1532 };
1533 
1534 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1535 	.clock = 148352,
1536 	.tx = 0x10,
1537 	.cmn = 0x1,
1538 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1539 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1540 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1541 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1542 };
1543 
1544 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1545 	.clock = 154000,
1546 	.tx = 0x10,
1547 	.cmn = 0x1,
1548 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1549 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1550 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1551 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1552 };
1553 
1554 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1555 	.clock = 162000,
1556 	.tx = 0x10,
1557 	.cmn = 0x1,
1558 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1559 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1560 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1561 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1562 };
1563 
1564 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1565 	.clock = 167000,
1566 	.tx = 0x10,
1567 	.cmn = 0x1,
1568 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1569 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1570 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1571 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1572 };
1573 
1574 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1575 	.clock = 197802,
1576 	.tx = 0x10,
1577 	.cmn = 0x1,
1578 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1579 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1580 	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1581 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1582 };
1583 
1584 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1585 	.clock = 198000,
1586 	.tx = 0x10,
1587 	.cmn = 0x1,
1588 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1589 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1590 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1591 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1592 };
1593 
1594 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1595 	.clock = 209800,
1596 	.tx = 0x10,
1597 	.cmn = 0x1,
1598 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1599 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1600 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1601 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1602 };
1603 
1604 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1605 	.clock = 241500,
1606 	.tx = 0x10,
1607 	.cmn = 0x1,
1608 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1609 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1610 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1611 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1612 };
1613 
1614 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1615 	.clock = 262750,
1616 	.tx = 0x10,
1617 	.cmn = 0x1,
1618 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1619 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1620 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1621 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1622 };
1623 
1624 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1625 	.clock = 268500,
1626 	.tx = 0x10,
1627 	.cmn = 0x1,
1628 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1629 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1630 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1631 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1632 };
1633 
1634 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1635 	.clock = 296703,
1636 	.tx = 0x10,
1637 	.cmn = 0x1,
1638 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1639 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1640 	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1641 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1642 };
1643 
1644 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1645 	.clock = 297000,
1646 	.tx = 0x10,
1647 	.cmn = 0x1,
1648 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1649 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1650 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1651 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1652 };
1653 
1654 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1655 	.clock = 319750,
1656 	.tx = 0x10,
1657 	.cmn = 0x1,
1658 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1659 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1660 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1661 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1662 };
1663 
1664 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1665 	.clock = 497750,
1666 	.tx = 0x10,
1667 	.cmn = 0x1,
1668 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1669 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1670 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1671 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1672 };
1673 
1674 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1675 	.clock = 592000,
1676 	.tx = 0x10,
1677 	.cmn = 0x1,
1678 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1679 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1680 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1681 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1682 };
1683 
1684 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1685 	.clock = 593407,
1686 	.tx = 0x10,
1687 	.cmn = 0x1,
1688 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1689 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1690 	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1691 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1692 };
1693 
1694 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1695 	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1696 	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1697 	&mtl_c10_hdmi_27027,
1698 	&mtl_c10_hdmi_28320,
1699 	&mtl_c10_hdmi_30240,
1700 	&mtl_c10_hdmi_31500,
1701 	&mtl_c10_hdmi_36000,
1702 	&mtl_c10_hdmi_40000,
1703 	&mtl_c10_hdmi_49500,
1704 	&mtl_c10_hdmi_50000,
1705 	&mtl_c10_hdmi_57284,
1706 	&mtl_c10_hdmi_58000,
1707 	&mtl_c10_hdmi_65000,
1708 	&mtl_c10_hdmi_71000,
1709 	&mtl_c10_hdmi_74176,
1710 	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1711 	&mtl_c10_hdmi_75000,
1712 	&mtl_c10_hdmi_78750,
1713 	&mtl_c10_hdmi_85500,
1714 	&mtl_c10_hdmi_88750,
1715 	&mtl_c10_hdmi_106500,
1716 	&mtl_c10_hdmi_108000,
1717 	&mtl_c10_hdmi_115500,
1718 	&mtl_c10_hdmi_119000,
1719 	&mtl_c10_hdmi_135000,
1720 	&mtl_c10_hdmi_138500,
1721 	&mtl_c10_hdmi_147160,
1722 	&mtl_c10_hdmi_148352,
1723 	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1724 	&mtl_c10_hdmi_154000,
1725 	&mtl_c10_hdmi_162000,
1726 	&mtl_c10_hdmi_167000,
1727 	&mtl_c10_hdmi_197802,
1728 	&mtl_c10_hdmi_198000,
1729 	&mtl_c10_hdmi_209800,
1730 	&mtl_c10_hdmi_241500,
1731 	&mtl_c10_hdmi_262750,
1732 	&mtl_c10_hdmi_268500,
1733 	&mtl_c10_hdmi_296703,
1734 	&mtl_c10_hdmi_297000,
1735 	&mtl_c10_hdmi_319750,
1736 	&mtl_c10_hdmi_497750,
1737 	&mtl_c10_hdmi_592000,
1738 	&mtl_c10_hdmi_593407,
1739 	&mtl_c10_hdmi_594, /* Consolidated Table */
1740 	NULL,
1741 };
1742 
1743 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1744 	.clock = 25175,
1745 	.tx = {  0xbe88, /* tx cfg0 */
1746 		  0x9800, /* tx cfg1 */
1747 		  0x0000, /* tx cfg2 */
1748 		},
1749 	.cmn = { 0x0500, /* cmn cfg0*/
1750 		  0x0005, /* cmn cfg1 */
1751 		  0x0000, /* cmn cfg2 */
1752 		  0x0000, /* cmn cfg3 */
1753 		},
1754 	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1755 		   0x7d80,	/* mpllb cfg1 */
1756 		   0x0906,	/* mpllb cfg2 */
1757 		   0xbe40,	/* mpllb cfg3 */
1758 		   0x0000,	/* mpllb cfg4 */
1759 		   0x0000,	/* mpllb cfg5 */
1760 		   0x0200,	/* mpllb cfg6 */
1761 		   0x0001,	/* mpllb cfg7 */
1762 		   0x0000,	/* mpllb cfg8 */
1763 		   0x0000,	/* mpllb cfg9 */
1764 		   0x0001,	/* mpllb cfg10 */
1765 		},
1766 };
1767 
1768 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1769 	.clock = 27000,
1770 	.tx = {  0xbe88, /* tx cfg0 */
1771 		  0x9800, /* tx cfg1 */
1772 		  0x0000, /* tx cfg2 */
1773 		},
1774 	.cmn = { 0x0500, /* cmn cfg0*/
1775 		  0x0005, /* cmn cfg1 */
1776 		  0x0000, /* cmn cfg2 */
1777 		  0x0000, /* cmn cfg3 */
1778 		},
1779 	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1780 		   0x7d80,	/* mpllb cfg1 */
1781 		   0x0906,	/* mpllb cfg2 */
1782 		   0xbe40,	/* mpllb cfg3 */
1783 		   0x0000,	/* mpllb cfg4 */
1784 		   0x0000,	/* mpllb cfg5 */
1785 		   0x2200,	/* mpllb cfg6 */
1786 		   0x0001,	/* mpllb cfg7 */
1787 		   0x8000,	/* mpllb cfg8 */
1788 		   0x0000,	/* mpllb cfg9 */
1789 		   0x0001,	/* mpllb cfg10 */
1790 		},
1791 };
1792 
1793 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1794 	.clock = 74250,
1795 	.tx = {  0xbe88, /* tx cfg0 */
1796 		  0x9800, /* tx cfg1 */
1797 		  0x0000, /* tx cfg2 */
1798 		},
1799 	.cmn = { 0x0500, /* cmn cfg0*/
1800 		  0x0005, /* cmn cfg1 */
1801 		  0x0000, /* cmn cfg2 */
1802 		  0x0000, /* cmn cfg3 */
1803 		},
1804 	.mpllb = { 0x609a,	/* mpllb cfg0 */
1805 		   0x7d40,	/* mpllb cfg1 */
1806 		   0xca06,	/* mpllb cfg2 */
1807 		   0xbe40,	/* mpllb cfg3 */
1808 		   0x0000,	/* mpllb cfg4 */
1809 		   0x0000,	/* mpllb cfg5 */
1810 		   0x2200,	/* mpllb cfg6 */
1811 		   0x0001,	/* mpllb cfg7 */
1812 		   0x5800,	/* mpllb cfg8 */
1813 		   0x0000,	/* mpllb cfg9 */
1814 		   0x0001,	/* mpllb cfg10 */
1815 		},
1816 };
1817 
1818 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1819 	.clock = 148500,
1820 	.tx = {  0xbe88, /* tx cfg0 */
1821 		  0x9800, /* tx cfg1 */
1822 		  0x0000, /* tx cfg2 */
1823 		},
1824 	.cmn = { 0x0500, /* cmn cfg0*/
1825 		  0x0005, /* cmn cfg1 */
1826 		  0x0000, /* cmn cfg2 */
1827 		  0x0000, /* cmn cfg3 */
1828 		},
1829 	.mpllb = { 0x409a,	/* mpllb cfg0 */
1830 		   0x7d20,	/* mpllb cfg1 */
1831 		   0xca06,	/* mpllb cfg2 */
1832 		   0xbe40,	/* mpllb cfg3 */
1833 		   0x0000,	/* mpllb cfg4 */
1834 		   0x0000,	/* mpllb cfg5 */
1835 		   0x2200,	/* mpllb cfg6 */
1836 		   0x0001,	/* mpllb cfg7 */
1837 		   0x5800,	/* mpllb cfg8 */
1838 		   0x0000,	/* mpllb cfg9 */
1839 		   0x0001,	/* mpllb cfg10 */
1840 		},
1841 };
1842 
1843 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1844 	.clock = 594000,
1845 	.tx = {  0xbe88, /* tx cfg0 */
1846 		  0x9800, /* tx cfg1 */
1847 		  0x0000, /* tx cfg2 */
1848 		},
1849 	.cmn = { 0x0500, /* cmn cfg0*/
1850 		  0x0005, /* cmn cfg1 */
1851 		  0x0000, /* cmn cfg2 */
1852 		  0x0000, /* cmn cfg3 */
1853 		},
1854 	.mpllb = { 0x009a,	/* mpllb cfg0 */
1855 		   0x7d08,	/* mpllb cfg1 */
1856 		   0xca06,	/* mpllb cfg2 */
1857 		   0xbe40,	/* mpllb cfg3 */
1858 		   0x0000,	/* mpllb cfg4 */
1859 		   0x0000,	/* mpllb cfg5 */
1860 		   0x2200,	/* mpllb cfg6 */
1861 		   0x0001,	/* mpllb cfg7 */
1862 		   0x5800,	/* mpllb cfg8 */
1863 		   0x0000,	/* mpllb cfg9 */
1864 		   0x0001,	/* mpllb cfg10 */
1865 		},
1866 };
1867 
1868 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1869 	.clock = 3000000,
1870 	.tx = {  0xbe98, /* tx cfg0 */
1871 		  0x8800, /* tx cfg1 */
1872 		  0x0000, /* tx cfg2 */
1873 		},
1874 	.cmn = { 0x0500, /* cmn cfg0*/
1875 		  0x0005, /* cmn cfg1 */
1876 		  0x0000, /* cmn cfg2 */
1877 		  0x0000, /* cmn cfg3 */
1878 		},
1879 	.mpllb = { 0x309c,	/* mpllb cfg0 */
1880 		   0x2110,	/* mpllb cfg1 */
1881 		   0xca06,	/* mpllb cfg2 */
1882 		   0xbe40,	/* mpllb cfg3 */
1883 		   0x0000,	/* mpllb cfg4 */
1884 		   0x0000,	/* mpllb cfg5 */
1885 		   0x2200,	/* mpllb cfg6 */
1886 		   0x0001,	/* mpllb cfg7 */
1887 		   0x2000,	/* mpllb cfg8 */
1888 		   0x0000,	/* mpllb cfg9 */
1889 		   0x0004,	/* mpllb cfg10 */
1890 		},
1891 };
1892 
1893 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1894 	.clock = 6000000,
1895 	.tx = {  0xbe98, /* tx cfg0 */
1896 		  0x8800, /* tx cfg1 */
1897 		  0x0000, /* tx cfg2 */
1898 		},
1899 	.cmn = { 0x0500, /* cmn cfg0*/
1900 		  0x0005, /* cmn cfg1 */
1901 		  0x0000, /* cmn cfg2 */
1902 		  0x0000, /* cmn cfg3 */
1903 		},
1904 	.mpllb = { 0x109c,	/* mpllb cfg0 */
1905 		   0x2108,	/* mpllb cfg1 */
1906 		   0xca06,	/* mpllb cfg2 */
1907 		   0xbe40,	/* mpllb cfg3 */
1908 		   0x0000,	/* mpllb cfg4 */
1909 		   0x0000,	/* mpllb cfg5 */
1910 		   0x2200,	/* mpllb cfg6 */
1911 		   0x0001,	/* mpllb cfg7 */
1912 		   0x2000,	/* mpllb cfg8 */
1913 		   0x0000,	/* mpllb cfg9 */
1914 		   0x0004,	/* mpllb cfg10 */
1915 		},
1916 };
1917 
1918 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1919 	.clock = 8000000,
1920 	.tx = {  0xbe98, /* tx cfg0 */
1921 		  0x8800, /* tx cfg1 */
1922 		  0x0000, /* tx cfg2 */
1923 		},
1924 	.cmn = { 0x0500, /* cmn cfg0*/
1925 		  0x0005, /* cmn cfg1 */
1926 		  0x0000, /* cmn cfg2 */
1927 		  0x0000, /* cmn cfg3 */
1928 		},
1929 	.mpllb = { 0x10d0,	/* mpllb cfg0 */
1930 		   0x2108,	/* mpllb cfg1 */
1931 		   0x4a06,	/* mpllb cfg2 */
1932 		   0xbe40,	/* mpllb cfg3 */
1933 		   0x0000,	/* mpllb cfg4 */
1934 		   0x0000,	/* mpllb cfg5 */
1935 		   0x2200,	/* mpllb cfg6 */
1936 		   0x0003,	/* mpllb cfg7 */
1937 		   0x2aaa,	/* mpllb cfg8 */
1938 		   0x0002,	/* mpllb cfg9 */
1939 		   0x0004,	/* mpllb cfg10 */
1940 		},
1941 };
1942 
1943 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1944 	.clock = 10000000,
1945 	.tx = {  0xbe98, /* tx cfg0 */
1946 		  0x8800, /* tx cfg1 */
1947 		  0x0000, /* tx cfg2 */
1948 		},
1949 	.cmn = { 0x0500, /* cmn cfg0*/
1950 		  0x0005, /* cmn cfg1 */
1951 		  0x0000, /* cmn cfg2 */
1952 		  0x0000, /* cmn cfg3 */
1953 		},
1954 	.mpllb = { 0x1104,	/* mpllb cfg0 */
1955 		   0x2108,	/* mpllb cfg1 */
1956 		   0x0a06,	/* mpllb cfg2 */
1957 		   0xbe40,	/* mpllb cfg3 */
1958 		   0x0000,	/* mpllb cfg4 */
1959 		   0x0000,	/* mpllb cfg5 */
1960 		   0x2200,	/* mpllb cfg6 */
1961 		   0x0003,	/* mpllb cfg7 */
1962 		   0x3555,	/* mpllb cfg8 */
1963 		   0x0001,	/* mpllb cfg9 */
1964 		   0x0004,	/* mpllb cfg10 */
1965 		},
1966 };
1967 
1968 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1969 	.clock = 12000000,
1970 	.tx = {  0xbe98, /* tx cfg0 */
1971 		  0x8800, /* tx cfg1 */
1972 		  0x0000, /* tx cfg2 */
1973 		},
1974 	.cmn = { 0x0500, /* cmn cfg0*/
1975 		  0x0005, /* cmn cfg1 */
1976 		  0x0000, /* cmn cfg2 */
1977 		  0x0000, /* cmn cfg3 */
1978 		},
1979 	.mpllb = { 0x1138,	/* mpllb cfg0 */
1980 		   0x2108,	/* mpllb cfg1 */
1981 		   0x5486,	/* mpllb cfg2 */
1982 		   0xfe40,	/* mpllb cfg3 */
1983 		   0x0000,	/* mpllb cfg4 */
1984 		   0x0000,	/* mpllb cfg5 */
1985 		   0x2200,	/* mpllb cfg6 */
1986 		   0x0001,	/* mpllb cfg7 */
1987 		   0x4000,	/* mpllb cfg8 */
1988 		   0x0000,	/* mpllb cfg9 */
1989 		   0x0004,	/* mpllb cfg10 */
1990 		},
1991 };
1992 
1993 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1994 	&mtl_c20_hdmi_25_175,
1995 	&mtl_c20_hdmi_27_0,
1996 	&mtl_c20_hdmi_74_25,
1997 	&mtl_c20_hdmi_148_5,
1998 	&mtl_c20_hdmi_594,
1999 	&mtl_c20_hdmi_300,
2000 	&mtl_c20_hdmi_600,
2001 	&mtl_c20_hdmi_800,
2002 	&mtl_c20_hdmi_1000,
2003 	&mtl_c20_hdmi_1200,
2004 	NULL,
2005 };
2006 
2007 static const struct intel_c10pll_state * const *
2008 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
2009 			struct intel_encoder *encoder)
2010 {
2011 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2012 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2013 			return mtl_c10_edp_tables;
2014 		else
2015 			return mtl_c10_dp_tables;
2016 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2017 		return mtl_c10_hdmi_tables;
2018 	}
2019 
2020 	MISSING_CASE(encoder->type);
2021 	return NULL;
2022 }
2023 
2024 static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
2025 				    struct intel_encoder *encoder)
2026 {
2027 	struct intel_display *display = to_intel_display(encoder);
2028 	struct intel_cx0pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll;
2029 	int i;
2030 
2031 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2032 		if (intel_panel_use_ssc(display)) {
2033 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2034 
2035 			pll_state->ssc_enabled =
2036 				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
2037 		}
2038 	}
2039 
2040 	if (pll_state->ssc_enabled)
2041 		return;
2042 
2043 	drm_WARN_ON(display->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
2044 	for (i = 4; i < 9; i++)
2045 		pll_state->c10.pll[i] = 0;
2046 }
2047 
2048 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
2049 				   struct intel_encoder *encoder)
2050 {
2051 	const struct intel_c10pll_state * const *tables;
2052 	int i;
2053 
2054 	tables = intel_c10pll_tables_get(crtc_state, encoder);
2055 	if (!tables)
2056 		return -EINVAL;
2057 
2058 	for (i = 0; tables[i]; i++) {
2059 		if (crtc_state->port_clock == tables[i]->clock) {
2060 			crtc_state->dpll_hw_state.cx0pll.c10 = *tables[i];
2061 			intel_c10pll_update_pll(crtc_state, encoder);
2062 			crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2063 
2064 			return 0;
2065 		}
2066 	}
2067 
2068 	/* For HDMI PLLs try SNPS PHY algorithm, if there are no precomputed tables */
2069 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2070 		intel_snps_hdmi_pll_compute_c10pll(&crtc_state->dpll_hw_state.cx0pll.c10,
2071 						   crtc_state->port_clock);
2072 		intel_c10pll_update_pll(crtc_state, encoder);
2073 		crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2074 
2075 		return 0;
2076 	}
2077 
2078 	return -EINVAL;
2079 }
2080 
2081 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
2082 					  struct intel_c10pll_state *pll_state)
2083 {
2084 	u8 lane = INTEL_CX0_LANE0;
2085 	intel_wakeref_t wakeref;
2086 	int i;
2087 
2088 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2089 
2090 	/*
2091 	 * According to C10 VDR Register programming Sequence we need
2092 	 * to do this to read PHY internal registers from MsgBus.
2093 	 */
2094 	intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
2095 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2096 		      MB_WRITE_COMMITTED);
2097 
2098 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2099 		pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
2100 
2101 	pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
2102 	pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
2103 
2104 	intel_cx0_phy_transaction_end(encoder, wakeref);
2105 }
2106 
2107 static void intel_c10_pll_program(struct intel_display *display,
2108 				  const struct intel_crtc_state *crtc_state,
2109 				  struct intel_encoder *encoder)
2110 {
2111 	const struct intel_c10pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c10;
2112 	int i;
2113 
2114 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2115 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2116 		      MB_WRITE_COMMITTED);
2117 
2118 	/* Program the pll values only for the master lane */
2119 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2120 		intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
2121 				pll_state->pll[i],
2122 				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
2123 
2124 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
2125 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
2126 
2127 	/* Custom width needs to be programmed to 0 for both the phy lanes */
2128 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
2129 		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
2130 		      MB_WRITE_COMMITTED);
2131 	intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
2132 		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
2133 		      MB_WRITE_COMMITTED);
2134 }
2135 
2136 static void intel_c10pll_dump_hw_state(struct intel_display *display,
2137 				       const struct intel_c10pll_state *hw_state)
2138 {
2139 	bool fracen;
2140 	int i;
2141 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2142 	unsigned int multiplier, tx_clk_div;
2143 
2144 	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
2145 	drm_dbg_kms(display->drm, "c10pll_hw_state: fracen: %s, ",
2146 		    str_yes_no(fracen));
2147 
2148 	if (fracen) {
2149 		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
2150 		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
2151 		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
2152 		drm_dbg_kms(display->drm, "quot: %u, rem: %u, den: %u,\n",
2153 			    frac_quot, frac_rem, frac_den);
2154 	}
2155 
2156 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
2157 		      hw_state->pll[2]) / 2 + 16;
2158 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
2159 	drm_dbg_kms(display->drm,
2160 		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
2161 
2162 	drm_dbg_kms(display->drm, "c10pll_rawhw_state:");
2163 	drm_dbg_kms(display->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx,
2164 		    hw_state->cmn);
2165 
2166 	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
2167 	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
2168 		drm_dbg_kms(display->drm,
2169 			    "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
2170 			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
2171 			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
2172 }
2173 
2174 /*
2175  * Some ARLs SoCs have the same drm PCI IDs, so need a helper to differentiate based
2176  * on the host bridge device ID to get the correct txx_mics value.
2177  */
2178 static bool is_arrowlake_s_by_host_bridge(void)
2179 {
2180 	struct pci_dev *pdev = NULL;
2181 	u16 host_bridge_pci_dev_id;
2182 
2183 	while ((pdev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, pdev)))
2184 		host_bridge_pci_dev_id = pdev->device;
2185 
2186 	return pdev && IS_ARROWLAKE_S_BY_HOST_BRIDGE_ID(host_bridge_pci_dev_id);
2187 }
2188 
2189 static u16 intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state *crtc_state)
2190 {
2191 	struct intel_display *display = to_intel_display(crtc_state);
2192 	u16 tx_misc;
2193 	u16 tx_dcc_cal_dac_ctrl_range = 8;
2194 	u16 tx_term_ctrl = 2;
2195 
2196 	if (DISPLAY_VER(display) >= 20) {
2197 		tx_misc = 5;
2198 		tx_term_ctrl = 4;
2199 	} else if (display->platform.battlemage) {
2200 		tx_misc = 0;
2201 	} else if (display->platform.meteorlake_u ||
2202 		   is_arrowlake_s_by_host_bridge()) {
2203 		tx_misc = 3;
2204 	} else {
2205 		tx_misc = 7;
2206 	}
2207 
2208 	return (C20_PHY_TX_MISC(tx_misc) |
2209 		C20_PHY_TX_DCC_CAL_RANGE(tx_dcc_cal_dac_ctrl_range) |
2210 		C20_PHY_TX_DCC_BYPASS | C20_PHY_TX_TERM_CTL(tx_term_ctrl));
2211 }
2212 
2213 static int intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state *crtc_state)
2214 {
2215 	struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2216 	u64 datarate;
2217 	u64 mpll_tx_clk_div;
2218 	u64 vco_freq_shift;
2219 	u64 vco_freq;
2220 	u64 multiplier;
2221 	u64 mpll_multiplier;
2222 	u64 mpll_fracn_quot;
2223 	u64 mpll_fracn_rem;
2224 	u8  mpllb_ana_freq_vco;
2225 	u8  mpll_div_multiplier;
2226 
2227 	if (crtc_state->port_clock < 25175 || crtc_state->port_clock > 600000)
2228 		return -EINVAL;
2229 
2230 	datarate = ((u64)crtc_state->port_clock * 1000) * 10;
2231 	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
2232 	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
2233 	vco_freq = (datarate << vco_freq_shift) >> 8;
2234 	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
2235 	mpll_multiplier = 2 * (multiplier >> 32);
2236 
2237 	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
2238 	mpll_fracn_rem  = multiplier & 0xFFFF;
2239 
2240 	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
2241 						  datarate), 255);
2242 
2243 	if (vco_freq <= DATARATE_3000000000)
2244 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
2245 	else if (vco_freq <= DATARATE_3500000000)
2246 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2247 	else if (vco_freq <= DATARATE_4000000000)
2248 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2249 	else
2250 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2251 
2252 	pll_state->clock	= crtc_state->port_clock;
2253 	pll_state->tx[0]	= 0xbe88;
2254 	pll_state->tx[1]	= intel_c20_hdmi_tmds_tx_cgf_1(crtc_state);
2255 	pll_state->tx[2]	= 0x0000;
2256 	pll_state->cmn[0]	= 0x0500;
2257 	pll_state->cmn[1]	= 0x0005;
2258 	pll_state->cmn[2]	= 0x0000;
2259 	pll_state->cmn[3]	= 0x0000;
2260 	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2261 				   MPLL_MULTIPLIER(mpll_multiplier));
2262 	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2263 				   WORD_CLK_DIV |
2264 				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2265 	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2266 				   CP_PROP(CP_PROP_20) |
2267 				   CP_INT(CP_INT_6));
2268 	pll_state->mpllb[3]	= (V2I(V2I_2) |
2269 				   CP_PROP_GS(CP_PROP_GS_30) |
2270 				   CP_INT_GS(CP_INT_GS_28));
2271 	pll_state->mpllb[4]	= 0x0000;
2272 	pll_state->mpllb[5]	= 0x0000;
2273 	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2274 	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
2275 	pll_state->mpllb[8]	= mpll_fracn_quot;
2276 	pll_state->mpllb[9]	= mpll_fracn_rem;
2277 	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
2278 
2279 	return 0;
2280 }
2281 
2282 static const struct intel_c20pll_state * const *
2283 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2284 			 struct intel_encoder *encoder)
2285 {
2286 	struct intel_display *display = to_intel_display(crtc_state);
2287 
2288 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2289 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
2290 			if (DISPLAY_RUNTIME_INFO(display)->edp_typec_support)
2291 				return xe3lpd_c20_dp_edp_tables;
2292 			if (DISPLAY_VERx100(display) == 1401)
2293 				return xe2hpd_c20_edp_tables;
2294 		}
2295 
2296 		if (DISPLAY_VER(display) >= 30)
2297 			return xe3lpd_c20_dp_edp_tables;
2298 		else if (DISPLAY_VERx100(display) == 1401)
2299 			return xe2hpd_c20_dp_tables;
2300 		else
2301 			return mtl_c20_dp_tables;
2302 
2303 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2304 		return mtl_c20_hdmi_tables;
2305 	}
2306 
2307 	MISSING_CASE(encoder->type);
2308 	return NULL;
2309 }
2310 
2311 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2312 				   struct intel_encoder *encoder)
2313 {
2314 	const struct intel_c20pll_state * const *tables;
2315 	int i;
2316 
2317 	/* try computed C20 HDMI tables before using consolidated tables */
2318 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2319 		if (intel_c20_compute_hdmi_tmds_pll(crtc_state) == 0)
2320 			return 0;
2321 	}
2322 
2323 	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2324 	if (!tables)
2325 		return -EINVAL;
2326 
2327 	for (i = 0; tables[i]; i++) {
2328 		if (crtc_state->port_clock == tables[i]->clock) {
2329 			crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2330 			crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
2331 			return 0;
2332 		}
2333 	}
2334 
2335 	return -EINVAL;
2336 }
2337 
2338 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2339 			    struct intel_encoder *encoder)
2340 {
2341 	if (intel_encoder_is_c10phy(encoder))
2342 		return intel_c10pll_calc_state(crtc_state, encoder);
2343 	return intel_c20pll_calc_state(crtc_state, encoder);
2344 }
2345 
2346 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2347 {
2348 	return state->tx[0] & C20_PHY_USE_MPLLB;
2349 }
2350 
2351 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2352 					const struct intel_c20pll_state *pll_state)
2353 {
2354 	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2355 	unsigned int multiplier, refclk = 38400;
2356 	unsigned int tx_clk_div;
2357 	unsigned int ref_clk_mpllb_div;
2358 	unsigned int fb_clk_div4_en;
2359 	unsigned int ref, vco;
2360 	unsigned int tx_rate_mult;
2361 	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2362 
2363 	if (intel_c20phy_use_mpllb(pll_state)) {
2364 		tx_rate_mult = 1;
2365 		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2366 		frac_quot = pll_state->mpllb[8];
2367 		frac_rem =  pll_state->mpllb[9];
2368 		frac_den =  pll_state->mpllb[7];
2369 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2370 		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2371 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2372 		fb_clk_div4_en = 0;
2373 	} else {
2374 		tx_rate_mult = 2;
2375 		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2376 		frac_quot = pll_state->mplla[8];
2377 		frac_rem =  pll_state->mplla[9];
2378 		frac_den =  pll_state->mplla[7];
2379 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2380 		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2381 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2382 		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2383 	}
2384 
2385 	if (frac_en)
2386 		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2387 	else
2388 		frac = 0;
2389 
2390 	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2391 	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2392 
2393 	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2394 }
2395 
2396 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2397 					  struct intel_c20pll_state *pll_state)
2398 {
2399 	struct intel_display *display = to_intel_display(encoder);
2400 	bool cntx;
2401 	intel_wakeref_t wakeref;
2402 	int i;
2403 
2404 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2405 
2406 	/* 1. Read current context selection */
2407 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2408 
2409 	/* Read Tx configuration */
2410 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2411 		if (cntx)
2412 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2413 							       INTEL_CX0_LANE0,
2414 							       PHY_C20_B_TX_CNTX_CFG(display, i));
2415 		else
2416 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2417 							       INTEL_CX0_LANE0,
2418 							       PHY_C20_A_TX_CNTX_CFG(display, i));
2419 	}
2420 
2421 	/* Read common configuration */
2422 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2423 		if (cntx)
2424 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2425 								INTEL_CX0_LANE0,
2426 								PHY_C20_B_CMN_CNTX_CFG(display, i));
2427 		else
2428 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2429 								INTEL_CX0_LANE0,
2430 								PHY_C20_A_CMN_CNTX_CFG(display, i));
2431 	}
2432 
2433 	if (intel_c20phy_use_mpllb(pll_state)) {
2434 		/* MPLLB configuration */
2435 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2436 			if (cntx)
2437 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2438 									  INTEL_CX0_LANE0,
2439 									  PHY_C20_B_MPLLB_CNTX_CFG(display, i));
2440 			else
2441 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2442 									  INTEL_CX0_LANE0,
2443 									  PHY_C20_A_MPLLB_CNTX_CFG(display, i));
2444 		}
2445 	} else {
2446 		/* MPLLA configuration */
2447 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2448 			if (cntx)
2449 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2450 									  INTEL_CX0_LANE0,
2451 									  PHY_C20_B_MPLLA_CNTX_CFG(display, i));
2452 			else
2453 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2454 									  INTEL_CX0_LANE0,
2455 									  PHY_C20_A_MPLLA_CNTX_CFG(display, i));
2456 		}
2457 	}
2458 
2459 	pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2460 
2461 	intel_cx0_phy_transaction_end(encoder, wakeref);
2462 }
2463 
2464 static void intel_c20pll_dump_hw_state(struct intel_display *display,
2465 				       const struct intel_c20pll_state *hw_state)
2466 {
2467 	int i;
2468 
2469 	drm_dbg_kms(display->drm, "c20pll_hw_state:\n");
2470 	drm_dbg_kms(display->drm,
2471 		    "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2472 		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2473 	drm_dbg_kms(display->drm,
2474 		    "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2475 		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2476 
2477 	if (intel_c20phy_use_mpllb(hw_state)) {
2478 		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2479 			drm_dbg_kms(display->drm, "mpllb[%d] = 0x%.4x\n", i,
2480 				    hw_state->mpllb[i]);
2481 	} else {
2482 		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2483 			drm_dbg_kms(display->drm, "mplla[%d] = 0x%.4x\n", i,
2484 				    hw_state->mplla[i]);
2485 	}
2486 }
2487 
2488 void intel_cx0pll_dump_hw_state(struct intel_display *display,
2489 				const struct intel_cx0pll_state *hw_state)
2490 {
2491 	if (hw_state->use_c10)
2492 		intel_c10pll_dump_hw_state(display, &hw_state->c10);
2493 	else
2494 		intel_c20pll_dump_hw_state(display, &hw_state->c20);
2495 }
2496 
2497 static u8 intel_c20_get_dp_rate(u32 clock)
2498 {
2499 	switch (clock) {
2500 	case 162000: /* 1.62 Gbps DP1.4 */
2501 		return 0;
2502 	case 270000: /* 2.7 Gbps DP1.4 */
2503 		return 1;
2504 	case 540000: /* 5.4 Gbps DP 1.4 */
2505 		return 2;
2506 	case 810000: /* 8.1 Gbps DP1.4 */
2507 		return 3;
2508 	case 216000: /* 2.16 Gbps eDP */
2509 		return 4;
2510 	case 243000: /* 2.43 Gbps eDP */
2511 		return 5;
2512 	case 324000: /* 3.24 Gbps eDP */
2513 		return 6;
2514 	case 432000: /* 4.32 Gbps eDP */
2515 		return 7;
2516 	case 1000000: /* 10 Gbps DP2.0 */
2517 		return 8;
2518 	case 1350000: /* 13.5 Gbps DP2.0 */
2519 		return 9;
2520 	case 2000000: /* 20 Gbps DP2.0 */
2521 		return 10;
2522 	case 648000: /* 6.48 Gbps eDP*/
2523 		return 11;
2524 	case 675000: /* 6.75 Gbps eDP*/
2525 		return 12;
2526 	default:
2527 		MISSING_CASE(clock);
2528 		return 0;
2529 	}
2530 }
2531 
2532 static u8 intel_c20_get_hdmi_rate(u32 clock)
2533 {
2534 	if (clock >= 25175 && clock <= 600000)
2535 		return 0;
2536 
2537 	switch (clock) {
2538 	case 300000: /* 3 Gbps */
2539 	case 600000: /* 6 Gbps */
2540 	case 1200000: /* 12 Gbps */
2541 		return 1;
2542 	case 800000: /* 8 Gbps */
2543 		return 2;
2544 	case 1000000: /* 10 Gbps */
2545 		return 3;
2546 	default:
2547 		MISSING_CASE(clock);
2548 		return 0;
2549 	}
2550 }
2551 
2552 static bool is_dp2(u32 clock)
2553 {
2554 	/* DP2.0 clock rates */
2555 	if (clock == 1000000 || clock == 1350000 || clock  == 2000000)
2556 		return true;
2557 
2558 	return false;
2559 }
2560 
2561 static bool is_hdmi_frl(u32 clock)
2562 {
2563 	switch (clock) {
2564 	case 300000: /* 3 Gbps */
2565 	case 600000: /* 6 Gbps */
2566 	case 800000: /* 8 Gbps */
2567 	case 1000000: /* 10 Gbps */
2568 	case 1200000: /* 12 Gbps */
2569 		return true;
2570 	default:
2571 		return false;
2572 	}
2573 }
2574 
2575 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2576 {
2577 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2578 
2579 	/* banks should not be cleared for DPALT/USB4/TBT modes */
2580 	/* TODO: optimize re-calibration in legacy mode */
2581 	return intel_tc_port_in_legacy_mode(intel_dig_port);
2582 }
2583 
2584 static int intel_get_c20_custom_width(u32 clock, bool dp)
2585 {
2586 	if (dp && is_dp2(clock))
2587 		return 2;
2588 	else if (is_hdmi_frl(clock))
2589 		return 1;
2590 	else
2591 		return 0;
2592 }
2593 
2594 static void intel_c20_pll_program(struct intel_display *display,
2595 				  const struct intel_crtc_state *crtc_state,
2596 				  struct intel_encoder *encoder)
2597 {
2598 	const struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2599 	bool dp = false;
2600 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2601 	u32 clock = crtc_state->port_clock;
2602 	bool cntx;
2603 	int i;
2604 
2605 	if (intel_crtc_has_dp_encoder(crtc_state))
2606 		dp = true;
2607 
2608 	/* 1. Read current context selection */
2609 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2610 
2611 	/*
2612 	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2613 	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2614 	 * Protocol switch is only applicable for MPLLA
2615 	 */
2616 	if (intel_c20_protocol_switch_valid(encoder)) {
2617 		for (i = 0; i < 4; i++)
2618 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2619 		usleep_range(4000, 4100);
2620 	}
2621 
2622 	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2623 	/* 3.1 Tx configuration */
2624 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2625 		if (cntx)
2626 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2627 					     PHY_C20_A_TX_CNTX_CFG(display, i),
2628 					     pll_state->tx[i]);
2629 		else
2630 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2631 					     PHY_C20_B_TX_CNTX_CFG(display, i),
2632 					     pll_state->tx[i]);
2633 	}
2634 
2635 	/* 3.2 common configuration */
2636 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2637 		if (cntx)
2638 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2639 					     PHY_C20_A_CMN_CNTX_CFG(display, i),
2640 					     pll_state->cmn[i]);
2641 		else
2642 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2643 					     PHY_C20_B_CMN_CNTX_CFG(display, i),
2644 					     pll_state->cmn[i]);
2645 	}
2646 
2647 	/* 3.3 mpllb or mplla configuration */
2648 	if (intel_c20phy_use_mpllb(pll_state)) {
2649 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2650 			if (cntx)
2651 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2652 						     PHY_C20_A_MPLLB_CNTX_CFG(display, i),
2653 						     pll_state->mpllb[i]);
2654 			else
2655 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2656 						     PHY_C20_B_MPLLB_CNTX_CFG(display, i),
2657 						     pll_state->mpllb[i]);
2658 		}
2659 	} else {
2660 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2661 			if (cntx)
2662 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2663 						     PHY_C20_A_MPLLA_CNTX_CFG(display, i),
2664 						     pll_state->mplla[i]);
2665 			else
2666 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2667 						     PHY_C20_B_MPLLA_CNTX_CFG(display, i),
2668 						     pll_state->mplla[i]);
2669 		}
2670 	}
2671 
2672 	/* 4. Program custom width to match the link protocol */
2673 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
2674 		      PHY_C20_CUSTOM_WIDTH_MASK,
2675 		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(clock, dp)),
2676 		      MB_WRITE_COMMITTED);
2677 
2678 	/* 5. For DP or 6. For HDMI */
2679 	if (dp) {
2680 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2681 			      BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2682 			      BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(clock)),
2683 			      MB_WRITE_COMMITTED);
2684 	} else {
2685 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2686 			      BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2687 			      is_hdmi_frl(clock) ? BIT(7) : 0,
2688 			      MB_WRITE_COMMITTED);
2689 
2690 		intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2691 				intel_c20_get_hdmi_rate(clock),
2692 				MB_WRITE_COMMITTED);
2693 	}
2694 
2695 	/*
2696 	 * 7. Write Vendor specific registers to toggle context setting to load
2697 	 * the updated programming toggle context bit
2698 	 */
2699 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2700 		      BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2701 }
2702 
2703 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2704 					const struct intel_c10pll_state *pll_state)
2705 {
2706 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2707 	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2708 	int tmpclk = 0;
2709 
2710 	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2711 		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2712 		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2713 		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2714 	}
2715 
2716 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2717 		      pll_state->pll[2]) / 2 + 16;
2718 
2719 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2720 	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2721 
2722 	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2723 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2724 				     10 << (tx_clk_div + 16));
2725 	tmpclk *= (hdmi_div ? 2 : 1);
2726 
2727 	return tmpclk;
2728 }
2729 
2730 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2731 					 const struct intel_crtc_state *crtc_state,
2732 					 bool lane_reversal)
2733 {
2734 	struct intel_display *display = to_intel_display(encoder);
2735 	u32 val = 0;
2736 
2737 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, encoder->port),
2738 		     XELPDP_PORT_REVERSAL,
2739 		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2740 
2741 	if (lane_reversal)
2742 		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2743 
2744 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2745 
2746 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
2747 	    is_hdmi_frl(crtc_state->port_clock))
2748 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2749 	else
2750 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2751 
2752 	/* TODO: HDMI FRL */
2753 	/* DP2.0 10G and 20G rates enable MPLLA*/
2754 	if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
2755 		val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2756 	else
2757 		val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2758 
2759 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
2760 		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2761 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
2762 		     XELPDP_SSC_ENABLE_PLLB, val);
2763 }
2764 
2765 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2766 {
2767 	u32 val = 0;
2768 	int lane = 0;
2769 
2770 	for_each_cx0_lane_in_mask(lane_mask, lane)
2771 		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2772 
2773 	return val;
2774 }
2775 
2776 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2777 {
2778 	u32 val = 0;
2779 	int lane = 0;
2780 
2781 	for_each_cx0_lane_in_mask(lane_mask, lane)
2782 		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2783 
2784 	return val;
2785 }
2786 
2787 static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2788 						u8 lane_mask, u8 state)
2789 {
2790 	struct intel_display *display = to_intel_display(encoder);
2791 	enum port port = encoder->port;
2792 	enum phy phy = intel_encoder_to_phy(encoder);
2793 	i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(display, port);
2794 	int lane;
2795 
2796 	intel_de_rmw(display, buf_ctl2_reg,
2797 		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2798 		     intel_cx0_get_powerdown_state(lane_mask, state));
2799 
2800 	/* Wait for pending transactions.*/
2801 	for_each_cx0_lane_in_mask(lane_mask, lane)
2802 		if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
2803 					    XELPDP_PORT_M2P_TRANSACTION_PENDING,
2804 					    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2805 			drm_dbg_kms(display->drm,
2806 				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2807 				    phy_name(phy));
2808 			intel_cx0_bus_reset(encoder, lane);
2809 		}
2810 
2811 	intel_de_rmw(display, buf_ctl2_reg,
2812 		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2813 		     intel_cx0_get_powerdown_update(lane_mask));
2814 
2815 	/* Update Timeout Value */
2816 	if (intel_de_wait_custom(display, buf_ctl2_reg,
2817 				 intel_cx0_get_powerdown_update(lane_mask), 0,
2818 				 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2819 		drm_warn(display->drm,
2820 			 "PHY %c failed to bring out of Lane reset after %dus.\n",
2821 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2822 }
2823 
2824 static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2825 {
2826 	struct intel_display *display = to_intel_display(encoder);
2827 	enum port port = encoder->port;
2828 
2829 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
2830 		     XELPDP_POWER_STATE_READY_MASK,
2831 		     XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2832 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL3(display, port),
2833 		     XELPDP_POWER_STATE_ACTIVE_MASK |
2834 		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2835 		     XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2836 		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2837 }
2838 
2839 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2840 {
2841 	u32 val = 0;
2842 	int lane = 0;
2843 
2844 	for_each_cx0_lane_in_mask(lane_mask, lane)
2845 		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2846 
2847 	return val;
2848 }
2849 
2850 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2851 {
2852 	u32 val = 0;
2853 	int lane = 0;
2854 
2855 	for_each_cx0_lane_in_mask(lane_mask, lane)
2856 		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2857 
2858 	return val;
2859 }
2860 
2861 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2862 				     bool lane_reversal)
2863 {
2864 	struct intel_display *display = to_intel_display(encoder);
2865 	enum port port = encoder->port;
2866 	enum phy phy = intel_encoder_to_phy(encoder);
2867 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2868 	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2869 	u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2870 				? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2871 				: XELPDP_LANE_PIPE_RESET(0);
2872 	u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2873 					? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2874 					   XELPDP_LANE_PHY_CURRENT_STATUS(1))
2875 					: XELPDP_LANE_PHY_CURRENT_STATUS(0);
2876 
2877 	if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL1(display, port),
2878 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2879 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2880 				 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2881 		drm_warn(display->drm,
2882 			 "PHY %c failed to bring out of SOC reset after %dus.\n",
2883 			 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2884 
2885 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset,
2886 		     lane_pipe_reset);
2887 
2888 	if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL2(display, port),
2889 				 lane_phy_current_status, lane_phy_current_status,
2890 				 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2891 		drm_warn(display->drm,
2892 			 "PHY %c failed to bring out of Lane reset after %dus.\n",
2893 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2894 
2895 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
2896 		     intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2897 		     intel_cx0_get_pclk_refclk_request(lane_mask));
2898 
2899 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, port),
2900 				 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2901 				 intel_cx0_get_pclk_refclk_ack(lane_mask),
2902 				 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2903 		drm_warn(display->drm,
2904 			 "PHY %c failed to request refclk after %dus.\n",
2905 			 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2906 
2907 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2908 					    CX0_P2_STATE_RESET);
2909 	intel_cx0_setup_powerdown(encoder);
2910 
2911 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset, 0);
2912 
2913 	if (intel_de_wait_for_clear(display, XELPDP_PORT_BUF_CTL2(display, port),
2914 				    lane_phy_current_status,
2915 				    XELPDP_PORT_RESET_END_TIMEOUT))
2916 		drm_warn(display->drm,
2917 			 "PHY %c failed to bring out of Lane reset after %dms.\n",
2918 			 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2919 }
2920 
2921 static void intel_cx0_program_phy_lane(struct intel_encoder *encoder, int lane_count,
2922 				       bool lane_reversal)
2923 {
2924 	int i;
2925 	u8 disables;
2926 	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2927 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2928 
2929 	if (intel_encoder_is_c10phy(encoder))
2930 		intel_cx0_rmw(encoder, owned_lane_mask,
2931 			      PHY_C10_VDR_CONTROL(1), 0,
2932 			      C10_VDR_CTRL_MSGBUS_ACCESS,
2933 			      MB_WRITE_COMMITTED);
2934 
2935 	if (lane_reversal)
2936 		disables = REG_GENMASK8(3, 0) >> lane_count;
2937 	else
2938 		disables = REG_GENMASK8(3, 0) << lane_count;
2939 
2940 	if (dp_alt_mode && lane_count == 1) {
2941 		disables &= ~REG_GENMASK8(1, 0);
2942 		disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2943 	}
2944 
2945 	for (i = 0; i < 4; i++) {
2946 		int tx = i % 2 + 1;
2947 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2948 
2949 		if (!(owned_lane_mask & lane_mask))
2950 			continue;
2951 
2952 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2953 			      CONTROL2_DISABLE_SINGLE_TX,
2954 			      disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2955 			      MB_WRITE_COMMITTED);
2956 	}
2957 
2958 	if (intel_encoder_is_c10phy(encoder))
2959 		intel_cx0_rmw(encoder, owned_lane_mask,
2960 			      PHY_C10_VDR_CONTROL(1), 0,
2961 			      C10_VDR_CTRL_UPDATE_CFG,
2962 			      MB_WRITE_COMMITTED);
2963 }
2964 
2965 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2966 {
2967 	u32 val = 0;
2968 	int lane = 0;
2969 
2970 	for_each_cx0_lane_in_mask(lane_mask, lane)
2971 		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2972 
2973 	return val;
2974 }
2975 
2976 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2977 {
2978 	u32 val = 0;
2979 	int lane = 0;
2980 
2981 	for_each_cx0_lane_in_mask(lane_mask, lane)
2982 		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2983 
2984 	return val;
2985 }
2986 
2987 static void intel_cx0pll_enable(struct intel_encoder *encoder,
2988 				const struct intel_crtc_state *crtc_state)
2989 {
2990 	struct intel_display *display = to_intel_display(encoder);
2991 	enum phy phy = intel_encoder_to_phy(encoder);
2992 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2993 	bool lane_reversal = dig_port->lane_reversal;
2994 	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
2995 					  INTEL_CX0_LANE0;
2996 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2997 
2998 	/*
2999 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3000 	 * clock muxes, gating and SSC
3001 	 */
3002 	intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
3003 
3004 	/* 2. Bring PHY out of reset. */
3005 	intel_cx0_phy_lane_reset(encoder, lane_reversal);
3006 
3007 	/*
3008 	 * 3. Change Phy power state to Ready.
3009 	 * TODO: For DP alt mode use only one lane.
3010 	 */
3011 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3012 					    CX0_P2_STATE_READY);
3013 
3014 	/*
3015 	 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
3016 	 *    (This is done inside intel_cx0_phy_transaction_begin(), since we would need
3017 	 *    the right timer thresholds for readouts too.)
3018 	 */
3019 
3020 	/* 5. Program PHY internal PLL internal registers. */
3021 	if (intel_encoder_is_c10phy(encoder))
3022 		intel_c10_pll_program(display, crtc_state, encoder);
3023 	else
3024 		intel_c20_pll_program(display, crtc_state, encoder);
3025 
3026 	/*
3027 	 * 6. Program the enabled and disabled owned PHY lane
3028 	 * transmitters over message bus
3029 	 */
3030 	intel_cx0_program_phy_lane(encoder, crtc_state->lane_count, lane_reversal);
3031 
3032 	/*
3033 	 * 7. Follow the Display Voltage Frequency Switching - Sequence
3034 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3035 	 */
3036 
3037 	/*
3038 	 * 8. Program DDI_CLK_VALFREQ to match intended DDI
3039 	 * clock frequency.
3040 	 */
3041 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3042 		       crtc_state->port_clock);
3043 
3044 	/*
3045 	 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
3046 	 * LN<Lane for maxPCLK> to "1" to enable PLL.
3047 	 */
3048 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3049 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
3050 		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
3051 
3052 	/* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
3053 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3054 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
3055 				 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
3056 				 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
3057 		drm_warn(display->drm, "Port %c PLL not locked after %dus.\n",
3058 			 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
3059 
3060 	/*
3061 	 * 11. Follow the Display Voltage Frequency Switching Sequence After
3062 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3063 	 */
3064 
3065 	/* TODO: enable TBT-ALT mode */
3066 	intel_cx0_phy_transaction_end(encoder, wakeref);
3067 }
3068 
3069 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
3070 {
3071 	struct intel_display *display = to_intel_display(encoder);
3072 	u32 clock, val;
3073 
3074 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3075 
3076 	clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3077 
3078 	drm_WARN_ON(display->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
3079 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
3080 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_ACK));
3081 
3082 	switch (clock) {
3083 	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
3084 		return 162000;
3085 	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
3086 		return 270000;
3087 	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
3088 		return 540000;
3089 	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
3090 		return 810000;
3091 	default:
3092 		MISSING_CASE(clock);
3093 		return 162000;
3094 	}
3095 }
3096 
3097 static int intel_mtl_tbt_clock_select(int clock)
3098 {
3099 	switch (clock) {
3100 	case 162000:
3101 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3102 	case 270000:
3103 		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
3104 	case 540000:
3105 		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
3106 	case 810000:
3107 		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
3108 	default:
3109 		MISSING_CASE(clock);
3110 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3111 	}
3112 }
3113 
3114 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
3115 				     const struct intel_crtc_state *crtc_state)
3116 {
3117 	struct intel_display *display = to_intel_display(encoder);
3118 	enum phy phy = intel_encoder_to_phy(encoder);
3119 	u32 val = 0;
3120 
3121 	/*
3122 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3123 	 * clock muxes, gating and SSC
3124 	 */
3125 	val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(crtc_state->port_clock));
3126 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
3127 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3128 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
3129 
3130 	/* 2. Read back PORT_CLOCK_CTL REGISTER */
3131 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3132 
3133 	/*
3134 	 * 3. Follow the Display Voltage Frequency Switching - Sequence
3135 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3136 	 */
3137 
3138 	/*
3139 	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
3140 	 */
3141 	val |= XELPDP_TBT_CLOCK_REQUEST;
3142 	intel_de_write(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port), val);
3143 
3144 	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
3145 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3146 				 XELPDP_TBT_CLOCK_ACK,
3147 				 XELPDP_TBT_CLOCK_ACK,
3148 				 100, 0, NULL))
3149 		drm_warn(display->drm,
3150 			 "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
3151 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3152 
3153 	/*
3154 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3155 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3156 	 */
3157 
3158 	/*
3159 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
3160 	 * clock frequency.
3161 	 */
3162 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3163 		       crtc_state->port_clock);
3164 }
3165 
3166 void intel_mtl_pll_enable(struct intel_encoder *encoder,
3167 			  const struct intel_crtc_state *crtc_state)
3168 {
3169 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3170 
3171 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3172 		intel_mtl_tbt_pll_enable(encoder, crtc_state);
3173 	else
3174 		intel_cx0pll_enable(encoder, crtc_state);
3175 }
3176 
3177 static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
3178 {
3179 	struct intel_display *display = to_intel_display(encoder);
3180 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3181 
3182 	if (intel_encoder_is_c10phy(encoder))
3183 		return CX0_P2PG_STATE_DISABLE;
3184 
3185 	if ((IS_BATTLEMAGE(i915) && encoder->port == PORT_A) ||
3186 	    (DISPLAY_VER(display) >= 30 && encoder->type == INTEL_OUTPUT_EDP))
3187 		return CX0_P2PG_STATE_DISABLE;
3188 
3189 	return CX0_P4PG_STATE_DISABLE;
3190 }
3191 
3192 static void intel_cx0pll_disable(struct intel_encoder *encoder)
3193 {
3194 	struct intel_display *display = to_intel_display(encoder);
3195 	enum phy phy = intel_encoder_to_phy(encoder);
3196 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3197 
3198 	/* 1. Change owned PHY lane power to Disable state. */
3199 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3200 					    cx0_power_control_disable_val(encoder));
3201 
3202 	/*
3203 	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
3204 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3205 	 */
3206 
3207 	/*
3208 	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
3209 	 * to "0" to disable PLL.
3210 	 */
3211 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3212 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
3213 		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
3214 
3215 	/* 4. Program DDI_CLK_VALFREQ to 0. */
3216 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3217 
3218 	/*
3219 	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
3220 	 */
3221 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3222 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
3223 				 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
3224 				 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
3225 		drm_warn(display->drm,
3226 			 "Port %c PLL not unlocked after %dus.\n",
3227 			 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
3228 
3229 	/*
3230 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3231 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3232 	 */
3233 
3234 	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
3235 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3236 		     XELPDP_DDI_CLOCK_SELECT_MASK, 0);
3237 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3238 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3239 
3240 	intel_cx0_phy_transaction_end(encoder, wakeref);
3241 }
3242 
3243 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
3244 {
3245 	struct intel_display *display = to_intel_display(encoder);
3246 	enum phy phy = intel_encoder_to_phy(encoder);
3247 
3248 	/*
3249 	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
3250 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3251 	 */
3252 
3253 	/*
3254 	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
3255 	 */
3256 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3257 		     XELPDP_TBT_CLOCK_REQUEST, 0);
3258 
3259 	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
3260 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3261 				 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
3262 		drm_warn(display->drm,
3263 			 "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
3264 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3265 
3266 	/*
3267 	 * 4. Follow the Display Voltage Frequency Switching Sequence After
3268 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3269 	 */
3270 
3271 	/*
3272 	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
3273 	 */
3274 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3275 		     XELPDP_DDI_CLOCK_SELECT_MASK |
3276 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3277 
3278 	/* 6. Program DDI_CLK_VALFREQ to 0. */
3279 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3280 }
3281 
3282 void intel_mtl_pll_disable(struct intel_encoder *encoder)
3283 {
3284 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3285 
3286 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3287 		intel_mtl_tbt_pll_disable(encoder);
3288 	else
3289 		intel_cx0pll_disable(encoder);
3290 }
3291 
3292 enum icl_port_dpll_id
3293 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3294 			const struct intel_crtc_state *crtc_state)
3295 {
3296 	struct intel_display *display = to_intel_display(encoder);
3297 	u32 val, clock;
3298 
3299 	/*
3300 	 * TODO: Determine the PLL type from the SW state, once MTL PLL
3301 	 * handling is done via the standard shared DPLL framework.
3302 	 */
3303 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3304 	clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3305 
3306 	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3307 	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3308 		return ICL_PORT_DPLL_MG_PHY;
3309 	else
3310 		return ICL_PORT_DPLL_DEFAULT;
3311 }
3312 
3313 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3314 				      struct intel_crtc *crtc,
3315 				      struct intel_encoder *encoder,
3316 				      struct intel_c10pll_state *mpllb_hw_state)
3317 {
3318 	struct intel_display *display = to_intel_display(state);
3319 	const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3320 	int i;
3321 
3322 	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3323 		u8 expected = mpllb_sw_state->pll[i];
3324 
3325 		INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->pll[i] != expected,
3326 					 "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3327 					 crtc->base.base.id, crtc->base.name, i,
3328 					 expected, mpllb_hw_state->pll[i]);
3329 	}
3330 
3331 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->tx != mpllb_sw_state->tx,
3332 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3333 				 crtc->base.base.id, crtc->base.name,
3334 				 mpllb_sw_state->tx, mpllb_hw_state->tx);
3335 
3336 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3337 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3338 				 crtc->base.base.id, crtc->base.name,
3339 				 mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3340 }
3341 
3342 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3343 				   struct intel_cx0pll_state *pll_state)
3344 {
3345 	pll_state->use_c10 = false;
3346 
3347 	pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
3348 	if (pll_state->tbt_mode)
3349 		return;
3350 
3351 	if (intel_encoder_is_c10phy(encoder)) {
3352 		intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3353 		pll_state->use_c10 = true;
3354 	} else {
3355 		intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3356 	}
3357 }
3358 
3359 static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
3360 				     const struct intel_c10pll_state *b)
3361 {
3362 	if (a->tx != b->tx)
3363 		return false;
3364 
3365 	if (a->cmn != b->cmn)
3366 		return false;
3367 
3368 	if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
3369 		return false;
3370 
3371 	return true;
3372 }
3373 
3374 static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
3375 				     const struct intel_c20pll_state *b)
3376 {
3377 	if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
3378 		return false;
3379 
3380 	if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
3381 		return false;
3382 
3383 	if (a->tx[0] & C20_PHY_USE_MPLLB) {
3384 		if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
3385 			return false;
3386 	} else {
3387 		if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
3388 			return false;
3389 	}
3390 
3391 	return true;
3392 }
3393 
3394 bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
3395 				   const struct intel_cx0pll_state *b)
3396 {
3397 	if (a->tbt_mode || b->tbt_mode)
3398 		return true;
3399 
3400 	if (a->use_c10 != b->use_c10)
3401 		return false;
3402 
3403 	if (a->use_c10)
3404 		return mtl_compare_hw_state_c10(&a->c10,
3405 						&b->c10);
3406 	else
3407 		return mtl_compare_hw_state_c20(&a->c20,
3408 						&b->c20);
3409 }
3410 
3411 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3412 				 const struct intel_cx0pll_state *pll_state)
3413 {
3414 	if (intel_encoder_is_c10phy(encoder))
3415 		return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3416 
3417 	return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3418 }
3419 
3420 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3421 				      struct intel_crtc *crtc,
3422 				      struct intel_encoder *encoder,
3423 				      struct intel_c20pll_state *mpll_hw_state)
3424 {
3425 	struct intel_display *display = to_intel_display(state);
3426 	const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3427 	bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3428 	bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3429 	int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
3430 	int i;
3431 
3432 	INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->clock != clock,
3433 				 "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3434 				 crtc->base.base.id, crtc->base.name,
3435 				 mpll_sw_state->clock, mpll_hw_state->clock);
3436 
3437 	INTEL_DISPLAY_STATE_WARN(display, sw_use_mpllb != hw_use_mpllb,
3438 				 "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3439 				 crtc->base.base.id, crtc->base.name,
3440 				 sw_use_mpllb, hw_use_mpllb);
3441 
3442 	if (hw_use_mpllb) {
3443 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3444 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3445 						 "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3446 						 crtc->base.base.id, crtc->base.name, i,
3447 						 mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3448 		}
3449 	} else {
3450 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3451 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3452 						 "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3453 						 crtc->base.base.id, crtc->base.name, i,
3454 						 mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3455 		}
3456 	}
3457 
3458 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3459 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3460 					 "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3461 					 crtc->base.base.id, crtc->base.name, i,
3462 					 mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3463 	}
3464 
3465 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3466 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3467 					 "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3468 					 crtc->base.base.id, crtc->base.name, i,
3469 					 mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3470 	}
3471 }
3472 
3473 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3474 			       struct intel_crtc *crtc)
3475 {
3476 	struct intel_display *display = to_intel_display(state);
3477 	const struct intel_crtc_state *new_crtc_state =
3478 		intel_atomic_get_new_crtc_state(state, crtc);
3479 	struct intel_encoder *encoder;
3480 	struct intel_cx0pll_state mpll_hw_state = {};
3481 
3482 	if (DISPLAY_VER(display) < 14)
3483 		return;
3484 
3485 	if (!new_crtc_state->hw.active)
3486 		return;
3487 
3488 	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3489 	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3490 	    !intel_crtc_needs_fastset(new_crtc_state))
3491 		return;
3492 
3493 	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3494 	intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3495 
3496 	if (mpll_hw_state.tbt_mode)
3497 		return;
3498 
3499 	if (intel_encoder_is_c10phy(encoder))
3500 		intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3501 	else
3502 		intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3503 }
3504