1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2023 Intel Corporation
4 */
5
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 #include "i915_reg.h"
9 #include "intel_cx0_phy.h"
10 #include "intel_cx0_phy_regs.h"
11 #include "intel_ddi.h"
12 #include "intel_ddi_buf_trans.h"
13 #include "intel_de.h"
14 #include "intel_display_types.h"
15 #include "intel_dp.h"
16 #include "intel_hdmi.h"
17 #include "intel_panel.h"
18 #include "intel_psr.h"
19 #include "intel_tc.h"
20
21 #define MB_WRITE_COMMITTED true
22 #define MB_WRITE_UNCOMMITTED false
23
24 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
25 for ((__lane) = 0; (__lane) < 2; (__lane)++) \
26 for_each_if((__lane_mask) & BIT(__lane))
27
28 #define INTEL_CX0_LANE0 BIT(0)
29 #define INTEL_CX0_LANE1 BIT(1)
30 #define INTEL_CX0_BOTH_LANES (INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
31
intel_encoder_is_c10phy(struct intel_encoder * encoder)32 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
33 {
34 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
35 enum phy phy = intel_encoder_to_phy(encoder);
36
37 if ((IS_LUNARLAKE(i915) || IS_METEORLAKE(i915)) && phy < PHY_C)
38 return true;
39
40 return false;
41 }
42
lane_mask_to_lane(u8 lane_mask)43 static int lane_mask_to_lane(u8 lane_mask)
44 {
45 if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
46 hweight8(lane_mask) != 1))
47 return 0;
48
49 return ilog2(lane_mask);
50 }
51
intel_cx0_get_owned_lane_mask(struct intel_encoder * encoder)52 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
53 {
54 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
55
56 if (!intel_tc_port_in_dp_alt_mode(dig_port))
57 return INTEL_CX0_BOTH_LANES;
58
59 /*
60 * In DP-alt with pin assignment D, only PHY lane 0 is owned
61 * by display and lane 1 is owned by USB.
62 */
63 return intel_tc_port_max_lane_count(dig_port) > 2
64 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
65 }
66
67 static void
assert_dc_off(struct drm_i915_private * i915)68 assert_dc_off(struct drm_i915_private *i915)
69 {
70 bool enabled;
71
72 enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
73 drm_WARN_ON(&i915->drm, !enabled);
74 }
75
intel_cx0_program_msgbus_timer(struct intel_encoder * encoder)76 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
77 {
78 int lane;
79 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
80
81 for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
82 intel_de_rmw(i915,
83 XELPDP_PORT_MSGBUS_TIMER(i915, encoder->port, lane),
84 XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
85 XELPDP_PORT_MSGBUS_TIMER_VAL);
86 }
87
88 /*
89 * Prepare HW for CX0 phy transactions.
90 *
91 * It is required that PSR and DC5/6 are disabled before any CX0 message
92 * bus transaction is executed.
93 *
94 * We also do the msgbus timer programming here to ensure that the timer
95 * is already programmed before any access to the msgbus.
96 */
intel_cx0_phy_transaction_begin(struct intel_encoder * encoder)97 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
98 {
99 intel_wakeref_t wakeref;
100 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
101 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
102
103 intel_psr_pause(intel_dp);
104 wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
105 intel_cx0_program_msgbus_timer(encoder);
106
107 return wakeref;
108 }
109
intel_cx0_phy_transaction_end(struct intel_encoder * encoder,intel_wakeref_t wakeref)110 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
111 {
112 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
113 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
114
115 intel_psr_resume(intel_dp);
116 intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
117 }
118
intel_clear_response_ready_flag(struct intel_encoder * encoder,int lane)119 static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
120 int lane)
121 {
122 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
123
124 intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, encoder->port, lane),
125 0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
126 }
127
intel_cx0_bus_reset(struct intel_encoder * encoder,int lane)128 static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
129 {
130 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
131 enum port port = encoder->port;
132 enum phy phy = intel_encoder_to_phy(encoder);
133
134 intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
135 XELPDP_PORT_M2P_TRANSACTION_RESET);
136
137 if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
138 XELPDP_PORT_M2P_TRANSACTION_RESET,
139 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
140 drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy));
141 return;
142 }
143
144 intel_clear_response_ready_flag(encoder, lane);
145 }
146
intel_cx0_wait_for_ack(struct intel_encoder * encoder,int command,int lane,u32 * val)147 static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
148 int command, int lane, u32 *val)
149 {
150 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
151 enum port port = encoder->port;
152 enum phy phy = intel_encoder_to_phy(encoder);
153
154 if (intel_de_wait_custom(i915,
155 XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane),
156 XELPDP_PORT_P2M_RESPONSE_READY,
157 XELPDP_PORT_P2M_RESPONSE_READY,
158 XELPDP_MSGBUS_TIMEOUT_FAST_US,
159 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
160 drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
161 phy_name(phy), *val);
162
163 if (!(intel_de_read(i915, XELPDP_PORT_MSGBUS_TIMER(i915, port, lane)) &
164 XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
165 drm_dbg_kms(&i915->drm,
166 "PHY %c Hardware did not detect a timeout\n",
167 phy_name(phy));
168
169 intel_cx0_bus_reset(encoder, lane);
170 return -ETIMEDOUT;
171 }
172
173 if (*val & XELPDP_PORT_P2M_ERROR_SET) {
174 drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy),
175 command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
176 intel_cx0_bus_reset(encoder, lane);
177 return -EINVAL;
178 }
179
180 if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
181 drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy),
182 command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
183 intel_cx0_bus_reset(encoder, lane);
184 return -EINVAL;
185 }
186
187 return 0;
188 }
189
__intel_cx0_read_once(struct intel_encoder * encoder,int lane,u16 addr)190 static int __intel_cx0_read_once(struct intel_encoder *encoder,
191 int lane, u16 addr)
192 {
193 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
194 enum port port = encoder->port;
195 enum phy phy = intel_encoder_to_phy(encoder);
196 int ack;
197 u32 val;
198
199 if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
200 XELPDP_PORT_M2P_TRANSACTION_PENDING,
201 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
202 drm_dbg_kms(&i915->drm,
203 "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
204 intel_cx0_bus_reset(encoder, lane);
205 return -ETIMEDOUT;
206 }
207
208 intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
209 XELPDP_PORT_M2P_TRANSACTION_PENDING |
210 XELPDP_PORT_M2P_COMMAND_READ |
211 XELPDP_PORT_M2P_ADDRESS(addr));
212
213 ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
214 if (ack < 0)
215 return ack;
216
217 intel_clear_response_ready_flag(encoder, lane);
218
219 /*
220 * FIXME: Workaround to let HW to settle
221 * down and let the message bus to end up
222 * in a known state
223 */
224 intel_cx0_bus_reset(encoder, lane);
225
226 return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
227 }
228
__intel_cx0_read(struct intel_encoder * encoder,int lane,u16 addr)229 static u8 __intel_cx0_read(struct intel_encoder *encoder,
230 int lane, u16 addr)
231 {
232 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
233 enum phy phy = intel_encoder_to_phy(encoder);
234 int i, status;
235
236 assert_dc_off(i915);
237
238 /* 3 tries is assumed to be enough to read successfully */
239 for (i = 0; i < 3; i++) {
240 status = __intel_cx0_read_once(encoder, lane, addr);
241
242 if (status >= 0)
243 return status;
244 }
245
246 drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n",
247 phy_name(phy), addr, i);
248
249 return 0;
250 }
251
intel_cx0_read(struct intel_encoder * encoder,u8 lane_mask,u16 addr)252 static u8 intel_cx0_read(struct intel_encoder *encoder,
253 u8 lane_mask, u16 addr)
254 {
255 int lane = lane_mask_to_lane(lane_mask);
256
257 return __intel_cx0_read(encoder, lane, addr);
258 }
259
__intel_cx0_write_once(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)260 static int __intel_cx0_write_once(struct intel_encoder *encoder,
261 int lane, u16 addr, u8 data, bool committed)
262 {
263 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
264 enum port port = encoder->port;
265 enum phy phy = intel_encoder_to_phy(encoder);
266 int ack;
267 u32 val;
268
269 if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
270 XELPDP_PORT_M2P_TRANSACTION_PENDING,
271 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
272 drm_dbg_kms(&i915->drm,
273 "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
274 intel_cx0_bus_reset(encoder, lane);
275 return -ETIMEDOUT;
276 }
277
278 intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
279 XELPDP_PORT_M2P_TRANSACTION_PENDING |
280 (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
281 XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
282 XELPDP_PORT_M2P_DATA(data) |
283 XELPDP_PORT_M2P_ADDRESS(addr));
284
285 if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
286 XELPDP_PORT_M2P_TRANSACTION_PENDING,
287 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
288 drm_dbg_kms(&i915->drm,
289 "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
290 intel_cx0_bus_reset(encoder, lane);
291 return -ETIMEDOUT;
292 }
293
294 if (committed) {
295 ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
296 if (ack < 0)
297 return ack;
298 } else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane)) &
299 XELPDP_PORT_P2M_ERROR_SET)) {
300 drm_dbg_kms(&i915->drm,
301 "PHY %c Error occurred during write command.\n", phy_name(phy));
302 intel_cx0_bus_reset(encoder, lane);
303 return -EINVAL;
304 }
305
306 intel_clear_response_ready_flag(encoder, lane);
307
308 /*
309 * FIXME: Workaround to let HW to settle
310 * down and let the message bus to end up
311 * in a known state
312 */
313 intel_cx0_bus_reset(encoder, lane);
314
315 return 0;
316 }
317
__intel_cx0_write(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)318 static void __intel_cx0_write(struct intel_encoder *encoder,
319 int lane, u16 addr, u8 data, bool committed)
320 {
321 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
322 enum phy phy = intel_encoder_to_phy(encoder);
323 int i, status;
324
325 assert_dc_off(i915);
326
327 /* 3 tries is assumed to be enough to write successfully */
328 for (i = 0; i < 3; i++) {
329 status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
330
331 if (status == 0)
332 return;
333 }
334
335 drm_err_once(&i915->drm,
336 "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
337 }
338
intel_cx0_write(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 data,bool committed)339 static void intel_cx0_write(struct intel_encoder *encoder,
340 u8 lane_mask, u16 addr, u8 data, bool committed)
341 {
342 int lane;
343
344 for_each_cx0_lane_in_mask(lane_mask, lane)
345 __intel_cx0_write(encoder, lane, addr, data, committed);
346 }
347
intel_c20_sram_write(struct intel_encoder * encoder,int lane,u16 addr,u16 data)348 static void intel_c20_sram_write(struct intel_encoder *encoder,
349 int lane, u16 addr, u16 data)
350 {
351 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
352
353 assert_dc_off(i915);
354
355 intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
356 intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
357
358 intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
359 intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
360 }
361
intel_c20_sram_read(struct intel_encoder * encoder,int lane,u16 addr)362 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
363 int lane, u16 addr)
364 {
365 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
366 u16 val;
367
368 assert_dc_off(i915);
369
370 intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
371 intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
372
373 val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
374 val <<= 8;
375 val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
376
377 return val;
378 }
379
__intel_cx0_rmw(struct intel_encoder * encoder,int lane,u16 addr,u8 clear,u8 set,bool committed)380 static void __intel_cx0_rmw(struct intel_encoder *encoder,
381 int lane, u16 addr, u8 clear, u8 set, bool committed)
382 {
383 u8 old, val;
384
385 old = __intel_cx0_read(encoder, lane, addr);
386 val = (old & ~clear) | set;
387
388 if (val != old)
389 __intel_cx0_write(encoder, lane, addr, val, committed);
390 }
391
intel_cx0_rmw(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 clear,u8 set,bool committed)392 static void intel_cx0_rmw(struct intel_encoder *encoder,
393 u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
394 {
395 u8 lane;
396
397 for_each_cx0_lane_in_mask(lane_mask, lane)
398 __intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
399 }
400
intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state * crtc_state)401 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
402 {
403 if (intel_crtc_has_dp_encoder(crtc_state)) {
404 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
405 (crtc_state->port_clock == 540000 ||
406 crtc_state->port_clock == 810000))
407 return 5;
408 else
409 return 4;
410 } else {
411 return 5;
412 }
413 }
414
intel_c10_get_tx_term_ctl(const struct intel_crtc_state * crtc_state)415 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
416 {
417 if (intel_crtc_has_dp_encoder(crtc_state)) {
418 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
419 (crtc_state->port_clock == 540000 ||
420 crtc_state->port_clock == 810000))
421 return 5;
422 else
423 return 2;
424 } else {
425 return 6;
426 }
427 }
428
intel_cx0_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)429 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
430 const struct intel_crtc_state *crtc_state)
431 {
432 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
433 const struct intel_ddi_buf_trans *trans;
434 u8 owned_lane_mask;
435 intel_wakeref_t wakeref;
436 int n_entries, ln;
437 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
438
439 if (intel_tc_port_in_tbt_alt_mode(dig_port))
440 return;
441
442 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
443
444 wakeref = intel_cx0_phy_transaction_begin(encoder);
445
446 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
447 if (drm_WARN_ON_ONCE(&i915->drm, !trans)) {
448 intel_cx0_phy_transaction_end(encoder, wakeref);
449 return;
450 }
451
452 if (intel_encoder_is_c10phy(encoder)) {
453 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
454 0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
455 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
456 C10_CMN3_TXVBOOST_MASK,
457 C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
458 MB_WRITE_UNCOMMITTED);
459 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
460 C10_TX1_TERMCTL_MASK,
461 C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
462 MB_WRITE_COMMITTED);
463 }
464
465 for (ln = 0; ln < crtc_state->lane_count; ln++) {
466 int level = intel_ddi_level(encoder, crtc_state, ln);
467 int lane = ln / 2;
468 int tx = ln % 2;
469 u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
470
471 if (!(lane_mask & owned_lane_mask))
472 continue;
473
474 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
475 C10_PHY_OVRD_LEVEL_MASK,
476 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
477 MB_WRITE_COMMITTED);
478 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
479 C10_PHY_OVRD_LEVEL_MASK,
480 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
481 MB_WRITE_COMMITTED);
482 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
483 C10_PHY_OVRD_LEVEL_MASK,
484 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
485 MB_WRITE_COMMITTED);
486 }
487
488 /* Write Override enables in 0xD71 */
489 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
490 0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
491 MB_WRITE_COMMITTED);
492
493 if (intel_encoder_is_c10phy(encoder))
494 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
495 0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
496
497 intel_cx0_phy_transaction_end(encoder, wakeref);
498 }
499
500 /*
501 * Basic DP link rates with 38.4 MHz reference clock.
502 * Note: The tables below are with SSC. In non-ssc
503 * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
504 * programmed 0.
505 */
506
507 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
508 .clock = 162000,
509 .tx = 0x10,
510 .cmn = 0x21,
511 .pll[0] = 0xB4,
512 .pll[1] = 0,
513 .pll[2] = 0x30,
514 .pll[3] = 0x1,
515 .pll[4] = 0x26,
516 .pll[5] = 0x0C,
517 .pll[6] = 0x98,
518 .pll[7] = 0x46,
519 .pll[8] = 0x1,
520 .pll[9] = 0x1,
521 .pll[10] = 0,
522 .pll[11] = 0,
523 .pll[12] = 0xC0,
524 .pll[13] = 0,
525 .pll[14] = 0,
526 .pll[15] = 0x2,
527 .pll[16] = 0x84,
528 .pll[17] = 0x4F,
529 .pll[18] = 0xE5,
530 .pll[19] = 0x23,
531 };
532
533 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
534 .clock = 216000,
535 .tx = 0x10,
536 .cmn = 0x21,
537 .pll[0] = 0x4,
538 .pll[1] = 0,
539 .pll[2] = 0xA2,
540 .pll[3] = 0x1,
541 .pll[4] = 0x33,
542 .pll[5] = 0x10,
543 .pll[6] = 0x75,
544 .pll[7] = 0xB3,
545 .pll[8] = 0x1,
546 .pll[9] = 0x1,
547 .pll[10] = 0,
548 .pll[11] = 0,
549 .pll[12] = 0,
550 .pll[13] = 0,
551 .pll[14] = 0,
552 .pll[15] = 0x2,
553 .pll[16] = 0x85,
554 .pll[17] = 0x0F,
555 .pll[18] = 0xE6,
556 .pll[19] = 0x23,
557 };
558
559 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
560 .clock = 243000,
561 .tx = 0x10,
562 .cmn = 0x21,
563 .pll[0] = 0x34,
564 .pll[1] = 0,
565 .pll[2] = 0xDA,
566 .pll[3] = 0x1,
567 .pll[4] = 0x39,
568 .pll[5] = 0x12,
569 .pll[6] = 0xE3,
570 .pll[7] = 0xE9,
571 .pll[8] = 0x1,
572 .pll[9] = 0x1,
573 .pll[10] = 0,
574 .pll[11] = 0,
575 .pll[12] = 0x20,
576 .pll[13] = 0,
577 .pll[14] = 0,
578 .pll[15] = 0x2,
579 .pll[16] = 0x85,
580 .pll[17] = 0x8F,
581 .pll[18] = 0xE6,
582 .pll[19] = 0x23,
583 };
584
585 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
586 .clock = 270000,
587 .tx = 0x10,
588 .cmn = 0x21,
589 .pll[0] = 0xF4,
590 .pll[1] = 0,
591 .pll[2] = 0xF8,
592 .pll[3] = 0x0,
593 .pll[4] = 0x20,
594 .pll[5] = 0x0A,
595 .pll[6] = 0x29,
596 .pll[7] = 0x10,
597 .pll[8] = 0x1, /* Verify */
598 .pll[9] = 0x1,
599 .pll[10] = 0,
600 .pll[11] = 0,
601 .pll[12] = 0xA0,
602 .pll[13] = 0,
603 .pll[14] = 0,
604 .pll[15] = 0x1,
605 .pll[16] = 0x84,
606 .pll[17] = 0x4F,
607 .pll[18] = 0xE5,
608 .pll[19] = 0x23,
609 };
610
611 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
612 .clock = 324000,
613 .tx = 0x10,
614 .cmn = 0x21,
615 .pll[0] = 0xB4,
616 .pll[1] = 0,
617 .pll[2] = 0x30,
618 .pll[3] = 0x1,
619 .pll[4] = 0x26,
620 .pll[5] = 0x0C,
621 .pll[6] = 0x98,
622 .pll[7] = 0x46,
623 .pll[8] = 0x1,
624 .pll[9] = 0x1,
625 .pll[10] = 0,
626 .pll[11] = 0,
627 .pll[12] = 0xC0,
628 .pll[13] = 0,
629 .pll[14] = 0,
630 .pll[15] = 0x1,
631 .pll[16] = 0x85,
632 .pll[17] = 0x4F,
633 .pll[18] = 0xE6,
634 .pll[19] = 0x23,
635 };
636
637 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
638 .clock = 432000,
639 .tx = 0x10,
640 .cmn = 0x21,
641 .pll[0] = 0x4,
642 .pll[1] = 0,
643 .pll[2] = 0xA2,
644 .pll[3] = 0x1,
645 .pll[4] = 0x33,
646 .pll[5] = 0x10,
647 .pll[6] = 0x75,
648 .pll[7] = 0xB3,
649 .pll[8] = 0x1,
650 .pll[9] = 0x1,
651 .pll[10] = 0,
652 .pll[11] = 0,
653 .pll[12] = 0,
654 .pll[13] = 0,
655 .pll[14] = 0,
656 .pll[15] = 0x1,
657 .pll[16] = 0x85,
658 .pll[17] = 0x0F,
659 .pll[18] = 0xE6,
660 .pll[19] = 0x23,
661 };
662
663 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
664 .clock = 540000,
665 .tx = 0x10,
666 .cmn = 0x21,
667 .pll[0] = 0xF4,
668 .pll[1] = 0,
669 .pll[2] = 0xF8,
670 .pll[3] = 0,
671 .pll[4] = 0x20,
672 .pll[5] = 0x0A,
673 .pll[6] = 0x29,
674 .pll[7] = 0x10,
675 .pll[8] = 0x1,
676 .pll[9] = 0x1,
677 .pll[10] = 0,
678 .pll[11] = 0,
679 .pll[12] = 0xA0,
680 .pll[13] = 0,
681 .pll[14] = 0,
682 .pll[15] = 0,
683 .pll[16] = 0x84,
684 .pll[17] = 0x4F,
685 .pll[18] = 0xE5,
686 .pll[19] = 0x23,
687 };
688
689 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
690 .clock = 675000,
691 .tx = 0x10,
692 .cmn = 0x21,
693 .pll[0] = 0xB4,
694 .pll[1] = 0,
695 .pll[2] = 0x3E,
696 .pll[3] = 0x1,
697 .pll[4] = 0xA8,
698 .pll[5] = 0x0C,
699 .pll[6] = 0x33,
700 .pll[7] = 0x54,
701 .pll[8] = 0x1,
702 .pll[9] = 0x1,
703 .pll[10] = 0,
704 .pll[11] = 0,
705 .pll[12] = 0xC8,
706 .pll[13] = 0,
707 .pll[14] = 0,
708 .pll[15] = 0,
709 .pll[16] = 0x85,
710 .pll[17] = 0x8F,
711 .pll[18] = 0xE6,
712 .pll[19] = 0x23,
713 };
714
715 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
716 .clock = 810000,
717 .tx = 0x10,
718 .cmn = 0x21,
719 .pll[0] = 0x34,
720 .pll[1] = 0,
721 .pll[2] = 0x84,
722 .pll[3] = 0x1,
723 .pll[4] = 0x30,
724 .pll[5] = 0x0F,
725 .pll[6] = 0x3D,
726 .pll[7] = 0x98,
727 .pll[8] = 0x1,
728 .pll[9] = 0x1,
729 .pll[10] = 0,
730 .pll[11] = 0,
731 .pll[12] = 0xF0,
732 .pll[13] = 0,
733 .pll[14] = 0,
734 .pll[15] = 0,
735 .pll[16] = 0x84,
736 .pll[17] = 0x0F,
737 .pll[18] = 0xE5,
738 .pll[19] = 0x23,
739 };
740
741 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
742 &mtl_c10_dp_rbr,
743 &mtl_c10_dp_hbr1,
744 &mtl_c10_dp_hbr2,
745 &mtl_c10_dp_hbr3,
746 NULL,
747 };
748
749 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
750 &mtl_c10_dp_rbr,
751 &mtl_c10_edp_r216,
752 &mtl_c10_edp_r243,
753 &mtl_c10_dp_hbr1,
754 &mtl_c10_edp_r324,
755 &mtl_c10_edp_r432,
756 &mtl_c10_dp_hbr2,
757 &mtl_c10_edp_r675,
758 &mtl_c10_dp_hbr3,
759 NULL,
760 };
761
762 /* C20 basic DP 1.4 tables */
763 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
764 .clock = 162000,
765 .tx = { 0xbe88, /* tx cfg0 */
766 0x5800, /* tx cfg1 */
767 0x0000, /* tx cfg2 */
768 },
769 .cmn = {0x0500, /* cmn cfg0*/
770 0x0005, /* cmn cfg1 */
771 0x0000, /* cmn cfg2 */
772 0x0000, /* cmn cfg3 */
773 },
774 .mpllb = { 0x50a8, /* mpllb cfg0 */
775 0x2120, /* mpllb cfg1 */
776 0xcd9a, /* mpllb cfg2 */
777 0xbfc1, /* mpllb cfg3 */
778 0x5ab8, /* mpllb cfg4 */
779 0x4c34, /* mpllb cfg5 */
780 0x2000, /* mpllb cfg6 */
781 0x0001, /* mpllb cfg7 */
782 0x6000, /* mpllb cfg8 */
783 0x0000, /* mpllb cfg9 */
784 0x0000, /* mpllb cfg10 */
785 },
786 };
787
788 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
789 .clock = 270000,
790 .tx = { 0xbe88, /* tx cfg0 */
791 0x4800, /* tx cfg1 */
792 0x0000, /* tx cfg2 */
793 },
794 .cmn = {0x0500, /* cmn cfg0*/
795 0x0005, /* cmn cfg1 */
796 0x0000, /* cmn cfg2 */
797 0x0000, /* cmn cfg3 */
798 },
799 .mpllb = { 0x308c, /* mpllb cfg0 */
800 0x2110, /* mpllb cfg1 */
801 0xcc9c, /* mpllb cfg2 */
802 0xbfc1, /* mpllb cfg3 */
803 0x4b9a, /* mpllb cfg4 */
804 0x3f81, /* mpllb cfg5 */
805 0x2000, /* mpllb cfg6 */
806 0x0001, /* mpllb cfg7 */
807 0x5000, /* mpllb cfg8 */
808 0x0000, /* mpllb cfg9 */
809 0x0000, /* mpllb cfg10 */
810 },
811 };
812
813 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
814 .clock = 540000,
815 .tx = { 0xbe88, /* tx cfg0 */
816 0x4800, /* tx cfg1 */
817 0x0000, /* tx cfg2 */
818 },
819 .cmn = {0x0500, /* cmn cfg0*/
820 0x0005, /* cmn cfg1 */
821 0x0000, /* cmn cfg2 */
822 0x0000, /* cmn cfg3 */
823 },
824 .mpllb = { 0x108c, /* mpllb cfg0 */
825 0x2108, /* mpllb cfg1 */
826 0xcc9c, /* mpllb cfg2 */
827 0xbfc1, /* mpllb cfg3 */
828 0x4b9a, /* mpllb cfg4 */
829 0x3f81, /* mpllb cfg5 */
830 0x2000, /* mpllb cfg6 */
831 0x0001, /* mpllb cfg7 */
832 0x5000, /* mpllb cfg8 */
833 0x0000, /* mpllb cfg9 */
834 0x0000, /* mpllb cfg10 */
835 },
836 };
837
838 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
839 .clock = 810000,
840 .tx = { 0xbe88, /* tx cfg0 */
841 0x4800, /* tx cfg1 */
842 0x0000, /* tx cfg2 */
843 },
844 .cmn = {0x0500, /* cmn cfg0*/
845 0x0005, /* cmn cfg1 */
846 0x0000, /* cmn cfg2 */
847 0x0000, /* cmn cfg3 */
848 },
849 .mpllb = { 0x10d2, /* mpllb cfg0 */
850 0x2108, /* mpllb cfg1 */
851 0x8d98, /* mpllb cfg2 */
852 0xbfc1, /* mpllb cfg3 */
853 0x7166, /* mpllb cfg4 */
854 0x5f42, /* mpllb cfg5 */
855 0x2000, /* mpllb cfg6 */
856 0x0001, /* mpllb cfg7 */
857 0x7800, /* mpllb cfg8 */
858 0x0000, /* mpllb cfg9 */
859 0x0000, /* mpllb cfg10 */
860 },
861 };
862
863 /* C20 basic DP 2.0 tables */
864 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
865 .clock = 1000000, /* 10 Gbps */
866 .tx = { 0xbe21, /* tx cfg0 */
867 0xe800, /* tx cfg1 */
868 0x0000, /* tx cfg2 */
869 },
870 .cmn = {0x0700, /* cmn cfg0*/
871 0x0005, /* cmn cfg1 */
872 0x0000, /* cmn cfg2 */
873 0x0000, /* cmn cfg3 */
874 },
875 .mplla = { 0x3104, /* mplla cfg0 */
876 0xd105, /* mplla cfg1 */
877 0xc025, /* mplla cfg2 */
878 0xc025, /* mplla cfg3 */
879 0x8c00, /* mplla cfg4 */
880 0x759a, /* mplla cfg5 */
881 0x4000, /* mplla cfg6 */
882 0x0003, /* mplla cfg7 */
883 0x3555, /* mplla cfg8 */
884 0x0001, /* mplla cfg9 */
885 },
886 };
887
888 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
889 .clock = 1350000, /* 13.5 Gbps */
890 .tx = { 0xbea0, /* tx cfg0 */
891 0x4800, /* tx cfg1 */
892 0x0000, /* tx cfg2 */
893 },
894 .cmn = {0x0500, /* cmn cfg0*/
895 0x0005, /* cmn cfg1 */
896 0x0000, /* cmn cfg2 */
897 0x0000, /* cmn cfg3 */
898 },
899 .mpllb = { 0x015f, /* mpllb cfg0 */
900 0x2205, /* mpllb cfg1 */
901 0x1b17, /* mpllb cfg2 */
902 0xffc1, /* mpllb cfg3 */
903 0xe100, /* mpllb cfg4 */
904 0xbd00, /* mpllb cfg5 */
905 0x2000, /* mpllb cfg6 */
906 0x0001, /* mpllb cfg7 */
907 0x4800, /* mpllb cfg8 */
908 0x0000, /* mpllb cfg9 */
909 0x0000, /* mpllb cfg10 */
910 },
911 };
912
913 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
914 .clock = 2000000, /* 20 Gbps */
915 .tx = { 0xbe20, /* tx cfg0 */
916 0x4800, /* tx cfg1 */
917 0x0000, /* tx cfg2 */
918 },
919 .cmn = {0x0500, /* cmn cfg0*/
920 0x0005, /* cmn cfg1 */
921 0x0000, /* cmn cfg2 */
922 0x0000, /* cmn cfg3 */
923 },
924 .mplla = { 0x3104, /* mplla cfg0 */
925 0xd105, /* mplla cfg1 */
926 0xc025, /* mplla cfg2 */
927 0xc025, /* mplla cfg3 */
928 0xa6ab, /* mplla cfg4 */
929 0x8c00, /* mplla cfg5 */
930 0x4000, /* mplla cfg6 */
931 0x0003, /* mplla cfg7 */
932 0x3555, /* mplla cfg8 */
933 0x0001, /* mplla cfg9 */
934 },
935 };
936
937 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
938 &mtl_c20_dp_rbr,
939 &mtl_c20_dp_hbr1,
940 &mtl_c20_dp_hbr2,
941 &mtl_c20_dp_hbr3,
942 &mtl_c20_dp_uhbr10,
943 &mtl_c20_dp_uhbr13_5,
944 &mtl_c20_dp_uhbr20,
945 NULL,
946 };
947
948 /*
949 * eDP link rates with 38.4 MHz reference clock.
950 */
951
952 static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
953 .clock = 216000,
954 .tx = { 0xbe88,
955 0x4800,
956 0x0000,
957 },
958 .cmn = { 0x0500,
959 0x0005,
960 0x0000,
961 0x0000,
962 },
963 .mpllb = { 0x50e1,
964 0x2120,
965 0x8e18,
966 0xbfc1,
967 0x9000,
968 0x78f6,
969 0x0000,
970 0x0000,
971 0x0000,
972 0x0000,
973 0x0000,
974 },
975 };
976
977 static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
978 .clock = 243000,
979 .tx = { 0xbe88,
980 0x4800,
981 0x0000,
982 },
983 .cmn = { 0x0500,
984 0x0005,
985 0x0000,
986 0x0000,
987 },
988 .mpllb = { 0x50fd,
989 0x2120,
990 0x8f18,
991 0xbfc1,
992 0xa200,
993 0x8814,
994 0x2000,
995 0x0001,
996 0x1000,
997 0x0000,
998 0x0000,
999 },
1000 };
1001
1002 static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
1003 .clock = 324000,
1004 .tx = { 0xbe88,
1005 0x4800,
1006 0x0000,
1007 },
1008 .cmn = { 0x0500,
1009 0x0005,
1010 0x0000,
1011 0x0000,
1012 },
1013 .mpllb = { 0x30a8,
1014 0x2110,
1015 0xcd9a,
1016 0xbfc1,
1017 0x6c00,
1018 0x5ab8,
1019 0x2000,
1020 0x0001,
1021 0x6000,
1022 0x0000,
1023 0x0000,
1024 },
1025 };
1026
1027 static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
1028 .clock = 432000,
1029 .tx = { 0xbe88,
1030 0x4800,
1031 0x0000,
1032 },
1033 .cmn = { 0x0500,
1034 0x0005,
1035 0x0000,
1036 0x0000,
1037 },
1038 .mpllb = { 0x30e1,
1039 0x2110,
1040 0x8e18,
1041 0xbfc1,
1042 0x9000,
1043 0x78f6,
1044 0x0000,
1045 0x0000,
1046 0x0000,
1047 0x0000,
1048 0x0000,
1049 },
1050 };
1051
1052 static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
1053 .clock = 675000,
1054 .tx = { 0xbe88,
1055 0x4800,
1056 0x0000,
1057 },
1058 .cmn = { 0x0500,
1059 0x0005,
1060 0x0000,
1061 0x0000,
1062 },
1063 .mpllb = { 0x10af,
1064 0x2108,
1065 0xce1a,
1066 0xbfc1,
1067 0x7080,
1068 0x5e80,
1069 0x2000,
1070 0x0001,
1071 0x6400,
1072 0x0000,
1073 0x0000,
1074 },
1075 };
1076
1077 static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
1078 &mtl_c20_dp_rbr,
1079 &xe2hpd_c20_edp_r216,
1080 &xe2hpd_c20_edp_r243,
1081 &mtl_c20_dp_hbr1,
1082 &xe2hpd_c20_edp_r324,
1083 &xe2hpd_c20_edp_r432,
1084 &mtl_c20_dp_hbr2,
1085 &xe2hpd_c20_edp_r675,
1086 &mtl_c20_dp_hbr3,
1087 NULL,
1088 };
1089
1090 static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
1091 .clock = 1350000, /* 13.5 Gbps */
1092 .tx = { 0xbea0, /* tx cfg0 */
1093 0x4800, /* tx cfg1 */
1094 0x0000, /* tx cfg2 */
1095 },
1096 .cmn = {0x0500, /* cmn cfg0*/
1097 0x0005, /* cmn cfg1 */
1098 0x0000, /* cmn cfg2 */
1099 0x0000, /* cmn cfg3 */
1100 },
1101 .mpllb = { 0x015f, /* mpllb cfg0 */
1102 0x2205, /* mpllb cfg1 */
1103 0x1b17, /* mpllb cfg2 */
1104 0xffc1, /* mpllb cfg3 */
1105 0xbd00, /* mpllb cfg4 */
1106 0x9ec3, /* mpllb cfg5 */
1107 0x2000, /* mpllb cfg6 */
1108 0x0001, /* mpllb cfg7 */
1109 0x4800, /* mpllb cfg8 */
1110 0x0000, /* mpllb cfg9 */
1111 0x0000, /* mpllb cfg10 */
1112 },
1113 };
1114
1115 static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
1116 &mtl_c20_dp_rbr,
1117 &mtl_c20_dp_hbr1,
1118 &mtl_c20_dp_hbr2,
1119 &mtl_c20_dp_hbr3,
1120 &mtl_c20_dp_uhbr10,
1121 &xe2hpd_c20_dp_uhbr13_5,
1122 NULL,
1123 };
1124
1125 /*
1126 * HDMI link rates with 38.4 MHz reference clock.
1127 */
1128
1129 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
1130 .clock = 25200,
1131 .tx = 0x10,
1132 .cmn = 0x1,
1133 .pll[0] = 0x4,
1134 .pll[1] = 0,
1135 .pll[2] = 0xB2,
1136 .pll[3] = 0,
1137 .pll[4] = 0,
1138 .pll[5] = 0,
1139 .pll[6] = 0,
1140 .pll[7] = 0,
1141 .pll[8] = 0x20,
1142 .pll[9] = 0x1,
1143 .pll[10] = 0,
1144 .pll[11] = 0,
1145 .pll[12] = 0,
1146 .pll[13] = 0,
1147 .pll[14] = 0,
1148 .pll[15] = 0xD,
1149 .pll[16] = 0x6,
1150 .pll[17] = 0x8F,
1151 .pll[18] = 0x84,
1152 .pll[19] = 0x23,
1153 };
1154
1155 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
1156 .clock = 27000,
1157 .tx = 0x10,
1158 .cmn = 0x1,
1159 .pll[0] = 0x34,
1160 .pll[1] = 0,
1161 .pll[2] = 0xC0,
1162 .pll[3] = 0,
1163 .pll[4] = 0,
1164 .pll[5] = 0,
1165 .pll[6] = 0,
1166 .pll[7] = 0,
1167 .pll[8] = 0x20,
1168 .pll[9] = 0x1,
1169 .pll[10] = 0,
1170 .pll[11] = 0,
1171 .pll[12] = 0x80,
1172 .pll[13] = 0,
1173 .pll[14] = 0,
1174 .pll[15] = 0xD,
1175 .pll[16] = 0x6,
1176 .pll[17] = 0xCF,
1177 .pll[18] = 0x84,
1178 .pll[19] = 0x23,
1179 };
1180
1181 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1182 .clock = 74250,
1183 .tx = 0x10,
1184 .cmn = 0x1,
1185 .pll[0] = 0xF4,
1186 .pll[1] = 0,
1187 .pll[2] = 0x7A,
1188 .pll[3] = 0,
1189 .pll[4] = 0,
1190 .pll[5] = 0,
1191 .pll[6] = 0,
1192 .pll[7] = 0,
1193 .pll[8] = 0x20,
1194 .pll[9] = 0x1,
1195 .pll[10] = 0,
1196 .pll[11] = 0,
1197 .pll[12] = 0x58,
1198 .pll[13] = 0,
1199 .pll[14] = 0,
1200 .pll[15] = 0xB,
1201 .pll[16] = 0x6,
1202 .pll[17] = 0xF,
1203 .pll[18] = 0x85,
1204 .pll[19] = 0x23,
1205 };
1206
1207 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1208 .clock = 148500,
1209 .tx = 0x10,
1210 .cmn = 0x1,
1211 .pll[0] = 0xF4,
1212 .pll[1] = 0,
1213 .pll[2] = 0x7A,
1214 .pll[3] = 0,
1215 .pll[4] = 0,
1216 .pll[5] = 0,
1217 .pll[6] = 0,
1218 .pll[7] = 0,
1219 .pll[8] = 0x20,
1220 .pll[9] = 0x1,
1221 .pll[10] = 0,
1222 .pll[11] = 0,
1223 .pll[12] = 0x58,
1224 .pll[13] = 0,
1225 .pll[14] = 0,
1226 .pll[15] = 0xA,
1227 .pll[16] = 0x6,
1228 .pll[17] = 0xF,
1229 .pll[18] = 0x85,
1230 .pll[19] = 0x23,
1231 };
1232
1233 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1234 .clock = 594000,
1235 .tx = 0x10,
1236 .cmn = 0x1,
1237 .pll[0] = 0xF4,
1238 .pll[1] = 0,
1239 .pll[2] = 0x7A,
1240 .pll[3] = 0,
1241 .pll[4] = 0,
1242 .pll[5] = 0,
1243 .pll[6] = 0,
1244 .pll[7] = 0,
1245 .pll[8] = 0x20,
1246 .pll[9] = 0x1,
1247 .pll[10] = 0,
1248 .pll[11] = 0,
1249 .pll[12] = 0x58,
1250 .pll[13] = 0,
1251 .pll[14] = 0,
1252 .pll[15] = 0x8,
1253 .pll[16] = 0x6,
1254 .pll[17] = 0xF,
1255 .pll[18] = 0x85,
1256 .pll[19] = 0x23,
1257 };
1258
1259 /* Precomputed C10 HDMI PLL tables */
1260 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1261 .clock = 27027,
1262 .tx = 0x10,
1263 .cmn = 0x1,
1264 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1265 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1266 .pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1267 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1268 };
1269
1270 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1271 .clock = 28320,
1272 .tx = 0x10,
1273 .cmn = 0x1,
1274 .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1275 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1276 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1277 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1278 };
1279
1280 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1281 .clock = 30240,
1282 .tx = 0x10,
1283 .cmn = 0x1,
1284 .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1285 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1286 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1287 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1288 };
1289
1290 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1291 .clock = 31500,
1292 .tx = 0x10,
1293 .cmn = 0x1,
1294 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1295 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1296 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1297 .pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1298 };
1299
1300 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1301 .clock = 36000,
1302 .tx = 0x10,
1303 .cmn = 0x1,
1304 .pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1305 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1306 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1307 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1308 };
1309
1310 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1311 .clock = 40000,
1312 .tx = 0x10,
1313 .cmn = 0x1,
1314 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1315 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1316 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1317 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1318 };
1319
1320 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1321 .clock = 49500,
1322 .tx = 0x10,
1323 .cmn = 0x1,
1324 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1325 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1326 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1327 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1328 };
1329
1330 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1331 .clock = 50000,
1332 .tx = 0x10,
1333 .cmn = 0x1,
1334 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1335 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1336 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1337 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1338 };
1339
1340 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1341 .clock = 57284,
1342 .tx = 0x10,
1343 .cmn = 0x1,
1344 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1345 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1346 .pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1347 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1348 };
1349
1350 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1351 .clock = 58000,
1352 .tx = 0x10,
1353 .cmn = 0x1,
1354 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1355 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1356 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1357 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1358 };
1359
1360 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1361 .clock = 65000,
1362 .tx = 0x10,
1363 .cmn = 0x1,
1364 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1365 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1366 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1367 .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1368 };
1369
1370 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1371 .clock = 71000,
1372 .tx = 0x10,
1373 .cmn = 0x1,
1374 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1375 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1376 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1377 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1378 };
1379
1380 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1381 .clock = 74176,
1382 .tx = 0x10,
1383 .cmn = 0x1,
1384 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1385 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1386 .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1387 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1388 };
1389
1390 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1391 .clock = 75000,
1392 .tx = 0x10,
1393 .cmn = 0x1,
1394 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1395 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1396 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1397 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1398 };
1399
1400 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1401 .clock = 78750,
1402 .tx = 0x10,
1403 .cmn = 0x1,
1404 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1405 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1406 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1407 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1408 };
1409
1410 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1411 .clock = 85500,
1412 .tx = 0x10,
1413 .cmn = 0x1,
1414 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1415 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1416 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1417 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1418 };
1419
1420 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1421 .clock = 88750,
1422 .tx = 0x10,
1423 .cmn = 0x1,
1424 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1425 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1426 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1427 .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1428 };
1429
1430 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1431 .clock = 106500,
1432 .tx = 0x10,
1433 .cmn = 0x1,
1434 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1435 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1436 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1437 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1438 };
1439
1440 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1441 .clock = 108000,
1442 .tx = 0x10,
1443 .cmn = 0x1,
1444 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1445 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1446 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1447 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1448 };
1449
1450 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1451 .clock = 115500,
1452 .tx = 0x10,
1453 .cmn = 0x1,
1454 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1455 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1456 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1457 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1458 };
1459
1460 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1461 .clock = 119000,
1462 .tx = 0x10,
1463 .cmn = 0x1,
1464 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1465 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1466 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1467 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1468 };
1469
1470 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1471 .clock = 135000,
1472 .tx = 0x10,
1473 .cmn = 0x1,
1474 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1475 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1476 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1477 .pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1478 };
1479
1480 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1481 .clock = 138500,
1482 .tx = 0x10,
1483 .cmn = 0x1,
1484 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1485 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1486 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1487 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1488 };
1489
1490 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1491 .clock = 147160,
1492 .tx = 0x10,
1493 .cmn = 0x1,
1494 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1495 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1496 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1497 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1498 };
1499
1500 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1501 .clock = 148352,
1502 .tx = 0x10,
1503 .cmn = 0x1,
1504 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1505 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1506 .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1507 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1508 };
1509
1510 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1511 .clock = 154000,
1512 .tx = 0x10,
1513 .cmn = 0x1,
1514 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1515 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1516 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1517 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1518 };
1519
1520 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1521 .clock = 162000,
1522 .tx = 0x10,
1523 .cmn = 0x1,
1524 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1525 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1526 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1527 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1528 };
1529
1530 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1531 .clock = 167000,
1532 .tx = 0x10,
1533 .cmn = 0x1,
1534 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1535 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1536 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1537 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1538 };
1539
1540 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1541 .clock = 197802,
1542 .tx = 0x10,
1543 .cmn = 0x1,
1544 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1545 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1546 .pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1547 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1548 };
1549
1550 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1551 .clock = 198000,
1552 .tx = 0x10,
1553 .cmn = 0x1,
1554 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1555 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1556 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1557 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1558 };
1559
1560 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1561 .clock = 209800,
1562 .tx = 0x10,
1563 .cmn = 0x1,
1564 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1565 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1566 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1567 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1568 };
1569
1570 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1571 .clock = 241500,
1572 .tx = 0x10,
1573 .cmn = 0x1,
1574 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1575 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1576 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1577 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1578 };
1579
1580 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1581 .clock = 262750,
1582 .tx = 0x10,
1583 .cmn = 0x1,
1584 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1585 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1586 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1587 .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1588 };
1589
1590 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1591 .clock = 268500,
1592 .tx = 0x10,
1593 .cmn = 0x1,
1594 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1595 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1596 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1597 .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1598 };
1599
1600 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1601 .clock = 296703,
1602 .tx = 0x10,
1603 .cmn = 0x1,
1604 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1605 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1606 .pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1607 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1608 };
1609
1610 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1611 .clock = 297000,
1612 .tx = 0x10,
1613 .cmn = 0x1,
1614 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1615 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1616 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1617 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1618 };
1619
1620 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1621 .clock = 319750,
1622 .tx = 0x10,
1623 .cmn = 0x1,
1624 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1625 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1626 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1627 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1628 };
1629
1630 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1631 .clock = 497750,
1632 .tx = 0x10,
1633 .cmn = 0x1,
1634 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1635 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1636 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1637 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1638 };
1639
1640 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1641 .clock = 592000,
1642 .tx = 0x10,
1643 .cmn = 0x1,
1644 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1645 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1646 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1647 .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1648 };
1649
1650 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1651 .clock = 593407,
1652 .tx = 0x10,
1653 .cmn = 0x1,
1654 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1655 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1656 .pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1657 .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1658 };
1659
1660 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1661 &mtl_c10_hdmi_25_2, /* Consolidated Table */
1662 &mtl_c10_hdmi_27_0, /* Consolidated Table */
1663 &mtl_c10_hdmi_27027,
1664 &mtl_c10_hdmi_28320,
1665 &mtl_c10_hdmi_30240,
1666 &mtl_c10_hdmi_31500,
1667 &mtl_c10_hdmi_36000,
1668 &mtl_c10_hdmi_40000,
1669 &mtl_c10_hdmi_49500,
1670 &mtl_c10_hdmi_50000,
1671 &mtl_c10_hdmi_57284,
1672 &mtl_c10_hdmi_58000,
1673 &mtl_c10_hdmi_65000,
1674 &mtl_c10_hdmi_71000,
1675 &mtl_c10_hdmi_74176,
1676 &mtl_c10_hdmi_74_25, /* Consolidated Table */
1677 &mtl_c10_hdmi_75000,
1678 &mtl_c10_hdmi_78750,
1679 &mtl_c10_hdmi_85500,
1680 &mtl_c10_hdmi_88750,
1681 &mtl_c10_hdmi_106500,
1682 &mtl_c10_hdmi_108000,
1683 &mtl_c10_hdmi_115500,
1684 &mtl_c10_hdmi_119000,
1685 &mtl_c10_hdmi_135000,
1686 &mtl_c10_hdmi_138500,
1687 &mtl_c10_hdmi_147160,
1688 &mtl_c10_hdmi_148352,
1689 &mtl_c10_hdmi_148_5, /* Consolidated Table */
1690 &mtl_c10_hdmi_154000,
1691 &mtl_c10_hdmi_162000,
1692 &mtl_c10_hdmi_167000,
1693 &mtl_c10_hdmi_197802,
1694 &mtl_c10_hdmi_198000,
1695 &mtl_c10_hdmi_209800,
1696 &mtl_c10_hdmi_241500,
1697 &mtl_c10_hdmi_262750,
1698 &mtl_c10_hdmi_268500,
1699 &mtl_c10_hdmi_296703,
1700 &mtl_c10_hdmi_297000,
1701 &mtl_c10_hdmi_319750,
1702 &mtl_c10_hdmi_497750,
1703 &mtl_c10_hdmi_592000,
1704 &mtl_c10_hdmi_593407,
1705 &mtl_c10_hdmi_594, /* Consolidated Table */
1706 NULL,
1707 };
1708
1709 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1710 .clock = 25175,
1711 .tx = { 0xbe88, /* tx cfg0 */
1712 0x9800, /* tx cfg1 */
1713 0x0000, /* tx cfg2 */
1714 },
1715 .cmn = { 0x0500, /* cmn cfg0*/
1716 0x0005, /* cmn cfg1 */
1717 0x0000, /* cmn cfg2 */
1718 0x0000, /* cmn cfg3 */
1719 },
1720 .mpllb = { 0xa0d2, /* mpllb cfg0 */
1721 0x7d80, /* mpllb cfg1 */
1722 0x0906, /* mpllb cfg2 */
1723 0xbe40, /* mpllb cfg3 */
1724 0x0000, /* mpllb cfg4 */
1725 0x0000, /* mpllb cfg5 */
1726 0x0200, /* mpllb cfg6 */
1727 0x0001, /* mpllb cfg7 */
1728 0x0000, /* mpllb cfg8 */
1729 0x0000, /* mpllb cfg9 */
1730 0x0001, /* mpllb cfg10 */
1731 },
1732 };
1733
1734 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1735 .clock = 27000,
1736 .tx = { 0xbe88, /* tx cfg0 */
1737 0x9800, /* tx cfg1 */
1738 0x0000, /* tx cfg2 */
1739 },
1740 .cmn = { 0x0500, /* cmn cfg0*/
1741 0x0005, /* cmn cfg1 */
1742 0x0000, /* cmn cfg2 */
1743 0x0000, /* cmn cfg3 */
1744 },
1745 .mpllb = { 0xa0e0, /* mpllb cfg0 */
1746 0x7d80, /* mpllb cfg1 */
1747 0x0906, /* mpllb cfg2 */
1748 0xbe40, /* mpllb cfg3 */
1749 0x0000, /* mpllb cfg4 */
1750 0x0000, /* mpllb cfg5 */
1751 0x2200, /* mpllb cfg6 */
1752 0x0001, /* mpllb cfg7 */
1753 0x8000, /* mpllb cfg8 */
1754 0x0000, /* mpllb cfg9 */
1755 0x0001, /* mpllb cfg10 */
1756 },
1757 };
1758
1759 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1760 .clock = 74250,
1761 .tx = { 0xbe88, /* tx cfg0 */
1762 0x9800, /* tx cfg1 */
1763 0x0000, /* tx cfg2 */
1764 },
1765 .cmn = { 0x0500, /* cmn cfg0*/
1766 0x0005, /* cmn cfg1 */
1767 0x0000, /* cmn cfg2 */
1768 0x0000, /* cmn cfg3 */
1769 },
1770 .mpllb = { 0x609a, /* mpllb cfg0 */
1771 0x7d40, /* mpllb cfg1 */
1772 0xca06, /* mpllb cfg2 */
1773 0xbe40, /* mpllb cfg3 */
1774 0x0000, /* mpllb cfg4 */
1775 0x0000, /* mpllb cfg5 */
1776 0x2200, /* mpllb cfg6 */
1777 0x0001, /* mpllb cfg7 */
1778 0x5800, /* mpllb cfg8 */
1779 0x0000, /* mpllb cfg9 */
1780 0x0001, /* mpllb cfg10 */
1781 },
1782 };
1783
1784 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1785 .clock = 148500,
1786 .tx = { 0xbe88, /* tx cfg0 */
1787 0x9800, /* tx cfg1 */
1788 0x0000, /* tx cfg2 */
1789 },
1790 .cmn = { 0x0500, /* cmn cfg0*/
1791 0x0005, /* cmn cfg1 */
1792 0x0000, /* cmn cfg2 */
1793 0x0000, /* cmn cfg3 */
1794 },
1795 .mpllb = { 0x409a, /* mpllb cfg0 */
1796 0x7d20, /* mpllb cfg1 */
1797 0xca06, /* mpllb cfg2 */
1798 0xbe40, /* mpllb cfg3 */
1799 0x0000, /* mpllb cfg4 */
1800 0x0000, /* mpllb cfg5 */
1801 0x2200, /* mpllb cfg6 */
1802 0x0001, /* mpllb cfg7 */
1803 0x5800, /* mpllb cfg8 */
1804 0x0000, /* mpllb cfg9 */
1805 0x0001, /* mpllb cfg10 */
1806 },
1807 };
1808
1809 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1810 .clock = 594000,
1811 .tx = { 0xbe88, /* tx cfg0 */
1812 0x9800, /* tx cfg1 */
1813 0x0000, /* tx cfg2 */
1814 },
1815 .cmn = { 0x0500, /* cmn cfg0*/
1816 0x0005, /* cmn cfg1 */
1817 0x0000, /* cmn cfg2 */
1818 0x0000, /* cmn cfg3 */
1819 },
1820 .mpllb = { 0x009a, /* mpllb cfg0 */
1821 0x7d08, /* mpllb cfg1 */
1822 0xca06, /* mpllb cfg2 */
1823 0xbe40, /* mpllb cfg3 */
1824 0x0000, /* mpllb cfg4 */
1825 0x0000, /* mpllb cfg5 */
1826 0x2200, /* mpllb cfg6 */
1827 0x0001, /* mpllb cfg7 */
1828 0x5800, /* mpllb cfg8 */
1829 0x0000, /* mpllb cfg9 */
1830 0x0001, /* mpllb cfg10 */
1831 },
1832 };
1833
1834 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1835 .clock = 3000000,
1836 .tx = { 0xbe98, /* tx cfg0 */
1837 0x8800, /* tx cfg1 */
1838 0x0000, /* tx cfg2 */
1839 },
1840 .cmn = { 0x0500, /* cmn cfg0*/
1841 0x0005, /* cmn cfg1 */
1842 0x0000, /* cmn cfg2 */
1843 0x0000, /* cmn cfg3 */
1844 },
1845 .mpllb = { 0x309c, /* mpllb cfg0 */
1846 0x2110, /* mpllb cfg1 */
1847 0xca06, /* mpllb cfg2 */
1848 0xbe40, /* mpllb cfg3 */
1849 0x0000, /* mpllb cfg4 */
1850 0x0000, /* mpllb cfg5 */
1851 0x2200, /* mpllb cfg6 */
1852 0x0001, /* mpllb cfg7 */
1853 0x2000, /* mpllb cfg8 */
1854 0x0000, /* mpllb cfg9 */
1855 0x0004, /* mpllb cfg10 */
1856 },
1857 };
1858
1859 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1860 .clock = 6000000,
1861 .tx = { 0xbe98, /* tx cfg0 */
1862 0x8800, /* tx cfg1 */
1863 0x0000, /* tx cfg2 */
1864 },
1865 .cmn = { 0x0500, /* cmn cfg0*/
1866 0x0005, /* cmn cfg1 */
1867 0x0000, /* cmn cfg2 */
1868 0x0000, /* cmn cfg3 */
1869 },
1870 .mpllb = { 0x109c, /* mpllb cfg0 */
1871 0x2108, /* mpllb cfg1 */
1872 0xca06, /* mpllb cfg2 */
1873 0xbe40, /* mpllb cfg3 */
1874 0x0000, /* mpllb cfg4 */
1875 0x0000, /* mpllb cfg5 */
1876 0x2200, /* mpllb cfg6 */
1877 0x0001, /* mpllb cfg7 */
1878 0x2000, /* mpllb cfg8 */
1879 0x0000, /* mpllb cfg9 */
1880 0x0004, /* mpllb cfg10 */
1881 },
1882 };
1883
1884 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1885 .clock = 8000000,
1886 .tx = { 0xbe98, /* tx cfg0 */
1887 0x8800, /* tx cfg1 */
1888 0x0000, /* tx cfg2 */
1889 },
1890 .cmn = { 0x0500, /* cmn cfg0*/
1891 0x0005, /* cmn cfg1 */
1892 0x0000, /* cmn cfg2 */
1893 0x0000, /* cmn cfg3 */
1894 },
1895 .mpllb = { 0x10d0, /* mpllb cfg0 */
1896 0x2108, /* mpllb cfg1 */
1897 0x4a06, /* mpllb cfg2 */
1898 0xbe40, /* mpllb cfg3 */
1899 0x0000, /* mpllb cfg4 */
1900 0x0000, /* mpllb cfg5 */
1901 0x2200, /* mpllb cfg6 */
1902 0x0003, /* mpllb cfg7 */
1903 0x2aaa, /* mpllb cfg8 */
1904 0x0002, /* mpllb cfg9 */
1905 0x0004, /* mpllb cfg10 */
1906 },
1907 };
1908
1909 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1910 .clock = 10000000,
1911 .tx = { 0xbe98, /* tx cfg0 */
1912 0x8800, /* tx cfg1 */
1913 0x0000, /* tx cfg2 */
1914 },
1915 .cmn = { 0x0500, /* cmn cfg0*/
1916 0x0005, /* cmn cfg1 */
1917 0x0000, /* cmn cfg2 */
1918 0x0000, /* cmn cfg3 */
1919 },
1920 .mpllb = { 0x1104, /* mpllb cfg0 */
1921 0x2108, /* mpllb cfg1 */
1922 0x0a06, /* mpllb cfg2 */
1923 0xbe40, /* mpllb cfg3 */
1924 0x0000, /* mpllb cfg4 */
1925 0x0000, /* mpllb cfg5 */
1926 0x2200, /* mpllb cfg6 */
1927 0x0003, /* mpllb cfg7 */
1928 0x3555, /* mpllb cfg8 */
1929 0x0001, /* mpllb cfg9 */
1930 0x0004, /* mpllb cfg10 */
1931 },
1932 };
1933
1934 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1935 .clock = 12000000,
1936 .tx = { 0xbe98, /* tx cfg0 */
1937 0x8800, /* tx cfg1 */
1938 0x0000, /* tx cfg2 */
1939 },
1940 .cmn = { 0x0500, /* cmn cfg0*/
1941 0x0005, /* cmn cfg1 */
1942 0x0000, /* cmn cfg2 */
1943 0x0000, /* cmn cfg3 */
1944 },
1945 .mpllb = { 0x1138, /* mpllb cfg0 */
1946 0x2108, /* mpllb cfg1 */
1947 0x5486, /* mpllb cfg2 */
1948 0xfe40, /* mpllb cfg3 */
1949 0x0000, /* mpllb cfg4 */
1950 0x0000, /* mpllb cfg5 */
1951 0x2200, /* mpllb cfg6 */
1952 0x0001, /* mpllb cfg7 */
1953 0x4000, /* mpllb cfg8 */
1954 0x0000, /* mpllb cfg9 */
1955 0x0004, /* mpllb cfg10 */
1956 },
1957 };
1958
1959 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1960 &mtl_c20_hdmi_25_175,
1961 &mtl_c20_hdmi_27_0,
1962 &mtl_c20_hdmi_74_25,
1963 &mtl_c20_hdmi_148_5,
1964 &mtl_c20_hdmi_594,
1965 &mtl_c20_hdmi_300,
1966 &mtl_c20_hdmi_600,
1967 &mtl_c20_hdmi_800,
1968 &mtl_c20_hdmi_1000,
1969 &mtl_c20_hdmi_1200,
1970 NULL,
1971 };
1972
intel_c10_phy_check_hdmi_link_rate(int clock)1973 static int intel_c10_phy_check_hdmi_link_rate(int clock)
1974 {
1975 const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
1976 int i;
1977
1978 for (i = 0; tables[i]; i++) {
1979 if (clock == tables[i]->clock)
1980 return MODE_OK;
1981 }
1982
1983 return MODE_CLOCK_RANGE;
1984 }
1985
1986 static const struct intel_c10pll_state * const *
intel_c10pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)1987 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
1988 struct intel_encoder *encoder)
1989 {
1990 if (intel_crtc_has_dp_encoder(crtc_state)) {
1991 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
1992 return mtl_c10_edp_tables;
1993 else
1994 return mtl_c10_dp_tables;
1995 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
1996 return mtl_c10_hdmi_tables;
1997 }
1998
1999 MISSING_CASE(encoder->type);
2000 return NULL;
2001 }
2002
intel_c10pll_update_pll(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2003 static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
2004 struct intel_encoder *encoder)
2005 {
2006 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2007 struct intel_cx0pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll;
2008 int i;
2009
2010 if (intel_crtc_has_dp_encoder(crtc_state)) {
2011 if (intel_panel_use_ssc(i915)) {
2012 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2013
2014 pll_state->ssc_enabled =
2015 (intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
2016 }
2017 }
2018
2019 if (pll_state->ssc_enabled)
2020 return;
2021
2022 drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
2023 for (i = 4; i < 9; i++)
2024 pll_state->c10.pll[i] = 0;
2025 }
2026
intel_c10pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2027 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
2028 struct intel_encoder *encoder)
2029 {
2030 const struct intel_c10pll_state * const *tables;
2031 int i;
2032
2033 tables = intel_c10pll_tables_get(crtc_state, encoder);
2034 if (!tables)
2035 return -EINVAL;
2036
2037 for (i = 0; tables[i]; i++) {
2038 if (crtc_state->port_clock == tables[i]->clock) {
2039 crtc_state->dpll_hw_state.cx0pll.c10 = *tables[i];
2040 intel_c10pll_update_pll(crtc_state, encoder);
2041 crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2042
2043 return 0;
2044 }
2045 }
2046
2047 return -EINVAL;
2048 }
2049
intel_c10pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c10pll_state * pll_state)2050 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
2051 struct intel_c10pll_state *pll_state)
2052 {
2053 u8 lane = INTEL_CX0_LANE0;
2054 intel_wakeref_t wakeref;
2055 int i;
2056
2057 wakeref = intel_cx0_phy_transaction_begin(encoder);
2058
2059 /*
2060 * According to C10 VDR Register programming Sequence we need
2061 * to do this to read PHY internal registers from MsgBus.
2062 */
2063 intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
2064 0, C10_VDR_CTRL_MSGBUS_ACCESS,
2065 MB_WRITE_COMMITTED);
2066
2067 for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2068 pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
2069
2070 pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
2071 pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
2072
2073 intel_cx0_phy_transaction_end(encoder, wakeref);
2074 }
2075
intel_c10_pll_program(struct drm_i915_private * i915,const struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2076 static void intel_c10_pll_program(struct drm_i915_private *i915,
2077 const struct intel_crtc_state *crtc_state,
2078 struct intel_encoder *encoder)
2079 {
2080 const struct intel_c10pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c10;
2081 int i;
2082
2083 intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2084 0, C10_VDR_CTRL_MSGBUS_ACCESS,
2085 MB_WRITE_COMMITTED);
2086
2087 /* Custom width needs to be programmed to 0 for both the phy lanes */
2088 intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
2089 C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
2090 MB_WRITE_COMMITTED);
2091 intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2092 0, C10_VDR_CTRL_UPDATE_CFG,
2093 MB_WRITE_COMMITTED);
2094
2095 /* Program the pll values only for the master lane */
2096 for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2097 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
2098 pll_state->pll[i],
2099 (i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
2100
2101 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
2102 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
2103
2104 intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
2105 0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
2106 MB_WRITE_COMMITTED);
2107 }
2108
intel_c10pll_dump_hw_state(struct drm_i915_private * i915,const struct intel_c10pll_state * hw_state)2109 static void intel_c10pll_dump_hw_state(struct drm_i915_private *i915,
2110 const struct intel_c10pll_state *hw_state)
2111 {
2112 bool fracen;
2113 int i;
2114 unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2115 unsigned int multiplier, tx_clk_div;
2116
2117 fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
2118 drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ",
2119 str_yes_no(fracen));
2120
2121 if (fracen) {
2122 frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
2123 frac_rem = hw_state->pll[14] << 8 | hw_state->pll[13];
2124 frac_den = hw_state->pll[10] << 8 | hw_state->pll[9];
2125 drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n",
2126 frac_quot, frac_rem, frac_den);
2127 }
2128
2129 multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
2130 hw_state->pll[2]) / 2 + 16;
2131 tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
2132 drm_dbg_kms(&i915->drm,
2133 "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
2134
2135 drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:");
2136 drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn);
2137
2138 BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
2139 for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
2140 drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
2141 i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
2142 i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
2143 }
2144
intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock,struct intel_c20pll_state * pll_state)2145 static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state)
2146 {
2147 u64 datarate;
2148 u64 mpll_tx_clk_div;
2149 u64 vco_freq_shift;
2150 u64 vco_freq;
2151 u64 multiplier;
2152 u64 mpll_multiplier;
2153 u64 mpll_fracn_quot;
2154 u64 mpll_fracn_rem;
2155 u8 mpllb_ana_freq_vco;
2156 u8 mpll_div_multiplier;
2157
2158 if (pixel_clock < 25175 || pixel_clock > 600000)
2159 return -EINVAL;
2160
2161 datarate = ((u64)pixel_clock * 1000) * 10;
2162 mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
2163 vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
2164 vco_freq = (datarate << vco_freq_shift) >> 8;
2165 multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
2166 mpll_multiplier = 2 * (multiplier >> 32);
2167
2168 mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
2169 mpll_fracn_rem = multiplier & 0xFFFF;
2170
2171 mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
2172 datarate), 255);
2173
2174 if (vco_freq <= DATARATE_3000000000)
2175 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
2176 else if (vco_freq <= DATARATE_3500000000)
2177 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2178 else if (vco_freq <= DATARATE_4000000000)
2179 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2180 else
2181 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2182
2183 pll_state->clock = pixel_clock;
2184 pll_state->tx[0] = 0xbe88;
2185 pll_state->tx[1] = 0x9800;
2186 pll_state->tx[2] = 0x0000;
2187 pll_state->cmn[0] = 0x0500;
2188 pll_state->cmn[1] = 0x0005;
2189 pll_state->cmn[2] = 0x0000;
2190 pll_state->cmn[3] = 0x0000;
2191 pll_state->mpllb[0] = (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2192 MPLL_MULTIPLIER(mpll_multiplier));
2193 pll_state->mpllb[1] = (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2194 WORD_CLK_DIV |
2195 MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2196 pll_state->mpllb[2] = (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2197 CP_PROP(CP_PROP_20) |
2198 CP_INT(CP_INT_6));
2199 pll_state->mpllb[3] = (V2I(V2I_2) |
2200 CP_PROP_GS(CP_PROP_GS_30) |
2201 CP_INT_GS(CP_INT_GS_28));
2202 pll_state->mpllb[4] = 0x0000;
2203 pll_state->mpllb[5] = 0x0000;
2204 pll_state->mpllb[6] = (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2205 pll_state->mpllb[7] = MPLL_FRACN_DEN;
2206 pll_state->mpllb[8] = mpll_fracn_quot;
2207 pll_state->mpllb[9] = mpll_fracn_rem;
2208 pll_state->mpllb[10] = HDMI_DIV(HDMI_DIV_1);
2209
2210 return 0;
2211 }
2212
intel_c20_phy_check_hdmi_link_rate(int clock)2213 static int intel_c20_phy_check_hdmi_link_rate(int clock)
2214 {
2215 const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
2216 int i;
2217
2218 for (i = 0; tables[i]; i++) {
2219 if (clock == tables[i]->clock)
2220 return MODE_OK;
2221 }
2222
2223 if (clock >= 25175 && clock <= 594000)
2224 return MODE_OK;
2225
2226 return MODE_CLOCK_RANGE;
2227 }
2228
intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi * hdmi,int clock)2229 int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
2230 {
2231 struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
2232
2233 if (intel_encoder_is_c10phy(&dig_port->base))
2234 return intel_c10_phy_check_hdmi_link_rate(clock);
2235 return intel_c20_phy_check_hdmi_link_rate(clock);
2236 }
2237
2238 static const struct intel_c20pll_state * const *
intel_c20_pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2239 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2240 struct intel_encoder *encoder)
2241 {
2242 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2243
2244 if (intel_crtc_has_dp_encoder(crtc_state)) {
2245 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2246 return xe2hpd_c20_edp_tables;
2247
2248 if (DISPLAY_VER_FULL(i915) == IP_VER(14, 1))
2249 return xe2hpd_c20_dp_tables;
2250 else
2251 return mtl_c20_dp_tables;
2252
2253 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2254 return mtl_c20_hdmi_tables;
2255 }
2256
2257 MISSING_CASE(encoder->type);
2258 return NULL;
2259 }
2260
intel_c20pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2261 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2262 struct intel_encoder *encoder)
2263 {
2264 const struct intel_c20pll_state * const *tables;
2265 int i;
2266
2267 /* try computed C20 HDMI tables before using consolidated tables */
2268 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2269 if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock,
2270 &crtc_state->dpll_hw_state.cx0pll.c20) == 0)
2271 return 0;
2272 }
2273
2274 tables = intel_c20_pll_tables_get(crtc_state, encoder);
2275 if (!tables)
2276 return -EINVAL;
2277
2278 for (i = 0; tables[i]; i++) {
2279 if (crtc_state->port_clock == tables[i]->clock) {
2280 crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2281 crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
2282 return 0;
2283 }
2284 }
2285
2286 return -EINVAL;
2287 }
2288
intel_cx0pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2289 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2290 struct intel_encoder *encoder)
2291 {
2292 if (intel_encoder_is_c10phy(encoder))
2293 return intel_c10pll_calc_state(crtc_state, encoder);
2294 return intel_c20pll_calc_state(crtc_state, encoder);
2295 }
2296
intel_c20phy_use_mpllb(const struct intel_c20pll_state * state)2297 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2298 {
2299 return state->tx[0] & C20_PHY_USE_MPLLB;
2300 }
2301
intel_c20pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state)2302 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2303 const struct intel_c20pll_state *pll_state)
2304 {
2305 unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2306 unsigned int multiplier, refclk = 38400;
2307 unsigned int tx_clk_div;
2308 unsigned int ref_clk_mpllb_div;
2309 unsigned int fb_clk_div4_en;
2310 unsigned int ref, vco;
2311 unsigned int tx_rate_mult;
2312 unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2313
2314 if (intel_c20phy_use_mpllb(pll_state)) {
2315 tx_rate_mult = 1;
2316 frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2317 frac_quot = pll_state->mpllb[8];
2318 frac_rem = pll_state->mpllb[9];
2319 frac_den = pll_state->mpllb[7];
2320 multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2321 tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2322 ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2323 fb_clk_div4_en = 0;
2324 } else {
2325 tx_rate_mult = 2;
2326 frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2327 frac_quot = pll_state->mplla[8];
2328 frac_rem = pll_state->mplla[9];
2329 frac_den = pll_state->mplla[7];
2330 multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2331 tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2332 ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2333 fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2334 }
2335
2336 if (frac_en)
2337 frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2338 else
2339 frac = 0;
2340
2341 ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2342 vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2343
2344 return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2345 }
2346
intel_c20pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c20pll_state * pll_state)2347 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2348 struct intel_c20pll_state *pll_state)
2349 {
2350 bool cntx;
2351 intel_wakeref_t wakeref;
2352 int i;
2353 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2354
2355 wakeref = intel_cx0_phy_transaction_begin(encoder);
2356
2357 /* 1. Read current context selection */
2358 cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2359
2360 /* Read Tx configuration */
2361 for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2362 if (cntx)
2363 pll_state->tx[i] = intel_c20_sram_read(encoder,
2364 INTEL_CX0_LANE0,
2365 PHY_C20_B_TX_CNTX_CFG(i915, i));
2366 else
2367 pll_state->tx[i] = intel_c20_sram_read(encoder,
2368 INTEL_CX0_LANE0,
2369 PHY_C20_A_TX_CNTX_CFG(i915, i));
2370 }
2371
2372 /* Read common configuration */
2373 for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2374 if (cntx)
2375 pll_state->cmn[i] = intel_c20_sram_read(encoder,
2376 INTEL_CX0_LANE0,
2377 PHY_C20_B_CMN_CNTX_CFG(i915, i));
2378 else
2379 pll_state->cmn[i] = intel_c20_sram_read(encoder,
2380 INTEL_CX0_LANE0,
2381 PHY_C20_A_CMN_CNTX_CFG(i915, i));
2382 }
2383
2384 if (intel_c20phy_use_mpllb(pll_state)) {
2385 /* MPLLB configuration */
2386 for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2387 if (cntx)
2388 pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2389 INTEL_CX0_LANE0,
2390 PHY_C20_B_MPLLB_CNTX_CFG(i915, i));
2391 else
2392 pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2393 INTEL_CX0_LANE0,
2394 PHY_C20_A_MPLLB_CNTX_CFG(i915, i));
2395 }
2396 } else {
2397 /* MPLLA configuration */
2398 for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2399 if (cntx)
2400 pll_state->mplla[i] = intel_c20_sram_read(encoder,
2401 INTEL_CX0_LANE0,
2402 PHY_C20_B_MPLLA_CNTX_CFG(i915, i));
2403 else
2404 pll_state->mplla[i] = intel_c20_sram_read(encoder,
2405 INTEL_CX0_LANE0,
2406 PHY_C20_A_MPLLA_CNTX_CFG(i915, i));
2407 }
2408 }
2409
2410 pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2411
2412 intel_cx0_phy_transaction_end(encoder, wakeref);
2413 }
2414
intel_c20pll_dump_hw_state(struct drm_i915_private * i915,const struct intel_c20pll_state * hw_state)2415 static void intel_c20pll_dump_hw_state(struct drm_i915_private *i915,
2416 const struct intel_c20pll_state *hw_state)
2417 {
2418 int i;
2419
2420 drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n");
2421 drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2422 hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2423 drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2424 hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2425
2426 if (intel_c20phy_use_mpllb(hw_state)) {
2427 for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2428 drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]);
2429 } else {
2430 for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2431 drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]);
2432 }
2433 }
2434
intel_cx0pll_dump_hw_state(struct drm_i915_private * i915,const struct intel_cx0pll_state * hw_state)2435 void intel_cx0pll_dump_hw_state(struct drm_i915_private *i915,
2436 const struct intel_cx0pll_state *hw_state)
2437 {
2438 if (hw_state->use_c10)
2439 intel_c10pll_dump_hw_state(i915, &hw_state->c10);
2440 else
2441 intel_c20pll_dump_hw_state(i915, &hw_state->c20);
2442 }
2443
intel_c20_get_dp_rate(u32 clock)2444 static u8 intel_c20_get_dp_rate(u32 clock)
2445 {
2446 switch (clock) {
2447 case 162000: /* 1.62 Gbps DP1.4 */
2448 return 0;
2449 case 270000: /* 2.7 Gbps DP1.4 */
2450 return 1;
2451 case 540000: /* 5.4 Gbps DP 1.4 */
2452 return 2;
2453 case 810000: /* 8.1 Gbps DP1.4 */
2454 return 3;
2455 case 216000: /* 2.16 Gbps eDP */
2456 return 4;
2457 case 243000: /* 2.43 Gbps eDP */
2458 return 5;
2459 case 324000: /* 3.24 Gbps eDP */
2460 return 6;
2461 case 432000: /* 4.32 Gbps eDP */
2462 return 7;
2463 case 1000000: /* 10 Gbps DP2.0 */
2464 return 8;
2465 case 1350000: /* 13.5 Gbps DP2.0 */
2466 return 9;
2467 case 2000000: /* 20 Gbps DP2.0 */
2468 return 10;
2469 case 648000: /* 6.48 Gbps eDP*/
2470 return 11;
2471 case 675000: /* 6.75 Gbps eDP*/
2472 return 12;
2473 default:
2474 MISSING_CASE(clock);
2475 return 0;
2476 }
2477 }
2478
intel_c20_get_hdmi_rate(u32 clock)2479 static u8 intel_c20_get_hdmi_rate(u32 clock)
2480 {
2481 if (clock >= 25175 && clock <= 600000)
2482 return 0;
2483
2484 switch (clock) {
2485 case 300000: /* 3 Gbps */
2486 case 600000: /* 6 Gbps */
2487 case 1200000: /* 12 Gbps */
2488 return 1;
2489 case 800000: /* 8 Gbps */
2490 return 2;
2491 case 1000000: /* 10 Gbps */
2492 return 3;
2493 default:
2494 MISSING_CASE(clock);
2495 return 0;
2496 }
2497 }
2498
is_dp2(u32 clock)2499 static bool is_dp2(u32 clock)
2500 {
2501 /* DP2.0 clock rates */
2502 if (clock == 1000000 || clock == 1350000 || clock == 2000000)
2503 return true;
2504
2505 return false;
2506 }
2507
is_hdmi_frl(u32 clock)2508 static bool is_hdmi_frl(u32 clock)
2509 {
2510 switch (clock) {
2511 case 300000: /* 3 Gbps */
2512 case 600000: /* 6 Gbps */
2513 case 800000: /* 8 Gbps */
2514 case 1000000: /* 10 Gbps */
2515 case 1200000: /* 12 Gbps */
2516 return true;
2517 default:
2518 return false;
2519 }
2520 }
2521
intel_c20_protocol_switch_valid(struct intel_encoder * encoder)2522 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2523 {
2524 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2525
2526 /* banks should not be cleared for DPALT/USB4/TBT modes */
2527 /* TODO: optimize re-calibration in legacy mode */
2528 return intel_tc_port_in_legacy_mode(intel_dig_port);
2529 }
2530
intel_get_c20_custom_width(u32 clock,bool dp)2531 static int intel_get_c20_custom_width(u32 clock, bool dp)
2532 {
2533 if (dp && is_dp2(clock))
2534 return 2;
2535 else if (is_hdmi_frl(clock))
2536 return 1;
2537 else
2538 return 0;
2539 }
2540
intel_c20_pll_program(struct drm_i915_private * i915,const struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2541 static void intel_c20_pll_program(struct drm_i915_private *i915,
2542 const struct intel_crtc_state *crtc_state,
2543 struct intel_encoder *encoder)
2544 {
2545 const struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2546 bool dp = false;
2547 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2548 u32 clock = crtc_state->port_clock;
2549 bool cntx;
2550 int i;
2551
2552 if (intel_crtc_has_dp_encoder(crtc_state))
2553 dp = true;
2554
2555 /* 1. Read current context selection */
2556 cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2557
2558 /*
2559 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2560 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2561 * Protocol switch is only applicable for MPLLA
2562 */
2563 if (intel_c20_protocol_switch_valid(encoder)) {
2564 for (i = 0; i < 4; i++)
2565 intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2566 usleep_range(4000, 4100);
2567 }
2568
2569 /* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2570 /* 3.1 Tx configuration */
2571 for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2572 if (cntx)
2573 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2574 PHY_C20_A_TX_CNTX_CFG(i915, i),
2575 pll_state->tx[i]);
2576 else
2577 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2578 PHY_C20_B_TX_CNTX_CFG(i915, i),
2579 pll_state->tx[i]);
2580 }
2581
2582 /* 3.2 common configuration */
2583 for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2584 if (cntx)
2585 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2586 PHY_C20_A_CMN_CNTX_CFG(i915, i),
2587 pll_state->cmn[i]);
2588 else
2589 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2590 PHY_C20_B_CMN_CNTX_CFG(i915, i),
2591 pll_state->cmn[i]);
2592 }
2593
2594 /* 3.3 mpllb or mplla configuration */
2595 if (intel_c20phy_use_mpllb(pll_state)) {
2596 for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2597 if (cntx)
2598 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2599 PHY_C20_A_MPLLB_CNTX_CFG(i915, i),
2600 pll_state->mpllb[i]);
2601 else
2602 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2603 PHY_C20_B_MPLLB_CNTX_CFG(i915, i),
2604 pll_state->mpllb[i]);
2605 }
2606 } else {
2607 for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2608 if (cntx)
2609 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2610 PHY_C20_A_MPLLA_CNTX_CFG(i915, i),
2611 pll_state->mplla[i]);
2612 else
2613 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2614 PHY_C20_B_MPLLA_CNTX_CFG(i915, i),
2615 pll_state->mplla[i]);
2616 }
2617 }
2618
2619 /* 4. Program custom width to match the link protocol */
2620 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
2621 PHY_C20_CUSTOM_WIDTH_MASK,
2622 PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(clock, dp)),
2623 MB_WRITE_COMMITTED);
2624
2625 /* 5. For DP or 6. For HDMI */
2626 if (dp) {
2627 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2628 BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2629 BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(clock)),
2630 MB_WRITE_COMMITTED);
2631 } else {
2632 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2633 BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2634 is_hdmi_frl(clock) ? BIT(7) : 0,
2635 MB_WRITE_COMMITTED);
2636
2637 intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2638 intel_c20_get_hdmi_rate(clock),
2639 MB_WRITE_COMMITTED);
2640 }
2641
2642 /*
2643 * 7. Write Vendor specific registers to toggle context setting to load
2644 * the updated programming toggle context bit
2645 */
2646 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2647 BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2648 }
2649
intel_c10pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2650 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2651 const struct intel_c10pll_state *pll_state)
2652 {
2653 unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2654 unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2655 int tmpclk = 0;
2656
2657 if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2658 frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2659 frac_rem = pll_state->pll[14] << 8 | pll_state->pll[13];
2660 frac_den = pll_state->pll[10] << 8 | pll_state->pll[9];
2661 }
2662
2663 multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2664 pll_state->pll[2]) / 2 + 16;
2665
2666 tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2667 hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2668
2669 tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2670 DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2671 10 << (tx_clk_div + 16));
2672 tmpclk *= (hdmi_div ? 2 : 1);
2673
2674 return tmpclk;
2675 }
2676
intel_program_port_clock_ctl(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool lane_reversal)2677 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2678 const struct intel_crtc_state *crtc_state,
2679 bool lane_reversal)
2680 {
2681 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2682 u32 val = 0;
2683
2684 intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(i915, encoder->port),
2685 XELPDP_PORT_REVERSAL,
2686 lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2687
2688 if (lane_reversal)
2689 val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2690
2691 val |= XELPDP_FORWARD_CLOCK_UNGATE;
2692
2693 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
2694 is_hdmi_frl(crtc_state->port_clock))
2695 val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2696 else
2697 val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2698
2699 /* TODO: HDMI FRL */
2700 /* DP2.0 10G and 20G rates enable MPLLA*/
2701 if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
2702 val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2703 else
2704 val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2705
2706 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2707 XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2708 XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
2709 XELPDP_SSC_ENABLE_PLLB, val);
2710 }
2711
intel_cx0_get_powerdown_update(u8 lane_mask)2712 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2713 {
2714 u32 val = 0;
2715 int lane = 0;
2716
2717 for_each_cx0_lane_in_mask(lane_mask, lane)
2718 val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2719
2720 return val;
2721 }
2722
intel_cx0_get_powerdown_state(u8 lane_mask,u8 state)2723 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2724 {
2725 u32 val = 0;
2726 int lane = 0;
2727
2728 for_each_cx0_lane_in_mask(lane_mask, lane)
2729 val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2730
2731 return val;
2732 }
2733
intel_cx0_powerdown_change_sequence(struct intel_encoder * encoder,u8 lane_mask,u8 state)2734 static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2735 u8 lane_mask, u8 state)
2736 {
2737 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2738 enum port port = encoder->port;
2739 enum phy phy = intel_encoder_to_phy(encoder);
2740 i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(i915, port);
2741 int lane;
2742
2743 intel_de_rmw(i915, buf_ctl2_reg,
2744 intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2745 intel_cx0_get_powerdown_state(lane_mask, state));
2746
2747 /* Wait for pending transactions.*/
2748 for_each_cx0_lane_in_mask(lane_mask, lane)
2749 if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
2750 XELPDP_PORT_M2P_TRANSACTION_PENDING,
2751 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2752 drm_dbg_kms(&i915->drm,
2753 "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2754 phy_name(phy));
2755 intel_cx0_bus_reset(encoder, lane);
2756 }
2757
2758 intel_de_rmw(i915, buf_ctl2_reg,
2759 intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2760 intel_cx0_get_powerdown_update(lane_mask));
2761
2762 /* Update Timeout Value */
2763 if (intel_de_wait_custom(i915, buf_ctl2_reg,
2764 intel_cx0_get_powerdown_update(lane_mask), 0,
2765 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2766 drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2767 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2768 }
2769
intel_cx0_setup_powerdown(struct intel_encoder * encoder)2770 static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2771 {
2772 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2773 enum port port = encoder->port;
2774
2775 intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2776 XELPDP_POWER_STATE_READY_MASK,
2777 XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2778 intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(i915, port),
2779 XELPDP_POWER_STATE_ACTIVE_MASK |
2780 XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2781 XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2782 XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2783 }
2784
intel_cx0_get_pclk_refclk_request(u8 lane_mask)2785 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2786 {
2787 u32 val = 0;
2788 int lane = 0;
2789
2790 for_each_cx0_lane_in_mask(lane_mask, lane)
2791 val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2792
2793 return val;
2794 }
2795
intel_cx0_get_pclk_refclk_ack(u8 lane_mask)2796 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2797 {
2798 u32 val = 0;
2799 int lane = 0;
2800
2801 for_each_cx0_lane_in_mask(lane_mask, lane)
2802 val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2803
2804 return val;
2805 }
2806
intel_cx0_phy_lane_reset(struct intel_encoder * encoder,bool lane_reversal)2807 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2808 bool lane_reversal)
2809 {
2810 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2811 enum port port = encoder->port;
2812 enum phy phy = intel_encoder_to_phy(encoder);
2813 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2814 u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2815 u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2816 ? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2817 : XELPDP_LANE_PIPE_RESET(0);
2818 u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2819 ? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2820 XELPDP_LANE_PHY_CURRENT_STATUS(1))
2821 : XELPDP_LANE_PHY_CURRENT_STATUS(0);
2822
2823 if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL1(i915, port),
2824 XELPDP_PORT_BUF_SOC_PHY_READY,
2825 XELPDP_PORT_BUF_SOC_PHY_READY,
2826 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2827 drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n",
2828 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2829
2830 intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset,
2831 lane_pipe_reset);
2832
2833 if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2834 lane_phy_current_status, lane_phy_current_status,
2835 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2836 drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2837 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2838
2839 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
2840 intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2841 intel_cx0_get_pclk_refclk_request(lane_mask));
2842
2843 if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
2844 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2845 intel_cx0_get_pclk_refclk_ack(lane_mask),
2846 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2847 drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n",
2848 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2849
2850 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2851 CX0_P2_STATE_RESET);
2852 intel_cx0_setup_powerdown(encoder);
2853
2854 intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset, 0);
2855
2856 if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2857 lane_phy_current_status,
2858 XELPDP_PORT_RESET_END_TIMEOUT))
2859 drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n",
2860 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2861 }
2862
intel_cx0_program_phy_lane(struct drm_i915_private * i915,struct intel_encoder * encoder,int lane_count,bool lane_reversal)2863 static void intel_cx0_program_phy_lane(struct drm_i915_private *i915,
2864 struct intel_encoder *encoder, int lane_count,
2865 bool lane_reversal)
2866 {
2867 int i;
2868 u8 disables;
2869 bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2870 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2871
2872 if (intel_encoder_is_c10phy(encoder))
2873 intel_cx0_rmw(encoder, owned_lane_mask,
2874 PHY_C10_VDR_CONTROL(1), 0,
2875 C10_VDR_CTRL_MSGBUS_ACCESS,
2876 MB_WRITE_COMMITTED);
2877
2878 if (lane_reversal)
2879 disables = REG_GENMASK8(3, 0) >> lane_count;
2880 else
2881 disables = REG_GENMASK8(3, 0) << lane_count;
2882
2883 if (dp_alt_mode && lane_count == 1) {
2884 disables &= ~REG_GENMASK8(1, 0);
2885 disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2886 }
2887
2888 for (i = 0; i < 4; i++) {
2889 int tx = i % 2 + 1;
2890 u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2891
2892 if (!(owned_lane_mask & lane_mask))
2893 continue;
2894
2895 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2896 CONTROL2_DISABLE_SINGLE_TX,
2897 disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2898 MB_WRITE_COMMITTED);
2899 }
2900
2901 if (intel_encoder_is_c10phy(encoder))
2902 intel_cx0_rmw(encoder, owned_lane_mask,
2903 PHY_C10_VDR_CONTROL(1), 0,
2904 C10_VDR_CTRL_UPDATE_CFG,
2905 MB_WRITE_COMMITTED);
2906 }
2907
intel_cx0_get_pclk_pll_request(u8 lane_mask)2908 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2909 {
2910 u32 val = 0;
2911 int lane = 0;
2912
2913 for_each_cx0_lane_in_mask(lane_mask, lane)
2914 val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2915
2916 return val;
2917 }
2918
intel_cx0_get_pclk_pll_ack(u8 lane_mask)2919 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2920 {
2921 u32 val = 0;
2922 int lane = 0;
2923
2924 for_each_cx0_lane_in_mask(lane_mask, lane)
2925 val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2926
2927 return val;
2928 }
2929
intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)2930 static void intel_cx0pll_enable(struct intel_encoder *encoder,
2931 const struct intel_crtc_state *crtc_state)
2932 {
2933 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2934 enum phy phy = intel_encoder_to_phy(encoder);
2935 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2936 bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
2937 u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
2938 INTEL_CX0_LANE0;
2939 intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2940
2941 /*
2942 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2943 * clock muxes, gating and SSC
2944 */
2945 intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
2946
2947 /* 2. Bring PHY out of reset. */
2948 intel_cx0_phy_lane_reset(encoder, lane_reversal);
2949
2950 /*
2951 * 3. Change Phy power state to Ready.
2952 * TODO: For DP alt mode use only one lane.
2953 */
2954 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2955 CX0_P2_STATE_READY);
2956
2957 /*
2958 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
2959 * (This is done inside intel_cx0_phy_transaction_begin(), since we would need
2960 * the right timer thresholds for readouts too.)
2961 */
2962
2963 /* 5. Program PHY internal PLL internal registers. */
2964 if (intel_encoder_is_c10phy(encoder))
2965 intel_c10_pll_program(i915, crtc_state, encoder);
2966 else
2967 intel_c20_pll_program(i915, crtc_state, encoder);
2968
2969 /*
2970 * 6. Program the enabled and disabled owned PHY lane
2971 * transmitters over message bus
2972 */
2973 intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal);
2974
2975 /*
2976 * 7. Follow the Display Voltage Frequency Switching - Sequence
2977 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2978 */
2979
2980 /*
2981 * 8. Program DDI_CLK_VALFREQ to match intended DDI
2982 * clock frequency.
2983 */
2984 intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2985 crtc_state->port_clock);
2986
2987 /*
2988 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
2989 * LN<Lane for maxPCLK> to "1" to enable PLL.
2990 */
2991 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2992 intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
2993 intel_cx0_get_pclk_pll_request(maxpclk_lane));
2994
2995 /* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
2996 if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2997 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
2998 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
2999 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
3000 drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n",
3001 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
3002
3003 /*
3004 * 11. Follow the Display Voltage Frequency Switching Sequence After
3005 * Frequency Change. We handle this step in bxt_set_cdclk().
3006 */
3007
3008 /* TODO: enable TBT-ALT mode */
3009 intel_cx0_phy_transaction_end(encoder, wakeref);
3010 }
3011
intel_mtl_tbt_calc_port_clock(struct intel_encoder * encoder)3012 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
3013 {
3014 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3015 u32 clock;
3016 u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
3017
3018 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3019
3020 drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
3021 drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
3022 drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK));
3023
3024 switch (clock) {
3025 case XELPDP_DDI_CLOCK_SELECT_TBT_162:
3026 return 162000;
3027 case XELPDP_DDI_CLOCK_SELECT_TBT_270:
3028 return 270000;
3029 case XELPDP_DDI_CLOCK_SELECT_TBT_540:
3030 return 540000;
3031 case XELPDP_DDI_CLOCK_SELECT_TBT_810:
3032 return 810000;
3033 default:
3034 MISSING_CASE(clock);
3035 return 162000;
3036 }
3037 }
3038
intel_mtl_tbt_clock_select(struct drm_i915_private * i915,int clock)3039 static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock)
3040 {
3041 switch (clock) {
3042 case 162000:
3043 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3044 case 270000:
3045 return XELPDP_DDI_CLOCK_SELECT_TBT_270;
3046 case 540000:
3047 return XELPDP_DDI_CLOCK_SELECT_TBT_540;
3048 case 810000:
3049 return XELPDP_DDI_CLOCK_SELECT_TBT_810;
3050 default:
3051 MISSING_CASE(clock);
3052 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3053 }
3054 }
3055
intel_mtl_tbt_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3056 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
3057 const struct intel_crtc_state *crtc_state)
3058 {
3059 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3060 enum phy phy = intel_encoder_to_phy(encoder);
3061 u32 val = 0;
3062
3063 /*
3064 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3065 * clock muxes, gating and SSC
3066 */
3067 val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock));
3068 val |= XELPDP_FORWARD_CLOCK_UNGATE;
3069 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3070 XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
3071
3072 /* 2. Read back PORT_CLOCK_CTL REGISTER */
3073 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
3074
3075 /*
3076 * 3. Follow the Display Voltage Frequency Switching - Sequence
3077 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3078 */
3079
3080 /*
3081 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
3082 */
3083 val |= XELPDP_TBT_CLOCK_REQUEST;
3084 intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), val);
3085
3086 /* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
3087 if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3088 XELPDP_TBT_CLOCK_ACK,
3089 XELPDP_TBT_CLOCK_ACK,
3090 100, 0, NULL))
3091 drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
3092 encoder->base.base.id, encoder->base.name, phy_name(phy));
3093
3094 /*
3095 * 6. Follow the Display Voltage Frequency Switching Sequence After
3096 * Frequency Change. We handle this step in bxt_set_cdclk().
3097 */
3098
3099 /*
3100 * 7. Program DDI_CLK_VALFREQ to match intended DDI
3101 * clock frequency.
3102 */
3103 intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
3104 crtc_state->port_clock);
3105 }
3106
intel_mtl_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3107 void intel_mtl_pll_enable(struct intel_encoder *encoder,
3108 const struct intel_crtc_state *crtc_state)
3109 {
3110 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3111
3112 if (intel_tc_port_in_tbt_alt_mode(dig_port))
3113 intel_mtl_tbt_pll_enable(encoder, crtc_state);
3114 else
3115 intel_cx0pll_enable(encoder, crtc_state);
3116 }
3117
cx0_power_control_disable_val(struct intel_encoder * encoder)3118 static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
3119 {
3120 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3121
3122 if (intel_encoder_is_c10phy(encoder))
3123 return CX0_P2PG_STATE_DISABLE;
3124
3125 if (IS_BATTLEMAGE(i915) && encoder->port == PORT_A)
3126 return CX0_P2PG_STATE_DISABLE;
3127
3128 return CX0_P4PG_STATE_DISABLE;
3129 }
3130
intel_cx0pll_disable(struct intel_encoder * encoder)3131 static void intel_cx0pll_disable(struct intel_encoder *encoder)
3132 {
3133 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3134 enum phy phy = intel_encoder_to_phy(encoder);
3135 intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3136
3137 /* 1. Change owned PHY lane power to Disable state. */
3138 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3139 cx0_power_control_disable_val(encoder));
3140
3141 /*
3142 * 2. Follow the Display Voltage Frequency Switching Sequence Before
3143 * Frequency Change. We handle this step in bxt_set_cdclk().
3144 */
3145
3146 /*
3147 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
3148 * to "0" to disable PLL.
3149 */
3150 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3151 intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
3152 intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
3153
3154 /* 4. Program DDI_CLK_VALFREQ to 0. */
3155 intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
3156
3157 /*
3158 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
3159 */
3160 if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3161 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
3162 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
3163 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
3164 drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n",
3165 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
3166
3167 /*
3168 * 6. Follow the Display Voltage Frequency Switching Sequence After
3169 * Frequency Change. We handle this step in bxt_set_cdclk().
3170 */
3171
3172 /* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
3173 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3174 XELPDP_DDI_CLOCK_SELECT_MASK, 0);
3175 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3176 XELPDP_FORWARD_CLOCK_UNGATE, 0);
3177
3178 intel_cx0_phy_transaction_end(encoder, wakeref);
3179 }
3180
intel_mtl_tbt_pll_disable(struct intel_encoder * encoder)3181 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
3182 {
3183 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3184 enum phy phy = intel_encoder_to_phy(encoder);
3185
3186 /*
3187 * 1. Follow the Display Voltage Frequency Switching Sequence Before
3188 * Frequency Change. We handle this step in bxt_set_cdclk().
3189 */
3190
3191 /*
3192 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
3193 */
3194 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3195 XELPDP_TBT_CLOCK_REQUEST, 0);
3196
3197 /* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
3198 if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3199 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
3200 drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
3201 encoder->base.base.id, encoder->base.name, phy_name(phy));
3202
3203 /*
3204 * 4. Follow the Display Voltage Frequency Switching Sequence After
3205 * Frequency Change. We handle this step in bxt_set_cdclk().
3206 */
3207
3208 /*
3209 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
3210 */
3211 intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
3212 XELPDP_DDI_CLOCK_SELECT_MASK |
3213 XELPDP_FORWARD_CLOCK_UNGATE, 0);
3214
3215 /* 6. Program DDI_CLK_VALFREQ to 0. */
3216 intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
3217 }
3218
intel_mtl_pll_disable(struct intel_encoder * encoder)3219 void intel_mtl_pll_disable(struct intel_encoder *encoder)
3220 {
3221 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3222
3223 if (intel_tc_port_in_tbt_alt_mode(dig_port))
3224 intel_mtl_tbt_pll_disable(encoder);
3225 else
3226 intel_cx0pll_disable(encoder);
3227 }
3228
3229 enum icl_port_dpll_id
intel_mtl_port_pll_type(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3230 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3231 const struct intel_crtc_state *crtc_state)
3232 {
3233 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3234 /*
3235 * TODO: Determine the PLL type from the SW state, once MTL PLL
3236 * handling is done via the standard shared DPLL framework.
3237 */
3238 u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
3239 u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3240
3241 if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3242 clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3243 return ICL_PORT_DPLL_MG_PHY;
3244 else
3245 return ICL_PORT_DPLL_DEFAULT;
3246 }
3247
intel_c10pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c10pll_state * mpllb_hw_state)3248 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3249 struct intel_crtc *crtc,
3250 struct intel_encoder *encoder,
3251 struct intel_c10pll_state *mpllb_hw_state)
3252 {
3253 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3254 const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3255 int i;
3256
3257 for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3258 u8 expected = mpllb_sw_state->pll[i];
3259
3260 I915_STATE_WARN(i915, mpllb_hw_state->pll[i] != expected,
3261 "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3262 crtc->base.base.id, crtc->base.name, i,
3263 expected, mpllb_hw_state->pll[i]);
3264 }
3265
3266 I915_STATE_WARN(i915, mpllb_hw_state->tx != mpllb_sw_state->tx,
3267 "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3268 crtc->base.base.id, crtc->base.name,
3269 mpllb_sw_state->tx, mpllb_hw_state->tx);
3270
3271 I915_STATE_WARN(i915, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3272 "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3273 crtc->base.base.id, crtc->base.name,
3274 mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3275 }
3276
intel_cx0pll_readout_hw_state(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)3277 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3278 struct intel_cx0pll_state *pll_state)
3279 {
3280 pll_state->use_c10 = false;
3281
3282 pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
3283 if (pll_state->tbt_mode)
3284 return;
3285
3286 if (intel_encoder_is_c10phy(encoder)) {
3287 intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3288 pll_state->use_c10 = true;
3289 } else {
3290 intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3291 }
3292 }
3293
mtl_compare_hw_state_c10(const struct intel_c10pll_state * a,const struct intel_c10pll_state * b)3294 static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
3295 const struct intel_c10pll_state *b)
3296 {
3297 if (a->tx != b->tx)
3298 return false;
3299
3300 if (a->cmn != b->cmn)
3301 return false;
3302
3303 if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
3304 return false;
3305
3306 return true;
3307 }
3308
mtl_compare_hw_state_c20(const struct intel_c20pll_state * a,const struct intel_c20pll_state * b)3309 static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
3310 const struct intel_c20pll_state *b)
3311 {
3312 if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
3313 return false;
3314
3315 if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
3316 return false;
3317
3318 if (a->tx[0] & C20_PHY_USE_MPLLB) {
3319 if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
3320 return false;
3321 } else {
3322 if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
3323 return false;
3324 }
3325
3326 return true;
3327 }
3328
intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state * a,const struct intel_cx0pll_state * b)3329 bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
3330 const struct intel_cx0pll_state *b)
3331 {
3332 if (a->tbt_mode || b->tbt_mode)
3333 return true;
3334
3335 if (a->use_c10 != b->use_c10)
3336 return false;
3337
3338 if (a->use_c10)
3339 return mtl_compare_hw_state_c10(&a->c10,
3340 &b->c10);
3341 else
3342 return mtl_compare_hw_state_c20(&a->c20,
3343 &b->c20);
3344 }
3345
intel_cx0pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state)3346 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3347 const struct intel_cx0pll_state *pll_state)
3348 {
3349 if (intel_encoder_is_c10phy(encoder))
3350 return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3351
3352 return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3353 }
3354
intel_c20pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c20pll_state * mpll_hw_state)3355 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3356 struct intel_crtc *crtc,
3357 struct intel_encoder *encoder,
3358 struct intel_c20pll_state *mpll_hw_state)
3359 {
3360 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3361 const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3362 bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3363 bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3364 int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
3365 int i;
3366
3367 I915_STATE_WARN(i915, mpll_hw_state->clock != clock,
3368 "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3369 crtc->base.base.id, crtc->base.name,
3370 mpll_sw_state->clock, mpll_hw_state->clock);
3371
3372 I915_STATE_WARN(i915, sw_use_mpllb != hw_use_mpllb,
3373 "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3374 crtc->base.base.id, crtc->base.name,
3375 sw_use_mpllb, hw_use_mpllb);
3376
3377 if (hw_use_mpllb) {
3378 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3379 I915_STATE_WARN(i915, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3380 "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3381 crtc->base.base.id, crtc->base.name, i,
3382 mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3383 }
3384 } else {
3385 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3386 I915_STATE_WARN(i915, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3387 "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3388 crtc->base.base.id, crtc->base.name, i,
3389 mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3390 }
3391 }
3392
3393 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3394 I915_STATE_WARN(i915, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3395 "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3396 crtc->base.base.id, crtc->base.name, i,
3397 mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3398 }
3399
3400 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3401 I915_STATE_WARN(i915, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3402 "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3403 crtc->base.base.id, crtc->base.name, i,
3404 mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3405 }
3406 }
3407
intel_cx0pll_state_verify(struct intel_atomic_state * state,struct intel_crtc * crtc)3408 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3409 struct intel_crtc *crtc)
3410 {
3411 struct drm_i915_private *i915 = to_i915(state->base.dev);
3412 const struct intel_crtc_state *new_crtc_state =
3413 intel_atomic_get_new_crtc_state(state, crtc);
3414 struct intel_encoder *encoder;
3415 struct intel_cx0pll_state mpll_hw_state = {};
3416
3417 if (DISPLAY_VER(i915) < 14)
3418 return;
3419
3420 if (!new_crtc_state->hw.active)
3421 return;
3422
3423 /* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3424 if (!intel_crtc_needs_modeset(new_crtc_state) &&
3425 !intel_crtc_needs_fastset(new_crtc_state))
3426 return;
3427
3428 encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3429 intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3430
3431 if (mpll_hw_state.tbt_mode)
3432 return;
3433
3434 if (intel_encoder_is_c10phy(encoder))
3435 intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3436 else
3437 intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3438 }
3439