xref: /linux/drivers/gpu/drm/i915/display/intel_cx0_phy.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 #include "i915_reg.h"
9 #include "intel_cx0_phy.h"
10 #include "intel_cx0_phy_regs.h"
11 #include "intel_ddi.h"
12 #include "intel_ddi_buf_trans.h"
13 #include "intel_de.h"
14 #include "intel_display_types.h"
15 #include "intel_dp.h"
16 #include "intel_hdmi.h"
17 #include "intel_panel.h"
18 #include "intel_psr.h"
19 #include "intel_tc.h"
20 
21 #define MB_WRITE_COMMITTED      true
22 #define MB_WRITE_UNCOMMITTED    false
23 
24 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
25 	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
26 		for_each_if((__lane_mask) & BIT(__lane))
27 
28 #define INTEL_CX0_LANE0		BIT(0)
29 #define INTEL_CX0_LANE1		BIT(1)
30 #define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
31 
32 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
33 {
34 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
35 	enum phy phy = intel_encoder_to_phy(encoder);
36 
37 	if ((IS_LUNARLAKE(i915) || IS_METEORLAKE(i915)) && phy < PHY_C)
38 		return true;
39 
40 	return false;
41 }
42 
43 static int lane_mask_to_lane(u8 lane_mask)
44 {
45 	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
46 		    hweight8(lane_mask) != 1))
47 		return 0;
48 
49 	return ilog2(lane_mask);
50 }
51 
52 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
53 {
54 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
55 
56 	if (!intel_tc_port_in_dp_alt_mode(dig_port))
57 		return INTEL_CX0_BOTH_LANES;
58 
59 	/*
60 	 * In DP-alt with pin assignment D, only PHY lane 0 is owned
61 	 * by display and lane 1 is owned by USB.
62 	 */
63 	return intel_tc_port_max_lane_count(dig_port) > 2
64 		? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
65 }
66 
67 static void
68 assert_dc_off(struct drm_i915_private *i915)
69 {
70 	bool enabled;
71 
72 	enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
73 	drm_WARN_ON(&i915->drm, !enabled);
74 }
75 
76 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
77 {
78 	int lane;
79 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
80 
81 	for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
82 		intel_de_rmw(i915,
83 			     XELPDP_PORT_MSGBUS_TIMER(i915, encoder->port, lane),
84 			     XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
85 			     XELPDP_PORT_MSGBUS_TIMER_VAL);
86 }
87 
88 /*
89  * Prepare HW for CX0 phy transactions.
90  *
91  * It is required that PSR and DC5/6 are disabled before any CX0 message
92  * bus transaction is executed.
93  *
94  * We also do the msgbus timer programming here to ensure that the timer
95  * is already programmed before any access to the msgbus.
96  */
97 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
98 {
99 	intel_wakeref_t wakeref;
100 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
101 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
102 
103 	intel_psr_pause(intel_dp);
104 	wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
105 	intel_cx0_program_msgbus_timer(encoder);
106 
107 	return wakeref;
108 }
109 
110 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
111 {
112 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
113 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
114 
115 	intel_psr_resume(intel_dp);
116 	intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
117 }
118 
119 static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
120 					    int lane)
121 {
122 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
123 
124 	intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, encoder->port, lane),
125 		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
126 }
127 
128 static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
129 {
130 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
131 	enum port port = encoder->port;
132 	enum phy phy = intel_encoder_to_phy(encoder);
133 
134 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
135 		       XELPDP_PORT_M2P_TRANSACTION_RESET);
136 
137 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
138 				    XELPDP_PORT_M2P_TRANSACTION_RESET,
139 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
140 		drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy));
141 		return;
142 	}
143 
144 	intel_clear_response_ready_flag(encoder, lane);
145 }
146 
147 static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
148 				  int command, int lane, u32 *val)
149 {
150 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
151 	enum port port = encoder->port;
152 	enum phy phy = intel_encoder_to_phy(encoder);
153 
154 	if (intel_de_wait_custom(i915,
155 				 XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane),
156 				 XELPDP_PORT_P2M_RESPONSE_READY,
157 				 XELPDP_PORT_P2M_RESPONSE_READY,
158 				 XELPDP_MSGBUS_TIMEOUT_FAST_US,
159 				 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
160 		drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
161 			    phy_name(phy), *val);
162 
163 		if (!(intel_de_read(i915, XELPDP_PORT_MSGBUS_TIMER(i915, port, lane)) &
164 		      XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
165 			drm_dbg_kms(&i915->drm,
166 				    "PHY %c Hardware did not detect a timeout\n",
167 				    phy_name(phy));
168 
169 		intel_cx0_bus_reset(encoder, lane);
170 		return -ETIMEDOUT;
171 	}
172 
173 	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
174 		drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy),
175 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
176 		intel_cx0_bus_reset(encoder, lane);
177 		return -EINVAL;
178 	}
179 
180 	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
181 		drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy),
182 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
183 		intel_cx0_bus_reset(encoder, lane);
184 		return -EINVAL;
185 	}
186 
187 	return 0;
188 }
189 
190 static int __intel_cx0_read_once(struct intel_encoder *encoder,
191 				 int lane, u16 addr)
192 {
193 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
194 	enum port port = encoder->port;
195 	enum phy phy = intel_encoder_to_phy(encoder);
196 	int ack;
197 	u32 val;
198 
199 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
200 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
201 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
202 		drm_dbg_kms(&i915->drm,
203 			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
204 		intel_cx0_bus_reset(encoder, lane);
205 		return -ETIMEDOUT;
206 	}
207 
208 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
209 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
210 		       XELPDP_PORT_M2P_COMMAND_READ |
211 		       XELPDP_PORT_M2P_ADDRESS(addr));
212 
213 	ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
214 	if (ack < 0)
215 		return ack;
216 
217 	intel_clear_response_ready_flag(encoder, lane);
218 
219 	/*
220 	 * FIXME: Workaround to let HW to settle
221 	 * down and let the message bus to end up
222 	 * in a known state
223 	 */
224 	intel_cx0_bus_reset(encoder, lane);
225 
226 	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
227 }
228 
229 static u8 __intel_cx0_read(struct intel_encoder *encoder,
230 			   int lane, u16 addr)
231 {
232 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
233 	enum phy phy = intel_encoder_to_phy(encoder);
234 	int i, status;
235 
236 	assert_dc_off(i915);
237 
238 	/* 3 tries is assumed to be enough to read successfully */
239 	for (i = 0; i < 3; i++) {
240 		status = __intel_cx0_read_once(encoder, lane, addr);
241 
242 		if (status >= 0)
243 			return status;
244 	}
245 
246 	drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n",
247 		     phy_name(phy), addr, i);
248 
249 	return 0;
250 }
251 
252 static u8 intel_cx0_read(struct intel_encoder *encoder,
253 			 u8 lane_mask, u16 addr)
254 {
255 	int lane = lane_mask_to_lane(lane_mask);
256 
257 	return __intel_cx0_read(encoder, lane, addr);
258 }
259 
260 static int __intel_cx0_write_once(struct intel_encoder *encoder,
261 				  int lane, u16 addr, u8 data, bool committed)
262 {
263 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
264 	enum port port = encoder->port;
265 	enum phy phy = intel_encoder_to_phy(encoder);
266 	int ack;
267 	u32 val;
268 
269 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
270 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
271 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
272 		drm_dbg_kms(&i915->drm,
273 			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
274 		intel_cx0_bus_reset(encoder, lane);
275 		return -ETIMEDOUT;
276 	}
277 
278 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
279 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
280 		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
281 				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
282 		       XELPDP_PORT_M2P_DATA(data) |
283 		       XELPDP_PORT_M2P_ADDRESS(addr));
284 
285 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
286 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
287 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
288 		drm_dbg_kms(&i915->drm,
289 			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
290 		intel_cx0_bus_reset(encoder, lane);
291 		return -ETIMEDOUT;
292 	}
293 
294 	if (committed) {
295 		ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
296 		if (ack < 0)
297 			return ack;
298 	} else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane)) &
299 		    XELPDP_PORT_P2M_ERROR_SET)) {
300 		drm_dbg_kms(&i915->drm,
301 			    "PHY %c Error occurred during write command.\n", phy_name(phy));
302 		intel_cx0_bus_reset(encoder, lane);
303 		return -EINVAL;
304 	}
305 
306 	intel_clear_response_ready_flag(encoder, lane);
307 
308 	/*
309 	 * FIXME: Workaround to let HW to settle
310 	 * down and let the message bus to end up
311 	 * in a known state
312 	 */
313 	intel_cx0_bus_reset(encoder, lane);
314 
315 	return 0;
316 }
317 
318 static void __intel_cx0_write(struct intel_encoder *encoder,
319 			      int lane, u16 addr, u8 data, bool committed)
320 {
321 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
322 	enum phy phy = intel_encoder_to_phy(encoder);
323 	int i, status;
324 
325 	assert_dc_off(i915);
326 
327 	/* 3 tries is assumed to be enough to write successfully */
328 	for (i = 0; i < 3; i++) {
329 		status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
330 
331 		if (status == 0)
332 			return;
333 	}
334 
335 	drm_err_once(&i915->drm,
336 		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
337 }
338 
339 static void intel_cx0_write(struct intel_encoder *encoder,
340 			    u8 lane_mask, u16 addr, u8 data, bool committed)
341 {
342 	int lane;
343 
344 	for_each_cx0_lane_in_mask(lane_mask, lane)
345 		__intel_cx0_write(encoder, lane, addr, data, committed);
346 }
347 
348 static void intel_c20_sram_write(struct intel_encoder *encoder,
349 				 int lane, u16 addr, u16 data)
350 {
351 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
352 
353 	assert_dc_off(i915);
354 
355 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
356 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
357 
358 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
359 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
360 }
361 
362 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
363 			       int lane, u16 addr)
364 {
365 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
366 	u16 val;
367 
368 	assert_dc_off(i915);
369 
370 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
371 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
372 
373 	val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
374 	val <<= 8;
375 	val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
376 
377 	return val;
378 }
379 
380 static void __intel_cx0_rmw(struct intel_encoder *encoder,
381 			    int lane, u16 addr, u8 clear, u8 set, bool committed)
382 {
383 	u8 old, val;
384 
385 	old = __intel_cx0_read(encoder, lane, addr);
386 	val = (old & ~clear) | set;
387 
388 	if (val != old)
389 		__intel_cx0_write(encoder, lane, addr, val, committed);
390 }
391 
392 static void intel_cx0_rmw(struct intel_encoder *encoder,
393 			  u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
394 {
395 	u8 lane;
396 
397 	for_each_cx0_lane_in_mask(lane_mask, lane)
398 		__intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
399 }
400 
401 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
402 {
403 	if (intel_crtc_has_dp_encoder(crtc_state)) {
404 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
405 		    (crtc_state->port_clock == 540000 ||
406 		     crtc_state->port_clock == 810000))
407 			return 5;
408 		else
409 			return 4;
410 	} else {
411 		return 5;
412 	}
413 }
414 
415 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
416 {
417 	if (intel_crtc_has_dp_encoder(crtc_state)) {
418 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
419 		    (crtc_state->port_clock == 540000 ||
420 		     crtc_state->port_clock == 810000))
421 			return 5;
422 		else
423 			return 2;
424 	} else {
425 		return 6;
426 	}
427 }
428 
429 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
430 				     const struct intel_crtc_state *crtc_state)
431 {
432 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
433 	const struct intel_ddi_buf_trans *trans;
434 	u8 owned_lane_mask;
435 	intel_wakeref_t wakeref;
436 	int n_entries, ln;
437 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
438 
439 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
440 		return;
441 
442 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
443 
444 	wakeref = intel_cx0_phy_transaction_begin(encoder);
445 
446 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
447 	if (drm_WARN_ON_ONCE(&i915->drm, !trans)) {
448 		intel_cx0_phy_transaction_end(encoder, wakeref);
449 		return;
450 	}
451 
452 	if (intel_encoder_is_c10phy(encoder)) {
453 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
454 			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
455 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
456 			      C10_CMN3_TXVBOOST_MASK,
457 			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
458 			      MB_WRITE_UNCOMMITTED);
459 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
460 			      C10_TX1_TERMCTL_MASK,
461 			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
462 			      MB_WRITE_COMMITTED);
463 	}
464 
465 	for (ln = 0; ln < crtc_state->lane_count; ln++) {
466 		int level = intel_ddi_level(encoder, crtc_state, ln);
467 		int lane = ln / 2;
468 		int tx = ln % 2;
469 		u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
470 
471 		if (!(lane_mask & owned_lane_mask))
472 			continue;
473 
474 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
475 			      C10_PHY_OVRD_LEVEL_MASK,
476 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
477 			      MB_WRITE_COMMITTED);
478 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
479 			      C10_PHY_OVRD_LEVEL_MASK,
480 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
481 			      MB_WRITE_COMMITTED);
482 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
483 			      C10_PHY_OVRD_LEVEL_MASK,
484 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
485 			      MB_WRITE_COMMITTED);
486 	}
487 
488 	/* Write Override enables in 0xD71 */
489 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
490 		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
491 		      MB_WRITE_COMMITTED);
492 
493 	if (intel_encoder_is_c10phy(encoder))
494 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
495 			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
496 
497 	intel_cx0_phy_transaction_end(encoder, wakeref);
498 }
499 
500 /*
501  * Basic DP link rates with 38.4 MHz reference clock.
502  * Note: The tables below are with SSC. In non-ssc
503  * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
504  * programmed 0.
505  */
506 
507 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
508 	.clock = 162000,
509 	.tx = 0x10,
510 	.cmn = 0x21,
511 	.pll[0] = 0xB4,
512 	.pll[1] = 0,
513 	.pll[2] = 0x30,
514 	.pll[3] = 0x1,
515 	.pll[4] = 0x26,
516 	.pll[5] = 0x0C,
517 	.pll[6] = 0x98,
518 	.pll[7] = 0x46,
519 	.pll[8] = 0x1,
520 	.pll[9] = 0x1,
521 	.pll[10] = 0,
522 	.pll[11] = 0,
523 	.pll[12] = 0xC0,
524 	.pll[13] = 0,
525 	.pll[14] = 0,
526 	.pll[15] = 0x2,
527 	.pll[16] = 0x84,
528 	.pll[17] = 0x4F,
529 	.pll[18] = 0xE5,
530 	.pll[19] = 0x23,
531 };
532 
533 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
534 	.clock = 216000,
535 	.tx = 0x10,
536 	.cmn = 0x21,
537 	.pll[0] = 0x4,
538 	.pll[1] = 0,
539 	.pll[2] = 0xA2,
540 	.pll[3] = 0x1,
541 	.pll[4] = 0x33,
542 	.pll[5] = 0x10,
543 	.pll[6] = 0x75,
544 	.pll[7] = 0xB3,
545 	.pll[8] = 0x1,
546 	.pll[9] = 0x1,
547 	.pll[10] = 0,
548 	.pll[11] = 0,
549 	.pll[12] = 0,
550 	.pll[13] = 0,
551 	.pll[14] = 0,
552 	.pll[15] = 0x2,
553 	.pll[16] = 0x85,
554 	.pll[17] = 0x0F,
555 	.pll[18] = 0xE6,
556 	.pll[19] = 0x23,
557 };
558 
559 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
560 	.clock = 243000,
561 	.tx = 0x10,
562 	.cmn = 0x21,
563 	.pll[0] = 0x34,
564 	.pll[1] = 0,
565 	.pll[2] = 0xDA,
566 	.pll[3] = 0x1,
567 	.pll[4] = 0x39,
568 	.pll[5] = 0x12,
569 	.pll[6] = 0xE3,
570 	.pll[7] = 0xE9,
571 	.pll[8] = 0x1,
572 	.pll[9] = 0x1,
573 	.pll[10] = 0,
574 	.pll[11] = 0,
575 	.pll[12] = 0x20,
576 	.pll[13] = 0,
577 	.pll[14] = 0,
578 	.pll[15] = 0x2,
579 	.pll[16] = 0x85,
580 	.pll[17] = 0x8F,
581 	.pll[18] = 0xE6,
582 	.pll[19] = 0x23,
583 };
584 
585 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
586 	.clock = 270000,
587 	.tx = 0x10,
588 	.cmn = 0x21,
589 	.pll[0] = 0xF4,
590 	.pll[1] = 0,
591 	.pll[2] = 0xF8,
592 	.pll[3] = 0x0,
593 	.pll[4] = 0x20,
594 	.pll[5] = 0x0A,
595 	.pll[6] = 0x29,
596 	.pll[7] = 0x10,
597 	.pll[8] = 0x1,   /* Verify */
598 	.pll[9] = 0x1,
599 	.pll[10] = 0,
600 	.pll[11] = 0,
601 	.pll[12] = 0xA0,
602 	.pll[13] = 0,
603 	.pll[14] = 0,
604 	.pll[15] = 0x1,
605 	.pll[16] = 0x84,
606 	.pll[17] = 0x4F,
607 	.pll[18] = 0xE5,
608 	.pll[19] = 0x23,
609 };
610 
611 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
612 	.clock = 324000,
613 	.tx = 0x10,
614 	.cmn = 0x21,
615 	.pll[0] = 0xB4,
616 	.pll[1] = 0,
617 	.pll[2] = 0x30,
618 	.pll[3] = 0x1,
619 	.pll[4] = 0x26,
620 	.pll[5] = 0x0C,
621 	.pll[6] = 0x98,
622 	.pll[7] = 0x46,
623 	.pll[8] = 0x1,
624 	.pll[9] = 0x1,
625 	.pll[10] = 0,
626 	.pll[11] = 0,
627 	.pll[12] = 0xC0,
628 	.pll[13] = 0,
629 	.pll[14] = 0,
630 	.pll[15] = 0x1,
631 	.pll[16] = 0x85,
632 	.pll[17] = 0x4F,
633 	.pll[18] = 0xE6,
634 	.pll[19] = 0x23,
635 };
636 
637 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
638 	.clock = 432000,
639 	.tx = 0x10,
640 	.cmn = 0x21,
641 	.pll[0] = 0x4,
642 	.pll[1] = 0,
643 	.pll[2] = 0xA2,
644 	.pll[3] = 0x1,
645 	.pll[4] = 0x33,
646 	.pll[5] = 0x10,
647 	.pll[6] = 0x75,
648 	.pll[7] = 0xB3,
649 	.pll[8] = 0x1,
650 	.pll[9] = 0x1,
651 	.pll[10] = 0,
652 	.pll[11] = 0,
653 	.pll[12] = 0,
654 	.pll[13] = 0,
655 	.pll[14] = 0,
656 	.pll[15] = 0x1,
657 	.pll[16] = 0x85,
658 	.pll[17] = 0x0F,
659 	.pll[18] = 0xE6,
660 	.pll[19] = 0x23,
661 };
662 
663 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
664 	.clock = 540000,
665 	.tx = 0x10,
666 	.cmn = 0x21,
667 	.pll[0] = 0xF4,
668 	.pll[1] = 0,
669 	.pll[2] = 0xF8,
670 	.pll[3] = 0,
671 	.pll[4] = 0x20,
672 	.pll[5] = 0x0A,
673 	.pll[6] = 0x29,
674 	.pll[7] = 0x10,
675 	.pll[8] = 0x1,
676 	.pll[9] = 0x1,
677 	.pll[10] = 0,
678 	.pll[11] = 0,
679 	.pll[12] = 0xA0,
680 	.pll[13] = 0,
681 	.pll[14] = 0,
682 	.pll[15] = 0,
683 	.pll[16] = 0x84,
684 	.pll[17] = 0x4F,
685 	.pll[18] = 0xE5,
686 	.pll[19] = 0x23,
687 };
688 
689 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
690 	.clock = 675000,
691 	.tx = 0x10,
692 	.cmn = 0x21,
693 	.pll[0] = 0xB4,
694 	.pll[1] = 0,
695 	.pll[2] = 0x3E,
696 	.pll[3] = 0x1,
697 	.pll[4] = 0xA8,
698 	.pll[5] = 0x0C,
699 	.pll[6] = 0x33,
700 	.pll[7] = 0x54,
701 	.pll[8] = 0x1,
702 	.pll[9] = 0x1,
703 	.pll[10] = 0,
704 	.pll[11] = 0,
705 	.pll[12] = 0xC8,
706 	.pll[13] = 0,
707 	.pll[14] = 0,
708 	.pll[15] = 0,
709 	.pll[16] = 0x85,
710 	.pll[17] = 0x8F,
711 	.pll[18] = 0xE6,
712 	.pll[19] = 0x23,
713 };
714 
715 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
716 	.clock = 810000,
717 	.tx = 0x10,
718 	.cmn = 0x21,
719 	.pll[0] = 0x34,
720 	.pll[1] = 0,
721 	.pll[2] = 0x84,
722 	.pll[3] = 0x1,
723 	.pll[4] = 0x30,
724 	.pll[5] = 0x0F,
725 	.pll[6] = 0x3D,
726 	.pll[7] = 0x98,
727 	.pll[8] = 0x1,
728 	.pll[9] = 0x1,
729 	.pll[10] = 0,
730 	.pll[11] = 0,
731 	.pll[12] = 0xF0,
732 	.pll[13] = 0,
733 	.pll[14] = 0,
734 	.pll[15] = 0,
735 	.pll[16] = 0x84,
736 	.pll[17] = 0x0F,
737 	.pll[18] = 0xE5,
738 	.pll[19] = 0x23,
739 };
740 
741 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
742 	&mtl_c10_dp_rbr,
743 	&mtl_c10_dp_hbr1,
744 	&mtl_c10_dp_hbr2,
745 	&mtl_c10_dp_hbr3,
746 	NULL,
747 };
748 
749 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
750 	&mtl_c10_dp_rbr,
751 	&mtl_c10_edp_r216,
752 	&mtl_c10_edp_r243,
753 	&mtl_c10_dp_hbr1,
754 	&mtl_c10_edp_r324,
755 	&mtl_c10_edp_r432,
756 	&mtl_c10_dp_hbr2,
757 	&mtl_c10_edp_r675,
758 	&mtl_c10_dp_hbr3,
759 	NULL,
760 };
761 
762 /* C20 basic DP 1.4 tables */
763 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
764 	.clock = 162000,
765 	.tx = {	0xbe88, /* tx cfg0 */
766 		0x5800, /* tx cfg1 */
767 		0x0000, /* tx cfg2 */
768 		},
769 	.cmn = {0x0500, /* cmn cfg0*/
770 		0x0005, /* cmn cfg1 */
771 		0x0000, /* cmn cfg2 */
772 		0x0000, /* cmn cfg3 */
773 		},
774 	.mpllb = { 0x50a8,	/* mpllb cfg0 */
775 		0x2120,		/* mpllb cfg1 */
776 		0xcd9a,		/* mpllb cfg2 */
777 		0xbfc1,		/* mpllb cfg3 */
778 		0x5ab8,         /* mpllb cfg4 */
779 		0x4c34,         /* mpllb cfg5 */
780 		0x2000,		/* mpllb cfg6 */
781 		0x0001,		/* mpllb cfg7 */
782 		0x6000,		/* mpllb cfg8 */
783 		0x0000,		/* mpllb cfg9 */
784 		0x0000,		/* mpllb cfg10 */
785 		},
786 };
787 
788 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
789 	.clock = 270000,
790 	.tx = {	0xbe88, /* tx cfg0 */
791 		0x4800, /* tx cfg1 */
792 		0x0000, /* tx cfg2 */
793 		},
794 	.cmn = {0x0500, /* cmn cfg0*/
795 		0x0005, /* cmn cfg1 */
796 		0x0000, /* cmn cfg2 */
797 		0x0000, /* cmn cfg3 */
798 		},
799 	.mpllb = { 0x308c,	/* mpllb cfg0 */
800 		0x2110,		/* mpllb cfg1 */
801 		0xcc9c,		/* mpllb cfg2 */
802 		0xbfc1,		/* mpllb cfg3 */
803 		0x4b9a,         /* mpllb cfg4 */
804 		0x3f81,         /* mpllb cfg5 */
805 		0x2000,		/* mpllb cfg6 */
806 		0x0001,		/* mpllb cfg7 */
807 		0x5000,		/* mpllb cfg8 */
808 		0x0000,		/* mpllb cfg9 */
809 		0x0000,		/* mpllb cfg10 */
810 		},
811 };
812 
813 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
814 	.clock = 540000,
815 	.tx = {	0xbe88, /* tx cfg0 */
816 		0x4800, /* tx cfg1 */
817 		0x0000, /* tx cfg2 */
818 		},
819 	.cmn = {0x0500, /* cmn cfg0*/
820 		0x0005, /* cmn cfg1 */
821 		0x0000, /* cmn cfg2 */
822 		0x0000, /* cmn cfg3 */
823 		},
824 	.mpllb = { 0x108c,	/* mpllb cfg0 */
825 		0x2108,		/* mpllb cfg1 */
826 		0xcc9c,		/* mpllb cfg2 */
827 		0xbfc1,		/* mpllb cfg3 */
828 		0x4b9a,         /* mpllb cfg4 */
829 		0x3f81,         /* mpllb cfg5 */
830 		0x2000,		/* mpllb cfg6 */
831 		0x0001,		/* mpllb cfg7 */
832 		0x5000,		/* mpllb cfg8 */
833 		0x0000,		/* mpllb cfg9 */
834 		0x0000,		/* mpllb cfg10 */
835 		},
836 };
837 
838 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
839 	.clock = 810000,
840 	.tx = {	0xbe88, /* tx cfg0 */
841 		0x4800, /* tx cfg1 */
842 		0x0000, /* tx cfg2 */
843 		},
844 	.cmn = {0x0500, /* cmn cfg0*/
845 		0x0005, /* cmn cfg1 */
846 		0x0000, /* cmn cfg2 */
847 		0x0000, /* cmn cfg3 */
848 		},
849 	.mpllb = { 0x10d2,	/* mpllb cfg0 */
850 		0x2108,		/* mpllb cfg1 */
851 		0x8d98,		/* mpllb cfg2 */
852 		0xbfc1,		/* mpllb cfg3 */
853 		0x7166,         /* mpllb cfg4 */
854 		0x5f42,         /* mpllb cfg5 */
855 		0x2000,		/* mpllb cfg6 */
856 		0x0001,		/* mpllb cfg7 */
857 		0x7800,		/* mpllb cfg8 */
858 		0x0000,		/* mpllb cfg9 */
859 		0x0000,		/* mpllb cfg10 */
860 		},
861 };
862 
863 /* C20 basic DP 2.0 tables */
864 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
865 	.clock = 1000000, /* 10 Gbps */
866 	.tx = {	0xbe21, /* tx cfg0 */
867 		0xe800, /* tx cfg1 */
868 		0x0000, /* tx cfg2 */
869 		},
870 	.cmn = {0x0700, /* cmn cfg0*/
871 		0x0005, /* cmn cfg1 */
872 		0x0000, /* cmn cfg2 */
873 		0x0000, /* cmn cfg3 */
874 		},
875 	.mplla = { 0x3104,	/* mplla cfg0 */
876 		0xd105,		/* mplla cfg1 */
877 		0xc025,		/* mplla cfg2 */
878 		0xc025,		/* mplla cfg3 */
879 		0x8c00,		/* mplla cfg4 */
880 		0x759a,		/* mplla cfg5 */
881 		0x4000,		/* mplla cfg6 */
882 		0x0003,		/* mplla cfg7 */
883 		0x3555,		/* mplla cfg8 */
884 		0x0001,		/* mplla cfg9 */
885 		},
886 };
887 
888 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
889 	.clock = 1350000, /* 13.5 Gbps */
890 	.tx = {	0xbea0, /* tx cfg0 */
891 		0x4800, /* tx cfg1 */
892 		0x0000, /* tx cfg2 */
893 		},
894 	.cmn = {0x0500, /* cmn cfg0*/
895 		0x0005, /* cmn cfg1 */
896 		0x0000, /* cmn cfg2 */
897 		0x0000, /* cmn cfg3 */
898 		},
899 	.mpllb = { 0x015f,	/* mpllb cfg0 */
900 		0x2205,		/* mpllb cfg1 */
901 		0x1b17,		/* mpllb cfg2 */
902 		0xffc1,		/* mpllb cfg3 */
903 		0xe100,		/* mpllb cfg4 */
904 		0xbd00,		/* mpllb cfg5 */
905 		0x2000,		/* mpllb cfg6 */
906 		0x0001,		/* mpllb cfg7 */
907 		0x4800,		/* mpllb cfg8 */
908 		0x0000,		/* mpllb cfg9 */
909 		0x0000,		/* mpllb cfg10 */
910 		},
911 };
912 
913 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
914 	.clock = 2000000, /* 20 Gbps */
915 	.tx = {	0xbe20, /* tx cfg0 */
916 		0x4800, /* tx cfg1 */
917 		0x0000, /* tx cfg2 */
918 		},
919 	.cmn = {0x0500, /* cmn cfg0*/
920 		0x0005, /* cmn cfg1 */
921 		0x0000, /* cmn cfg2 */
922 		0x0000, /* cmn cfg3 */
923 		},
924 	.mplla = { 0x3104,	/* mplla cfg0 */
925 		0xd105,		/* mplla cfg1 */
926 		0xc025,		/* mplla cfg2 */
927 		0xc025,		/* mplla cfg3 */
928 		0xa6ab,		/* mplla cfg4 */
929 		0x8c00,		/* mplla cfg5 */
930 		0x4000,		/* mplla cfg6 */
931 		0x0003,		/* mplla cfg7 */
932 		0x3555,		/* mplla cfg8 */
933 		0x0001,		/* mplla cfg9 */
934 		},
935 };
936 
937 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
938 	&mtl_c20_dp_rbr,
939 	&mtl_c20_dp_hbr1,
940 	&mtl_c20_dp_hbr2,
941 	&mtl_c20_dp_hbr3,
942 	&mtl_c20_dp_uhbr10,
943 	&mtl_c20_dp_uhbr13_5,
944 	&mtl_c20_dp_uhbr20,
945 	NULL,
946 };
947 
948 /*
949  * HDMI link rates with 38.4 MHz reference clock.
950  */
951 
952 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
953 	.clock = 25200,
954 	.tx = 0x10,
955 	.cmn = 0x1,
956 	.pll[0] = 0x4,
957 	.pll[1] = 0,
958 	.pll[2] = 0xB2,
959 	.pll[3] = 0,
960 	.pll[4] = 0,
961 	.pll[5] = 0,
962 	.pll[6] = 0,
963 	.pll[7] = 0,
964 	.pll[8] = 0x20,
965 	.pll[9] = 0x1,
966 	.pll[10] = 0,
967 	.pll[11] = 0,
968 	.pll[12] = 0,
969 	.pll[13] = 0,
970 	.pll[14] = 0,
971 	.pll[15] = 0xD,
972 	.pll[16] = 0x6,
973 	.pll[17] = 0x8F,
974 	.pll[18] = 0x84,
975 	.pll[19] = 0x23,
976 };
977 
978 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
979 	.clock = 27000,
980 	.tx = 0x10,
981 	.cmn = 0x1,
982 	.pll[0] = 0x34,
983 	.pll[1] = 0,
984 	.pll[2] = 0xC0,
985 	.pll[3] = 0,
986 	.pll[4] = 0,
987 	.pll[5] = 0,
988 	.pll[6] = 0,
989 	.pll[7] = 0,
990 	.pll[8] = 0x20,
991 	.pll[9] = 0x1,
992 	.pll[10] = 0,
993 	.pll[11] = 0,
994 	.pll[12] = 0x80,
995 	.pll[13] = 0,
996 	.pll[14] = 0,
997 	.pll[15] = 0xD,
998 	.pll[16] = 0x6,
999 	.pll[17] = 0xCF,
1000 	.pll[18] = 0x84,
1001 	.pll[19] = 0x23,
1002 };
1003 
1004 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1005 	.clock = 74250,
1006 	.tx = 0x10,
1007 	.cmn = 0x1,
1008 	.pll[0] = 0xF4,
1009 	.pll[1] = 0,
1010 	.pll[2] = 0x7A,
1011 	.pll[3] = 0,
1012 	.pll[4] = 0,
1013 	.pll[5] = 0,
1014 	.pll[6] = 0,
1015 	.pll[7] = 0,
1016 	.pll[8] = 0x20,
1017 	.pll[9] = 0x1,
1018 	.pll[10] = 0,
1019 	.pll[11] = 0,
1020 	.pll[12] = 0x58,
1021 	.pll[13] = 0,
1022 	.pll[14] = 0,
1023 	.pll[15] = 0xB,
1024 	.pll[16] = 0x6,
1025 	.pll[17] = 0xF,
1026 	.pll[18] = 0x85,
1027 	.pll[19] = 0x23,
1028 };
1029 
1030 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1031 	.clock = 148500,
1032 	.tx = 0x10,
1033 	.cmn = 0x1,
1034 	.pll[0] = 0xF4,
1035 	.pll[1] = 0,
1036 	.pll[2] = 0x7A,
1037 	.pll[3] = 0,
1038 	.pll[4] = 0,
1039 	.pll[5] = 0,
1040 	.pll[6] = 0,
1041 	.pll[7] = 0,
1042 	.pll[8] = 0x20,
1043 	.pll[9] = 0x1,
1044 	.pll[10] = 0,
1045 	.pll[11] = 0,
1046 	.pll[12] = 0x58,
1047 	.pll[13] = 0,
1048 	.pll[14] = 0,
1049 	.pll[15] = 0xA,
1050 	.pll[16] = 0x6,
1051 	.pll[17] = 0xF,
1052 	.pll[18] = 0x85,
1053 	.pll[19] = 0x23,
1054 };
1055 
1056 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1057 	.clock = 594000,
1058 	.tx = 0x10,
1059 	.cmn = 0x1,
1060 	.pll[0] = 0xF4,
1061 	.pll[1] = 0,
1062 	.pll[2] = 0x7A,
1063 	.pll[3] = 0,
1064 	.pll[4] = 0,
1065 	.pll[5] = 0,
1066 	.pll[6] = 0,
1067 	.pll[7] = 0,
1068 	.pll[8] = 0x20,
1069 	.pll[9] = 0x1,
1070 	.pll[10] = 0,
1071 	.pll[11] = 0,
1072 	.pll[12] = 0x58,
1073 	.pll[13] = 0,
1074 	.pll[14] = 0,
1075 	.pll[15] = 0x8,
1076 	.pll[16] = 0x6,
1077 	.pll[17] = 0xF,
1078 	.pll[18] = 0x85,
1079 	.pll[19] = 0x23,
1080 };
1081 
1082 /* Precomputed C10 HDMI PLL tables */
1083 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1084 	.clock = 27027,
1085 	.tx = 0x10,
1086 	.cmn = 0x1,
1087 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1088 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1089 	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1090 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1091 };
1092 
1093 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1094 	.clock = 28320,
1095 	.tx = 0x10,
1096 	.cmn = 0x1,
1097 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1098 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1099 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1100 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1101 };
1102 
1103 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1104 	.clock = 30240,
1105 	.tx = 0x10,
1106 	.cmn = 0x1,
1107 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1108 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1109 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1110 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1111 };
1112 
1113 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1114 	.clock = 31500,
1115 	.tx = 0x10,
1116 	.cmn = 0x1,
1117 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1118 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1119 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1120 	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1121 };
1122 
1123 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1124 	.clock = 36000,
1125 	.tx = 0x10,
1126 	.cmn = 0x1,
1127 	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1128 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1129 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1130 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1131 };
1132 
1133 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1134 	.clock = 40000,
1135 	.tx = 0x10,
1136 	.cmn = 0x1,
1137 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1138 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1139 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1140 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1141 };
1142 
1143 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1144 	.clock = 49500,
1145 	.tx = 0x10,
1146 	.cmn = 0x1,
1147 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1148 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1149 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1150 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1151 };
1152 
1153 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1154 	.clock = 50000,
1155 	.tx = 0x10,
1156 	.cmn = 0x1,
1157 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1158 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1159 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1160 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1161 };
1162 
1163 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1164 	.clock = 57284,
1165 	.tx = 0x10,
1166 	.cmn = 0x1,
1167 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1168 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1169 	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1170 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1171 };
1172 
1173 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1174 	.clock = 58000,
1175 	.tx = 0x10,
1176 	.cmn = 0x1,
1177 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1178 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1179 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1180 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1181 };
1182 
1183 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1184 	.clock = 65000,
1185 	.tx = 0x10,
1186 	.cmn = 0x1,
1187 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1188 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1189 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1190 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1191 };
1192 
1193 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1194 	.clock = 71000,
1195 	.tx = 0x10,
1196 	.cmn = 0x1,
1197 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1198 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1199 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1200 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1201 };
1202 
1203 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1204 	.clock = 74176,
1205 	.tx = 0x10,
1206 	.cmn = 0x1,
1207 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1208 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1209 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1210 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1211 };
1212 
1213 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1214 	.clock = 75000,
1215 	.tx = 0x10,
1216 	.cmn = 0x1,
1217 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1218 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1219 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1220 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1221 };
1222 
1223 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1224 	.clock = 78750,
1225 	.tx = 0x10,
1226 	.cmn = 0x1,
1227 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1228 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1229 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1230 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1231 };
1232 
1233 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1234 	.clock = 85500,
1235 	.tx = 0x10,
1236 	.cmn = 0x1,
1237 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1238 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1239 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1240 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1241 };
1242 
1243 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1244 	.clock = 88750,
1245 	.tx = 0x10,
1246 	.cmn = 0x1,
1247 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1248 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1249 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1250 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1251 };
1252 
1253 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1254 	.clock = 106500,
1255 	.tx = 0x10,
1256 	.cmn = 0x1,
1257 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1258 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1259 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1260 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1261 };
1262 
1263 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1264 	.clock = 108000,
1265 	.tx = 0x10,
1266 	.cmn = 0x1,
1267 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1268 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1269 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1270 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1271 };
1272 
1273 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1274 	.clock = 115500,
1275 	.tx = 0x10,
1276 	.cmn = 0x1,
1277 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1278 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1279 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1280 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1281 };
1282 
1283 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1284 	.clock = 119000,
1285 	.tx = 0x10,
1286 	.cmn = 0x1,
1287 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1288 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1289 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1290 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1291 };
1292 
1293 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1294 	.clock = 135000,
1295 	.tx = 0x10,
1296 	.cmn = 0x1,
1297 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1298 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1299 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1300 	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1301 };
1302 
1303 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1304 	.clock = 138500,
1305 	.tx = 0x10,
1306 	.cmn = 0x1,
1307 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1308 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1309 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1310 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1311 };
1312 
1313 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1314 	.clock = 147160,
1315 	.tx = 0x10,
1316 	.cmn = 0x1,
1317 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1318 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1319 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1320 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1321 };
1322 
1323 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1324 	.clock = 148352,
1325 	.tx = 0x10,
1326 	.cmn = 0x1,
1327 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1328 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1329 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1330 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1331 };
1332 
1333 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1334 	.clock = 154000,
1335 	.tx = 0x10,
1336 	.cmn = 0x1,
1337 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1338 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1339 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1340 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1341 };
1342 
1343 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1344 	.clock = 162000,
1345 	.tx = 0x10,
1346 	.cmn = 0x1,
1347 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1348 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1349 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1350 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1351 };
1352 
1353 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1354 	.clock = 167000,
1355 	.tx = 0x10,
1356 	.cmn = 0x1,
1357 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1358 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1359 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1360 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1361 };
1362 
1363 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1364 	.clock = 197802,
1365 	.tx = 0x10,
1366 	.cmn = 0x1,
1367 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1368 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1369 	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1370 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1371 };
1372 
1373 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1374 	.clock = 198000,
1375 	.tx = 0x10,
1376 	.cmn = 0x1,
1377 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1378 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1379 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1380 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1381 };
1382 
1383 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1384 	.clock = 209800,
1385 	.tx = 0x10,
1386 	.cmn = 0x1,
1387 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1388 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1389 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1390 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1391 };
1392 
1393 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1394 	.clock = 241500,
1395 	.tx = 0x10,
1396 	.cmn = 0x1,
1397 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1398 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1399 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1400 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1401 };
1402 
1403 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1404 	.clock = 262750,
1405 	.tx = 0x10,
1406 	.cmn = 0x1,
1407 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1408 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1409 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1410 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1411 };
1412 
1413 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1414 	.clock = 268500,
1415 	.tx = 0x10,
1416 	.cmn = 0x1,
1417 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1418 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1419 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1420 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1421 };
1422 
1423 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1424 	.clock = 296703,
1425 	.tx = 0x10,
1426 	.cmn = 0x1,
1427 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1428 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1429 	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1430 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1431 };
1432 
1433 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1434 	.clock = 297000,
1435 	.tx = 0x10,
1436 	.cmn = 0x1,
1437 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1438 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1439 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1440 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1441 };
1442 
1443 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1444 	.clock = 319750,
1445 	.tx = 0x10,
1446 	.cmn = 0x1,
1447 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1448 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1449 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1450 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1451 };
1452 
1453 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1454 	.clock = 497750,
1455 	.tx = 0x10,
1456 	.cmn = 0x1,
1457 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1458 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1459 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1460 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1461 };
1462 
1463 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1464 	.clock = 592000,
1465 	.tx = 0x10,
1466 	.cmn = 0x1,
1467 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1468 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1469 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1470 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1471 };
1472 
1473 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1474 	.clock = 593407,
1475 	.tx = 0x10,
1476 	.cmn = 0x1,
1477 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1478 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1479 	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1480 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1481 };
1482 
1483 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1484 	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1485 	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1486 	&mtl_c10_hdmi_27027,
1487 	&mtl_c10_hdmi_28320,
1488 	&mtl_c10_hdmi_30240,
1489 	&mtl_c10_hdmi_31500,
1490 	&mtl_c10_hdmi_36000,
1491 	&mtl_c10_hdmi_40000,
1492 	&mtl_c10_hdmi_49500,
1493 	&mtl_c10_hdmi_50000,
1494 	&mtl_c10_hdmi_57284,
1495 	&mtl_c10_hdmi_58000,
1496 	&mtl_c10_hdmi_65000,
1497 	&mtl_c10_hdmi_71000,
1498 	&mtl_c10_hdmi_74176,
1499 	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1500 	&mtl_c10_hdmi_75000,
1501 	&mtl_c10_hdmi_78750,
1502 	&mtl_c10_hdmi_85500,
1503 	&mtl_c10_hdmi_88750,
1504 	&mtl_c10_hdmi_106500,
1505 	&mtl_c10_hdmi_108000,
1506 	&mtl_c10_hdmi_115500,
1507 	&mtl_c10_hdmi_119000,
1508 	&mtl_c10_hdmi_135000,
1509 	&mtl_c10_hdmi_138500,
1510 	&mtl_c10_hdmi_147160,
1511 	&mtl_c10_hdmi_148352,
1512 	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1513 	&mtl_c10_hdmi_154000,
1514 	&mtl_c10_hdmi_162000,
1515 	&mtl_c10_hdmi_167000,
1516 	&mtl_c10_hdmi_197802,
1517 	&mtl_c10_hdmi_198000,
1518 	&mtl_c10_hdmi_209800,
1519 	&mtl_c10_hdmi_241500,
1520 	&mtl_c10_hdmi_262750,
1521 	&mtl_c10_hdmi_268500,
1522 	&mtl_c10_hdmi_296703,
1523 	&mtl_c10_hdmi_297000,
1524 	&mtl_c10_hdmi_319750,
1525 	&mtl_c10_hdmi_497750,
1526 	&mtl_c10_hdmi_592000,
1527 	&mtl_c10_hdmi_593407,
1528 	&mtl_c10_hdmi_594, /* Consolidated Table */
1529 	NULL,
1530 };
1531 
1532 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1533 	.clock = 25175,
1534 	.tx = {  0xbe88, /* tx cfg0 */
1535 		  0x9800, /* tx cfg1 */
1536 		  0x0000, /* tx cfg2 */
1537 		},
1538 	.cmn = { 0x0500, /* cmn cfg0*/
1539 		  0x0005, /* cmn cfg1 */
1540 		  0x0000, /* cmn cfg2 */
1541 		  0x0000, /* cmn cfg3 */
1542 		},
1543 	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1544 		   0x7d80,	/* mpllb cfg1 */
1545 		   0x0906,	/* mpllb cfg2 */
1546 		   0xbe40,	/* mpllb cfg3 */
1547 		   0x0000,	/* mpllb cfg4 */
1548 		   0x0000,	/* mpllb cfg5 */
1549 		   0x0200,	/* mpllb cfg6 */
1550 		   0x0001,	/* mpllb cfg7 */
1551 		   0x0000,	/* mpllb cfg8 */
1552 		   0x0000,	/* mpllb cfg9 */
1553 		   0x0001,	/* mpllb cfg10 */
1554 		},
1555 };
1556 
1557 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1558 	.clock = 27000,
1559 	.tx = {  0xbe88, /* tx cfg0 */
1560 		  0x9800, /* tx cfg1 */
1561 		  0x0000, /* tx cfg2 */
1562 		},
1563 	.cmn = { 0x0500, /* cmn cfg0*/
1564 		  0x0005, /* cmn cfg1 */
1565 		  0x0000, /* cmn cfg2 */
1566 		  0x0000, /* cmn cfg3 */
1567 		},
1568 	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1569 		   0x7d80,	/* mpllb cfg1 */
1570 		   0x0906,	/* mpllb cfg2 */
1571 		   0xbe40,	/* mpllb cfg3 */
1572 		   0x0000,	/* mpllb cfg4 */
1573 		   0x0000,	/* mpllb cfg5 */
1574 		   0x2200,	/* mpllb cfg6 */
1575 		   0x0001,	/* mpllb cfg7 */
1576 		   0x8000,	/* mpllb cfg8 */
1577 		   0x0000,	/* mpllb cfg9 */
1578 		   0x0001,	/* mpllb cfg10 */
1579 		},
1580 };
1581 
1582 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1583 	.clock = 74250,
1584 	.tx = {  0xbe88, /* tx cfg0 */
1585 		  0x9800, /* tx cfg1 */
1586 		  0x0000, /* tx cfg2 */
1587 		},
1588 	.cmn = { 0x0500, /* cmn cfg0*/
1589 		  0x0005, /* cmn cfg1 */
1590 		  0x0000, /* cmn cfg2 */
1591 		  0x0000, /* cmn cfg3 */
1592 		},
1593 	.mpllb = { 0x609a,	/* mpllb cfg0 */
1594 		   0x7d40,	/* mpllb cfg1 */
1595 		   0xca06,	/* mpllb cfg2 */
1596 		   0xbe40,	/* mpllb cfg3 */
1597 		   0x0000,	/* mpllb cfg4 */
1598 		   0x0000,	/* mpllb cfg5 */
1599 		   0x2200,	/* mpllb cfg6 */
1600 		   0x0001,	/* mpllb cfg7 */
1601 		   0x5800,	/* mpllb cfg8 */
1602 		   0x0000,	/* mpllb cfg9 */
1603 		   0x0001,	/* mpllb cfg10 */
1604 		},
1605 };
1606 
1607 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1608 	.clock = 148500,
1609 	.tx = {  0xbe88, /* tx cfg0 */
1610 		  0x9800, /* tx cfg1 */
1611 		  0x0000, /* tx cfg2 */
1612 		},
1613 	.cmn = { 0x0500, /* cmn cfg0*/
1614 		  0x0005, /* cmn cfg1 */
1615 		  0x0000, /* cmn cfg2 */
1616 		  0x0000, /* cmn cfg3 */
1617 		},
1618 	.mpllb = { 0x409a,	/* mpllb cfg0 */
1619 		   0x7d20,	/* mpllb cfg1 */
1620 		   0xca06,	/* mpllb cfg2 */
1621 		   0xbe40,	/* mpllb cfg3 */
1622 		   0x0000,	/* mpllb cfg4 */
1623 		   0x0000,	/* mpllb cfg5 */
1624 		   0x2200,	/* mpllb cfg6 */
1625 		   0x0001,	/* mpllb cfg7 */
1626 		   0x5800,	/* mpllb cfg8 */
1627 		   0x0000,	/* mpllb cfg9 */
1628 		   0x0001,	/* mpllb cfg10 */
1629 		},
1630 };
1631 
1632 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1633 	.clock = 594000,
1634 	.tx = {  0xbe88, /* tx cfg0 */
1635 		  0x9800, /* tx cfg1 */
1636 		  0x0000, /* tx cfg2 */
1637 		},
1638 	.cmn = { 0x0500, /* cmn cfg0*/
1639 		  0x0005, /* cmn cfg1 */
1640 		  0x0000, /* cmn cfg2 */
1641 		  0x0000, /* cmn cfg3 */
1642 		},
1643 	.mpllb = { 0x009a,	/* mpllb cfg0 */
1644 		   0x7d08,	/* mpllb cfg1 */
1645 		   0xca06,	/* mpllb cfg2 */
1646 		   0xbe40,	/* mpllb cfg3 */
1647 		   0x0000,	/* mpllb cfg4 */
1648 		   0x0000,	/* mpllb cfg5 */
1649 		   0x2200,	/* mpllb cfg6 */
1650 		   0x0001,	/* mpllb cfg7 */
1651 		   0x5800,	/* mpllb cfg8 */
1652 		   0x0000,	/* mpllb cfg9 */
1653 		   0x0001,	/* mpllb cfg10 */
1654 		},
1655 };
1656 
1657 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1658 	.clock = 3000000,
1659 	.tx = {  0xbe98, /* tx cfg0 */
1660 		  0x8800, /* tx cfg1 */
1661 		  0x0000, /* tx cfg2 */
1662 		},
1663 	.cmn = { 0x0500, /* cmn cfg0*/
1664 		  0x0005, /* cmn cfg1 */
1665 		  0x0000, /* cmn cfg2 */
1666 		  0x0000, /* cmn cfg3 */
1667 		},
1668 	.mpllb = { 0x309c,	/* mpllb cfg0 */
1669 		   0x2110,	/* mpllb cfg1 */
1670 		   0xca06,	/* mpllb cfg2 */
1671 		   0xbe40,	/* mpllb cfg3 */
1672 		   0x0000,	/* mpllb cfg4 */
1673 		   0x0000,	/* mpllb cfg5 */
1674 		   0x2200,	/* mpllb cfg6 */
1675 		   0x0001,	/* mpllb cfg7 */
1676 		   0x2000,	/* mpllb cfg8 */
1677 		   0x0000,	/* mpllb cfg9 */
1678 		   0x0004,	/* mpllb cfg10 */
1679 		},
1680 };
1681 
1682 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1683 	.clock = 6000000,
1684 	.tx = {  0xbe98, /* tx cfg0 */
1685 		  0x8800, /* tx cfg1 */
1686 		  0x0000, /* tx cfg2 */
1687 		},
1688 	.cmn = { 0x0500, /* cmn cfg0*/
1689 		  0x0005, /* cmn cfg1 */
1690 		  0x0000, /* cmn cfg2 */
1691 		  0x0000, /* cmn cfg3 */
1692 		},
1693 	.mpllb = { 0x109c,	/* mpllb cfg0 */
1694 		   0x2108,	/* mpllb cfg1 */
1695 		   0xca06,	/* mpllb cfg2 */
1696 		   0xbe40,	/* mpllb cfg3 */
1697 		   0x0000,	/* mpllb cfg4 */
1698 		   0x0000,	/* mpllb cfg5 */
1699 		   0x2200,	/* mpllb cfg6 */
1700 		   0x0001,	/* mpllb cfg7 */
1701 		   0x2000,	/* mpllb cfg8 */
1702 		   0x0000,	/* mpllb cfg9 */
1703 		   0x0004,	/* mpllb cfg10 */
1704 		},
1705 };
1706 
1707 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1708 	.clock = 8000000,
1709 	.tx = {  0xbe98, /* tx cfg0 */
1710 		  0x8800, /* tx cfg1 */
1711 		  0x0000, /* tx cfg2 */
1712 		},
1713 	.cmn = { 0x0500, /* cmn cfg0*/
1714 		  0x0005, /* cmn cfg1 */
1715 		  0x0000, /* cmn cfg2 */
1716 		  0x0000, /* cmn cfg3 */
1717 		},
1718 	.mpllb = { 0x10d0,	/* mpllb cfg0 */
1719 		   0x2108,	/* mpllb cfg1 */
1720 		   0x4a06,	/* mpllb cfg2 */
1721 		   0xbe40,	/* mpllb cfg3 */
1722 		   0x0000,	/* mpllb cfg4 */
1723 		   0x0000,	/* mpllb cfg5 */
1724 		   0x2200,	/* mpllb cfg6 */
1725 		   0x0003,	/* mpllb cfg7 */
1726 		   0x2aaa,	/* mpllb cfg8 */
1727 		   0x0002,	/* mpllb cfg9 */
1728 		   0x0004,	/* mpllb cfg10 */
1729 		},
1730 };
1731 
1732 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1733 	.clock = 10000000,
1734 	.tx = {  0xbe98, /* tx cfg0 */
1735 		  0x8800, /* tx cfg1 */
1736 		  0x0000, /* tx cfg2 */
1737 		},
1738 	.cmn = { 0x0500, /* cmn cfg0*/
1739 		  0x0005, /* cmn cfg1 */
1740 		  0x0000, /* cmn cfg2 */
1741 		  0x0000, /* cmn cfg3 */
1742 		},
1743 	.mpllb = { 0x1104,	/* mpllb cfg0 */
1744 		   0x2108,	/* mpllb cfg1 */
1745 		   0x0a06,	/* mpllb cfg2 */
1746 		   0xbe40,	/* mpllb cfg3 */
1747 		   0x0000,	/* mpllb cfg4 */
1748 		   0x0000,	/* mpllb cfg5 */
1749 		   0x2200,	/* mpllb cfg6 */
1750 		   0x0003,	/* mpllb cfg7 */
1751 		   0x3555,	/* mpllb cfg8 */
1752 		   0x0001,	/* mpllb cfg9 */
1753 		   0x0004,	/* mpllb cfg10 */
1754 		},
1755 };
1756 
1757 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1758 	.clock = 12000000,
1759 	.tx = {  0xbe98, /* tx cfg0 */
1760 		  0x8800, /* tx cfg1 */
1761 		  0x0000, /* tx cfg2 */
1762 		},
1763 	.cmn = { 0x0500, /* cmn cfg0*/
1764 		  0x0005, /* cmn cfg1 */
1765 		  0x0000, /* cmn cfg2 */
1766 		  0x0000, /* cmn cfg3 */
1767 		},
1768 	.mpllb = { 0x1138,	/* mpllb cfg0 */
1769 		   0x2108,	/* mpllb cfg1 */
1770 		   0x5486,	/* mpllb cfg2 */
1771 		   0xfe40,	/* mpllb cfg3 */
1772 		   0x0000,	/* mpllb cfg4 */
1773 		   0x0000,	/* mpllb cfg5 */
1774 		   0x2200,	/* mpllb cfg6 */
1775 		   0x0001,	/* mpllb cfg7 */
1776 		   0x4000,	/* mpllb cfg8 */
1777 		   0x0000,	/* mpllb cfg9 */
1778 		   0x0004,	/* mpllb cfg10 */
1779 		},
1780 };
1781 
1782 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1783 	&mtl_c20_hdmi_25_175,
1784 	&mtl_c20_hdmi_27_0,
1785 	&mtl_c20_hdmi_74_25,
1786 	&mtl_c20_hdmi_148_5,
1787 	&mtl_c20_hdmi_594,
1788 	&mtl_c20_hdmi_300,
1789 	&mtl_c20_hdmi_600,
1790 	&mtl_c20_hdmi_800,
1791 	&mtl_c20_hdmi_1000,
1792 	&mtl_c20_hdmi_1200,
1793 	NULL,
1794 };
1795 
1796 static int intel_c10_phy_check_hdmi_link_rate(int clock)
1797 {
1798 	const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
1799 	int i;
1800 
1801 	for (i = 0; tables[i]; i++) {
1802 		if (clock == tables[i]->clock)
1803 			return MODE_OK;
1804 	}
1805 
1806 	return MODE_CLOCK_RANGE;
1807 }
1808 
1809 static const struct intel_c10pll_state * const *
1810 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
1811 			struct intel_encoder *encoder)
1812 {
1813 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1814 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
1815 			return mtl_c10_edp_tables;
1816 		else
1817 			return mtl_c10_dp_tables;
1818 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
1819 		return mtl_c10_hdmi_tables;
1820 	}
1821 
1822 	MISSING_CASE(encoder->type);
1823 	return NULL;
1824 }
1825 
1826 static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
1827 				    struct intel_encoder *encoder)
1828 {
1829 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
1830 	struct intel_cx0pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll;
1831 	int i;
1832 
1833 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1834 		if (intel_panel_use_ssc(i915)) {
1835 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1836 
1837 			pll_state->ssc_enabled =
1838 				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
1839 		}
1840 	}
1841 
1842 	if (pll_state->ssc_enabled)
1843 		return;
1844 
1845 	drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
1846 	for (i = 4; i < 9; i++)
1847 		pll_state->c10.pll[i] = 0;
1848 }
1849 
1850 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
1851 				   struct intel_encoder *encoder)
1852 {
1853 	const struct intel_c10pll_state * const *tables;
1854 	int i;
1855 
1856 	tables = intel_c10pll_tables_get(crtc_state, encoder);
1857 	if (!tables)
1858 		return -EINVAL;
1859 
1860 	for (i = 0; tables[i]; i++) {
1861 		if (crtc_state->port_clock == tables[i]->clock) {
1862 			crtc_state->dpll_hw_state.cx0pll.c10 = *tables[i];
1863 			intel_c10pll_update_pll(crtc_state, encoder);
1864 
1865 			return 0;
1866 		}
1867 	}
1868 
1869 	return -EINVAL;
1870 }
1871 
1872 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
1873 					  struct intel_c10pll_state *pll_state)
1874 {
1875 	u8 lane = INTEL_CX0_LANE0;
1876 	intel_wakeref_t wakeref;
1877 	int i;
1878 
1879 	wakeref = intel_cx0_phy_transaction_begin(encoder);
1880 
1881 	/*
1882 	 * According to C10 VDR Register programming Sequence we need
1883 	 * to do this to read PHY internal registers from MsgBus.
1884 	 */
1885 	intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
1886 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1887 		      MB_WRITE_COMMITTED);
1888 
1889 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1890 		pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
1891 
1892 	pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
1893 	pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
1894 
1895 	intel_cx0_phy_transaction_end(encoder, wakeref);
1896 }
1897 
1898 static void intel_c10_pll_program(struct drm_i915_private *i915,
1899 				  const struct intel_crtc_state *crtc_state,
1900 				  struct intel_encoder *encoder)
1901 {
1902 	const struct intel_c10pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c10;
1903 	int i;
1904 
1905 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1906 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1907 		      MB_WRITE_COMMITTED);
1908 
1909 	/* Custom width needs to be programmed to 0 for both the phy lanes */
1910 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
1911 		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
1912 		      MB_WRITE_COMMITTED);
1913 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1914 		      0, C10_VDR_CTRL_UPDATE_CFG,
1915 		      MB_WRITE_COMMITTED);
1916 
1917 	/* Program the pll values only for the master lane */
1918 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1919 		intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
1920 				pll_state->pll[i],
1921 				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
1922 
1923 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
1924 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
1925 
1926 	intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
1927 		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
1928 		      MB_WRITE_COMMITTED);
1929 }
1930 
1931 void intel_c10pll_dump_hw_state(struct drm_i915_private *i915,
1932 				const struct intel_c10pll_state *hw_state)
1933 {
1934 	bool fracen;
1935 	int i;
1936 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
1937 	unsigned int multiplier, tx_clk_div;
1938 
1939 	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
1940 	drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ",
1941 		    str_yes_no(fracen));
1942 
1943 	if (fracen) {
1944 		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
1945 		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
1946 		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
1947 		drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n",
1948 			    frac_quot, frac_rem, frac_den);
1949 	}
1950 
1951 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
1952 		      hw_state->pll[2]) / 2 + 16;
1953 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
1954 	drm_dbg_kms(&i915->drm,
1955 		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
1956 
1957 	drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:");
1958 	drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn);
1959 
1960 	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
1961 	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
1962 		drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
1963 			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
1964 			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
1965 }
1966 
1967 static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state)
1968 {
1969 	u64 datarate;
1970 	u64 mpll_tx_clk_div;
1971 	u64 vco_freq_shift;
1972 	u64 vco_freq;
1973 	u64 multiplier;
1974 	u64 mpll_multiplier;
1975 	u64 mpll_fracn_quot;
1976 	u64 mpll_fracn_rem;
1977 	u8  mpllb_ana_freq_vco;
1978 	u8  mpll_div_multiplier;
1979 
1980 	if (pixel_clock < 25175 || pixel_clock > 600000)
1981 		return -EINVAL;
1982 
1983 	datarate = ((u64)pixel_clock * 1000) * 10;
1984 	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
1985 	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
1986 	vco_freq = (datarate << vco_freq_shift) >> 8;
1987 	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
1988 	mpll_multiplier = 2 * (multiplier >> 32);
1989 
1990 	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
1991 	mpll_fracn_rem  = multiplier & 0xFFFF;
1992 
1993 	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
1994 						  datarate), 255);
1995 
1996 	if (vco_freq <= DATARATE_3000000000)
1997 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
1998 	else if (vco_freq <= DATARATE_3500000000)
1999 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2000 	else if (vco_freq <= DATARATE_4000000000)
2001 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2002 	else
2003 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2004 
2005 	pll_state->clock	= pixel_clock;
2006 	pll_state->tx[0]	= 0xbe88;
2007 	pll_state->tx[1]	= 0x9800;
2008 	pll_state->tx[2]	= 0x0000;
2009 	pll_state->cmn[0]	= 0x0500;
2010 	pll_state->cmn[1]	= 0x0005;
2011 	pll_state->cmn[2]	= 0x0000;
2012 	pll_state->cmn[3]	= 0x0000;
2013 	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2014 				   MPLL_MULTIPLIER(mpll_multiplier));
2015 	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2016 				   WORD_CLK_DIV |
2017 				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2018 	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2019 				   CP_PROP(CP_PROP_20) |
2020 				   CP_INT(CP_INT_6));
2021 	pll_state->mpllb[3]	= (V2I(V2I_2) |
2022 				   CP_PROP_GS(CP_PROP_GS_30) |
2023 				   CP_INT_GS(CP_INT_GS_28));
2024 	pll_state->mpllb[4]	= 0x0000;
2025 	pll_state->mpllb[5]	= 0x0000;
2026 	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2027 	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
2028 	pll_state->mpllb[8]	= mpll_fracn_quot;
2029 	pll_state->mpllb[9]	= mpll_fracn_rem;
2030 	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
2031 
2032 	return 0;
2033 }
2034 
2035 static int intel_c20_phy_check_hdmi_link_rate(int clock)
2036 {
2037 	const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
2038 	int i;
2039 
2040 	for (i = 0; tables[i]; i++) {
2041 		if (clock == tables[i]->clock)
2042 			return MODE_OK;
2043 	}
2044 
2045 	if (clock >= 25175 && clock <= 594000)
2046 		return MODE_OK;
2047 
2048 	return MODE_CLOCK_RANGE;
2049 }
2050 
2051 int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
2052 {
2053 	struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
2054 
2055 	if (intel_encoder_is_c10phy(&dig_port->base))
2056 		return intel_c10_phy_check_hdmi_link_rate(clock);
2057 	return intel_c20_phy_check_hdmi_link_rate(clock);
2058 }
2059 
2060 static const struct intel_c20pll_state * const *
2061 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2062 			 struct intel_encoder *encoder)
2063 {
2064 	if (intel_crtc_has_dp_encoder(crtc_state))
2065 		return mtl_c20_dp_tables;
2066 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2067 		return mtl_c20_hdmi_tables;
2068 
2069 	MISSING_CASE(encoder->type);
2070 	return NULL;
2071 }
2072 
2073 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2074 				   struct intel_encoder *encoder)
2075 {
2076 	const struct intel_c20pll_state * const *tables;
2077 	int i;
2078 
2079 	/* try computed C20 HDMI tables before using consolidated tables */
2080 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2081 		if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock,
2082 						    &crtc_state->dpll_hw_state.cx0pll.c20) == 0)
2083 			return 0;
2084 	}
2085 
2086 	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2087 	if (!tables)
2088 		return -EINVAL;
2089 
2090 	for (i = 0; tables[i]; i++) {
2091 		if (crtc_state->port_clock == tables[i]->clock) {
2092 			crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2093 			return 0;
2094 		}
2095 	}
2096 
2097 	return -EINVAL;
2098 }
2099 
2100 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2101 			    struct intel_encoder *encoder)
2102 {
2103 	if (intel_encoder_is_c10phy(encoder))
2104 		return intel_c10pll_calc_state(crtc_state, encoder);
2105 	return intel_c20pll_calc_state(crtc_state, encoder);
2106 }
2107 
2108 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2109 {
2110 	return state->tx[0] & C20_PHY_USE_MPLLB;
2111 }
2112 
2113 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2114 					const struct intel_c20pll_state *pll_state)
2115 {
2116 	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2117 	unsigned int multiplier, refclk = 38400;
2118 	unsigned int tx_clk_div;
2119 	unsigned int ref_clk_mpllb_div;
2120 	unsigned int fb_clk_div4_en;
2121 	unsigned int ref, vco;
2122 	unsigned int tx_rate_mult;
2123 	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2124 
2125 	if (intel_c20phy_use_mpllb(pll_state)) {
2126 		tx_rate_mult = 1;
2127 		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2128 		frac_quot = pll_state->mpllb[8];
2129 		frac_rem =  pll_state->mpllb[9];
2130 		frac_den =  pll_state->mpllb[7];
2131 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2132 		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2133 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2134 		fb_clk_div4_en = 0;
2135 	} else {
2136 		tx_rate_mult = 2;
2137 		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2138 		frac_quot = pll_state->mplla[8];
2139 		frac_rem =  pll_state->mplla[9];
2140 		frac_den =  pll_state->mplla[7];
2141 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2142 		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2143 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2144 		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2145 	}
2146 
2147 	if (frac_en)
2148 		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2149 	else
2150 		frac = 0;
2151 
2152 	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2153 	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2154 
2155 	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2156 }
2157 
2158 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2159 					  struct intel_c20pll_state *pll_state)
2160 {
2161 	bool cntx;
2162 	intel_wakeref_t wakeref;
2163 	int i;
2164 
2165 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2166 
2167 	/* 1. Read current context selection */
2168 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2169 
2170 	/* Read Tx configuration */
2171 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2172 		if (cntx)
2173 			pll_state->tx[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2174 							       PHY_C20_B_TX_CNTX_CFG(i));
2175 		else
2176 			pll_state->tx[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2177 							       PHY_C20_A_TX_CNTX_CFG(i));
2178 	}
2179 
2180 	/* Read common configuration */
2181 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2182 		if (cntx)
2183 			pll_state->cmn[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2184 								PHY_C20_B_CMN_CNTX_CFG(i));
2185 		else
2186 			pll_state->cmn[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2187 								PHY_C20_A_CMN_CNTX_CFG(i));
2188 	}
2189 
2190 	if (intel_c20phy_use_mpllb(pll_state)) {
2191 		/* MPLLB configuration */
2192 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2193 			if (cntx)
2194 				pll_state->mpllb[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2195 									  PHY_C20_B_MPLLB_CNTX_CFG(i));
2196 			else
2197 				pll_state->mpllb[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2198 									  PHY_C20_A_MPLLB_CNTX_CFG(i));
2199 		}
2200 	} else {
2201 		/* MPLLA configuration */
2202 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2203 			if (cntx)
2204 				pll_state->mplla[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2205 									  PHY_C20_B_MPLLA_CNTX_CFG(i));
2206 			else
2207 				pll_state->mplla[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2208 									  PHY_C20_A_MPLLA_CNTX_CFG(i));
2209 		}
2210 	}
2211 
2212 	pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2213 
2214 	intel_cx0_phy_transaction_end(encoder, wakeref);
2215 }
2216 
2217 void intel_c20pll_dump_hw_state(struct drm_i915_private *i915,
2218 				const struct intel_c20pll_state *hw_state)
2219 {
2220 	int i;
2221 
2222 	drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n");
2223 	drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2224 		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2225 	drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2226 		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2227 
2228 	if (intel_c20phy_use_mpllb(hw_state)) {
2229 		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2230 			drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]);
2231 	} else {
2232 		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2233 			drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]);
2234 	}
2235 }
2236 
2237 static u8 intel_c20_get_dp_rate(u32 clock)
2238 {
2239 	switch (clock) {
2240 	case 162000: /* 1.62 Gbps DP1.4 */
2241 		return 0;
2242 	case 270000: /* 2.7 Gbps DP1.4 */
2243 		return 1;
2244 	case 540000: /* 5.4 Gbps DP 1.4 */
2245 		return 2;
2246 	case 810000: /* 8.1 Gbps DP1.4 */
2247 		return 3;
2248 	case 216000: /* 2.16 Gbps eDP */
2249 		return 4;
2250 	case 243000: /* 2.43 Gbps eDP */
2251 		return 5;
2252 	case 324000: /* 3.24 Gbps eDP */
2253 		return 6;
2254 	case 432000: /* 4.32 Gbps eDP */
2255 		return 7;
2256 	case 1000000: /* 10 Gbps DP2.0 */
2257 		return 8;
2258 	case 1350000: /* 13.5 Gbps DP2.0 */
2259 		return 9;
2260 	case 2000000: /* 20 Gbps DP2.0 */
2261 		return 10;
2262 	case 648000: /* 6.48 Gbps eDP*/
2263 		return 11;
2264 	case 675000: /* 6.75 Gbps eDP*/
2265 		return 12;
2266 	default:
2267 		MISSING_CASE(clock);
2268 		return 0;
2269 	}
2270 }
2271 
2272 static u8 intel_c20_get_hdmi_rate(u32 clock)
2273 {
2274 	if (clock >= 25175 && clock <= 600000)
2275 		return 0;
2276 
2277 	switch (clock) {
2278 	case 300000: /* 3 Gbps */
2279 	case 600000: /* 6 Gbps */
2280 	case 1200000: /* 12 Gbps */
2281 		return 1;
2282 	case 800000: /* 8 Gbps */
2283 		return 2;
2284 	case 1000000: /* 10 Gbps */
2285 		return 3;
2286 	default:
2287 		MISSING_CASE(clock);
2288 		return 0;
2289 	}
2290 }
2291 
2292 static bool is_dp2(u32 clock)
2293 {
2294 	/* DP2.0 clock rates */
2295 	if (clock == 1000000 || clock == 1350000 || clock  == 2000000)
2296 		return true;
2297 
2298 	return false;
2299 }
2300 
2301 static bool is_hdmi_frl(u32 clock)
2302 {
2303 	switch (clock) {
2304 	case 300000: /* 3 Gbps */
2305 	case 600000: /* 6 Gbps */
2306 	case 800000: /* 8 Gbps */
2307 	case 1000000: /* 10 Gbps */
2308 	case 1200000: /* 12 Gbps */
2309 		return true;
2310 	default:
2311 		return false;
2312 	}
2313 }
2314 
2315 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2316 {
2317 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2318 
2319 	/* banks should not be cleared for DPALT/USB4/TBT modes */
2320 	/* TODO: optimize re-calibration in legacy mode */
2321 	return intel_tc_port_in_legacy_mode(intel_dig_port);
2322 }
2323 
2324 static int intel_get_c20_custom_width(u32 clock, bool dp)
2325 {
2326 	if (dp && is_dp2(clock))
2327 		return 2;
2328 	else if (is_hdmi_frl(clock))
2329 		return 1;
2330 	else
2331 		return 0;
2332 }
2333 
2334 static void intel_c20_pll_program(struct drm_i915_private *i915,
2335 				  const struct intel_crtc_state *crtc_state,
2336 				  struct intel_encoder *encoder)
2337 {
2338 	const struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2339 	bool dp = false;
2340 	int lane = crtc_state->lane_count > 2 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
2341 	u32 clock = crtc_state->port_clock;
2342 	bool cntx;
2343 	int i;
2344 
2345 	if (intel_crtc_has_dp_encoder(crtc_state))
2346 		dp = true;
2347 
2348 	/* 1. Read current context selection */
2349 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2350 
2351 	/*
2352 	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2353 	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2354 	 * Protocol switch is only applicable for MPLLA
2355 	 */
2356 	if (intel_c20_protocol_switch_valid(encoder)) {
2357 		for (i = 0; i < 4; i++)
2358 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2359 		usleep_range(4000, 4100);
2360 	}
2361 
2362 	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2363 	/* 3.1 Tx configuration */
2364 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2365 		if (cntx)
2366 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_TX_CNTX_CFG(i), pll_state->tx[i]);
2367 		else
2368 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_TX_CNTX_CFG(i), pll_state->tx[i]);
2369 	}
2370 
2371 	/* 3.2 common configuration */
2372 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2373 		if (cntx)
2374 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2375 		else
2376 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2377 	}
2378 
2379 	/* 3.3 mpllb or mplla configuration */
2380 	if (intel_c20phy_use_mpllb(pll_state)) {
2381 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2382 			if (cntx)
2383 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2384 						     PHY_C20_A_MPLLB_CNTX_CFG(i),
2385 						     pll_state->mpllb[i]);
2386 			else
2387 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2388 						     PHY_C20_B_MPLLB_CNTX_CFG(i),
2389 						     pll_state->mpllb[i]);
2390 		}
2391 	} else {
2392 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2393 			if (cntx)
2394 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2395 						     PHY_C20_A_MPLLA_CNTX_CFG(i),
2396 						     pll_state->mplla[i]);
2397 			else
2398 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2399 						     PHY_C20_B_MPLLA_CNTX_CFG(i),
2400 						     pll_state->mplla[i]);
2401 		}
2402 	}
2403 
2404 	/* 4. Program custom width to match the link protocol */
2405 	intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_WIDTH,
2406 		      PHY_C20_CUSTOM_WIDTH_MASK,
2407 		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(clock, dp)),
2408 		      MB_WRITE_COMMITTED);
2409 
2410 	/* 5. For DP or 6. For HDMI */
2411 	if (dp) {
2412 		intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2413 			      BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2414 			      BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(clock)),
2415 			      MB_WRITE_COMMITTED);
2416 	} else {
2417 		intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2418 			      BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2419 			      is_hdmi_frl(clock) ? BIT(7) : 0,
2420 			      MB_WRITE_COMMITTED);
2421 
2422 		intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2423 				intel_c20_get_hdmi_rate(clock),
2424 				MB_WRITE_COMMITTED);
2425 	}
2426 
2427 	/*
2428 	 * 7. Write Vendor specific registers to toggle context setting to load
2429 	 * the updated programming toggle context bit
2430 	 */
2431 	intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2432 		      BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2433 }
2434 
2435 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2436 					const struct intel_c10pll_state *pll_state)
2437 {
2438 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2439 	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2440 	int tmpclk = 0;
2441 
2442 	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2443 		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2444 		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2445 		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2446 	}
2447 
2448 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2449 		      pll_state->pll[2]) / 2 + 16;
2450 
2451 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2452 	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2453 
2454 	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2455 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2456 				     10 << (tx_clk_div + 16));
2457 	tmpclk *= (hdmi_div ? 2 : 1);
2458 
2459 	return tmpclk;
2460 }
2461 
2462 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2463 					 const struct intel_crtc_state *crtc_state,
2464 					 bool lane_reversal)
2465 {
2466 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2467 	u32 val = 0;
2468 
2469 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(i915, encoder->port),
2470 		     XELPDP_PORT_REVERSAL,
2471 		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2472 
2473 	if (lane_reversal)
2474 		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2475 
2476 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2477 
2478 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
2479 	    is_hdmi_frl(crtc_state->port_clock))
2480 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2481 	else
2482 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2483 
2484 	/* TODO: HDMI FRL */
2485 	/* DP2.0 10G and 20G rates enable MPLLA*/
2486 	if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
2487 		val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2488 	else
2489 		val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2490 
2491 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2492 		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2493 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
2494 		     XELPDP_SSC_ENABLE_PLLB, val);
2495 }
2496 
2497 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2498 {
2499 	u32 val = 0;
2500 	int lane = 0;
2501 
2502 	for_each_cx0_lane_in_mask(lane_mask, lane)
2503 		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2504 
2505 	return val;
2506 }
2507 
2508 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2509 {
2510 	u32 val = 0;
2511 	int lane = 0;
2512 
2513 	for_each_cx0_lane_in_mask(lane_mask, lane)
2514 		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2515 
2516 	return val;
2517 }
2518 
2519 static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2520 						u8 lane_mask, u8 state)
2521 {
2522 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2523 	enum port port = encoder->port;
2524 	enum phy phy = intel_encoder_to_phy(encoder);
2525 	i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(i915, port);
2526 	int lane;
2527 
2528 	intel_de_rmw(i915, buf_ctl2_reg,
2529 		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2530 		     intel_cx0_get_powerdown_state(lane_mask, state));
2531 
2532 	/* Wait for pending transactions.*/
2533 	for_each_cx0_lane_in_mask(lane_mask, lane)
2534 		if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
2535 					    XELPDP_PORT_M2P_TRANSACTION_PENDING,
2536 					    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2537 			drm_dbg_kms(&i915->drm,
2538 				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2539 				    phy_name(phy));
2540 			intel_cx0_bus_reset(encoder, lane);
2541 		}
2542 
2543 	intel_de_rmw(i915, buf_ctl2_reg,
2544 		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2545 		     intel_cx0_get_powerdown_update(lane_mask));
2546 
2547 	/* Update Timeout Value */
2548 	if (intel_de_wait_custom(i915, buf_ctl2_reg,
2549 				 intel_cx0_get_powerdown_update(lane_mask), 0,
2550 				 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2551 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2552 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2553 }
2554 
2555 static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2556 {
2557 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2558 	enum port port = encoder->port;
2559 
2560 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2561 		     XELPDP_POWER_STATE_READY_MASK,
2562 		     XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2563 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(i915, port),
2564 		     XELPDP_POWER_STATE_ACTIVE_MASK |
2565 		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2566 		     XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2567 		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2568 }
2569 
2570 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2571 {
2572 	u32 val = 0;
2573 	int lane = 0;
2574 
2575 	for_each_cx0_lane_in_mask(lane_mask, lane)
2576 		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2577 
2578 	return val;
2579 }
2580 
2581 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2582 {
2583 	u32 val = 0;
2584 	int lane = 0;
2585 
2586 	for_each_cx0_lane_in_mask(lane_mask, lane)
2587 		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2588 
2589 	return val;
2590 }
2591 
2592 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2593 				     bool lane_reversal)
2594 {
2595 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2596 	enum port port = encoder->port;
2597 	enum phy phy = intel_encoder_to_phy(encoder);
2598 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2599 	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2600 	u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2601 				? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2602 				: XELPDP_LANE_PIPE_RESET(0);
2603 	u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2604 					? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2605 					   XELPDP_LANE_PHY_CURRENT_STATUS(1))
2606 					: XELPDP_LANE_PHY_CURRENT_STATUS(0);
2607 
2608 	if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL1(i915, port),
2609 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2610 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2611 				 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2612 		drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n",
2613 			 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2614 
2615 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset,
2616 		     lane_pipe_reset);
2617 
2618 	if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2619 				 lane_phy_current_status, lane_phy_current_status,
2620 				 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2621 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2622 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2623 
2624 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
2625 		     intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2626 		     intel_cx0_get_pclk_refclk_request(lane_mask));
2627 
2628 	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
2629 				 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2630 				 intel_cx0_get_pclk_refclk_ack(lane_mask),
2631 				 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2632 		drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n",
2633 			 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2634 
2635 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2636 					    CX0_P2_STATE_RESET);
2637 	intel_cx0_setup_powerdown(encoder);
2638 
2639 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset, 0);
2640 
2641 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2642 				    lane_phy_current_status,
2643 				    XELPDP_PORT_RESET_END_TIMEOUT))
2644 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n",
2645 			 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2646 }
2647 
2648 static void intel_cx0_program_phy_lane(struct drm_i915_private *i915,
2649 				       struct intel_encoder *encoder, int lane_count,
2650 				       bool lane_reversal)
2651 {
2652 	int i;
2653 	u8 disables;
2654 	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2655 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2656 
2657 	if (intel_encoder_is_c10phy(encoder))
2658 		intel_cx0_rmw(encoder, owned_lane_mask,
2659 			      PHY_C10_VDR_CONTROL(1), 0,
2660 			      C10_VDR_CTRL_MSGBUS_ACCESS,
2661 			      MB_WRITE_COMMITTED);
2662 
2663 	if (lane_reversal)
2664 		disables = REG_GENMASK8(3, 0) >> lane_count;
2665 	else
2666 		disables = REG_GENMASK8(3, 0) << lane_count;
2667 
2668 	if (dp_alt_mode && lane_count == 1) {
2669 		disables &= ~REG_GENMASK8(1, 0);
2670 		disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2671 	}
2672 
2673 	for (i = 0; i < 4; i++) {
2674 		int tx = i % 2 + 1;
2675 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2676 
2677 		if (!(owned_lane_mask & lane_mask))
2678 			continue;
2679 
2680 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2681 			      CONTROL2_DISABLE_SINGLE_TX,
2682 			      disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2683 			      MB_WRITE_COMMITTED);
2684 	}
2685 
2686 	if (intel_encoder_is_c10phy(encoder))
2687 		intel_cx0_rmw(encoder, owned_lane_mask,
2688 			      PHY_C10_VDR_CONTROL(1), 0,
2689 			      C10_VDR_CTRL_UPDATE_CFG,
2690 			      MB_WRITE_COMMITTED);
2691 }
2692 
2693 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2694 {
2695 	u32 val = 0;
2696 	int lane = 0;
2697 
2698 	for_each_cx0_lane_in_mask(lane_mask, lane)
2699 		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2700 
2701 	return val;
2702 }
2703 
2704 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2705 {
2706 	u32 val = 0;
2707 	int lane = 0;
2708 
2709 	for_each_cx0_lane_in_mask(lane_mask, lane)
2710 		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2711 
2712 	return val;
2713 }
2714 
2715 static void intel_cx0pll_enable(struct intel_encoder *encoder,
2716 				const struct intel_crtc_state *crtc_state)
2717 {
2718 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2719 	enum phy phy = intel_encoder_to_phy(encoder);
2720 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2721 	bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
2722 	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
2723 					  INTEL_CX0_LANE0;
2724 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2725 
2726 	/*
2727 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2728 	 * clock muxes, gating and SSC
2729 	 */
2730 	intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
2731 
2732 	/* 2. Bring PHY out of reset. */
2733 	intel_cx0_phy_lane_reset(encoder, lane_reversal);
2734 
2735 	/*
2736 	 * 3. Change Phy power state to Ready.
2737 	 * TODO: For DP alt mode use only one lane.
2738 	 */
2739 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2740 					    CX0_P2_STATE_READY);
2741 
2742 	/*
2743 	 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
2744 	 *    (This is done inside intel_cx0_phy_transaction_begin(), since we would need
2745 	 *    the right timer thresholds for readouts too.)
2746 	 */
2747 
2748 	/* 5. Program PHY internal PLL internal registers. */
2749 	if (intel_encoder_is_c10phy(encoder))
2750 		intel_c10_pll_program(i915, crtc_state, encoder);
2751 	else
2752 		intel_c20_pll_program(i915, crtc_state, encoder);
2753 
2754 	/*
2755 	 * 6. Program the enabled and disabled owned PHY lane
2756 	 * transmitters over message bus
2757 	 */
2758 	intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal);
2759 
2760 	/*
2761 	 * 7. Follow the Display Voltage Frequency Switching - Sequence
2762 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2763 	 */
2764 
2765 	/*
2766 	 * 8. Program DDI_CLK_VALFREQ to match intended DDI
2767 	 * clock frequency.
2768 	 */
2769 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2770 		       crtc_state->port_clock);
2771 
2772 	/*
2773 	 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
2774 	 * LN<Lane for maxPCLK> to "1" to enable PLL.
2775 	 */
2776 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2777 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
2778 		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
2779 
2780 	/* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
2781 	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2782 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
2783 				 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
2784 				 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
2785 		drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n",
2786 			 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
2787 
2788 	/*
2789 	 * 11. Follow the Display Voltage Frequency Switching Sequence After
2790 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2791 	 */
2792 
2793 	/* TODO: enable TBT-ALT mode */
2794 	intel_cx0_phy_transaction_end(encoder, wakeref);
2795 }
2796 
2797 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
2798 {
2799 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2800 	u32 clock;
2801 	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
2802 
2803 	clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
2804 
2805 	drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
2806 	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
2807 	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK));
2808 
2809 	switch (clock) {
2810 	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
2811 		return 162000;
2812 	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
2813 		return 270000;
2814 	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
2815 		return 540000;
2816 	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
2817 		return 810000;
2818 	default:
2819 		MISSING_CASE(clock);
2820 		return 162000;
2821 	}
2822 }
2823 
2824 static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock)
2825 {
2826 	switch (clock) {
2827 	case 162000:
2828 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2829 	case 270000:
2830 		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
2831 	case 540000:
2832 		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
2833 	case 810000:
2834 		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
2835 	default:
2836 		MISSING_CASE(clock);
2837 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2838 	}
2839 }
2840 
2841 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
2842 				     const struct intel_crtc_state *crtc_state)
2843 {
2844 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2845 	enum phy phy = intel_encoder_to_phy(encoder);
2846 	u32 val = 0;
2847 
2848 	/*
2849 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2850 	 * clock muxes, gating and SSC
2851 	 */
2852 	val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock));
2853 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2854 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2855 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
2856 
2857 	/* 2. Read back PORT_CLOCK_CTL REGISTER */
2858 	val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
2859 
2860 	/*
2861 	 * 3. Follow the Display Voltage Frequency Switching - Sequence
2862 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2863 	 */
2864 
2865 	/*
2866 	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
2867 	 */
2868 	val |= XELPDP_TBT_CLOCK_REQUEST;
2869 	intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), val);
2870 
2871 	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
2872 	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2873 				 XELPDP_TBT_CLOCK_ACK,
2874 				 XELPDP_TBT_CLOCK_ACK,
2875 				 100, 0, NULL))
2876 		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
2877 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2878 
2879 	/*
2880 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2881 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2882 	 */
2883 
2884 	/*
2885 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
2886 	 * clock frequency.
2887 	 */
2888 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2889 		       crtc_state->port_clock);
2890 }
2891 
2892 void intel_mtl_pll_enable(struct intel_encoder *encoder,
2893 			  const struct intel_crtc_state *crtc_state)
2894 {
2895 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2896 
2897 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2898 		intel_mtl_tbt_pll_enable(encoder, crtc_state);
2899 	else
2900 		intel_cx0pll_enable(encoder, crtc_state);
2901 }
2902 
2903 static void intel_cx0pll_disable(struct intel_encoder *encoder)
2904 {
2905 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2906 	enum phy phy = intel_encoder_to_phy(encoder);
2907 	bool is_c10 = intel_encoder_is_c10phy(encoder);
2908 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2909 
2910 	/* 1. Change owned PHY lane power to Disable state. */
2911 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2912 					    is_c10 ? CX0_P2PG_STATE_DISABLE :
2913 					    CX0_P4PG_STATE_DISABLE);
2914 
2915 	/*
2916 	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
2917 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2918 	 */
2919 
2920 	/*
2921 	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
2922 	 * to "0" to disable PLL.
2923 	 */
2924 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2925 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
2926 		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
2927 
2928 	/* 4. Program DDI_CLK_VALFREQ to 0. */
2929 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2930 
2931 	/*
2932 	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
2933 	 */
2934 	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2935 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
2936 				 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
2937 				 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
2938 		drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n",
2939 			 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
2940 
2941 	/*
2942 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2943 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2944 	 */
2945 
2946 	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
2947 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2948 		     XELPDP_DDI_CLOCK_SELECT_MASK, 0);
2949 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2950 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2951 
2952 	intel_cx0_phy_transaction_end(encoder, wakeref);
2953 }
2954 
2955 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
2956 {
2957 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2958 	enum phy phy = intel_encoder_to_phy(encoder);
2959 
2960 	/*
2961 	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
2962 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2963 	 */
2964 
2965 	/*
2966 	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
2967 	 */
2968 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2969 		     XELPDP_TBT_CLOCK_REQUEST, 0);
2970 
2971 	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
2972 	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2973 				 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
2974 		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
2975 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2976 
2977 	/*
2978 	 * 4. Follow the Display Voltage Frequency Switching Sequence After
2979 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2980 	 */
2981 
2982 	/*
2983 	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
2984 	 */
2985 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2986 		     XELPDP_DDI_CLOCK_SELECT_MASK |
2987 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2988 
2989 	/* 6. Program DDI_CLK_VALFREQ to 0. */
2990 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2991 }
2992 
2993 void intel_mtl_pll_disable(struct intel_encoder *encoder)
2994 {
2995 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2996 
2997 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2998 		intel_mtl_tbt_pll_disable(encoder);
2999 	else
3000 		intel_cx0pll_disable(encoder);
3001 }
3002 
3003 enum icl_port_dpll_id
3004 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3005 			const struct intel_crtc_state *crtc_state)
3006 {
3007 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3008 	/*
3009 	 * TODO: Determine the PLL type from the SW state, once MTL PLL
3010 	 * handling is done via the standard shared DPLL framework.
3011 	 */
3012 	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
3013 	u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3014 
3015 	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3016 	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3017 		return ICL_PORT_DPLL_MG_PHY;
3018 	else
3019 		return ICL_PORT_DPLL_DEFAULT;
3020 }
3021 
3022 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3023 				      struct intel_crtc *crtc,
3024 				      struct intel_encoder *encoder,
3025 				      struct intel_c10pll_state *mpllb_hw_state)
3026 {
3027 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3028 	const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3029 	int i;
3030 
3031 	if (intel_crtc_needs_fastset(state))
3032 		return;
3033 
3034 	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3035 		u8 expected = mpllb_sw_state->pll[i];
3036 
3037 		I915_STATE_WARN(i915, mpllb_hw_state->pll[i] != expected,
3038 				"[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3039 				crtc->base.base.id, crtc->base.name, i,
3040 				expected, mpllb_hw_state->pll[i]);
3041 	}
3042 
3043 	I915_STATE_WARN(i915, mpllb_hw_state->tx != mpllb_sw_state->tx,
3044 			"[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3045 			crtc->base.base.id, crtc->base.name,
3046 			mpllb_sw_state->tx, mpllb_hw_state->tx);
3047 
3048 	I915_STATE_WARN(i915, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3049 			"[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3050 			crtc->base.base.id, crtc->base.name,
3051 			mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3052 }
3053 
3054 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3055 				   struct intel_cx0pll_state *pll_state)
3056 {
3057 	if (intel_encoder_is_c10phy(encoder))
3058 		intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3059 	else
3060 		intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3061 }
3062 
3063 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3064 				 const struct intel_cx0pll_state *pll_state)
3065 {
3066 	if (intel_encoder_is_c10phy(encoder))
3067 		return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3068 
3069 	return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3070 }
3071 
3072 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3073 				      struct intel_crtc *crtc,
3074 				      struct intel_encoder *encoder,
3075 				      struct intel_c20pll_state *mpll_hw_state)
3076 {
3077 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3078 	const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3079 	bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3080 	bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3081 	int i;
3082 
3083 	I915_STATE_WARN(i915, mpll_hw_state->clock != mpll_sw_state->clock,
3084 			"[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3085 			crtc->base.base.id, crtc->base.name,
3086 			mpll_sw_state->clock, mpll_hw_state->clock);
3087 
3088 	I915_STATE_WARN(i915, sw_use_mpllb != hw_use_mpllb,
3089 			"[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3090 			crtc->base.base.id, crtc->base.name,
3091 			sw_use_mpllb, hw_use_mpllb);
3092 
3093 	if (hw_use_mpllb) {
3094 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3095 			I915_STATE_WARN(i915, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3096 					"[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3097 					crtc->base.base.id, crtc->base.name, i,
3098 					mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3099 		}
3100 	} else {
3101 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3102 			I915_STATE_WARN(i915, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3103 					"[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3104 					crtc->base.base.id, crtc->base.name, i,
3105 					mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3106 		}
3107 	}
3108 
3109 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3110 		I915_STATE_WARN(i915, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3111 				"[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3112 				crtc->base.base.id, crtc->base.name, i,
3113 				mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3114 	}
3115 
3116 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3117 		I915_STATE_WARN(i915, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3118 				"[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3119 				crtc->base.base.id, crtc->base.name, i,
3120 				mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3121 	}
3122 }
3123 
3124 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3125 			       struct intel_crtc *crtc)
3126 {
3127 	struct drm_i915_private *i915 = to_i915(state->base.dev);
3128 	const struct intel_crtc_state *new_crtc_state =
3129 		intel_atomic_get_new_crtc_state(state, crtc);
3130 	struct intel_encoder *encoder;
3131 	struct intel_cx0pll_state mpll_hw_state = {};
3132 
3133 	if (DISPLAY_VER(i915) < 14)
3134 		return;
3135 
3136 	if (!new_crtc_state->hw.active)
3137 		return;
3138 
3139 	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3140 	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3141 	    !intel_crtc_needs_fastset(new_crtc_state))
3142 		return;
3143 
3144 	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3145 
3146 	if (intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder)))
3147 		return;
3148 
3149 	intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3150 
3151 	if (intel_encoder_is_c10phy(encoder))
3152 		intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3153 	else
3154 		intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3155 }
3156