xref: /linux/drivers/gpu/drm/amd/ras/rascore/ras_eeprom.c (revision 24f171c7e145f43b9f187578e89b0982ce87e54c)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2025 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include "ras_eeprom.h"
26 #include "ras.h"
27 
28 /* These are memory addresses as would be seen by one or more EEPROM
29  * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
30  * set of EEPROM devices. They form a continuous memory space.
31  *
32  * The I2C device address includes the device type identifier, 1010b,
33  * which is a reserved value and indicates that this is an I2C EEPROM
34  * device. It also includes the top 3 bits of the 19 bit EEPROM memory
35  * address, namely bits 18, 17, and 16. This makes up the 7 bit
36  * address sent on the I2C bus with bit 0 being the direction bit,
37  * which is not represented here, and sent by the hardware directly.
38  *
39  * For instance,
40  *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
41  *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
42  *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
43  * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
44  * address memory in a device or a device on the I2C bus, depending on
45  * the status of pins 1-3.
46  *
47  * The RAS table lives either at address 0 or address 40000h of EEPROM.
48  */
49 #define EEPROM_I2C_MADDR_0      0x0
50 #define EEPROM_I2C_MADDR_4      0x40000
51 
52 #define EEPROM_PAGE_BITS   8
53 #define EEPROM_PAGE_SIZE   (1U << EEPROM_PAGE_BITS)
54 #define EEPROM_PAGE_MASK   (EEPROM_PAGE_SIZE - 1)
55 
56 #define EEPROM_OFFSET_SIZE 2
57 #define MAKE_I2C_ADDR(_aa) ((0xA << 3) | (((_aa) >> 16) & 0xF))
58 
59 /*
60  * The 2 macros bellow represent the actual size in bytes that
61  * those entities occupy in the EEPROM memory.
62  * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_umc_record) which
63  * uses uint64 to store 6b fields such as retired_page.
64  */
65 #define RAS_TABLE_HEADER_SIZE   20
66 #define RAS_TABLE_RECORD_SIZE   24
67 
68 /* Table hdr is 'AMDR' */
69 #define RAS_TABLE_HDR_VAL       0x414d4452
70 
71 /* Bad GPU tag ‘BADG’ */
72 #define RAS_TABLE_HDR_BAD       0x42414447
73 
74 /*
75  * EEPROM Table structure v1
76  * ---------------------------------
77  * |                               |
78  * |     EEPROM TABLE HEADER       |
79  * |      ( size 20 Bytes )        |
80  * |                               |
81  * ---------------------------------
82  * |                               |
83  * |    BAD PAGE RECORD AREA       |
84  * |                               |
85  * ---------------------------------
86  */
87 
88 /* Assume 2-Mbit size EEPROM and take up the whole space. */
89 #define RAS_TBL_SIZE_BYTES      (256 * 1024)
90 #define RAS_TABLE_START         0
91 #define RAS_HDR_START           RAS_TABLE_START
92 #define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
93 #define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
94 				 / RAS_TABLE_RECORD_SIZE)
95 
96 /*
97  * EEPROM Table structrue v2.1
98  * ---------------------------------
99  * |                               |
100  * |     EEPROM TABLE HEADER       |
101  * |      ( size 20 Bytes )        |
102  * |                               |
103  * ---------------------------------
104  * |                               |
105  * |     EEPROM TABLE RAS INFO     |
106  * | (available info size 4 Bytes) |
107  * |  ( reserved size 252 Bytes )  |
108  * |                               |
109  * ---------------------------------
110  * |                               |
111  * |     BAD PAGE RECORD AREA      |
112  * |                               |
113  * ---------------------------------
114  */
115 
116 /* EEPROM Table V2_1 */
117 #define RAS_TABLE_V2_1_INFO_SIZE       256
118 #define RAS_TABLE_V2_1_INFO_START      RAS_TABLE_HEADER_SIZE
119 #define RAS_RECORD_START_V2_1          (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
120 					RAS_TABLE_V2_1_INFO_SIZE)
121 #define RAS_MAX_RECORD_COUNT_V2_1      ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
122 					RAS_TABLE_V2_1_INFO_SIZE) \
123 					/ RAS_TABLE_RECORD_SIZE)
124 
125 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
126  * offset off of RAS_TABLE_START.  That is, this is something you can
127  * add to control->i2c_address, and then tell I2C layer to read
128  * from/write to there. _N is the so called absolute index,
129  * because it starts right after the table header.
130  */
131 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
132 				     (_N) * RAS_TABLE_RECORD_SIZE)
133 
134 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
135 				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
136 
137 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
138  * of "fri", return the absolute record index off of the end of
139  * the table header.
140  */
141 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
142 			      (_C)->ras_max_record_count)
143 
144 #define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
145 				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
146 
147 #define RAS_NUM_RECS_V2_1(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
148 				       RAS_TABLE_HEADER_SIZE - \
149 				       RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
150 
151 #define to_ras_core_context(x) (container_of(x, struct ras_core_context, ras_eeprom))
152 
153 static bool __is_ras_eeprom_supported(struct ras_core_context *ras_core)
154 {
155 	return ras_core->ras_eeprom_supported;
156 }
157 
158 static bool __get_eeprom_i2c_addr(struct ras_core_context *ras_core,
159 				  struct ras_eeprom_control *control)
160 {
161 	int ret = -EINVAL;
162 
163 	if (control->sys_func &&
164 		control->sys_func->update_eeprom_i2c_config)
165 		ret = control->sys_func->update_eeprom_i2c_config(ras_core);
166 	else
167 		RAS_DEV_WARN(ras_core->dev,
168 			"No eeprom i2c system config!\n");
169 
170 	return !ret ? true : false;
171 }
172 
173 static int __ras_eeprom_xfer(struct ras_core_context *ras_core, u32 eeprom_addr,
174 				u8 *eeprom_buf, u32 buf_size, bool read)
175 {
176 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
177 	int ret;
178 
179 	if (control->sys_func && control->sys_func->eeprom_i2c_xfer) {
180 		ret = control->sys_func->eeprom_i2c_xfer(ras_core,
181 				eeprom_addr, eeprom_buf, buf_size, read);
182 
183 		if ((ret > 0) && !read) {
184 			/* According to EEPROM specs the length of the
185 			 * self-writing cycle, tWR (tW), is 10 ms.
186 			 *
187 			 * TODO: Use polling on ACK, aka Acknowledge
188 			 * Polling, to minimize waiting for the
189 			 * internal write cycle to complete, as it is
190 			 * usually smaller than tWR (tW).
191 			 */
192 			msleep(10);
193 		}
194 
195 		return ret;
196 	}
197 
198 	RAS_DEV_ERR(ras_core->dev, "Error: No eeprom i2c system xfer function!\n");
199 	return -EINVAL;
200 }
201 
202 static int __eeprom_xfer(struct ras_core_context *ras_core, u32 eeprom_addr,
203 			      u8 *eeprom_buf, u32 buf_size, bool read)
204 {
205 	u16 limit;
206 	u16 ps; /* Partial size */
207 	int res = 0, r;
208 
209 	if (read)
210 		limit = ras_core->ras_eeprom.max_read_len;
211 	else
212 		limit = ras_core->ras_eeprom.max_write_len;
213 
214 	if (limit && (limit <= EEPROM_OFFSET_SIZE)) {
215 		RAS_DEV_ERR(ras_core->dev,
216 				"maddr:0x%04X size:0x%02X:quirk max_%s_len must be > %d",
217 				eeprom_addr, buf_size,
218 				read ? "read" : "write", EEPROM_OFFSET_SIZE);
219 		return -EINVAL;
220 	}
221 
222 	ras_core_down_gpu_reset_lock(ras_core);
223 
224 	if (limit == 0) {
225 		res = __ras_eeprom_xfer(ras_core, eeprom_addr,
226 					eeprom_buf, buf_size, read);
227 	} else {
228 		/* The "limit" includes all data bytes sent/received,
229 		 * which would include the EEPROM_OFFSET_SIZE bytes.
230 		 * Account for them here.
231 		 */
232 		limit -= EEPROM_OFFSET_SIZE;
233 		for ( ; buf_size > 0;
234 			buf_size -= ps, eeprom_addr += ps, eeprom_buf += ps) {
235 			ps = (buf_size < limit) ? buf_size : limit;
236 
237 			r = __ras_eeprom_xfer(ras_core, eeprom_addr,
238 						eeprom_buf, ps, read);
239 			if (r < 0)
240 				break;
241 
242 			res += r;
243 		}
244 	}
245 
246 	ras_core_up_gpu_reset_lock(ras_core);
247 
248 	return res;
249 }
250 
251 static int __eeprom_read(struct ras_core_context *ras_core,
252 			      u32 eeprom_addr, u8 *eeprom_buf, u32 bytes)
253 {
254 	return __eeprom_xfer(ras_core, eeprom_addr,
255 			   eeprom_buf, bytes, true);
256 }
257 
258 static int __eeprom_write(struct ras_core_context *ras_core,
259 			       u32 eeprom_addr, u8 *eeprom_buf, u32 bytes)
260 {
261 	return __eeprom_xfer(ras_core, eeprom_addr,
262 			   eeprom_buf, bytes, false);
263 }
264 
265 static void
266 __encode_table_header_to_buf(struct ras_eeprom_table_header *hdr,
267 			     unsigned char *buf)
268 {
269 	u32 *pp = (uint32_t *)buf;
270 
271 	pp[0] = cpu_to_le32(hdr->header);
272 	pp[1] = cpu_to_le32(hdr->version);
273 	pp[2] = cpu_to_le32(hdr->first_rec_offset);
274 	pp[3] = cpu_to_le32(hdr->tbl_size);
275 	pp[4] = cpu_to_le32(hdr->checksum);
276 }
277 
278 static void
279 __decode_table_header_from_buf(struct ras_eeprom_table_header *hdr,
280 			       unsigned char *buf)
281 {
282 	u32 *pp = (uint32_t *)buf;
283 
284 	hdr->header	      = le32_to_cpu(pp[0]);
285 	hdr->version	      = le32_to_cpu(pp[1]);
286 	hdr->first_rec_offset = le32_to_cpu(pp[2]);
287 	hdr->tbl_size	      = le32_to_cpu(pp[3]);
288 	hdr->checksum	      = le32_to_cpu(pp[4]);
289 }
290 
291 static int __write_table_header(struct ras_eeprom_control *control)
292 {
293 	u8 buf[RAS_TABLE_HEADER_SIZE];
294 	struct ras_core_context *ras_core = to_ras_core_context(control);
295 	int res;
296 
297 	memset(buf, 0, sizeof(buf));
298 	__encode_table_header_to_buf(&control->tbl_hdr, buf);
299 
300 	/* i2c may be unstable in gpu reset */
301 	res = __eeprom_write(ras_core,
302 				  control->i2c_address +
303 				  control->ras_header_offset,
304 				  buf, RAS_TABLE_HEADER_SIZE);
305 
306 	if (res < 0) {
307 		RAS_DEV_ERR(ras_core->dev,
308 			"Failed to write EEPROM table header:%d\n", res);
309 	} else if (res < RAS_TABLE_HEADER_SIZE) {
310 		RAS_DEV_ERR(ras_core->dev,
311 			"Short write:%d out of %d\n", res, RAS_TABLE_HEADER_SIZE);
312 		res = -EIO;
313 	} else {
314 		res = 0;
315 	}
316 
317 	return res;
318 }
319 
320 static void
321 __encode_table_ras_info_to_buf(struct ras_eeprom_table_ras_info *rai,
322 			       unsigned char *buf)
323 {
324 	u32 *pp = (uint32_t *)buf;
325 	u32 tmp;
326 
327 	tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
328 	      (((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
329 	      (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
330 	pp[0] = cpu_to_le32(tmp);
331 }
332 
333 static void
334 __decode_table_ras_info_from_buf(struct ras_eeprom_table_ras_info *rai,
335 				 unsigned char *buf)
336 {
337 	u32 *pp = (uint32_t *)buf;
338 	u32 tmp;
339 
340 	tmp = le32_to_cpu(pp[0]);
341 	rai->rma_status = tmp & 0xFF;
342 	rai->health_percent = (tmp >> 8) & 0xFF;
343 	rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
344 }
345 
346 static int __write_table_ras_info(struct ras_eeprom_control *control)
347 {
348 	struct ras_core_context *ras_core = to_ras_core_context(control);
349 	u8 *buf;
350 	int res;
351 
352 	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
353 	if (!buf) {
354 		RAS_DEV_ERR(ras_core->dev,
355 			"Failed to alloc buf to write table ras info\n");
356 		return -ENOMEM;
357 	}
358 
359 	__encode_table_ras_info_to_buf(&control->tbl_rai, buf);
360 
361 	/* i2c may be unstable in gpu reset */
362 	res = __eeprom_write(ras_core,
363 				  control->i2c_address +
364 				  control->ras_info_offset,
365 				  buf, RAS_TABLE_V2_1_INFO_SIZE);
366 
367 	if (res < 0) {
368 		RAS_DEV_ERR(ras_core->dev,
369 			"Failed to write EEPROM table ras info:%d\n", res);
370 	} else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
371 		RAS_DEV_ERR(ras_core->dev,
372 			"Short write:%d out of %d\n", res, RAS_TABLE_V2_1_INFO_SIZE);
373 		res = -EIO;
374 	} else {
375 		res = 0;
376 	}
377 
378 	kfree(buf);
379 
380 	return res;
381 }
382 
383 static u8 __calc_hdr_byte_sum(const struct ras_eeprom_control *control)
384 {
385 	int ii;
386 	u8  *pp, csum;
387 	u32 sz;
388 
389 	/* Header checksum, skip checksum field in the calculation */
390 	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
391 	pp = (u8 *) &control->tbl_hdr;
392 	csum = 0;
393 	for (ii = 0; ii < sz; ii++, pp++)
394 		csum += *pp;
395 
396 	return csum;
397 }
398 
399 static u8 __calc_ras_info_byte_sum(const struct ras_eeprom_control *control)
400 {
401 	int ii;
402 	u8  *pp, csum;
403 	u32 sz;
404 
405 	sz = sizeof(control->tbl_rai);
406 	pp = (u8 *) &control->tbl_rai;
407 	csum = 0;
408 	for (ii = 0; ii < sz; ii++, pp++)
409 		csum += *pp;
410 
411 	return csum;
412 }
413 
414 static int ras_eeprom_correct_header_tag(
415 	struct ras_eeprom_control *control,
416 	uint32_t header)
417 {
418 	struct ras_eeprom_table_header *hdr = &control->tbl_hdr;
419 	u8 *hh;
420 	int res;
421 	u8 csum;
422 
423 	csum = -hdr->checksum;
424 
425 	hh = (void *) &hdr->header;
426 	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
427 	hh = (void *) &header;
428 	csum += hh[0] + hh[1] + hh[2] + hh[3];
429 	csum = -csum;
430 	mutex_lock(&control->ras_tbl_mutex);
431 	hdr->header = header;
432 	hdr->checksum = csum;
433 	res = __write_table_header(control);
434 	mutex_unlock(&control->ras_tbl_mutex);
435 
436 	return res;
437 }
438 
439 static void ras_set_eeprom_table_version(struct ras_eeprom_control *control)
440 {
441 	struct ras_eeprom_table_header *hdr = &control->tbl_hdr;
442 
443 	hdr->version = RAS_TABLE_VER_V3;
444 }
445 
446 int ras_eeprom_reset_table(struct ras_core_context *ras_core)
447 {
448 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
449 	struct ras_eeprom_table_header *hdr = &control->tbl_hdr;
450 	struct ras_eeprom_table_ras_info *rai = &control->tbl_rai;
451 	u8 csum;
452 	int res;
453 
454 	mutex_lock(&control->ras_tbl_mutex);
455 
456 	hdr->header = RAS_TABLE_HDR_VAL;
457 	ras_set_eeprom_table_version(control);
458 
459 	if (hdr->version >= RAS_TABLE_VER_V2_1) {
460 		hdr->first_rec_offset = RAS_RECORD_START_V2_1;
461 		hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
462 				RAS_TABLE_V2_1_INFO_SIZE;
463 		rai->rma_status = RAS_GPU_HEALTH_USABLE;
464 		/**
465 		 * GPU health represented as a percentage.
466 		 * 0 means worst health, 100 means fully health.
467 		 */
468 		rai->health_percent = 100;
469 		/* ecc_page_threshold = 0 means disable bad page retirement */
470 		rai->ecc_page_threshold = control->record_threshold_count;
471 	} else {
472 		hdr->first_rec_offset = RAS_RECORD_START;
473 		hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
474 	}
475 
476 	csum = __calc_hdr_byte_sum(control);
477 	if (hdr->version >= RAS_TABLE_VER_V2_1)
478 		csum += __calc_ras_info_byte_sum(control);
479 	csum = -csum;
480 	hdr->checksum = csum;
481 	res = __write_table_header(control);
482 	if (!res && hdr->version > RAS_TABLE_VER_V1)
483 		res = __write_table_ras_info(control);
484 
485 	control->ras_num_recs = 0;
486 	control->ras_fri = 0;
487 
488 	control->bad_channel_bitmap = 0;
489 	ras_core_event_notify(ras_core, RAS_EVENT_ID__UPDATE_BAD_PAGE_NUM,
490 		&control->ras_num_recs);
491 	ras_core_event_notify(ras_core, RAS_EVENT_ID__UPDATE_BAD_CHANNEL_BITMAP,
492 		&control->bad_channel_bitmap);
493 	control->update_channel_flag = false;
494 
495 	mutex_unlock(&control->ras_tbl_mutex);
496 
497 	return res;
498 }
499 
500 static void
501 __encode_table_record_to_buf(struct ras_eeprom_control *control,
502 			     struct eeprom_umc_record *record,
503 			     unsigned char *buf)
504 {
505 	__le64 tmp = 0;
506 	int i = 0;
507 
508 	/* Next are all record fields according to EEPROM page spec in LE foramt */
509 	buf[i++] = record->err_type;
510 
511 	buf[i++] = record->bank;
512 
513 	tmp = cpu_to_le64(record->ts);
514 	memcpy(buf + i, &tmp, 8);
515 	i += 8;
516 
517 	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
518 	memcpy(buf + i, &tmp, 6);
519 	i += 6;
520 
521 	buf[i++] = record->mem_channel;
522 	buf[i++] = record->mcumc_id;
523 
524 	tmp = cpu_to_le64((record->retired_row_pfn & 0xffffffffffff));
525 	memcpy(buf + i, &tmp, 6);
526 }
527 
528 static void
529 __decode_table_record_from_buf(struct ras_eeprom_control *control,
530 			       struct eeprom_umc_record *record,
531 			       unsigned char *buf)
532 {
533 	__le64 tmp = 0;
534 	int i =  0;
535 
536 	/* Next are all record fields according to EEPROM page spec in LE foramt */
537 	record->err_type = buf[i++];
538 
539 	record->bank = buf[i++];
540 
541 	memcpy(&tmp, buf + i, 8);
542 	record->ts = le64_to_cpu(tmp);
543 	i += 8;
544 
545 	memcpy(&tmp, buf + i, 6);
546 	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
547 	i += 6;
548 
549 	record->mem_channel = buf[i++];
550 	record->mcumc_id = buf[i++];
551 
552 	memcpy(&tmp, buf + i,  6);
553 	record->retired_row_pfn = (le64_to_cpu(tmp) & 0xffffffffffff);
554 }
555 
556 bool ras_eeprom_check_safety_watermark(struct ras_core_context *ras_core)
557 {
558 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
559 	bool ret = false;
560 	int bad_page_count;
561 
562 	if (!__is_ras_eeprom_supported(ras_core) ||
563 	    !control->record_threshold_config)
564 		return false;
565 
566 	bad_page_count = ras_umc_get_badpage_count(ras_core);
567 	if (control->tbl_hdr.header == RAS_TABLE_HDR_BAD) {
568 		if (bad_page_count > control->record_threshold_count)
569 			RAS_DEV_WARN(ras_core->dev, "RAS records:%d exceed threshold:%d",
570 				bad_page_count, control->record_threshold_count);
571 
572 		if ((control->record_threshold_config == WARN_NONSTOP_OVER_THRESHOLD) ||
573 			(control->record_threshold_config == NONSTOP_OVER_THRESHOLD)) {
574 			RAS_DEV_WARN(ras_core->dev,
575 				"Please consult AMD Service Action Guide (SAG) for appropriate service procedures.\n");
576 			ret = false;
577 		} else {
578 			ras_core->is_rma = true;
579 			RAS_DEV_WARN(ras_core->dev,
580 				"Please consider adjusting the customized threshold.\n");
581 			ret = true;
582 		}
583 	}
584 
585 	return ret;
586 }
587 
588 /**
589  * __ras_eeprom_write -- write indexed from buffer to EEPROM
590  * @control: pointer to control structure
591  * @buf: pointer to buffer containing data to write
592  * @fri: start writing at this index
593  * @num: number of records to write
594  *
595  * The caller must hold the table mutex in @control.
596  * Return 0 on success, -errno otherwise.
597  */
598 static int __ras_eeprom_write(struct ras_eeprom_control *control,
599 			      u8 *buf, const u32 fri, const u32 num)
600 {
601 	struct ras_core_context *ras_core = to_ras_core_context(control);
602 	u32 buf_size;
603 	int res;
604 
605 	/* i2c may be unstable in gpu reset */
606 	buf_size = num * RAS_TABLE_RECORD_SIZE;
607 	res = __eeprom_write(ras_core,
608 			       control->i2c_address + RAS_INDEX_TO_OFFSET(control, fri),
609 			       buf, buf_size);
610 	if (res < 0) {
611 		RAS_DEV_ERR(ras_core->dev,
612 			"Writing %d EEPROM table records error:%d\n", num, res);
613 	} else if (res < buf_size) {
614 		/* Short write, return error.*/
615 		RAS_DEV_ERR(ras_core->dev,
616 			"Wrote %d records out of %d\n",
617 			(res/RAS_TABLE_RECORD_SIZE), num);
618 		res = -EIO;
619 	} else {
620 		res = 0;
621 	}
622 
623 	return res;
624 }
625 
626 static int ras_eeprom_append_table(struct ras_eeprom_control *control,
627 				   struct eeprom_umc_record *record,
628 				   const u32 num)
629 {
630 	u32 a, b, i;
631 	u8 *buf, *pp;
632 	int res;
633 
634 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
635 	if (!buf)
636 		return -ENOMEM;
637 
638 	/* Encode all of them in one go.
639 	 */
640 	pp = buf;
641 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
642 		__encode_table_record_to_buf(control, &record[i], pp);
643 
644 		/* update bad channel bitmap */
645 		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
646 		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
647 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
648 			control->update_channel_flag = true;
649 		}
650 	}
651 
652 	/* a, first record index to write into.
653 	 * b, last record index to write into.
654 	 * a = first index to read (fri) + number of records in the table,
655 	 * b = a + @num - 1.
656 	 * Let N = control->ras_max_num_record_count, then we have,
657 	 * case 0: 0 <= a <= b < N,
658 	 *   just append @num records starting at a;
659 	 * case 1: 0 <= a < N <= b,
660 	 *   append (N - a) records starting at a, and
661 	 *   append the remainder,  b % N + 1, starting at 0.
662 	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
663 	 * case 2a: 0 <= a <= b < N
664 	 *   append num records starting at a; and fix fri if b overwrote it,
665 	 *   and since a <= b, if b overwrote it then a must've also,
666 	 *   and if b didn't overwrite it, then a didn't also.
667 	 * case 2b: 0 <= b < a < N
668 	 *   write num records starting at a, which wraps around 0=N
669 	 *   and overwrite fri unconditionally. Now from case 2a,
670 	 *   this means that b eclipsed fri to overwrite it and wrap
671 	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
672 	 *   set fri = b + 1 (mod N).
673 	 * Now, since fri is updated in every case, except the trivial case 0,
674 	 * the number of records present in the table after writing, is,
675 	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
676 	 * by adding an arbitrary multiple of N before taking the modulo N
677 	 * as shown below.
678 	 */
679 	a = control->ras_fri + control->ras_num_recs;
680 	b = a + num  - 1;
681 	if (b < control->ras_max_record_count) {
682 		res = __ras_eeprom_write(control, buf, a, num);
683 	} else if (a < control->ras_max_record_count) {
684 		u32 g0, g1;
685 
686 		g0 = control->ras_max_record_count - a;
687 		g1 = b % control->ras_max_record_count + 1;
688 		res = __ras_eeprom_write(control, buf, a, g0);
689 		if (res)
690 			goto Out;
691 		res = __ras_eeprom_write(control,
692 						buf + g0 * RAS_TABLE_RECORD_SIZE,
693 						0, g1);
694 		if (res)
695 			goto Out;
696 		if (g1 > control->ras_fri)
697 			control->ras_fri = g1 % control->ras_max_record_count;
698 	} else {
699 		a %= control->ras_max_record_count;
700 		b %= control->ras_max_record_count;
701 
702 		if (a <= b) {
703 			/* Note that, b - a + 1 = num. */
704 			res = __ras_eeprom_write(control, buf, a, num);
705 			if (res)
706 				goto Out;
707 			if (b >= control->ras_fri)
708 				control->ras_fri = (b + 1) % control->ras_max_record_count;
709 		} else {
710 			u32 g0, g1;
711 
712 			/* b < a, which means, we write from
713 			 * a to the end of the table, and from
714 			 * the start of the table to b.
715 			 */
716 			g0 = control->ras_max_record_count - a;
717 			g1 = b + 1;
718 			res = __ras_eeprom_write(control, buf, a, g0);
719 			if (res)
720 				goto Out;
721 			res = __ras_eeprom_write(control,
722 						 buf + g0 * RAS_TABLE_RECORD_SIZE, 0, g1);
723 			if (res)
724 				goto Out;
725 			control->ras_fri = g1 % control->ras_max_record_count;
726 		}
727 	}
728 	control->ras_num_recs = 1 +
729 		(control->ras_max_record_count + b - control->ras_fri)
730 		% control->ras_max_record_count;
731 Out:
732 	kfree(buf);
733 	return res;
734 }
735 
736 static int ras_eeprom_update_header(struct ras_eeprom_control *control)
737 {
738 	struct ras_core_context *ras_core = to_ras_core_context(control);
739 	int threshold_config = control->record_threshold_config;
740 	u8 *buf, *pp, csum;
741 	u32 buf_size;
742 	int bad_page_count;
743 	int res;
744 
745 	bad_page_count = ras_umc_get_badpage_count(ras_core);
746 	/* Modify the header if it exceeds.
747 	 */
748 	if (threshold_config != 0 &&
749 		bad_page_count > control->record_threshold_count) {
750 		RAS_DEV_WARN(ras_core->dev,
751 			"Saved bad pages %d reaches threshold value %d\n",
752 			bad_page_count, control->record_threshold_count);
753 		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
754 		if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) {
755 			control->tbl_rai.rma_status = RAS_GPU_RETIRED__ECC_REACH_THRESHOLD;
756 			control->tbl_rai.health_percent = 0;
757 		}
758 
759 		if ((threshold_config != WARN_NONSTOP_OVER_THRESHOLD) &&
760 			(threshold_config != NONSTOP_OVER_THRESHOLD))
761 			ras_core->is_rma = true;
762 
763 		/* ignore the -ENOTSUPP return value */
764 		ras_core_event_notify(ras_core, RAS_EVENT_ID__DEVICE_RMA, NULL);
765 	}
766 
767 	if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1)
768 		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
769 					    RAS_TABLE_V2_1_INFO_SIZE +
770 					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
771 	else
772 		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
773 					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
774 	control->tbl_hdr.checksum = 0;
775 
776 	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
777 	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
778 	if (!buf) {
779 		RAS_DEV_ERR(ras_core->dev,
780 			"allocating memory for table of size %d bytes failed\n",
781 			control->tbl_hdr.tbl_size);
782 		res = -ENOMEM;
783 		goto Out;
784 	}
785 
786 	res = __eeprom_read(ras_core,
787 			      control->i2c_address +
788 			      control->ras_record_offset,
789 			      buf, buf_size);
790 	if (res < 0) {
791 		RAS_DEV_ERR(ras_core->dev,
792 			"EEPROM failed reading records:%d\n", res);
793 		goto Out;
794 	} else if (res < buf_size) {
795 		RAS_DEV_ERR(ras_core->dev,
796 			"EEPROM read %d out of %d bytes\n", res, buf_size);
797 		res = -EIO;
798 		goto Out;
799 	}
800 
801 	/**
802 	 * bad page records have been stored in eeprom,
803 	 * now calculate gpu health percent
804 	 */
805 	if (threshold_config != 0 &&
806 	    control->tbl_hdr.version >= RAS_TABLE_VER_V2_1 &&
807 	    bad_page_count <= control->record_threshold_count)
808 		control->tbl_rai.health_percent = ((control->record_threshold_count -
809 			bad_page_count) * 100) / control->record_threshold_count;
810 
811 	/* Recalc the checksum.
812 	 */
813 	csum = 0;
814 	for (pp = buf; pp < buf + buf_size; pp++)
815 		csum += *pp;
816 
817 	csum += __calc_hdr_byte_sum(control);
818 	if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1)
819 		csum += __calc_ras_info_byte_sum(control);
820 	/* avoid sign extension when assigning to "checksum" */
821 	csum = -csum;
822 	control->tbl_hdr.checksum = csum;
823 	res = __write_table_header(control);
824 	if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
825 		res = __write_table_ras_info(control);
826 Out:
827 	kfree(buf);
828 	return res;
829 }
830 
831 /**
832  * ras_core_eeprom_append -- append records to the EEPROM RAS table
833  * @control: pointer to control structure
834  * @record: array of records to append
835  * @num: number of records in @record array
836  *
837  * Append @num records to the table, calculate the checksum and write
838  * the table back to EEPROM. The maximum number of records that
839  * can be appended is between 1 and control->ras_max_record_count,
840  * regardless of how many records are already stored in the table.
841  *
842  * Return 0 on success or if EEPROM is not supported, -errno on error.
843  */
844 int ras_eeprom_append(struct ras_core_context *ras_core,
845 			   struct eeprom_umc_record *record, const u32 num)
846 {
847 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
848 	int res;
849 
850 	if (!__is_ras_eeprom_supported(ras_core))
851 		return 0;
852 
853 	if (num == 0) {
854 		RAS_DEV_ERR(ras_core->dev, "will not append 0 records\n");
855 		return -EINVAL;
856 	} else if ((num + control->ras_num_recs) > control->ras_max_record_count) {
857 		RAS_DEV_ERR(ras_core->dev,
858 			"cannot append %d records than the size of table %d\n",
859 			num, control->ras_max_record_count);
860 		return -EINVAL;
861 	}
862 
863 	mutex_lock(&control->ras_tbl_mutex);
864 	res = ras_eeprom_append_table(control, record, num);
865 	if (!res)
866 		res = ras_eeprom_update_header(control);
867 
868 	mutex_unlock(&control->ras_tbl_mutex);
869 
870 	return res;
871 }
872 
873 /**
874  * __ras_eeprom_read -- read indexed from EEPROM into buffer
875  * @control: pointer to control structure
876  * @buf: pointer to buffer to read into
877  * @fri: first record index, start reading at this index, absolute index
878  * @num: number of records to read
879  *
880  * The caller must hold the table mutex in @control.
881  * Return 0 on success, -errno otherwise.
882  */
883 static int __ras_eeprom_read(struct ras_eeprom_control *control,
884 			     u8 *buf, const u32 fri, const u32 num)
885 {
886 	struct ras_core_context *ras_core = to_ras_core_context(control);
887 	u32 buf_size;
888 	int res;
889 
890 	/* i2c may be unstable in gpu reset */
891 	buf_size = num * RAS_TABLE_RECORD_SIZE;
892 	res = __eeprom_read(ras_core,
893 			      control->i2c_address +
894 			      RAS_INDEX_TO_OFFSET(control, fri),
895 			      buf, buf_size);
896 	if (res < 0) {
897 		RAS_DEV_ERR(ras_core->dev,
898 			"Reading %d EEPROM table records error:%d\n", num, res);
899 	} else if (res < buf_size) {
900 		/* Short read, return error.
901 		 */
902 		RAS_DEV_ERR(ras_core->dev,
903 			"Read %d records out of %d\n",
904 			(res/RAS_TABLE_RECORD_SIZE), num);
905 		res = -EIO;
906 	} else {
907 		res = 0;
908 	}
909 
910 	return res;
911 }
912 
913 int ras_eeprom_read(struct ras_core_context *ras_core,
914 			 struct eeprom_umc_record *record, const u32 num)
915 {
916 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
917 	int i, res;
918 	u8 *buf, *pp;
919 	u32 g0, g1;
920 
921 	if (!__is_ras_eeprom_supported(ras_core))
922 		return 0;
923 
924 	if (num == 0) {
925 		RAS_DEV_ERR(ras_core->dev, "will not read 0 records\n");
926 		return -EINVAL;
927 	} else if (num > control->ras_num_recs) {
928 		RAS_DEV_ERR(ras_core->dev,
929 			"too many records to read:%d available:%d\n",
930 			num, control->ras_num_recs);
931 		return -EINVAL;
932 	}
933 
934 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
935 	if (!buf)
936 		return -ENOMEM;
937 
938 	/* Determine how many records to read, from the first record
939 	 * index, fri, to the end of the table, and from the beginning
940 	 * of the table, such that the total number of records is
941 	 * @num, and we handle wrap around when fri > 0 and
942 	 * fri + num > RAS_MAX_RECORD_COUNT.
943 	 *
944 	 * First we compute the index of the last element
945 	 * which would be fetched from each region,
946 	 * g0 is in [fri, fri + num - 1], and
947 	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
948 	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
949 	 * the last element to fetch, we set g0 to _the number_
950 	 * of elements to fetch, @num, since we know that the last
951 	 * indexed to be fetched does not exceed the table.
952 	 *
953 	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
954 	 * we set g0 to the number of elements to read
955 	 * until the end of the table, and g1 to the number of
956 	 * elements to read from the beginning of the table.
957 	 */
958 	g0 = control->ras_fri + num - 1;
959 	g1 = g0 % control->ras_max_record_count;
960 	if (g0 < control->ras_max_record_count) {
961 		g0 = num;
962 		g1 = 0;
963 	} else {
964 		g0 = control->ras_max_record_count - control->ras_fri;
965 		g1 += 1;
966 	}
967 
968 	mutex_lock(&control->ras_tbl_mutex);
969 	res = __ras_eeprom_read(control, buf, control->ras_fri, g0);
970 	if (res)
971 		goto Out;
972 	if (g1) {
973 		res = __ras_eeprom_read(control,
974 					buf + g0 * RAS_TABLE_RECORD_SIZE, 0, g1);
975 		if (res)
976 			goto Out;
977 	}
978 
979 	res = 0;
980 
981 	/* Read up everything? Then transform.
982 	 */
983 	pp = buf;
984 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
985 		__decode_table_record_from_buf(control, &record[i], pp);
986 
987 		/* update bad channel bitmap */
988 		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
989 		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
990 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
991 			control->update_channel_flag = true;
992 		}
993 	}
994 Out:
995 	kfree(buf);
996 	mutex_unlock(&control->ras_tbl_mutex);
997 
998 	return res;
999 }
1000 
1001 uint32_t ras_eeprom_max_record_count(struct ras_core_context *ras_core)
1002 {
1003 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
1004 
1005 	/* get available eeprom table version first before eeprom table init */
1006 	ras_set_eeprom_table_version(control);
1007 
1008 	if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1)
1009 		return RAS_MAX_RECORD_COUNT_V2_1;
1010 	else
1011 		return RAS_MAX_RECORD_COUNT;
1012 }
1013 
1014 /**
1015  * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1016  * @control: pointer to control structure
1017  *
1018  * Check the checksum of the stored in EEPROM RAS table.
1019  *
1020  * Return 0 if the checksum is correct,
1021  * positive if it is not correct, and
1022  * -errno on I/O error.
1023  */
1024 static int __verify_ras_table_checksum(struct ras_eeprom_control *control)
1025 {
1026 	struct ras_core_context *ras_core = to_ras_core_context(control);
1027 	int buf_size, res;
1028 	u8  csum, *buf, *pp;
1029 
1030 	if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1)
1031 		buf_size = RAS_TABLE_HEADER_SIZE +
1032 			   RAS_TABLE_V2_1_INFO_SIZE +
1033 			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1034 	else
1035 		buf_size = RAS_TABLE_HEADER_SIZE +
1036 			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1037 
1038 	buf = kzalloc(buf_size, GFP_KERNEL);
1039 	if (!buf) {
1040 		RAS_DEV_ERR(ras_core->dev,
1041 			"Out of memory checking RAS table checksum.\n");
1042 		return -ENOMEM;
1043 	}
1044 
1045 	res = __eeprom_read(ras_core,
1046 				 control->i2c_address +
1047 				 control->ras_header_offset,
1048 				 buf, buf_size);
1049 	if (res < buf_size) {
1050 		RAS_DEV_ERR(ras_core->dev,
1051 			"Partial read for checksum, res:%d\n", res);
1052 		/* On partial reads, return -EIO.
1053 		 */
1054 		if (res >= 0)
1055 			res = -EIO;
1056 		goto Out;
1057 	}
1058 
1059 	csum = 0;
1060 	for (pp = buf; pp < buf + buf_size; pp++)
1061 		csum += *pp;
1062 Out:
1063 	kfree(buf);
1064 	return res < 0 ? res : csum;
1065 }
1066 
1067 static int __read_table_ras_info(struct ras_eeprom_control *control)
1068 {
1069 	struct ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1070 	struct ras_core_context *ras_core = to_ras_core_context(control);
1071 	unsigned char *buf;
1072 	int res;
1073 
1074 	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
1075 	if (!buf) {
1076 		RAS_DEV_ERR(ras_core->dev,
1077 			"Failed to alloc buf to read EEPROM table ras info\n");
1078 		return -ENOMEM;
1079 	}
1080 
1081 	/**
1082 	 * EEPROM table V2_1 supports ras info,
1083 	 * read EEPROM table ras info
1084 	 */
1085 	res = __eeprom_read(ras_core,
1086 			      control->i2c_address + control->ras_info_offset,
1087 			      buf, RAS_TABLE_V2_1_INFO_SIZE);
1088 	if (res < RAS_TABLE_V2_1_INFO_SIZE) {
1089 		RAS_DEV_ERR(ras_core->dev,
1090 			"Failed to read EEPROM table ras info, res:%d\n", res);
1091 		res = res >= 0 ? -EIO : res;
1092 		goto Out;
1093 	}
1094 
1095 	__decode_table_ras_info_from_buf(rai, buf);
1096 
1097 Out:
1098 	kfree(buf);
1099 	return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
1100 }
1101 
1102 static int __check_ras_table_status(struct ras_core_context *ras_core)
1103 {
1104 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
1105 	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1106 	struct ras_eeprom_table_header *hdr;
1107 	int res;
1108 
1109 	hdr = &control->tbl_hdr;
1110 
1111 	if (!__is_ras_eeprom_supported(ras_core))
1112 		return 0;
1113 
1114 	if (!__get_eeprom_i2c_addr(ras_core, control))
1115 		return -EINVAL;
1116 
1117 	control->ras_header_offset = RAS_HDR_START;
1118 	control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
1119 	mutex_init(&control->ras_tbl_mutex);
1120 
1121 	/* Read the table header from EEPROM address */
1122 	res = __eeprom_read(ras_core,
1123 			      control->i2c_address + control->ras_header_offset,
1124 			      buf, RAS_TABLE_HEADER_SIZE);
1125 	if (res < RAS_TABLE_HEADER_SIZE) {
1126 		RAS_DEV_ERR(ras_core->dev,
1127 			"Failed to read EEPROM table header, res:%d\n", res);
1128 		return res >= 0 ? -EIO : res;
1129 	}
1130 
1131 	__decode_table_header_from_buf(hdr, buf);
1132 
1133 	if (hdr->header != RAS_TABLE_HDR_VAL &&
1134 	    hdr->header != RAS_TABLE_HDR_BAD) {
1135 		RAS_DEV_INFO(ras_core->dev, "Creating a new EEPROM table");
1136 		return ras_eeprom_reset_table(ras_core);
1137 	}
1138 
1139 	switch (hdr->version) {
1140 	case RAS_TABLE_VER_V2_1:
1141 	case RAS_TABLE_VER_V3:
1142 		control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
1143 		control->ras_record_offset = RAS_RECORD_START_V2_1;
1144 		control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
1145 		break;
1146 	case RAS_TABLE_VER_V1:
1147 		control->ras_num_recs = RAS_NUM_RECS(hdr);
1148 		control->ras_record_offset = RAS_RECORD_START;
1149 		control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
1150 		break;
1151 	default:
1152 		RAS_DEV_ERR(ras_core->dev,
1153 			"RAS header invalid, unsupported version: %u",
1154 			hdr->version);
1155 		return -EINVAL;
1156 	}
1157 
1158 	if (control->ras_num_recs > control->ras_max_record_count) {
1159 		RAS_DEV_ERR(ras_core->dev,
1160 			"RAS header invalid, records in header: %u max allowed :%u",
1161 			control->ras_num_recs, control->ras_max_record_count);
1162 		return -EINVAL;
1163 	}
1164 
1165 	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1166 
1167 	return 0;
1168 }
1169 
1170 int ras_eeprom_check_storage_status(struct ras_core_context *ras_core)
1171 {
1172 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
1173 	struct ras_eeprom_table_header *hdr;
1174 	int bad_page_count;
1175 	int res = 0;
1176 
1177 	if (!__is_ras_eeprom_supported(ras_core))
1178 		return 0;
1179 
1180 	if (!__get_eeprom_i2c_addr(ras_core, control))
1181 		return -EINVAL;
1182 
1183 	hdr = &control->tbl_hdr;
1184 
1185 	bad_page_count = ras_umc_get_badpage_count(ras_core);
1186 	if (hdr->header == RAS_TABLE_HDR_VAL) {
1187 		RAS_DEV_INFO(ras_core->dev,
1188 			"Found existing EEPROM table with %d records\n",
1189 			bad_page_count);
1190 
1191 		if (hdr->version >= RAS_TABLE_VER_V2_1) {
1192 			res = __read_table_ras_info(control);
1193 			if (res)
1194 				return res;
1195 		}
1196 
1197 		res = __verify_ras_table_checksum(control);
1198 		if (res)
1199 			RAS_DEV_ERR(ras_core->dev,
1200 				"RAS table incorrect checksum or error:%d\n", res);
1201 
1202 		/* Warn if we are at 90% of the threshold or above
1203 		 */
1204 		if (10 * bad_page_count >= 9 * control->record_threshold_count)
1205 			RAS_DEV_WARN(ras_core->dev,
1206 				"RAS records:%u exceeds 90%% of threshold:%d\n",
1207 				bad_page_count,
1208 				control->record_threshold_count);
1209 
1210 	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1211 		   control->record_threshold_config != 0) {
1212 		if (hdr->version >= RAS_TABLE_VER_V2_1) {
1213 			res = __read_table_ras_info(control);
1214 			if (res)
1215 				return res;
1216 		}
1217 
1218 		res = __verify_ras_table_checksum(control);
1219 		if (res)
1220 			RAS_DEV_ERR(ras_core->dev,
1221 				"RAS Table incorrect checksum or error:%d\n", res);
1222 
1223 		if (control->record_threshold_count >= bad_page_count) {
1224 			/* This means that, the threshold was increased since
1225 			 * the last time the system was booted, and now,
1226 			 * ras->record_threshold_count - control->num_recs > 0,
1227 			 * so that at least one more record can be saved,
1228 			 * before the page count threshold is reached.
1229 			 */
1230 			RAS_DEV_INFO(ras_core->dev,
1231 				"records:%d threshold:%d, resetting RAS table header signature",
1232 				bad_page_count,
1233 				control->record_threshold_count);
1234 			res = ras_eeprom_correct_header_tag(control, RAS_TABLE_HDR_VAL);
1235 		} else {
1236 			RAS_DEV_ERR(ras_core->dev, "RAS records:%d exceed threshold:%d",
1237 				bad_page_count, control->record_threshold_count);
1238 			if ((control->record_threshold_config == WARN_NONSTOP_OVER_THRESHOLD) ||
1239 				(control->record_threshold_config == NONSTOP_OVER_THRESHOLD)) {
1240 				RAS_DEV_WARN(ras_core->dev,
1241 				"Please consult AMD Service Action Guide (SAG) for appropriate service procedures\n");
1242 				res = 0;
1243 			} else {
1244 				ras_core->is_rma = true;
1245 				RAS_DEV_ERR(ras_core->dev,
1246 				"User defined threshold is set, runtime service will be halt when threshold is reached\n");
1247 			}
1248 		}
1249 	}
1250 
1251 	return res < 0 ? res : 0;
1252 }
1253 
1254 int ras_eeprom_hw_init(struct ras_core_context *ras_core)
1255 {
1256 	struct ras_eeprom_control *control;
1257 	struct ras_eeprom_config *eeprom_cfg;
1258 
1259 	if (!ras_core)
1260 		return -EINVAL;
1261 
1262 	ras_core->is_rma = false;
1263 
1264 	control = &ras_core->ras_eeprom;
1265 
1266 	memset(control, 0, sizeof(*control));
1267 
1268 	eeprom_cfg = &ras_core->config->eeprom_cfg;
1269 	control->record_threshold_config =
1270 		eeprom_cfg->eeprom_record_threshold_config;
1271 
1272 	control->record_threshold_count = ras_eeprom_max_record_count(ras_core);
1273 	if (eeprom_cfg->eeprom_record_threshold_count <
1274 		control->record_threshold_count)
1275 		control->record_threshold_count =
1276 			eeprom_cfg->eeprom_record_threshold_count;
1277 
1278 	control->sys_func = eeprom_cfg->eeprom_sys_fn;
1279 	control->max_read_len = eeprom_cfg->max_i2c_read_len;
1280 	control->max_write_len = eeprom_cfg->max_i2c_write_len;
1281 	control->i2c_adapter = eeprom_cfg->eeprom_i2c_adapter;
1282 	control->i2c_port = eeprom_cfg->eeprom_i2c_port;
1283 	control->i2c_address = eeprom_cfg->eeprom_i2c_addr;
1284 
1285 	control->update_channel_flag = false;
1286 
1287 	return __check_ras_table_status(ras_core);
1288 }
1289 
1290 int ras_eeprom_hw_fini(struct ras_core_context *ras_core)
1291 {
1292 	struct ras_eeprom_control *control;
1293 
1294 	if (!ras_core)
1295 		return -EINVAL;
1296 
1297 	control = &ras_core->ras_eeprom;
1298 	mutex_destroy(&control->ras_tbl_mutex);
1299 
1300 	return 0;
1301 }
1302 
1303 uint32_t ras_eeprom_get_record_count(struct ras_core_context *ras_core)
1304 {
1305 	if (!ras_core)
1306 		return 0;
1307 
1308 	return ras_core->ras_eeprom.ras_num_recs;
1309 }
1310 
1311 void ras_eeprom_sync_info(struct ras_core_context *ras_core)
1312 {
1313 	struct ras_eeprom_control *control;
1314 
1315 	if (!ras_core)
1316 		return;
1317 
1318 	control = &ras_core->ras_eeprom;
1319 	ras_core_event_notify(ras_core, RAS_EVENT_ID__UPDATE_BAD_PAGE_NUM,
1320 		&control->ras_num_recs);
1321 	ras_core_event_notify(ras_core, RAS_EVENT_ID__UPDATE_BAD_CHANNEL_BITMAP,
1322 		&control->bad_channel_bitmap);
1323 }
1324 
1325 enum ras_gpu_health_status
1326 	ras_eeprom_check_gpu_status(struct ras_core_context *ras_core)
1327 {
1328 	struct ras_eeprom_control *control = &ras_core->ras_eeprom;
1329 	struct ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1330 
1331 	if (!__is_ras_eeprom_supported(ras_core) ||
1332 	    !control->record_threshold_config)
1333 		return RAS_GPU_HEALTH_NONE;
1334 
1335 	if (control->tbl_hdr.header == RAS_TABLE_HDR_BAD)
1336 		return RAS_GPU_IN_BAD_STATUS;
1337 
1338 	return rai->rma_status;
1339 }
1340