xref: /linux/drivers/gpu/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 #include "dc_state_priv.h"
36 
37 #define DC_LOGGER_INIT(logger)
38 
39 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40 			.min_refresh = 120,
41 			.max_refresh = 175,
42 			.res = {
43 				{.width = 3840, .height = 2160, },
44 				{.width = 3440, .height = 1440, },
45 				{.width = 2560, .height = 1440, },
46 				{.width = 1920, .height = 1080, }},
47 };
48 
49 static const struct subvp_active_margin_list subvp_active_margin_list = {
50 			.min_refresh = 55,
51 			.max_refresh = 65,
52 			.res = {
53 				{.width = 2560, .height = 1440, },
54 				{.width = 1920, .height = 1080, }},
55 };
56 
57 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58 	.gpuvm_enable = 0,
59 	.gpuvm_max_page_table_levels = 4,
60 	.hostvm_enable = 0,
61 	.rob_buffer_size_kbytes = 128,
62 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63 	.config_return_buffer_size_in_kbytes = 1280,
64 	.compressed_buffer_segment_size_in_kbytes = 64,
65 	.meta_fifo_size_in_kentries = 22,
66 	.zero_size_buffer_entries = 512,
67 	.compbuf_reserved_space_64b = 256,
68 	.compbuf_reserved_space_zs = 64,
69 	.dpp_output_buffer_pixels = 2560,
70 	.opp_output_buffer_lines = 1,
71 	.pixel_chunk_size_kbytes = 8,
72 	.alpha_pixel_chunk_size_kbytes = 4,
73 	.min_pixel_chunk_size_bytes = 1024,
74 	.dcc_meta_buffer_size_bytes = 6272,
75 	.meta_chunk_size_kbytes = 2,
76 	.min_meta_chunk_size_bytes = 256,
77 	.writeback_chunk_size_kbytes = 8,
78 	.ptoi_supported = false,
79 	.num_dsc = 4,
80 	.maximum_dsc_bits_per_component = 12,
81 	.maximum_pixels_per_line_per_dsc_unit = 6016,
82 	.dsc422_native_support = true,
83 	.is_line_buffer_bpp_fixed = true,
84 	.line_buffer_fixed_bpp = 57,
85 	.line_buffer_size_bits = 1171920,
86 	.max_line_buffer_lines = 32,
87 	.writeback_interface_buffer_size_kbytes = 90,
88 	.max_num_dpp = 4,
89 	.max_num_otg = 4,
90 	.max_num_hdmi_frl_outputs = 1,
91 	.max_num_wb = 1,
92 	.max_dchub_pscl_bw_pix_per_clk = 4,
93 	.max_pscl_lb_bw_pix_per_clk = 2,
94 	.max_lb_vscl_bw_pix_per_clk = 4,
95 	.max_vscl_hscl_bw_pix_per_clk = 4,
96 	.max_hscl_ratio = 6,
97 	.max_vscl_ratio = 6,
98 	.max_hscl_taps = 8,
99 	.max_vscl_taps = 8,
100 	.dpte_buffer_size_in_pte_reqs_luma = 64,
101 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
102 	.dispclk_ramp_margin_percent = 1,
103 	.max_inter_dcn_tile_repeaters = 8,
104 	.cursor_buffer_size = 16,
105 	.cursor_chunk_size = 2,
106 	.writeback_line_buffer_buffer_size = 0,
107 	.writeback_min_hscl_ratio = 1,
108 	.writeback_min_vscl_ratio = 1,
109 	.writeback_max_hscl_ratio = 1,
110 	.writeback_max_vscl_ratio = 1,
111 	.writeback_max_hscl_taps = 1,
112 	.writeback_max_vscl_taps = 1,
113 	.dppclk_delay_subtotal = 47,
114 	.dppclk_delay_scl = 50,
115 	.dppclk_delay_scl_lb_only = 16,
116 	.dppclk_delay_cnvc_formatter = 28,
117 	.dppclk_delay_cnvc_cursor = 6,
118 	.dispclk_delay_subtotal = 125,
119 	.dynamic_metadata_vm_enabled = false,
120 	.odm_combine_4to1_supported = false,
121 	.dcc_supported = true,
122 	.max_num_dp2p0_outputs = 2,
123 	.max_num_dp2p0_streams = 4,
124 };
125 
126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127 	.clock_limits = {
128 		{
129 			.state = 0,
130 			.dcfclk_mhz = 1564.0,
131 			.fabricclk_mhz = 2500.0,
132 			.dispclk_mhz = 2150.0,
133 			.dppclk_mhz = 2150.0,
134 			.phyclk_mhz = 810.0,
135 			.phyclk_d18_mhz = 667.0,
136 			.phyclk_d32_mhz = 625.0,
137 			.socclk_mhz = 1200.0,
138 			.dscclk_mhz = 716.667,
139 			.dram_speed_mts = 18000.0,
140 			.dtbclk_mhz = 1564.0,
141 		},
142 	},
143 	.num_states = 1,
144 	.sr_exit_time_us = 42.97,
145 	.sr_enter_plus_exit_time_us = 49.94,
146 	.sr_exit_z8_time_us = 285.0,
147 	.sr_enter_plus_exit_z8_time_us = 320,
148 	.writeback_latency_us = 12.0,
149 	.round_trip_ping_latency_dcfclk_cycles = 263,
150 	.urgent_latency_pixel_data_only_us = 4.0,
151 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152 	.urgent_latency_vm_data_only_us = 4.0,
153 	.fclk_change_latency_us = 25,
154 	.usr_retraining_latency_us = 2,
155 	.smn_latency_us = 2,
156 	.mall_allocated_for_dcn_mbytes = 64,
157 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160 	.pct_ideal_sdp_bw_after_urgent = 90.0,
161 	.pct_ideal_fabric_bw_after_urgent = 67.0,
162 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
164 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0,
165 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166 	.max_avg_sdp_bw_use_normal_percent = 80.0,
167 	.max_avg_fabric_bw_use_normal_percent = 60.0,
168 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169 	.max_avg_dram_bw_use_normal_percent = 15.0,
170 	.num_chans = 24,
171 	.dram_channel_width_bytes = 2,
172 	.fabric_datapath_to_dcn_data_return_bytes = 64,
173 	.return_bus_width_bytes = 64,
174 	.downspread_percent = 0.38,
175 	.dcn_downspread_percent = 0.5,
176 	.dram_clock_change_latency_us = 400,
177 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
178 	.do_urgent_latency_adjustment = true,
179 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181 };
182 
183 static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context,
184 	bool *repopulate_pipes, int *split, bool *merge);
185 
dcn32_build_wm_range_table_fpu(struct clk_mgr_internal * clk_mgr)186 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
187 {
188 	/* defaults */
189 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
190 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
191 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
192 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
193 	/* For min clocks use as reported by PM FW and report those as min */
194 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
195 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
196 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
197 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
198 
199 	dc_assert_fp_enabled();
200 
201 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
202 	if (dcfclk_mhz_for_the_second_state)
203 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
204 	else
205 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
206 
207 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
208 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
209 
210 	/* Set A - Normal - default values */
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
218 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
219 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
220 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
221 
222 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
223 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
224 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
225 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
227 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
229 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
230 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
231 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
232 
233 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
234 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
235 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
236 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
237 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
238 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
239 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
240 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
241 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
242 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
243 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
244 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
245 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
246 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
247 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
248 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
249 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
250 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
251 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
252 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
253 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
254 	}
255 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
256 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
257 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
258 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
259 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
260 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
261 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
262 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
263 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
264 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
265 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
266 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
267 }
268 
269 /*
270  * Finds dummy_latency_index when MCLK switching using firmware based
271  * vblank stretch is enabled. This function will iterate through the
272  * table of dummy pstate latencies until the lowest value that allows
273  * dm_allow_self_refresh_and_mclk_switch to happen is found
274  */
dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)275 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
276 							    struct dc_state *context,
277 							    display_e2e_pipe_params_st *pipes,
278 							    int pipe_cnt,
279 							    int vlevel)
280 {
281 	const int max_latency_table_entries = 4;
282 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
283 	int dummy_latency_index = 0;
284 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
285 
286 	dc_assert_fp_enabled();
287 
288 	while (dummy_latency_index < max_latency_table_entries) {
289 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
290 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
291 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
292 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
293 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
294 
295 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
296 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
297 				dcn32_subvp_in_use(dc, context))
298 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
299 
300 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
301 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
302 			break;
303 
304 		dummy_latency_index++;
305 	}
306 
307 	if (dummy_latency_index == max_latency_table_entries) {
308 		ASSERT(dummy_latency_index != max_latency_table_entries);
309 		/* If the execution gets here, it means dummy p_states are
310 		 * not possible. This should never happen and would mean
311 		 * something is severely wrong.
312 		 * Here we reset dummy_latency_index to 3, because it is
313 		 * better to have underflows than system crashes.
314 		 */
315 		dummy_latency_index = max_latency_table_entries - 1;
316 	}
317 
318 	return dummy_latency_index;
319 }
320 
321 /**
322  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
323  * and populate pipe_ctx with those params.
324  * @dc: [in] current dc state
325  * @context: [in] new dc state
326  * @pipes: [in] DML pipe params array
327  * @pipe_cnt: [in] DML pipe count
328  *
329  * This function must be called AFTER the phantom pipes are added to context
330  * and run through DML (so that the DLG params for the phantom pipes can be
331  * populated), and BEFORE we program the timing for the phantom pipes.
332  */
dcn32_helper_populate_phantom_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)333 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
334 					      struct dc_state *context,
335 					      display_e2e_pipe_params_st *pipes,
336 					      int pipe_cnt)
337 {
338 	uint32_t i, pipe_idx;
339 
340 	dc_assert_fp_enabled();
341 
342 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
343 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
344 
345 		if (!pipe->stream)
346 			continue;
347 
348 		if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
349 			pipes[pipe_idx].pipe.dest.vstartup_start =
350 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
351 			pipes[pipe_idx].pipe.dest.vupdate_offset =
352 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
353 			pipes[pipe_idx].pipe.dest.vupdate_width =
354 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
355 			pipes[pipe_idx].pipe.dest.vready_offset =
356 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
357 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
358 		}
359 		pipe_idx++;
360 	}
361 }
362 
calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st * entry)363 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
364 {
365 	float memory_bw_kbytes_sec;
366 	float fabric_bw_kbytes_sec;
367 	float sdp_bw_kbytes_sec;
368 	float limiting_bw_kbytes_sec;
369 
370 	memory_bw_kbytes_sec = entry->dram_speed_mts *
371 				dcn3_2_soc.num_chans *
372 				dcn3_2_soc.dram_channel_width_bytes *
373 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374 
375 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
376 				dcn3_2_soc.return_bus_width_bytes *
377 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
378 
379 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
380 				dcn3_2_soc.return_bus_width_bytes *
381 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
382 
383 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
384 
385 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
386 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
387 
388 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
389 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
390 
391 	return limiting_bw_kbytes_sec;
392 }
393 
get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st * entry)394 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
395 {
396 	if (entry->dcfclk_mhz > 0) {
397 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
398 
399 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
400 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
401 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
402 	} else if (entry->fabricclk_mhz > 0) {
403 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
404 
405 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
406 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
407 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
408 	} else if (entry->dram_speed_mts > 0) {
409 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
410 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
411 
412 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
413 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
414 	}
415 }
416 
insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,struct _vcs_dpi_voltage_scaling_st * entry)417 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
418 				    unsigned int *num_entries,
419 				    struct _vcs_dpi_voltage_scaling_st *entry)
420 {
421 	int i = 0;
422 	int index = 0;
423 
424 	dc_assert_fp_enabled();
425 
426 	if (*num_entries == 0) {
427 		table[0] = *entry;
428 		(*num_entries)++;
429 	} else {
430 		while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
431 			index++;
432 			if (index >= *num_entries)
433 				break;
434 		}
435 
436 		for (i = *num_entries; i > index; i--)
437 			table[i] = table[i - 1];
438 
439 		table[index] = *entry;
440 		(*num_entries)++;
441 	}
442 }
443 
444 /**
445  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
446  * @dc: current dc state
447  * @context: new dc state
448  * @ref_pipe: Main pipe for the phantom stream
449  * @phantom_stream: target phantom stream state
450  * @pipes: DML pipe params
451  * @pipe_cnt: number of DML pipes
452  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
453  *
454  * Set timing params of the phantom stream based on calculated output from DML.
455  * This function first gets the DML pipe index using the DC pipe index, then
456  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
457  * lines required for SubVP MCLK switching and assigns to the phantom stream
458  * accordingly.
459  *
460  * - The number of SubVP lines calculated in DML does not take into account
461  * FW processing delays and required pstate allow width, so we must include
462  * that separately.
463  *
464  * - Set phantom backporch = vstartup of main pipe
465  */
dcn32_set_phantom_stream_timing(struct dc * dc,struct dc_state * context,struct pipe_ctx * ref_pipe,struct dc_stream_state * phantom_stream,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)466 void dcn32_set_phantom_stream_timing(struct dc *dc,
467 				     struct dc_state *context,
468 				     struct pipe_ctx *ref_pipe,
469 				     struct dc_stream_state *phantom_stream,
470 				     display_e2e_pipe_params_st *pipes,
471 				     unsigned int pipe_cnt,
472 				     unsigned int dc_pipe_idx)
473 {
474 	unsigned int i, pipe_idx;
475 	struct pipe_ctx *pipe;
476 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
477 	unsigned int num_dpp;
478 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
479 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
480 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
481 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
482 	struct dc_stream_state *main_stream = ref_pipe->stream;
483 
484 	dc_assert_fp_enabled();
485 
486 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
487 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
488 		pipe = &context->res_ctx.pipe_ctx[i];
489 
490 		if (!pipe->stream)
491 			continue;
492 
493 		if (i == dc_pipe_idx)
494 			break;
495 
496 		pipe_idx++;
497 	}
498 
499 	// Calculate lines required for pstate allow width and FW processing delays
500 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
501 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
502 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
503 			(double)ref_pipe->stream->timing.h_total;
504 
505 	// Update clks_cfg for calling into recalculate
506 	pipes[0].clks_cfg.voltage = vlevel;
507 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
508 	pipes[0].clks_cfg.socclk_mhz = socclk;
509 
510 	// DML calculation for MALL region doesn't take into account FW delay
511 	// and required pstate allow width for multi-display cases
512 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
513 	 * to 2 swaths (i.e. 16 lines)
514 	 */
515 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
516 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
517 
518 	// W/A for DCC corruption with certain high resolution timings.
519 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
520 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
521 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
522 
523 	/* dc->debug.subvp_extra_lines 0 by default*/
524 	phantom_vactive += dc->debug.subvp_extra_lines;
525 
526 	// For backporch of phantom pipe, use vstartup of the main pipe
527 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
528 
529 	phantom_stream->dst.y = 0;
530 	phantom_stream->dst.height = phantom_vactive;
531 	/* When scaling, DML provides the end to end required number of lines for MALL.
532 	 * dst.height is always correct for this case, but src.height is not which causes a
533 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
534 	 * phantom for this case.
535 	 */
536 	phantom_stream->src.y = 0;
537 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
538 
539 	phantom_stream->timing.v_addressable = phantom_vactive;
540 	phantom_stream->timing.v_front_porch = 1;
541 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
542 						phantom_stream->timing.v_front_porch +
543 						phantom_stream->timing.v_sync_width +
544 						phantom_bp;
545 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
546 }
547 
548 /**
549  * dcn32_get_num_free_pipes - Calculate number of free pipes
550  * @dc: current dc state
551  * @context: new dc state
552  *
553  * This function assumes that a "used" pipe is a pipe that has
554  * both a stream and a plane assigned to it.
555  *
556  * Return: Number of free pipes available in the context
557  */
dcn32_get_num_free_pipes(struct dc * dc,struct dc_state * context)558 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
559 {
560 	unsigned int i;
561 	unsigned int free_pipes = 0;
562 	unsigned int num_pipes = 0;
563 
564 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
565 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
566 
567 		if (pipe->stream && !pipe->top_pipe) {
568 			while (pipe) {
569 				num_pipes++;
570 				pipe = pipe->bottom_pipe;
571 			}
572 		}
573 	}
574 
575 	free_pipes = dc->res_pool->pipe_count - num_pipes;
576 	return free_pipes;
577 }
578 
579 /**
580  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
581  * @dc: current dc state
582  * @context: new dc state
583  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
584  *
585  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
586  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
587  * we are forcing SubVP P-State switching on the current config.
588  *
589  * The number of pipes used for the chosen surface must be less than or equal to the
590  * number of free pipes available.
591  *
592  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
593  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
594  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
595  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
596  *
597  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
598  */
dcn32_assign_subvp_pipe(struct dc * dc,struct dc_state * context,unsigned int * index)599 static bool dcn32_assign_subvp_pipe(struct dc *dc,
600 				    struct dc_state *context,
601 				    unsigned int *index)
602 {
603 	unsigned int i, pipe_idx;
604 	unsigned int max_frame_time = 0;
605 	bool valid_assignment_found = false;
606 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
607 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
608 
609 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
610 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
611 		unsigned int num_pipes = 0;
612 		unsigned int refresh_rate = 0;
613 
614 		if (!pipe->stream)
615 			continue;
616 
617 		// Round up
618 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
619 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
620 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
621 		/* SubVP pipe candidate requirements:
622 		 * - Refresh rate < 120hz
623 		 * - Not able to switch in vactive naturally (switching in active means the
624 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
625 		 *   to combine this with SubVP can cause issues with the scheduling).
626 		 * - Not TMZ surface
627 		 */
628 		if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) &&
629 				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
630 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
631 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
632 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
633 				!pipe->plane_state->address.tmz_surface &&
634 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
635 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
636 						dcn32_allow_subvp_with_active_margin(pipe)))) {
637 			while (pipe) {
638 				num_pipes++;
639 				pipe = pipe->bottom_pipe;
640 			}
641 
642 			pipe = &context->res_ctx.pipe_ctx[i];
643 			if (num_pipes <= free_pipes) {
644 				struct dc_stream_state *stream = pipe->stream;
645 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
646 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
647 				if (frame_us > max_frame_time) {
648 					*index = i;
649 					max_frame_time = frame_us;
650 					valid_assignment_found = true;
651 				}
652 			}
653 		}
654 		pipe_idx++;
655 	}
656 	return valid_assignment_found;
657 }
658 
659 /**
660  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
661  * @dc: current dc state
662  * @context: new dc state
663  *
664  * This function returns true if there are enough free pipes
665  * to create the required phantom pipes for any given stream
666  * (that does not already have phantom pipe assigned).
667  *
668  * e.g. For a 2 stream config where the first stream uses one
669  * pipe and the second stream uses 2 pipes (i.e. pipe split),
670  * this function will return true because there is 1 remaining
671  * pipe which can be used as the phantom pipe for the non pipe
672  * split pipe.
673  *
674  * Return:
675  * True if there are enough free pipes to assign phantom pipes to at least one
676  * stream that does not already have phantom pipes assigned. Otherwise false.
677  */
dcn32_enough_pipes_for_subvp(struct dc * dc,struct dc_state * context)678 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
679 {
680 	unsigned int i, split_cnt, free_pipes;
681 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
682 	bool subvp_possible = false;
683 
684 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
685 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
686 
687 		// Find the minimum pipe split count for non SubVP pipes
688 		if (resource_is_pipe_type(pipe, OPP_HEAD) &&
689 			dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
690 			split_cnt = 0;
691 			while (pipe) {
692 				split_cnt++;
693 				pipe = pipe->bottom_pipe;
694 			}
695 
696 			if (split_cnt < min_pipe_split)
697 				min_pipe_split = split_cnt;
698 		}
699 	}
700 
701 	free_pipes = dcn32_get_num_free_pipes(dc, context);
702 
703 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
704 	// should not equal to the pipe_count)
705 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
706 		subvp_possible = true;
707 
708 	return subvp_possible;
709 }
710 
711 /**
712  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
713  * @dc: current dc state
714  * @context: new dc state
715  *
716  * High level algorithm:
717  * 1. Find longest microschedule length (in us) between the two SubVP pipes
718  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
719  * pipes still allows for the maximum microschedule to fit in the active
720  * region for both pipes.
721  *
722  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
723  */
subvp_subvp_schedulable(struct dc * dc,struct dc_state * context)724 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
725 {
726 	struct pipe_ctx *subvp_pipes[2] = {0};
727 	struct dc_stream_state *phantom = NULL;
728 	uint32_t microschedule_lines = 0;
729 	uint32_t index = 0;
730 	uint32_t i;
731 	uint32_t max_microschedule_us = 0;
732 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
733 
734 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
735 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
736 		uint32_t time_us = 0;
737 
738 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
739 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
740 		 */
741 		phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
742 		if (phantom && pipe->stream && pipe->plane_state && !pipe->top_pipe &&
743 			dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
744 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
745 					phantom->timing.v_addressable;
746 
747 			// Round up when calculating microschedule time (+ 1 at the end)
748 			time_us = (microschedule_lines * phantom->timing.h_total) /
749 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
750 						dc->caps.subvp_prefetch_end_to_mall_start_us +
751 						dc->caps.subvp_fw_processing_delay_us + 1;
752 			if (time_us > max_microschedule_us)
753 				max_microschedule_us = time_us;
754 
755 			subvp_pipes[index] = pipe;
756 			index++;
757 
758 			// Maximum 2 SubVP pipes
759 			if (index == 2)
760 				break;
761 		}
762 	}
763 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
764 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
765 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
766 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
767 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
768 			subvp_pipes[0]->stream->timing.h_total) /
769 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
770 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
771 			subvp_pipes[1]->stream->timing.h_total) /
772 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
773 
774 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
775 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
776 		return true;
777 
778 	return false;
779 }
780 
781 /**
782  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
783  * @dc: current dc state
784  * @context: new dc state
785  *
786  * High level algorithm:
787  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
788  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
789  * (the margin is equal to the MALL region + DRR margin (500us))
790  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
791  * then report the configuration as supported
792  *
793  * Return: True if the SubVP + DRR config is schedulable, false otherwise
794  */
subvp_drr_schedulable(struct dc * dc,struct dc_state * context)795 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
796 {
797 	bool schedulable = false;
798 	uint32_t i;
799 	struct pipe_ctx *pipe = NULL;
800 	struct pipe_ctx *drr_pipe = NULL;
801 	struct dc_crtc_timing *main_timing = NULL;
802 	struct dc_crtc_timing *phantom_timing = NULL;
803 	struct dc_crtc_timing *drr_timing = NULL;
804 	int16_t prefetch_us = 0;
805 	int16_t mall_region_us = 0;
806 	int16_t drr_frame_us = 0;	// nominal frame time
807 	int16_t subvp_active_us = 0;
808 	int16_t stretched_drr_us = 0;
809 	int16_t drr_stretched_vblank_us = 0;
810 	int16_t max_vblank_mallregion = 0;
811 	struct dc_stream_state *phantom_stream;
812 	bool subvp_found = false;
813 	bool drr_found = false;
814 
815 	// Find SubVP pipe
816 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
817 		pipe = &context->res_ctx.pipe_ctx[i];
818 
819 		// We check for master pipe, but it shouldn't matter since we only need
820 		// the pipe for timing info (stream should be same for any pipe splits)
821 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
822 				!resource_is_pipe_type(pipe, DPP_PIPE))
823 			continue;
824 
825 		// Find the SubVP pipe
826 		if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
827 			subvp_found = true;
828 			break;
829 		}
830 	}
831 
832 	// Find the DRR pipe
833 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
834 		drr_pipe = &context->res_ctx.pipe_ctx[i];
835 
836 		// We check for master pipe only
837 		if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
838 				!resource_is_pipe_type(drr_pipe, DPP_PIPE))
839 			continue;
840 
841 		if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
842 				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
843 			drr_found = true;
844 			break;
845 		}
846 	}
847 
848 	phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
849 	if (phantom_stream && subvp_found && drr_found) {
850 		main_timing = &pipe->stream->timing;
851 		phantom_timing = &phantom_stream->timing;
852 		drr_timing = &drr_pipe->stream->timing;
853 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
854 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
855 				dc->caps.subvp_prefetch_end_to_mall_start_us;
856 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
857 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
858 		drr_frame_us = drr_timing->v_total * drr_timing->h_total /
859 				(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
860 		// P-State allow width and FW delays already included phantom_timing->v_addressable
861 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
862 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
863 		stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
864 		drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
865 				(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
866 		max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
867 	}
868 
869 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
870 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
871 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
872 	 * and the max of (VBLANK blanking time, MALL region)).
873 	 */
874 	if (drr_timing &&
875 	    stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
876 	    subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
877 		schedulable = true;
878 
879 	return schedulable;
880 }
881 
882 
883 /**
884  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
885  * @dc: current dc state
886  * @context: new dc state
887  *
888  * High level algorithm:
889  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
890  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
891  * then report the configuration as supported
892  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
893  *
894  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
895  */
subvp_vblank_schedulable(struct dc * dc,struct dc_state * context)896 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
897 {
898 	struct pipe_ctx *pipe = NULL;
899 	struct pipe_ctx *subvp_pipe = NULL;
900 	bool found = false;
901 	bool schedulable = false;
902 	uint32_t i = 0;
903 	uint8_t vblank_index = 0;
904 	uint16_t prefetch_us = 0;
905 	uint16_t mall_region_us = 0;
906 	uint16_t vblank_frame_us = 0;
907 	uint16_t subvp_active_us = 0;
908 	uint16_t vblank_blank_us = 0;
909 	uint16_t max_vblank_mallregion = 0;
910 	struct dc_crtc_timing *main_timing = NULL;
911 	struct dc_crtc_timing *phantom_timing = NULL;
912 	struct dc_crtc_timing *vblank_timing = NULL;
913 	struct dc_stream_state *phantom_stream;
914 	enum mall_stream_type pipe_mall_type;
915 
916 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
917 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
918 	 * is supported, it is either a single VBLANK case or two VBLANK
919 	 * displays which are synchronized (in which case they have identical
920 	 * timings).
921 	 */
922 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
923 		pipe = &context->res_ctx.pipe_ctx[i];
924 		pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
925 
926 		// We check for master pipe, but it shouldn't matter since we only need
927 		// the pipe for timing info (stream should be same for any pipe splits)
928 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
929 				!resource_is_pipe_type(pipe, DPP_PIPE))
930 			continue;
931 
932 		if (!found && pipe_mall_type == SUBVP_NONE) {
933 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
934 			vblank_index = i;
935 			found = true;
936 		}
937 
938 		if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
939 			subvp_pipe = pipe;
940 	}
941 	if (found && subvp_pipe) {
942 		phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
943 		main_timing = &subvp_pipe->stream->timing;
944 		phantom_timing = &phantom_stream->timing;
945 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
946 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
947 		// Also include the prefetch end to mallstart delay time
948 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
949 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
950 				dc->caps.subvp_prefetch_end_to_mall_start_us;
951 		// P-State allow width and FW delays already included phantom_timing->v_addressable
952 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
953 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
954 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
955 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
956 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
957 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
958 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
959 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
960 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
961 
962 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
963 		// and the max of (VBLANK blanking time, MALL region)
964 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
965 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
966 			schedulable = true;
967 	}
968 	return schedulable;
969 }
970 
971 /**
972  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
973  *
974  * @dc: Current DC state
975  * @context: New DC state to be programmed
976  *
977  * SubVP + SubVP is admissible under the following conditions:
978  * - All SubVP pipes are < 120Hz OR
979  * - All SubVP pipes are >= 120hz
980  *
981  * Return: True if admissible, false otherwise
982  */
subvp_subvp_admissable(struct dc * dc,struct dc_state * context)983 static bool subvp_subvp_admissable(struct dc *dc,
984 				struct dc_state *context)
985 {
986 	bool result = false;
987 	uint32_t i;
988 	uint8_t subvp_count = 0;
989 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
990 	uint64_t refresh_rate = 0;
991 
992 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
993 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
994 
995 		if (!pipe->stream)
996 			continue;
997 
998 		if (pipe->plane_state && !pipe->top_pipe &&
999 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
1000 			refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1001 				pipe->stream->timing.v_total * (uint64_t)pipe->stream->timing.h_total - (uint64_t)1);
1002 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1003 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1004 
1005 			if ((uint32_t)refresh_rate < min_refresh)
1006 				min_refresh = (uint32_t)refresh_rate;
1007 			if ((uint32_t)refresh_rate > max_refresh)
1008 				max_refresh = (uint32_t)refresh_rate;
1009 			subvp_count++;
1010 		}
1011 	}
1012 
1013 	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1014 		(min_refresh >= subvp_high_refresh_list.min_refresh &&
1015 				max_refresh <= subvp_high_refresh_list.max_refresh)))
1016 		result = true;
1017 
1018 	return result;
1019 }
1020 
1021 /**
1022  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1023  * and handle static analysis based on the case.
1024  * @dc: current dc state
1025  * @context: new dc state
1026  * @vlevel: Voltage level calculated by DML
1027  *
1028  * Three cases:
1029  * 1. SubVP + SubVP
1030  * 2. SubVP + VBLANK (DRR checked internally)
1031  * 3. SubVP + VACTIVE (currently unsupported)
1032  *
1033  * Return: True if statically schedulable, false otherwise
1034  */
subvp_validate_static_schedulability(struct dc * dc,struct dc_state * context,int vlevel)1035 static bool subvp_validate_static_schedulability(struct dc *dc,
1036 				struct dc_state *context,
1037 				int vlevel)
1038 {
1039 	bool schedulable = false;
1040 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1041 	uint32_t i, pipe_idx;
1042 	uint8_t subvp_count = 0;
1043 	uint8_t vactive_count = 0;
1044 	uint8_t non_subvp_pipes = 0;
1045 
1046 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1047 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1048 		enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1049 
1050 		if (!pipe->stream)
1051 			continue;
1052 
1053 		if (pipe->plane_state && !pipe->top_pipe) {
1054 			if (pipe_mall_type == SUBVP_MAIN)
1055 				subvp_count++;
1056 			if (pipe_mall_type == SUBVP_NONE)
1057 				non_subvp_pipes++;
1058 		}
1059 
1060 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1061 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1062 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1063 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1064 				pipe_mall_type == SUBVP_NONE) {
1065 			vactive_count++;
1066 		}
1067 		pipe_idx++;
1068 	}
1069 
1070 	if (subvp_count == 2) {
1071 		// Static schedulability check for SubVP + SubVP case
1072 		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1073 	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
1074 		// Single SubVP configs will be supported by default as long as it's suppported by DML
1075 		schedulable = true;
1076 	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
1077 		if (dcn32_subvp_drr_admissable(dc, context))
1078 			schedulable = subvp_drr_schedulable(dc, context);
1079 		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1080 			schedulable = subvp_vblank_schedulable(dc, context);
1081 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1082 			vactive_count > 0) {
1083 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1084 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1085 		// SubVP + VACTIVE currently unsupported
1086 		schedulable = false;
1087 	}
1088 	return schedulable;
1089 }
1090 
assign_subvp_index(struct dc * dc,struct dc_state * context)1091 static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1092 {
1093 	int i;
1094 	int index = 0;
1095 
1096 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1097 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1098 
1099 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
1100 				dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
1101 			pipe_ctx->subvp_index = index++;
1102 		} else {
1103 			pipe_ctx->subvp_index = 0;
1104 		}
1105 	}
1106 }
1107 
1108 struct pipe_slice_table {
1109 	struct {
1110 		struct dc_stream_state *stream;
1111 		int slice_count;
1112 	} odm_combines[MAX_STREAMS];
1113 	int odm_combine_count;
1114 
1115 	struct {
1116 		struct pipe_ctx *pri_pipe;
1117 		struct dc_plane_state *plane;
1118 		int slice_count;
1119 	} mpc_combines[MAX_PLANES];
1120 	int mpc_combine_count;
1121 };
1122 
1123 
update_slice_table_for_stream(struct pipe_slice_table * table,struct dc_stream_state * stream,int diff)1124 static void update_slice_table_for_stream(struct pipe_slice_table *table,
1125 		struct dc_stream_state *stream, int diff)
1126 {
1127 	int i;
1128 
1129 	for (i = 0; i < table->odm_combine_count; i++) {
1130 		if (table->odm_combines[i].stream == stream) {
1131 			table->odm_combines[i].slice_count += diff;
1132 			break;
1133 		}
1134 	}
1135 
1136 	if (i == table->odm_combine_count) {
1137 		table->odm_combine_count++;
1138 		table->odm_combines[i].stream = stream;
1139 		table->odm_combines[i].slice_count = diff;
1140 	}
1141 }
1142 
update_slice_table_for_plane(struct pipe_slice_table * table,struct pipe_ctx * dpp_pipe,struct dc_plane_state * plane,int diff)1143 static void update_slice_table_for_plane(struct pipe_slice_table *table,
1144 		struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1145 {
1146 	int i;
1147 	struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1148 
1149 	for (i = 0; i < table->mpc_combine_count; i++) {
1150 		if (table->mpc_combines[i].plane == plane &&
1151 				table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1152 			table->mpc_combines[i].slice_count += diff;
1153 			break;
1154 		}
1155 	}
1156 
1157 	if (i == table->mpc_combine_count) {
1158 		table->mpc_combine_count++;
1159 		table->mpc_combines[i].plane = plane;
1160 		table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1161 		table->mpc_combines[i].slice_count = diff;
1162 	}
1163 }
1164 
init_pipe_slice_table_from_context(struct pipe_slice_table * table,struct dc_state * context)1165 static void init_pipe_slice_table_from_context(
1166 		struct pipe_slice_table *table,
1167 		struct dc_state *context)
1168 {
1169 	int i, j;
1170 	struct pipe_ctx *otg_master;
1171 	struct pipe_ctx *dpp_pipes[MAX_PIPES];
1172 	struct dc_stream_state *stream;
1173 	int count;
1174 
1175 	memset(table, 0, sizeof(*table));
1176 
1177 	for (i = 0; i < context->stream_count; i++) {
1178 		stream = context->streams[i];
1179 		otg_master = resource_get_otg_master_for_stream(
1180 				&context->res_ctx, stream);
1181 		if (!otg_master)
1182 			continue;
1183 
1184 		count = resource_get_odm_slice_count(otg_master);
1185 		update_slice_table_for_stream(table, stream, count);
1186 
1187 		count = resource_get_dpp_pipes_for_opp_head(otg_master,
1188 				&context->res_ctx, dpp_pipes);
1189 		for (j = 0; j < count; j++)
1190 			if (dpp_pipes[j]->plane_state)
1191 				update_slice_table_for_plane(table, dpp_pipes[j],
1192 						dpp_pipes[j]->plane_state, 1);
1193 	}
1194 }
1195 
update_pipe_slice_table_with_split_flags(struct pipe_slice_table * table,struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1196 static bool update_pipe_slice_table_with_split_flags(
1197 		struct pipe_slice_table *table,
1198 		struct dc *dc,
1199 		struct dc_state *context,
1200 		struct vba_vars_st *vba,
1201 		int split[MAX_PIPES],
1202 		bool merge[MAX_PIPES])
1203 {
1204 	/* NOTE: we are deprecating the support for the concept of pipe splitting
1205 	 * or pipe merging. Instead we append slices to the end and remove
1206 	 * slices from the end. The following code converts a pipe split or
1207 	 * merge to an append or remove operation.
1208 	 *
1209 	 * For example:
1210 	 * When split flags describe the following pipe connection transition
1211 	 *
1212 	 * from:
1213 	 *  pipe 0 (split=2) -> pipe 1 (split=2)
1214 	 * to: (old behavior)
1215 	 *  pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1216 	 *
1217 	 * the code below actually does:
1218 	 *  pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1219 	 *
1220 	 * This is the new intended behavior and for future DCNs we will retire
1221 	 * the old concept completely.
1222 	 */
1223 	struct pipe_ctx *pipe;
1224 	bool odm;
1225 	int dc_pipe_idx, dml_pipe_idx = 0;
1226 	bool updated = false;
1227 
1228 	for (dc_pipe_idx = 0;
1229 			dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1230 		pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1231 		if (resource_is_pipe_type(pipe, FREE_PIPE))
1232 			continue;
1233 
1234 		if (merge[dc_pipe_idx]) {
1235 			if (resource_is_pipe_type(pipe, OPP_HEAD))
1236 				/* merging OPP head means reducing ODM slice
1237 				 * count by 1
1238 				 */
1239 				update_slice_table_for_stream(table, pipe->stream, -1);
1240 			else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
1241 					resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
1242 				/* merging DPP pipe of the first ODM slice means
1243 				 * reducing MPC slice count by 1
1244 				 */
1245 				update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
1246 			updated = true;
1247 		}
1248 
1249 		if (split[dc_pipe_idx]) {
1250 			odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1251 					dm_odm_combine_mode_disabled;
1252 			if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
1253 				update_slice_table_for_stream(
1254 						table, pipe->stream, split[dc_pipe_idx] - 1);
1255 			else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
1256 				update_slice_table_for_plane(table, pipe,
1257 						pipe->plane_state, split[dc_pipe_idx] - 1);
1258 			updated = true;
1259 		}
1260 		dml_pipe_idx++;
1261 	}
1262 	return updated;
1263 }
1264 
update_pipes_with_slice_table(struct dc * dc,struct dc_state * context,struct pipe_slice_table * table)1265 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1266 		struct pipe_slice_table *table)
1267 {
1268 	int i;
1269 
1270 	for (i = 0; i < table->odm_combine_count; i++)
1271 		resource_update_pipes_for_stream_with_slice_count(context,
1272 				dc->current_state, dc->res_pool,
1273 				table->odm_combines[i].stream,
1274 				table->odm_combines[i].slice_count);
1275 
1276 	for (i = 0; i < table->mpc_combine_count; i++)
1277 		resource_update_pipes_for_plane_with_slice_count(context,
1278 				dc->current_state, dc->res_pool,
1279 				table->mpc_combines[i].plane,
1280 				table->mpc_combines[i].slice_count);
1281 }
1282 
update_pipes_with_split_flags(struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1283 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1284 		struct vba_vars_st *vba, int split[MAX_PIPES],
1285 		bool merge[MAX_PIPES])
1286 {
1287 	struct pipe_slice_table slice_table;
1288 	bool updated;
1289 
1290 	init_pipe_slice_table_from_context(&slice_table, context);
1291 	updated = update_pipe_slice_table_with_split_flags(
1292 			&slice_table, dc, context, vba,
1293 			split, merge);
1294 	update_pipes_with_slice_table(dc, context, &slice_table);
1295 	return updated;
1296 }
1297 
should_apply_odm_power_optimization(struct dc * dc,struct dc_state * context,struct vba_vars_st * v,int * split,bool * merge)1298 static bool should_apply_odm_power_optimization(struct dc *dc,
1299 		struct dc_state *context, struct vba_vars_st *v, int *split,
1300 		bool *merge)
1301 {
1302 	struct dc_stream_state *stream = context->streams[0];
1303 	struct pipe_slice_table slice_table;
1304 	int i;
1305 
1306 	/*
1307 	 * this debug flag allows us to disable ODM power optimization feature
1308 	 * unconditionally. we force the feature off if this is set to false.
1309 	 */
1310 	if (!dc->debug.enable_single_display_2to1_odm_policy)
1311 		return false;
1312 
1313 	/* current design and test coverage is only limited to allow ODM power
1314 	 * optimization for single stream. Supporting it for multiple streams
1315 	 * use case would require additional algorithm to decide how to
1316 	 * optimize power consumption when there are not enough free pipes to
1317 	 * allocate for all the streams. This level of optimization would
1318 	 * require multiple attempts of revalidation to make an optimized
1319 	 * decision. Unfortunately We do not support revalidation flow in
1320 	 * current version of DML.
1321 	 */
1322 	if (context->stream_count != 1)
1323 		return false;
1324 
1325 	/*
1326 	 * Our hardware doesn't support ODM for HDMI TMDS
1327 	 */
1328 	if (dc_is_hdmi_signal(stream->signal))
1329 		return false;
1330 
1331 	/*
1332 	 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1333 	 * ODM segment has the same size.
1334 	 */
1335 	if (!is_h_timing_divisible_by_2(stream))
1336 		return false;
1337 
1338 	/*
1339 	 * No power benefits if the timing's pixel clock is not high enough to
1340 	 * raise display clock from minimum power state.
1341 	 */
1342 	if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1343 		return false;
1344 
1345 	if (dc->config.enable_windowed_mpo_odm) {
1346 		/*
1347 		 * ODM power optimization should only be allowed if the feature
1348 		 * can be seamlessly toggled off within an update. This would
1349 		 * require that the feature is applied on top of a minimal
1350 		 * state. A minimal state is defined as a state validated
1351 		 * without the need of pipe split. Therefore, when transition to
1352 		 * toggle the feature off, the same stream and plane
1353 		 * configuration can be supported by the pipe resource in the
1354 		 * first ODM slice alone without the need to acquire extra
1355 		 * resources.
1356 		 */
1357 		init_pipe_slice_table_from_context(&slice_table, context);
1358 		update_pipe_slice_table_with_split_flags(
1359 				&slice_table, dc, context, v,
1360 				split, merge);
1361 		for (i = 0; i < slice_table.mpc_combine_count; i++)
1362 			if (slice_table.mpc_combines[i].slice_count > 1)
1363 				return false;
1364 
1365 		for (i = 0; i < slice_table.odm_combine_count; i++)
1366 			if (slice_table.odm_combines[i].slice_count > 1)
1367 				return false;
1368 	} else {
1369 		/*
1370 		 * the new ODM power optimization feature reduces software
1371 		 * design limitation and allows ODM power optimization to be
1372 		 * supported even with presence of overlay planes. The new
1373 		 * feature is enabled based on enable_windowed_mpo_odm flag. If
1374 		 * the flag is not set, we limit our feature scope due to
1375 		 * previous software design limitation
1376 		 */
1377 		if (context->stream_status[0].plane_count != 1)
1378 			return false;
1379 
1380 		if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
1381 				&stream->src, sizeof(struct rect)) != 0)
1382 			return false;
1383 
1384 		if (stream->src.width >= 5120 &&
1385 				stream->src.width > stream->dst.width)
1386 			return false;
1387 	}
1388 	return true;
1389 }
1390 
try_odm_power_optimization_and_revalidate(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * split,bool * merge,unsigned int * vlevel,int pipe_cnt)1391 static void try_odm_power_optimization_and_revalidate(
1392 		struct dc *dc,
1393 		struct dc_state *context,
1394 		display_e2e_pipe_params_st *pipes,
1395 		int *split,
1396 		bool *merge,
1397 		unsigned int *vlevel,
1398 		int pipe_cnt)
1399 {
1400 	int i;
1401 	unsigned int new_vlevel;
1402 	unsigned int cur_policy[MAX_PIPES];
1403 
1404 	for (i = 0; i < pipe_cnt; i++) {
1405 		cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
1406 		pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1407 	}
1408 
1409 	new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1410 
1411 	if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1412 		memset(split, 0, MAX_PIPES * sizeof(int));
1413 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1414 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
1415 		context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1416 	} else {
1417 		for (i = 0; i < pipe_cnt; i++)
1418 			pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
1419 	}
1420 }
1421 
is_test_pattern_enabled(struct dc_state * context)1422 static bool is_test_pattern_enabled(
1423 		struct dc_state *context)
1424 {
1425 	int i;
1426 
1427 	for (i = 0; i < context->stream_count; i++) {
1428 		if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1429 			return true;
1430 	}
1431 
1432 	return false;
1433 }
1434 
dcn32_full_validate_bw_helper(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * vlevel,int * split,bool * merge,int * pipe_cnt,bool * repopulate_pipes)1435 static bool dcn32_full_validate_bw_helper(struct dc *dc,
1436 				   struct dc_state *context,
1437 				   display_e2e_pipe_params_st *pipes,
1438 				   int *vlevel,
1439 				   int *split,
1440 				   bool *merge,
1441 				   int *pipe_cnt,
1442 				   bool *repopulate_pipes)
1443 {
1444 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1445 	unsigned int dc_pipe_idx = 0;
1446 	int i = 0;
1447 	bool found_supported_config = false;
1448 	int vlevel_temp = 0;
1449 
1450 	dc_assert_fp_enabled();
1451 
1452 	/*
1453 	 * DML favors voltage over p-state, but we're more interested in
1454 	 * supporting p-state over voltage. We can't support p-state in
1455 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1456 	 * Override present for testing.
1457 	 */
1458 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1459 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1460 			dm_prefetch_support_uclk_fclk_and_stutter;
1461 	else
1462 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1463 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1464 
1465 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1466 	/* This may adjust vlevel and maxMpcComb */
1467 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1468 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1469 		vba->VoltageLevel = *vlevel;
1470 	}
1471 
1472 	/* Apply split and merge flags before checking for subvp */
1473 	if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge))
1474 		return false;
1475 	memset(split, 0, MAX_PIPES * sizeof(int));
1476 	memset(merge, 0, MAX_PIPES * sizeof(bool));
1477 
1478 	/* Conditions for setting up phantom pipes for SubVP:
1479 	 * 1. Not force disable SubVP
1480 	 * 2. Full update (i.e. !fast_validate)
1481 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1482 	 * 4. Display configuration passes validation
1483 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1484 	 */
1485 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1486 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1487 		(*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1488 				vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1489 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1490 	    dc->debug.force_subvp_mclk_switch)) {
1491 
1492 		vlevel_temp = *vlevel;
1493 
1494 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1495 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1496 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1497 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1498 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1499 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1500 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1501 			 * enough to support MCLK switching.
1502 			 */
1503 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1504 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1505 					dm_prefetch_support_uclk_fclk_and_stutter) {
1506 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1507 								dm_prefetch_support_fclk_and_stutter;
1508 				/* There are params (such as FabricClock) that need to be recalculated
1509 				 * after validation fails (otherwise it will be 0). Calculation for
1510 				 * phantom vactive requires call into DML, so we must ensure all the
1511 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1512 				 */
1513 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1514 			}
1515 
1516 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1517 
1518 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1519 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1520 			// so the phantom pipe DLG params can be assigned correctly.
1521 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1522 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1523 
1524 			/* Check that vlevel requested supports pstate or not
1525 			 * if not, select the lowest vlevel that supports it
1526 			 */
1527 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1528 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1529 					*vlevel = i;
1530 					break;
1531 				}
1532 			}
1533 
1534 			if (*vlevel < context->bw_ctx.dml.soc.num_states
1535 			    && subvp_validate_static_schedulability(dc, context, *vlevel))
1536 				found_supported_config = true;
1537 			if (found_supported_config) {
1538 				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1539 				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1540 					/* find lowest vlevel that supports the config */
1541 					for (i = *vlevel; i >= 0; i--) {
1542 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1543 							*vlevel = i;
1544 						} else {
1545 							break;
1546 						}
1547 					}
1548 				}
1549 			}
1550 		}
1551 
1552 		if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1553 			found_supported_config = false;
1554 
1555 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1556 		// remove phantom pipes and repopulate dml pipes
1557 		if (!found_supported_config) {
1558 			dc_state_remove_phantom_streams_and_planes(dc, context);
1559 			dc_state_release_phantom_streams_and_planes(dc, context);
1560 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1561 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1562 
1563 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1564 			/* This may adjust vlevel and maxMpcComb */
1565 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1566 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1567 				vba->VoltageLevel = *vlevel;
1568 			}
1569 		} else {
1570 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1571 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1572 
1573 			/* Call validate_apply_pipe_split flags after calling DML getters for
1574 			 * phantom dlg params, or some of the VBA params indicating pipe split
1575 			 * can be overwritten by the getters.
1576 			 *
1577 			 * When setting up SubVP config, all pipes are merged before attempting to
1578 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1579 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1580 			 */
1581 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1582 			vba->VoltageLevel = *vlevel;
1583 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1584 			// until driver has acquired the DMCUB lock to do it safely.
1585 			assign_subvp_index(dc, context);
1586 		}
1587 	}
1588 
1589 	if (should_apply_odm_power_optimization(dc, context, vba, split, merge))
1590 		try_odm_power_optimization_and_revalidate(
1591 				dc, context, pipes, split, merge, vlevel, *pipe_cnt);
1592 
1593 	return true;
1594 }
1595 
is_dtbclk_required(struct dc * dc,struct dc_state * context)1596 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1597 {
1598 	int i;
1599 
1600 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1601 		if (!context->res_ctx.pipe_ctx[i].stream)
1602 			continue;
1603 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1604 			return true;
1605 	}
1606 	return false;
1607 }
1608 
dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing * dc_crtc_timing,int * vstartup_start)1609 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1610 {
1611 	struct dc_crtc_timing patched_crtc_timing;
1612 	uint32_t asic_blank_end   = 0;
1613 	uint32_t asic_blank_start = 0;
1614 	uint32_t newVstartup	  = 0;
1615 
1616 	patched_crtc_timing = *dc_crtc_timing;
1617 
1618 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1619 		if (patched_crtc_timing.v_front_porch < 2)
1620 			patched_crtc_timing.v_front_porch = 2;
1621 	} else {
1622 		if (patched_crtc_timing.v_front_porch < 1)
1623 			patched_crtc_timing.v_front_porch = 1;
1624 	}
1625 
1626 	/* blank_start = frame end - front porch */
1627 	asic_blank_start = patched_crtc_timing.v_total -
1628 					patched_crtc_timing.v_front_porch;
1629 
1630 	/* blank_end = blank_start - active */
1631 	asic_blank_end = asic_blank_start -
1632 					patched_crtc_timing.v_border_bottom -
1633 					patched_crtc_timing.v_addressable -
1634 					patched_crtc_timing.v_border_top;
1635 
1636 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1637 
1638 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1639 }
1640 
dcn32_calculate_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1641 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1642 				       display_e2e_pipe_params_st *pipes,
1643 				       int pipe_cnt, int vlevel)
1644 {
1645 	int i, pipe_idx, active_hubp_count = 0;
1646 	bool usr_retraining_support = false;
1647 	bool unbounded_req_enabled = false;
1648 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1649 
1650 	dc_assert_fp_enabled();
1651 
1652 	/* Writeback MCIF_WB arbitration parameters */
1653 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1654 
1655 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1656 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1657 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1658 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1659 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1660 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1661 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1662 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1663 					!= dm_dram_clock_change_unsupported;
1664 
1665 	/* Pstate change might not be supported by hardware, but it might be
1666 	 * possible with firmware driven vertical blank stretching.
1667 	 */
1668 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1669 
1670 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1671 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1672 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1673 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1674 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1675 	else
1676 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1677 
1678 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1679 	ASSERT(usr_retraining_support);
1680 
1681 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1682 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1683 
1684 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1685 
1686 	if (unbounded_req_enabled && pipe_cnt > 1) {
1687 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1688 		ASSERT(false);
1689 		unbounded_req_enabled = false;
1690 	}
1691 
1692 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1693 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1694 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1695 
1696 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1697 		if (!context->res_ctx.pipe_ctx[i].stream)
1698 			continue;
1699 		if (context->res_ctx.pipe_ctx[i].plane_state)
1700 			active_hubp_count++;
1701 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1702 				pipe_idx);
1703 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1704 				pipe_idx);
1705 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1706 				pipe_idx);
1707 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1708 				pipe_idx);
1709 
1710 		if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1711 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1712 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1713 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1714 		} else {
1715 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1716 							pipe_idx);
1717 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1718 		}
1719 
1720 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1721 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1722 		if (context->res_ctx.pipe_ctx[i].plane_state)
1723 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1724 		else
1725 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1726 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1727 
1728 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1729 
1730 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1731 			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1732 		else
1733 			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1734 
1735 		/* MALL Allocation Sizes */
1736 		/* count from active, top pipes per plane only */
1737 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1738 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1739 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1740 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1741 			/* SS: all active surfaces stored in MALL */
1742 			if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1743 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1744 
1745 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1746 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1747 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1748 				}
1749 			} else {
1750 				/* SUBVP: phantom surfaces only stored in MALL */
1751 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1752 			}
1753 		}
1754 
1755 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1756 			dcn20_adjust_freesync_v_startup(
1757 				&context->res_ctx.pipe_ctx[i].stream->timing,
1758 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1759 
1760 		pipe_idx++;
1761 	}
1762 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1763 	if (!active_hubp_count) {
1764 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1765 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1766 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1767 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1768 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1769 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1770 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1771 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1772 	}
1773 	/*save a original dppclock copy*/
1774 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1775 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1776 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1777 			* 1000;
1778 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1779 			* 1000;
1780 
1781 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1782 
1783 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1784 
1785 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1786 		if (context->res_ctx.pipe_ctx[i].stream)
1787 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1788 	}
1789 
1790 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1791 
1792 		if (!context->res_ctx.pipe_ctx[i].stream)
1793 			continue;
1794 
1795 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1796 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1797 				pipe_cnt, pipe_idx);
1798 
1799 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1800 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1801 		pipe_idx++;
1802 	}
1803 }
1804 
dcn32_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1805 static struct pipe_ctx *dcn32_find_split_pipe(
1806 		struct dc *dc,
1807 		struct dc_state *context,
1808 		int old_index)
1809 {
1810 	struct pipe_ctx *pipe = NULL;
1811 	int i;
1812 
1813 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1814 		pipe = &context->res_ctx.pipe_ctx[old_index];
1815 		pipe->pipe_idx = old_index;
1816 	}
1817 
1818 	if (!pipe)
1819 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1820 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1821 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1822 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1823 					pipe = &context->res_ctx.pipe_ctx[i];
1824 					pipe->pipe_idx = i;
1825 					break;
1826 				}
1827 			}
1828 		}
1829 
1830 	/*
1831 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1832 	 * Add for debugging transient underflow during topology updates:
1833 	 * ASSERT(pipe);
1834 	 */
1835 	if (!pipe)
1836 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1837 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1838 				pipe = &context->res_ctx.pipe_ctx[i];
1839 				pipe->pipe_idx = i;
1840 				break;
1841 			}
1842 		}
1843 
1844 	return pipe;
1845 }
1846 
dcn32_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1847 static bool dcn32_split_stream_for_mpc_or_odm(
1848 		const struct dc *dc,
1849 		struct resource_context *res_ctx,
1850 		struct pipe_ctx *pri_pipe,
1851 		struct pipe_ctx *sec_pipe,
1852 		bool odm)
1853 {
1854 	int pipe_idx = sec_pipe->pipe_idx;
1855 	const struct resource_pool *pool = dc->res_pool;
1856 
1857 	DC_LOGGER_INIT(dc->ctx->logger);
1858 
1859 	if (odm && pri_pipe->plane_state) {
1860 		/* ODM + window MPO, where MPO window is on left half only */
1861 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1862 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1863 
1864 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1865 					__func__,
1866 					pri_pipe->pipe_idx);
1867 			return true;
1868 		}
1869 
1870 		/* ODM + window MPO, where MPO window is on right half only */
1871 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1872 
1873 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1874 					__func__,
1875 					pri_pipe->pipe_idx);
1876 			return true;
1877 		}
1878 	}
1879 
1880 	*sec_pipe = *pri_pipe;
1881 
1882 	sec_pipe->pipe_idx = pipe_idx;
1883 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1884 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1885 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1886 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1887 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1888 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1889 	sec_pipe->stream_res.dsc = NULL;
1890 	if (odm) {
1891 		if (pri_pipe->next_odm_pipe) {
1892 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1893 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1894 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1895 		}
1896 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1897 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1898 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1899 		}
1900 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1901 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1902 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1903 		}
1904 		pri_pipe->next_odm_pipe = sec_pipe;
1905 		sec_pipe->prev_odm_pipe = pri_pipe;
1906 		ASSERT(sec_pipe->top_pipe == NULL);
1907 
1908 		if (!sec_pipe->top_pipe)
1909 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1910 		else
1911 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1912 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1913 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1914 			ASSERT(sec_pipe->stream_res.dsc);
1915 			if (sec_pipe->stream_res.dsc == NULL)
1916 				return false;
1917 		}
1918 	} else {
1919 		if (pri_pipe->bottom_pipe) {
1920 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1921 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1922 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1923 		}
1924 		pri_pipe->bottom_pipe = sec_pipe;
1925 		sec_pipe->top_pipe = pri_pipe;
1926 
1927 		ASSERT(pri_pipe->plane_state);
1928 	}
1929 
1930 	return true;
1931 }
1932 
dcn32_apply_merge_split_flags_helper(struct dc * dc,struct dc_state * context,bool * repopulate_pipes,int * split,bool * merge)1933 static bool dcn32_apply_merge_split_flags_helper(
1934 		struct dc *dc,
1935 		struct dc_state *context,
1936 		bool *repopulate_pipes,
1937 		int *split,
1938 		bool *merge)
1939 {
1940 	int i, pipe_idx;
1941 	bool newly_split[MAX_PIPES] = { false };
1942 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1943 
1944 	if (dc->config.enable_windowed_mpo_odm) {
1945 		if (update_pipes_with_split_flags(
1946 			dc, context, vba, split, merge))
1947 			*repopulate_pipes = true;
1948 	} else {
1949 
1950 		/* the code below will be removed once windowed mpo odm is fully
1951 		 * enabled.
1952 		 */
1953 		/* merge pipes if necessary */
1954 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1955 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1956 
1957 			/*skip pipes that don't need merging*/
1958 			if (!merge[i])
1959 				continue;
1960 
1961 			/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1962 			if (pipe->prev_odm_pipe) {
1963 				/*split off odm pipe*/
1964 				pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1965 				if (pipe->next_odm_pipe)
1966 					pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1967 
1968 				/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1969 				if (pipe->bottom_pipe) {
1970 					if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1971 						/*MPC split rules will handle this case*/
1972 						pipe->bottom_pipe->top_pipe = NULL;
1973 					} else {
1974 						/* when merging an ODM pipes, the bottom MPC pipe must now point to
1975 						 * the previous ODM pipe and its associated stream assets
1976 						 */
1977 						if (pipe->prev_odm_pipe->bottom_pipe) {
1978 							/* 3 plane MPO*/
1979 							pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1980 							pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1981 						} else {
1982 							/* 2 plane MPO*/
1983 							pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1984 							pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1985 						}
1986 
1987 						memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1988 					}
1989 				}
1990 
1991 				if (pipe->top_pipe) {
1992 					pipe->top_pipe->bottom_pipe = NULL;
1993 				}
1994 
1995 				pipe->bottom_pipe = NULL;
1996 				pipe->next_odm_pipe = NULL;
1997 				pipe->plane_state = NULL;
1998 				pipe->stream = NULL;
1999 				pipe->top_pipe = NULL;
2000 				pipe->prev_odm_pipe = NULL;
2001 				if (pipe->stream_res.dsc)
2002 					dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2003 				memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2004 				memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2005 				memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2006 				*repopulate_pipes = true;
2007 			} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2008 				struct pipe_ctx *top_pipe = pipe->top_pipe;
2009 				struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2010 
2011 				top_pipe->bottom_pipe = bottom_pipe;
2012 				if (bottom_pipe)
2013 					bottom_pipe->top_pipe = top_pipe;
2014 
2015 				pipe->top_pipe = NULL;
2016 				pipe->bottom_pipe = NULL;
2017 				pipe->plane_state = NULL;
2018 				pipe->stream = NULL;
2019 				memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2020 				memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2021 				memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2022 				*repopulate_pipes = true;
2023 			} else
2024 				ASSERT(0); /* Should never try to merge master pipe */
2025 
2026 		}
2027 
2028 		for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2029 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2030 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2031 			struct pipe_ctx *hsplit_pipe = NULL;
2032 			bool odm;
2033 			int old_index = -1;
2034 
2035 			if (!pipe->stream || newly_split[i])
2036 				continue;
2037 
2038 			pipe_idx++;
2039 			odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2040 
2041 			if (!pipe->plane_state && !odm)
2042 				continue;
2043 
2044 			if (split[i]) {
2045 				if (odm) {
2046 					if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2047 						old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2048 					else if (old_pipe->next_odm_pipe)
2049 						old_index = old_pipe->next_odm_pipe->pipe_idx;
2050 				} else {
2051 					if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2052 							old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2053 						old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2054 					else if (old_pipe->bottom_pipe &&
2055 							old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2056 						old_index = old_pipe->bottom_pipe->pipe_idx;
2057 				}
2058 				hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2059 				ASSERT(hsplit_pipe);
2060 				if (!hsplit_pipe)
2061 					return false;
2062 
2063 				if (!dcn32_split_stream_for_mpc_or_odm(
2064 						dc, &context->res_ctx,
2065 						pipe, hsplit_pipe, odm))
2066 					return false;
2067 
2068 				newly_split[hsplit_pipe->pipe_idx] = true;
2069 				*repopulate_pipes = true;
2070 			}
2071 			if (split[i] == 4) {
2072 				struct pipe_ctx *pipe_4to1;
2073 
2074 				if (odm && old_pipe->next_odm_pipe)
2075 					old_index = old_pipe->next_odm_pipe->pipe_idx;
2076 				else if (!odm && old_pipe->bottom_pipe &&
2077 							old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2078 					old_index = old_pipe->bottom_pipe->pipe_idx;
2079 				else
2080 					old_index = -1;
2081 				pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2082 				ASSERT(pipe_4to1);
2083 				if (!pipe_4to1)
2084 					return false;
2085 				if (!dcn32_split_stream_for_mpc_or_odm(
2086 						dc, &context->res_ctx,
2087 						pipe, pipe_4to1, odm))
2088 					return false;
2089 				newly_split[pipe_4to1->pipe_idx] = true;
2090 
2091 				if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2092 						&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2093 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2094 				else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2095 						old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2096 						old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2097 					old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2098 				else
2099 					old_index = -1;
2100 				pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2101 				ASSERT(pipe_4to1);
2102 				if (!pipe_4to1)
2103 					return false;
2104 				if (!dcn32_split_stream_for_mpc_or_odm(
2105 						dc, &context->res_ctx,
2106 						hsplit_pipe, pipe_4to1, odm))
2107 					return false;
2108 				newly_split[pipe_4to1->pipe_idx] = true;
2109 			}
2110 			if (odm)
2111 				dcn20_build_mapped_resource(dc, context, pipe->stream);
2112 		}
2113 
2114 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2115 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2116 
2117 			if (pipe->plane_state) {
2118 				if (!resource_build_scaling_params(pipe))
2119 					return false;
2120 			}
2121 		}
2122 
2123 		for (i = 0; i < context->stream_count; i++) {
2124 			struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx,
2125 					context->streams[i]);
2126 
2127 			if (otg_master)
2128 				resource_build_test_pattern_params(&context->res_ctx, otg_master);
2129 		}
2130 	}
2131 	return true;
2132 }
2133 
dcn32_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)2134 bool dcn32_internal_validate_bw(struct dc *dc,
2135 				struct dc_state *context,
2136 				display_e2e_pipe_params_st *pipes,
2137 				int *pipe_cnt_out,
2138 				int *vlevel_out,
2139 				bool fast_validate)
2140 {
2141 	bool out = false;
2142 	bool repopulate_pipes = false;
2143 	int split[MAX_PIPES] = { 0 };
2144 	bool merge[MAX_PIPES] = { false };
2145 	int pipe_cnt, i, pipe_idx;
2146 	int vlevel = context->bw_ctx.dml.soc.num_states;
2147 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2148 
2149 	dc_assert_fp_enabled();
2150 
2151 	ASSERT(pipes);
2152 	if (!pipes)
2153 		return false;
2154 
2155 	/* For each full update, remove all existing phantom pipes first */
2156 	dc_state_remove_phantom_streams_and_planes(dc, context);
2157 	dc_state_release_phantom_streams_and_planes(dc, context);
2158 
2159 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2160 
2161 	for (i = 0; i < context->stream_count; i++)
2162 		resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, context->streams[i], 1);
2163 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2164 
2165 	if (!pipe_cnt) {
2166 		out = true;
2167 		goto validate_out;
2168 	}
2169 
2170 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
2171 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
2172 
2173 	if (!fast_validate) {
2174 		if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge,
2175 			&pipe_cnt, &repopulate_pipes))
2176 			goto validate_fail;
2177 	}
2178 
2179 	if (fast_validate ||
2180 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
2181 			(vlevel == context->bw_ctx.dml.soc.num_states ||
2182 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
2183 		/*
2184 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
2185 		 * tried alternate prefetch modes during full validation.
2186 		 *
2187 		 * If mode is unsupported or there is no p-state support, then
2188 		 * fall back to favouring voltage.
2189 		 *
2190 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
2191 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
2192 		 */
2193 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2194 			dm_prefetch_support_none;
2195 
2196 		context->bw_ctx.dml.validate_max_state = fast_validate;
2197 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2198 
2199 		context->bw_ctx.dml.validate_max_state = false;
2200 
2201 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
2202 			memset(split, 0, sizeof(split));
2203 			memset(merge, 0, sizeof(merge));
2204 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2205 			/* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */
2206 			vba->VoltageLevel = vlevel;
2207 		}
2208 	}
2209 
2210 	dml_log_mode_support_params(&context->bw_ctx.dml);
2211 
2212 	if (vlevel == context->bw_ctx.dml.soc.num_states)
2213 		goto validate_fail;
2214 
2215 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2216 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2217 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2218 
2219 		if (!pipe->stream)
2220 			continue;
2221 
2222 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2223 				&& !dc->config.enable_windowed_mpo_odm
2224 				&& pipe->plane_state && mpo_pipe
2225 				&& memcmp(&mpo_pipe->plane_state->clip_rect,
2226 						&pipe->stream->src,
2227 						sizeof(struct rect)) != 0) {
2228 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2229 			goto validate_fail;
2230 		}
2231 		pipe_idx++;
2232 	}
2233 
2234 	if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge))
2235 		goto validate_fail;
2236 
2237 	/* Actual dsc count per stream dsc validation*/
2238 	if (!dcn20_validate_dsc(dc, context)) {
2239 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2240 		goto validate_fail;
2241 	}
2242 
2243 	if (repopulate_pipes) {
2244 		int flag_max_mpc_comb = vba->maxMpcComb;
2245 		int flag_vlevel = vlevel;
2246 		int i;
2247 
2248 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2249 		if (!dc->config.enable_windowed_mpo_odm)
2250 			dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2251 
2252 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2253 		 * we have to re-calculate the DET allocation and run through DML once more to
2254 		 * ensure all the params are calculated correctly. We do not need to run the
2255 		 * pipe split check again after this call (pipes are already split / merged).
2256 		 * */
2257 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2258 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2259 
2260 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2261 
2262 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
2263 			/* failed after DET size changes */
2264 			goto validate_fail;
2265 		} else if (flag_max_mpc_comb == 0 &&
2266 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2267 			/* check the context constructed with pipe split flags is still valid*/
2268 			bool flags_valid = false;
2269 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2270 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2271 					vba->maxMpcComb = flag_max_mpc_comb;
2272 					vba->VoltageLevel = i;
2273 					vlevel = i;
2274 					flags_valid = true;
2275 					break;
2276 				}
2277 			}
2278 
2279 			/* this should never happen */
2280 			if (!flags_valid)
2281 				goto validate_fail;
2282 		}
2283 	}
2284 	*vlevel_out = vlevel;
2285 	*pipe_cnt_out = pipe_cnt;
2286 
2287 	out = true;
2288 	goto validate_out;
2289 
2290 validate_fail:
2291 	out = false;
2292 
2293 validate_out:
2294 	return out;
2295 }
2296 
2297 
dcn32_calculate_wm_and_dlg_fpu(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2298 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2299 				display_e2e_pipe_params_st *pipes,
2300 				int pipe_cnt,
2301 				int vlevel)
2302 {
2303 	int i, pipe_idx, vlevel_temp = 0;
2304 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2305 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2306 	double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2307 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2308 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2309 			dm_dram_clock_change_unsupported;
2310 	unsigned int dummy_latency_index = 0;
2311 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2312 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2313 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2314 	unsigned int min_dram_speed_mts_margin;
2315 	bool need_fclk_lat_as_dummy = false;
2316 	bool is_subvp_p_drr = false;
2317 	struct dc_stream_state *fpo_candidate_stream = NULL;
2318 	struct dc_stream_status *stream_status = NULL;
2319 
2320 	dc_assert_fp_enabled();
2321 
2322 	/* need to find dummy latency index for subvp */
2323 	if (subvp_in_use) {
2324 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2325 		if (!pstate_en) {
2326 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2327 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2328 			pstate_en = true;
2329 			is_subvp_p_drr = true;
2330 		}
2331 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2332 						context, pipes, pipe_cnt, vlevel);
2333 
2334 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2335 		 * scheduled correctly to account for dummy pstate.
2336 		 */
2337 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2338 			need_fclk_lat_as_dummy = true;
2339 			context->bw_ctx.dml.soc.fclk_change_latency_us =
2340 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2341 		}
2342 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2343 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2344 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2345 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2346 		if (is_subvp_p_drr) {
2347 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2348 		}
2349 	}
2350 
2351 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2352 	for (i = 0; i < context->stream_count; i++) {
2353 		stream_status = NULL;
2354 		if (context->streams[i])
2355 			stream_status = dc_state_get_stream_status(context, context->streams[i]);
2356 		if (stream_status)
2357 			stream_status->fpo_in_use = false;
2358 	}
2359 
2360 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2361 			pstate_en && vlevel != 0)) {
2362 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2363 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2364 		if (fpo_candidate_stream) {
2365 			stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
2366 			if (stream_status)
2367 				stream_status->fpo_in_use = true;
2368 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2369 		}
2370 
2371 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2372 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2373 				context, pipes, pipe_cnt, vlevel);
2374 
2375 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2376 			 * we reinstate the original dram_clock_change_latency_us on the context
2377 			 * and all variables that may have changed up to this point, except the
2378 			 * newly found dummy_latency_index
2379 			 */
2380 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2381 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2382 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2383 			 * prefetch is scheduled correctly to account for dummy pstate.
2384 			 */
2385 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2386 				need_fclk_lat_as_dummy = true;
2387 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2388 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2389 			}
2390 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2391 			if (vlevel_temp < vlevel) {
2392 				vlevel = vlevel_temp;
2393 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2394 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2395 				pstate_en = true;
2396 				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2397 			} else {
2398 				/* Restore FCLK latency and re-run validation to go back to original validation
2399 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2400 				 * voltage level)
2401 				 */
2402 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2403 				for (i = 0; i < context->stream_count; i++) {
2404 					stream_status = NULL;
2405 					if (context->streams[i])
2406 						stream_status = dc_state_get_stream_status(context, context->streams[i]);
2407 					if (stream_status)
2408 						stream_status->fpo_in_use = false;
2409 				}
2410 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2411 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2412 			}
2413 		}
2414 	}
2415 
2416 	/* Set B:
2417 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2418 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2419 	 * calculations to cover bootup clocks.
2420 	 * DCFCLK: soc.clock_limits[2] when available
2421 	 * UCLK: soc.clock_limits[2] when available
2422 	 */
2423 	if (dcn3_2_soc.num_states > 2) {
2424 		vlevel_temp = 2;
2425 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2426 	} else
2427 		dcfclk = 615; //DCFCLK Vmin_lv
2428 
2429 	pipes[0].clks_cfg.voltage = vlevel_temp;
2430 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2431 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2432 
2433 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2434 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2435 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2436 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2437 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2438 	}
2439 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2440 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2441 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2442 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2443 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2444 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2445 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2446 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2447 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2448 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2449 
2450 	/* Set D:
2451 	 * All clocks min.
2452 	 * DCFCLK: Min, as reported by PM FW when available
2453 	 * UCLK  : Min, as reported by PM FW when available
2454 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2455 	 */
2456 
2457 	/*
2458 	if (dcn3_2_soc.num_states > 2) {
2459 		vlevel_temp = 0;
2460 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2461 	} else
2462 		dcfclk = 615; //DCFCLK Vmin_lv
2463 
2464 	pipes[0].clks_cfg.voltage = vlevel_temp;
2465 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2466 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2467 
2468 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2469 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2470 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2471 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2472 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2473 	}
2474 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2475 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2476 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2477 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2478 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2479 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2480 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2481 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2482 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2483 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2484 	*/
2485 
2486 	/* Set C, for Dummy P-State:
2487 	 * All clocks min.
2488 	 * DCFCLK: Min, as reported by PM FW, when available
2489 	 * UCLK  : Min,  as reported by PM FW, when available
2490 	 * pstate latency as per UCLK state dummy pstate latency
2491 	 */
2492 
2493 	// For Set A and Set C use values from validation
2494 	pipes[0].clks_cfg.voltage = vlevel;
2495 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2496 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2497 
2498 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2499 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2500 	}
2501 
2502 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2503 		min_dram_speed_mts = dram_speed_from_validation;
2504 		min_dram_speed_mts_margin = 160;
2505 
2506 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2507 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2508 
2509 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2510 			dm_dram_clock_change_unsupported) {
2511 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2512 
2513 			min_dram_speed_mts =
2514 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2515 		}
2516 
2517 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2518 			/* find largest table entry that is lower than dram speed,
2519 			 * but lower than DPM0 still uses DPM0
2520 			 */
2521 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2522 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2523 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2524 					break;
2525 		}
2526 
2527 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2528 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2529 
2530 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2531 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2532 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2533 	}
2534 
2535 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2536 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2537 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2538 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2539 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2540 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2541 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2542 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2543 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2544 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2545 	 * value.
2546 	 */
2547 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2548 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2549 
2550 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2551 		/* The only difference between A and C is p-state latency, if p-state is not supported
2552 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2553 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2554 		 */
2555 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2556 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2557 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2558 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2559 		 */
2560 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2561 	} else {
2562 		/* Set A:
2563 		 * All clocks min.
2564 		 * DCFCLK: Min, as reported by PM FW, when available
2565 		 * UCLK: Min, as reported by PM FW, when available
2566 		 */
2567 
2568 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2569 		 */
2570 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2571 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2572 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2573 
2574 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2575 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2576 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2577 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2578 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2579 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2580 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2581 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2582 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2583 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2584 	}
2585 
2586 	/* Make set D = set A since we do not optimized watermarks for MALL */
2587 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2588 
2589 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2590 		if (!context->res_ctx.pipe_ctx[i].stream)
2591 			continue;
2592 
2593 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2594 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2595 
2596 		if (dc->config.forced_clocks) {
2597 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2598 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2599 		}
2600 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2601 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2602 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2603 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2604 
2605 		pipe_idx++;
2606 	}
2607 
2608 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2609 
2610 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2611 	if (need_fclk_lat_as_dummy)
2612 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2613 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2614 
2615 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2616 
2617 	if (!pstate_en)
2618 		/* Restore full p-state latency */
2619 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2620 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2621 
2622 	/* revert fclk lat changes if required */
2623 	if (need_fclk_lat_as_dummy)
2624 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2625 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2626 }
2627 
dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2628 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2629 		unsigned int *optimal_dcfclk,
2630 		unsigned int *optimal_fclk)
2631 {
2632 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2633 
2634 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2635 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2636 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2637 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2638 
2639 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2640 
2641 	if (optimal_fclk)
2642 		*optimal_fclk = bw_from_dram /
2643 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2644 
2645 	if (optimal_dcfclk)
2646 		*optimal_dcfclk =  bw_from_dram /
2647 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2648 }
2649 
remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,unsigned int index)2650 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2651 		unsigned int index)
2652 {
2653 	int i;
2654 
2655 	if (*num_entries == 0)
2656 		return;
2657 
2658 	for (i = index; i < *num_entries - 1; i++) {
2659 		table[i] = table[i + 1];
2660 	}
2661 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2662 }
2663 
dcn32_patch_dpm_table(struct clk_bw_params * bw_params)2664 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2665 {
2666 	int i;
2667 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2668 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2669 
2670 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2671 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2672 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2673 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2674 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2675 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2676 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2677 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2678 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2679 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2680 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2681 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2682 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2683 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2684 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2685 	}
2686 
2687 	/* Scan through clock values we currently have and if they are 0,
2688 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2689 	 *
2690 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2691 	 *  0, will cause it to skip building the clock table.
2692 	 */
2693 	if (max_dcfclk_mhz == 0)
2694 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2695 	if (max_dispclk_mhz == 0)
2696 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2697 	if (max_dtbclk_mhz == 0)
2698 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2699 	if (max_uclk_mhz == 0)
2700 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2701 }
2702 
swap_table_entries(struct _vcs_dpi_voltage_scaling_st * first_entry,struct _vcs_dpi_voltage_scaling_st * second_entry)2703 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2704 		struct _vcs_dpi_voltage_scaling_st *second_entry)
2705 {
2706 	struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2707 	*first_entry = *second_entry;
2708 	*second_entry = temp_entry;
2709 }
2710 
2711 /*
2712  * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2713  */
sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2714 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2715 {
2716 	unsigned int start_index = 0;
2717 	unsigned int end_index = 0;
2718 	unsigned int current_bw = 0;
2719 
2720 	for (int i = 0; i < (*num_entries - 1); i++) {
2721 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2722 			current_bw = table[i].net_bw_in_kbytes_sec;
2723 			start_index = i;
2724 			end_index = ++i;
2725 
2726 			while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2727 				end_index = ++i;
2728 		}
2729 
2730 		if (start_index != end_index) {
2731 			for (int j = start_index; j < end_index; j++) {
2732 				for (int k = start_index; k < end_index; k++) {
2733 					if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2734 						swap_table_entries(&table[k], &table[k+1]);
2735 				}
2736 			}
2737 		}
2738 
2739 		start_index = 0;
2740 		end_index = 0;
2741 
2742 	}
2743 }
2744 
2745 /*
2746  * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2747  *                               and remove entries that do not
2748  */
remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2749 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2750 {
2751 	for (int i = 0; i < (*num_entries - 1); i++) {
2752 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2753 			if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2754 				(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2755 				remove_entry_from_table_at_index(table, num_entries, i);
2756 		}
2757 	}
2758 }
2759 
2760 /*
2761  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2762  * Input:
2763  *	max_clk_limit - struct containing the desired clock timings
2764  * Output:
2765  *	curr_clk_limit  - struct containing the timings that need to be overwritten
2766  * Return: 0 upon success, non-zero for failure
2767  */
override_max_clk_values(struct clk_limit_table_entry * max_clk_limit,struct clk_limit_table_entry * curr_clk_limit)2768 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2769 		struct clk_limit_table_entry *curr_clk_limit)
2770 {
2771 	if (NULL == max_clk_limit || NULL == curr_clk_limit)
2772 		return -1; //invalid parameters
2773 
2774 	//only overwrite if desired max clock frequency is initialized
2775 	if (max_clk_limit->dcfclk_mhz != 0)
2776 		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2777 
2778 	if (max_clk_limit->fclk_mhz != 0)
2779 		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2780 
2781 	if (max_clk_limit->memclk_mhz != 0)
2782 		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2783 
2784 	if (max_clk_limit->socclk_mhz != 0)
2785 		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2786 
2787 	if (max_clk_limit->dtbclk_mhz != 0)
2788 		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2789 
2790 	if (max_clk_limit->dispclk_mhz != 0)
2791 		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2792 
2793 	return 0;
2794 }
2795 
build_synthetic_soc_states(bool disable_dc_mode_overwrite,struct clk_bw_params * bw_params,struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2796 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2797 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2798 {
2799 	int i, j;
2800 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2801 	struct clk_limit_table_entry max_clk_data = {0};
2802 
2803 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2804 
2805 	static const unsigned int num_dcfclk_stas = 5;
2806 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2807 
2808 	unsigned int num_uclk_dpms = 0;
2809 	unsigned int num_fclk_dpms = 0;
2810 	unsigned int num_dcfclk_dpms = 0;
2811 
2812 	unsigned int num_dc_uclk_dpms = 0;
2813 	unsigned int num_dc_fclk_dpms = 0;
2814 	unsigned int num_dc_dcfclk_dpms = 0;
2815 
2816 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2817 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2818 			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2819 		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2820 			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2821 		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2822 			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2823 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2824 			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2825 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2826 			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2827 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2828 			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2829 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2830 			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2831 
2832 		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2833 			num_uclk_dpms++;
2834 			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2835 				num_dc_uclk_dpms++;
2836 		}
2837 		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2838 			num_fclk_dpms++;
2839 			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2840 				num_dc_fclk_dpms++;
2841 		}
2842 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2843 			num_dcfclk_dpms++;
2844 			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2845 				num_dc_dcfclk_dpms++;
2846 		}
2847 	}
2848 
2849 	if (!disable_dc_mode_overwrite) {
2850 		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
2851 		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2852 		num_uclk_dpms = num_dc_uclk_dpms;
2853 		num_fclk_dpms = num_dc_fclk_dpms;
2854 		num_dcfclk_dpms = num_dc_dcfclk_dpms;
2855 		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2856 		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2857 	}
2858 
2859 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2860 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2861 
2862 	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2863 		return -1;
2864 
2865 	if (max_clk_data.dppclk_mhz == 0)
2866 		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2867 
2868 	if (max_clk_data.fclk_mhz == 0)
2869 		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2870 				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2871 				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2872 
2873 	if (max_clk_data.phyclk_mhz == 0)
2874 		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2875 
2876 	*num_entries = 0;
2877 	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2878 	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2879 	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2880 	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2881 	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2882 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2883 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2884 
2885 	// Insert all the DCFCLK STAs
2886 	for (i = 0; i < num_dcfclk_stas; i++) {
2887 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2888 		entry.fabricclk_mhz = 0;
2889 		entry.dram_speed_mts = 0;
2890 
2891 		get_optimal_ntuple(&entry);
2892 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2893 		insert_entry_into_table_sorted(table, num_entries, &entry);
2894 	}
2895 
2896 	// Insert the max DCFCLK
2897 	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2898 	entry.fabricclk_mhz = 0;
2899 	entry.dram_speed_mts = 0;
2900 
2901 	get_optimal_ntuple(&entry);
2902 	entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2903 	insert_entry_into_table_sorted(table, num_entries, &entry);
2904 
2905 	// Insert the UCLK DPMS
2906 	for (i = 0; i < num_uclk_dpms; i++) {
2907 		entry.dcfclk_mhz = 0;
2908 		entry.fabricclk_mhz = 0;
2909 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2910 
2911 		get_optimal_ntuple(&entry);
2912 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2913 		insert_entry_into_table_sorted(table, num_entries, &entry);
2914 	}
2915 
2916 	// If FCLK is coarse grained, insert individual DPMs.
2917 	if (num_fclk_dpms > 2) {
2918 		for (i = 0; i < num_fclk_dpms; i++) {
2919 			entry.dcfclk_mhz = 0;
2920 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2921 			entry.dram_speed_mts = 0;
2922 
2923 			get_optimal_ntuple(&entry);
2924 			entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2925 			insert_entry_into_table_sorted(table, num_entries, &entry);
2926 		}
2927 	}
2928 	// If FCLK fine grained, only insert max
2929 	else {
2930 		entry.dcfclk_mhz = 0;
2931 		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2932 		entry.dram_speed_mts = 0;
2933 
2934 		get_optimal_ntuple(&entry);
2935 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2936 		insert_entry_into_table_sorted(table, num_entries, &entry);
2937 	}
2938 
2939 	// At this point, the table contains all "points of interest" based on
2940 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2941 	// ratios (by derate, are exact).
2942 
2943 	// Remove states that require higher clocks than are supported
2944 	for (i = *num_entries - 1; i >= 0 ; i--) {
2945 		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2946 				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2947 				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2948 			remove_entry_from_table_at_index(table, num_entries, i);
2949 	}
2950 
2951 	// Insert entry with all max dc limits without bandwidth matching
2952 	if (!disable_dc_mode_overwrite) {
2953 		struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2954 
2955 		max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2956 		max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2957 		max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2958 
2959 		max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2960 		insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2961 
2962 		sort_entries_with_same_bw(table, num_entries);
2963 		remove_inconsistent_entries(table, num_entries);
2964 	}
2965 
2966 	// At this point, the table only contains supported points of interest
2967 	// it could be used as is, but some states may be redundant due to
2968 	// coarse grained nature of some clocks, so we want to round up to
2969 	// coarse grained DPMs and remove duplicates.
2970 
2971 	// Round up UCLKs
2972 	for (i = *num_entries - 1; i >= 0 ; i--) {
2973 		for (j = 0; j < num_uclk_dpms; j++) {
2974 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2975 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2976 				break;
2977 			}
2978 		}
2979 	}
2980 
2981 	// If FCLK is coarse grained, round up to next DPMs
2982 	if (num_fclk_dpms > 2) {
2983 		for (i = *num_entries - 1; i >= 0 ; i--) {
2984 			for (j = 0; j < num_fclk_dpms; j++) {
2985 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2986 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2987 					break;
2988 				}
2989 			}
2990 		}
2991 	}
2992 	// Otherwise, round up to minimum.
2993 	else {
2994 		for (i = *num_entries - 1; i >= 0 ; i--) {
2995 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2996 				table[i].fabricclk_mhz = min_fclk_mhz;
2997 			}
2998 		}
2999 	}
3000 
3001 	// Round DCFCLKs up to minimum
3002 	for (i = *num_entries - 1; i >= 0 ; i--) {
3003 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
3004 			table[i].dcfclk_mhz = min_dcfclk_mhz;
3005 		}
3006 	}
3007 
3008 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
3009 	i = 0;
3010 	while (i < *num_entries - 1) {
3011 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
3012 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
3013 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
3014 			remove_entry_from_table_at_index(table, num_entries, i + 1);
3015 		else
3016 			i++;
3017 	}
3018 
3019 	// Fix up the state indicies
3020 	for (i = *num_entries - 1; i >= 0 ; i--) {
3021 		table[i].state = i;
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 /*
3028  * dcn32_update_bw_bounding_box
3029  *
3030  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
3031  * spreadsheet with actual values as per dGPU SKU:
3032  * - with passed few options from dc->config
3033  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
3034  *   need to get it from PM FW)
3035  * - with passed latency values (passed in ns units) in dc-> bb override for
3036  *   debugging purposes
3037  * - with passed latencies from VBIOS (in 100_ns units) if available for
3038  *   certain dGPU SKU
3039  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
3040  *   of the same ASIC)
3041  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
3042  *   FW for different clocks (which might differ for certain dGPU SKU of the
3043  *   same ASIC)
3044  */
dcn32_update_bw_bounding_box_fpu(struct dc * dc,struct clk_bw_params * bw_params)3045 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
3046 {
3047 	dc_assert_fp_enabled();
3048 
3049 	/* Overrides from dc->config options */
3050 	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3051 
3052 	/* Override from passed dc->bb_overrides if available*/
3053 	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3054 			&& dc->bb_overrides.sr_exit_time_ns) {
3055 		dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3056 		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3057 	}
3058 
3059 	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3060 			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
3061 			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3062 		dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3063 		dcn3_2_soc.sr_enter_plus_exit_time_us =
3064 			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3065 	}
3066 
3067 	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3068 		&& dc->bb_overrides.urgent_latency_ns) {
3069 		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3070 		dc->dml2_options.bbox_overrides.urgent_latency_us =
3071 		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3072 	}
3073 
3074 	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3075 			!= dc->bb_overrides.dram_clock_change_latency_ns
3076 			&& dc->bb_overrides.dram_clock_change_latency_ns) {
3077 		dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3078 		dcn3_2_soc.dram_clock_change_latency_us =
3079 			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3080 	}
3081 
3082 	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3083 			!= dc->bb_overrides.fclk_clock_change_latency_ns
3084 			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
3085 		dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3086 		dcn3_2_soc.fclk_change_latency_us =
3087 			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3088 	}
3089 
3090 	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3091 			!= dc->bb_overrides.dummy_clock_change_latency_ns
3092 			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
3093 		dcn3_2_soc.dummy_pstate_latency_us =
3094 			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3095 	}
3096 
3097 	/* Override from VBIOS if VBIOS bb_info available */
3098 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3099 		struct bp_soc_bb_info bb_info = {0};
3100 
3101 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3102 			if (bb_info.dram_clock_change_latency_100ns > 0)
3103 				dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3104 				dcn3_2_soc.dram_clock_change_latency_us =
3105 					bb_info.dram_clock_change_latency_100ns * 10;
3106 
3107 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3108 				dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3109 				dcn3_2_soc.sr_enter_plus_exit_time_us =
3110 					bb_info.dram_sr_enter_exit_latency_100ns * 10;
3111 
3112 			if (bb_info.dram_sr_exit_latency_100ns > 0)
3113 				dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3114 				dcn3_2_soc.sr_exit_time_us =
3115 					bb_info.dram_sr_exit_latency_100ns * 10;
3116 		}
3117 	}
3118 
3119 	/* Override from VBIOS for num_chan */
3120 	if (dc->ctx->dc_bios->vram_info.num_chans) {
3121 		dc->dml2_options.bbox_overrides.dram_num_chan =
3122 		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3123 		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3124 			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3125 	}
3126 
3127 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3128 		dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3129 		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3130 
3131 	/* DML DSC delay factor workaround */
3132 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3133 
3134 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3135 
3136 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3137 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3138 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3139 	dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3140 	dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3141 	dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3142 	dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3143 
3144 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3145 	if (bw_params->clk_table.entries[0].memclk_mhz) {
3146 		if (dc->debug.use_legacy_soc_bb_mechanism) {
3147 			unsigned int i = 0, j = 0, num_states = 0;
3148 
3149 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3150 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3151 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3152 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3153 			unsigned int min_dcfclk = UINT_MAX;
3154 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3155 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3156 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3157 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3158 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3159 
3160 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3161 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3162 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3163 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3164 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3165 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3166 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3167 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3168 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3169 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3170 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3171 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3172 			}
3173 			if (min_dcfclk > dcfclk_sta_targets[0])
3174 				dcfclk_sta_targets[0] = min_dcfclk;
3175 			if (!max_dcfclk_mhz)
3176 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3177 			if (!max_dispclk_mhz)
3178 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3179 			if (!max_dppclk_mhz)
3180 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3181 			if (!max_phyclk_mhz)
3182 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3183 
3184 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3185 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3186 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3187 				num_dcfclk_sta_targets++;
3188 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3189 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3190 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
3191 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3192 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
3193 						break;
3194 					}
3195 				}
3196 				// Update size of array since we "removed" duplicates
3197 				num_dcfclk_sta_targets = i + 1;
3198 			}
3199 
3200 			num_uclk_states = bw_params->clk_table.num_entries;
3201 
3202 			// Calculate optimal dcfclk for each uclk
3203 			for (i = 0; i < num_uclk_states; i++) {
3204 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3205 						&optimal_dcfclk_for_uclk[i], NULL);
3206 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3207 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3208 				}
3209 			}
3210 
3211 			// Calculate optimal uclk for each dcfclk sta target
3212 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
3213 				for (j = 0; j < num_uclk_states; j++) {
3214 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3215 						optimal_uclk_for_dcfclk_sta_targets[i] =
3216 								bw_params->clk_table.entries[j].memclk_mhz * 16;
3217 						break;
3218 					}
3219 				}
3220 			}
3221 
3222 			i = 0;
3223 			j = 0;
3224 			// create the final dcfclk and uclk table
3225 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3226 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3227 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3228 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3229 				} else {
3230 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3231 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3232 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3233 					} else {
3234 						j = num_uclk_states;
3235 					}
3236 				}
3237 			}
3238 
3239 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3240 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3241 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3242 			}
3243 
3244 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3245 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3246 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3247 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3248 			}
3249 
3250 			/* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
3251 			 * MAX_NUM_DPM_LVL is 8.
3252 			 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
3253 			 * DC__VOLTAGE_STATES is 40.
3254 			 */
3255 			if (num_states > MAX_NUM_DPM_LVL) {
3256 				ASSERT(0);
3257 				return;
3258 			}
3259 
3260 			dcn3_2_soc.num_states = num_states;
3261 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
3262 				dcn3_2_soc.clock_limits[i].state = i;
3263 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3264 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3265 
3266 				/* Fill all states with max values of all these clocks */
3267 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3268 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
3269 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
3270 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
3271 
3272 				/* Populate from bw_params for DTBCLK, SOCCLK */
3273 				if (i > 0) {
3274 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3275 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3276 					} else {
3277 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3278 					}
3279 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3280 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3281 				}
3282 
3283 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3284 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3285 				else
3286 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3287 
3288 				if (!dram_speed_mts[i] && i > 0)
3289 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3290 				else
3291 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3292 
3293 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3294 				/* PHYCLK_D18, PHYCLK_D32 */
3295 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3296 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3297 			}
3298 		} else {
3299 			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
3300 					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3301 		}
3302 
3303 		/* Re-init DML with updated bb */
3304 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3305 		if (dc->current_state)
3306 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3307 	}
3308 
3309 	if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3310 		unsigned int i = 0;
3311 
3312 		dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3313 
3314 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3315 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3316 
3317 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3318 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3319 
3320 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3321 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3322 
3323 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3324 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3325 
3326 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3327 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3328 
3329 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3330 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3331 
3332 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3333 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3334 
3335 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3336 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3337 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3338 					dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3339 		}
3340 
3341 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3342 			if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3343 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3344 					dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3345 		}
3346 
3347 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3348 			if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3349 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3350 					dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3351 		}
3352 
3353 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3354 			if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3355 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3356 					dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3357 		}
3358 
3359 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3360 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3361 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3362 					dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3363 		}
3364 
3365 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3366 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3367 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3368 					dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3369 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3370 					dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3371 			}
3372 		}
3373 	}
3374 }
3375 
dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st * pipes,int pipe_cnt)3376 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3377 				  int pipe_cnt)
3378 {
3379 	dc_assert_fp_enabled();
3380 
3381 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3382 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3383 }
3384 
dcn32_allow_subvp_with_active_margin(struct pipe_ctx * pipe)3385 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3386 {
3387 	bool allow = false;
3388 	uint32_t refresh_rate = 0;
3389 	uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3390 	uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3391 	uint32_t i;
3392 
3393 	for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3394 		uint32_t width = subvp_active_margin_list.res[i].width;
3395 		uint32_t height = subvp_active_margin_list.res[i].height;
3396 
3397 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3398 			pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3399 		refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
3400 		refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
3401 
3402 		if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3403 				dcn32_check_native_scaling_for_res(pipe, width, height)) {
3404 			allow = true;
3405 			break;
3406 		}
3407 	}
3408 	return allow;
3409 }
3410 
3411 /**
3412  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3413  *
3414  * @dc: Current DC state
3415  * @context: New DC state to be programmed
3416  * @pipe: Pipe to be considered for use in subvp
3417  *
3418  * On high refresh rate display configs, we will allow subvp under the following conditions:
3419  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3420  * 2. Refresh rate is between 120hz - 165hz
3421  * 3. No scaling
3422  * 4. Freesync is inactive
3423  * 5. For single display cases, freesync must be disabled
3424  *
3425  * Return: True if pipe can be used for subvp, false otherwise
3426  */
dcn32_allow_subvp_high_refresh_rate(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe)3427 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3428 {
3429 	bool allow = false;
3430 	uint32_t refresh_rate = 0;
3431 	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3432 	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3433 	uint32_t min_refresh = subvp_max_refresh;
3434 	uint32_t i;
3435 
3436 	/* Only allow SubVP on high refresh displays if all connected displays
3437 	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3438 	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3439 	 */
3440 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3441 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3442 
3443 		if (!pipe_ctx->stream)
3444 			continue;
3445 		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3446 				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3447 						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3448 
3449 		if (refresh_rate < min_refresh)
3450 			min_refresh = refresh_rate;
3451 	}
3452 
3453 	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3454 			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3455 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3456 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3457 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3458 		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3459 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3460 				uint32_t width = subvp_high_refresh_list.res[i].width;
3461 				uint32_t height = subvp_high_refresh_list.res[i].height;
3462 
3463 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3464 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3465 						allow = true;
3466 						break;
3467 					}
3468 				}
3469 			}
3470 		}
3471 	}
3472 	return allow;
3473 }
3474 
3475 /**
3476  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3477  *
3478  * @dc: Current DC state
3479  * @context: New DC state to be programmed
3480  *
3481  * Return: Max vratio for prefetch
3482  */
dcn32_determine_max_vratio_prefetch(struct dc * dc,struct dc_state * context)3483 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3484 {
3485 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3486 	int i;
3487 
3488 	/* For single display MPO configs, allow the max vratio to be 8
3489 	 * if any plane is YUV420 format
3490 	 */
3491 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3492 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
3493 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3494 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3495 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3496 			}
3497 		}
3498 	}
3499 	return max_vratio_pre;
3500 }
3501 
3502 /**
3503  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3504  *
3505  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3506  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3507  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3508  * ActiveMargin <= 0 to be the FPO stream candidate if found.
3509  *
3510  *
3511  * @dc: current dc state
3512  * @context: new dc state
3513  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3514  *
3515  * Return: void
3516  */
dcn32_assign_fpo_vactive_candidate(struct dc * dc,const struct dc_state * context,struct dc_stream_state ** fpo_candidate_stream)3517 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3518 {
3519 	unsigned int i, pipe_idx;
3520 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3521 
3522 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3523 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3524 
3525 		/* In DCN32/321, FPO uses per-pipe P-State force.
3526 		 * If there's no planes, HUBP is power gated and
3527 		 * therefore programming UCLK_PSTATE_FORCE does
3528 		 * nothing (P-State will always be asserted naturally
3529 		 * on a pipe that has HUBP power gated. Therefore we
3530 		 * only want to enable FPO if the FPO pipe has both
3531 		 * a stream and a plane.
3532 		 */
3533 		if (!pipe->stream || !pipe->plane_state)
3534 			continue;
3535 
3536 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3537 			*fpo_candidate_stream = pipe->stream;
3538 			break;
3539 		}
3540 		pipe_idx++;
3541 	}
3542 }
3543 
3544 /**
3545  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3546  *
3547  * @dc: current dc state
3548  * @context: new dc state
3549  * @fpo_candidate_stream: candidate stream to be chosen for FPO
3550  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3551  *
3552  * Return: True if VACTIVE display is found, false otherwise
3553  */
dcn32_find_vactive_pipe(struct dc * dc,const struct dc_state * context,struct dc_stream_state * fpo_candidate_stream,uint32_t vactive_margin_req_us)3554 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us)
3555 {
3556 	unsigned int i, pipe_idx;
3557 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3558 	bool vactive_found = true;
3559 	unsigned int blank_us = 0;
3560 
3561 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3562 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3563 
3564 		if (!pipe->stream)
3565 			continue;
3566 
3567 		/* Don't need to check for vactive margin on the FPO candidate stream */
3568 		if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) {
3569 			pipe_idx++;
3570 			continue;
3571 		}
3572 
3573 		/* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin
3574 		 * in order for us to have found a valid "vactive" config for FPO + Vactive
3575 		 */
3576 		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3577 				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3578 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us ||
3579 				pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) {
3580 			vactive_found = false;
3581 			break;
3582 		}
3583 		pipe_idx++;
3584 	}
3585 	return vactive_found;
3586 }
3587 
dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st * soc_bb)3588 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3589 {
3590 	dc_assert_fp_enabled();
3591 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3592 }
3593 
dcn32_override_min_req_memclk(struct dc * dc,struct dc_state * context)3594 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3595 {
3596 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3597 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3598 			dc->dml.soc.num_chans <= 8) {
3599 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3600 
3601 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3602 				num_mclk_levels > 1) {
3603 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3604 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3605 		}
3606 	}
3607 }
3608