1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 #include "dc_state_priv.h"
36
37 #define DC_LOGGER_INIT(logger)
38
39 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40 .min_refresh = 120,
41 .max_refresh = 175,
42 .res = {
43 {.width = 3840, .height = 2160, },
44 {.width = 3440, .height = 1440, },
45 {.width = 2560, .height = 1440, },
46 {.width = 1920, .height = 1080, }},
47 };
48
49 static const struct subvp_active_margin_list subvp_active_margin_list = {
50 .min_refresh = 55,
51 .max_refresh = 65,
52 .res = {
53 {.width = 2560, .height = 1440, },
54 {.width = 1920, .height = 1080, }},
55 };
56
57 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58 .gpuvm_enable = 0,
59 .gpuvm_max_page_table_levels = 4,
60 .hostvm_enable = 0,
61 .rob_buffer_size_kbytes = 128,
62 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63 .config_return_buffer_size_in_kbytes = 1280,
64 .compressed_buffer_segment_size_in_kbytes = 64,
65 .meta_fifo_size_in_kentries = 22,
66 .zero_size_buffer_entries = 512,
67 .compbuf_reserved_space_64b = 256,
68 .compbuf_reserved_space_zs = 64,
69 .dpp_output_buffer_pixels = 2560,
70 .opp_output_buffer_lines = 1,
71 .pixel_chunk_size_kbytes = 8,
72 .alpha_pixel_chunk_size_kbytes = 4,
73 .min_pixel_chunk_size_bytes = 1024,
74 .dcc_meta_buffer_size_bytes = 6272,
75 .meta_chunk_size_kbytes = 2,
76 .min_meta_chunk_size_bytes = 256,
77 .writeback_chunk_size_kbytes = 8,
78 .ptoi_supported = false,
79 .num_dsc = 4,
80 .maximum_dsc_bits_per_component = 12,
81 .maximum_pixels_per_line_per_dsc_unit = 6016,
82 .dsc422_native_support = true,
83 .is_line_buffer_bpp_fixed = true,
84 .line_buffer_fixed_bpp = 57,
85 .line_buffer_size_bits = 1171920,
86 .max_line_buffer_lines = 32,
87 .writeback_interface_buffer_size_kbytes = 90,
88 .max_num_dpp = 4,
89 .max_num_otg = 4,
90 .max_num_hdmi_frl_outputs = 1,
91 .max_num_wb = 1,
92 .max_dchub_pscl_bw_pix_per_clk = 4,
93 .max_pscl_lb_bw_pix_per_clk = 2,
94 .max_lb_vscl_bw_pix_per_clk = 4,
95 .max_vscl_hscl_bw_pix_per_clk = 4,
96 .max_hscl_ratio = 6,
97 .max_vscl_ratio = 6,
98 .max_hscl_taps = 8,
99 .max_vscl_taps = 8,
100 .dpte_buffer_size_in_pte_reqs_luma = 64,
101 .dpte_buffer_size_in_pte_reqs_chroma = 34,
102 .dispclk_ramp_margin_percent = 1,
103 .max_inter_dcn_tile_repeaters = 8,
104 .cursor_buffer_size = 16,
105 .cursor_chunk_size = 2,
106 .writeback_line_buffer_buffer_size = 0,
107 .writeback_min_hscl_ratio = 1,
108 .writeback_min_vscl_ratio = 1,
109 .writeback_max_hscl_ratio = 1,
110 .writeback_max_vscl_ratio = 1,
111 .writeback_max_hscl_taps = 1,
112 .writeback_max_vscl_taps = 1,
113 .dppclk_delay_subtotal = 47,
114 .dppclk_delay_scl = 50,
115 .dppclk_delay_scl_lb_only = 16,
116 .dppclk_delay_cnvc_formatter = 28,
117 .dppclk_delay_cnvc_cursor = 6,
118 .dispclk_delay_subtotal = 125,
119 .dynamic_metadata_vm_enabled = false,
120 .odm_combine_4to1_supported = false,
121 .dcc_supported = true,
122 .max_num_dp2p0_outputs = 2,
123 .max_num_dp2p0_streams = 4,
124 };
125
126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127 .clock_limits = {
128 {
129 .state = 0,
130 .dcfclk_mhz = 1564.0,
131 .fabricclk_mhz = 2500.0,
132 .dispclk_mhz = 2150.0,
133 .dppclk_mhz = 2150.0,
134 .phyclk_mhz = 810.0,
135 .phyclk_d18_mhz = 667.0,
136 .phyclk_d32_mhz = 625.0,
137 .socclk_mhz = 1200.0,
138 .dscclk_mhz = 716.667,
139 .dram_speed_mts = 18000.0,
140 .dtbclk_mhz = 1564.0,
141 },
142 },
143 .num_states = 1,
144 .sr_exit_time_us = 42.97,
145 .sr_enter_plus_exit_time_us = 49.94,
146 .sr_exit_z8_time_us = 285.0,
147 .sr_enter_plus_exit_z8_time_us = 320,
148 .writeback_latency_us = 12.0,
149 .round_trip_ping_latency_dcfclk_cycles = 263,
150 .urgent_latency_pixel_data_only_us = 4.0,
151 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152 .urgent_latency_vm_data_only_us = 4.0,
153 .fclk_change_latency_us = 25,
154 .usr_retraining_latency_us = 2,
155 .smn_latency_us = 2,
156 .mall_allocated_for_dcn_mbytes = 64,
157 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160 .pct_ideal_sdp_bw_after_urgent = 90.0,
161 .pct_ideal_fabric_bw_after_urgent = 67.0,
162 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
164 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0,
165 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166 .max_avg_sdp_bw_use_normal_percent = 80.0,
167 .max_avg_fabric_bw_use_normal_percent = 60.0,
168 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169 .max_avg_dram_bw_use_normal_percent = 15.0,
170 .num_chans = 24,
171 .dram_channel_width_bytes = 2,
172 .fabric_datapath_to_dcn_data_return_bytes = 64,
173 .return_bus_width_bytes = 64,
174 .downspread_percent = 0.38,
175 .dcn_downspread_percent = 0.5,
176 .dram_clock_change_latency_us = 400,
177 .dispclk_dppclk_vco_speed_mhz = 4300.0,
178 .do_urgent_latency_adjustment = true,
179 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181 };
182
183 static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context,
184 bool *repopulate_pipes, int *split, bool *merge);
185
dcn32_build_wm_range_table_fpu(struct clk_mgr_internal * clk_mgr)186 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
187 {
188 /* defaults */
189 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
190 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
191 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
192 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
193 /* For min clocks use as reported by PM FW and report those as min */
194 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
195 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
196 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
197 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
198
199 dc_assert_fp_enabled();
200
201 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
202 if (dcfclk_mhz_for_the_second_state)
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
204 else
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
206
207 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
208 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
209
210 /* Set A - Normal - default values */
211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
221
222 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
229 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
230 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
231 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
232
233 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
234 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
235 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
244 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
245 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
246 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
247 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
248 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
249 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
250 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
251 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
252 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
253 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
254 }
255 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
256 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
257 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
258 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
259 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
260 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
261 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
262 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
263 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
264 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
265 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
266 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
267 }
268
269 /*
270 * Finds dummy_latency_index when MCLK switching using firmware based
271 * vblank stretch is enabled. This function will iterate through the
272 * table of dummy pstate latencies until the lowest value that allows
273 * dm_allow_self_refresh_and_mclk_switch to happen is found
274 */
dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)275 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
276 struct dc_state *context,
277 display_e2e_pipe_params_st *pipes,
278 int pipe_cnt,
279 int vlevel)
280 {
281 const int max_latency_table_entries = 4;
282 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
283 int dummy_latency_index = 0;
284 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
285
286 dc_assert_fp_enabled();
287
288 while (dummy_latency_index < max_latency_table_entries) {
289 if (temp_clock_change_support != dm_dram_clock_change_unsupported)
290 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
291 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
292 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
293 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
294
295 /* for subvp + DRR case, if subvp pipes are still present we support pstate */
296 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
297 dcn32_subvp_in_use(dc, context))
298 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
299
300 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
301 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
302 break;
303
304 dummy_latency_index++;
305 }
306
307 if (dummy_latency_index == max_latency_table_entries) {
308 ASSERT(dummy_latency_index != max_latency_table_entries);
309 /* If the execution gets here, it means dummy p_states are
310 * not possible. This should never happen and would mean
311 * something is severely wrong.
312 * Here we reset dummy_latency_index to 3, because it is
313 * better to have underflows than system crashes.
314 */
315 dummy_latency_index = max_latency_table_entries - 1;
316 }
317
318 return dummy_latency_index;
319 }
320
321 /**
322 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
323 * and populate pipe_ctx with those params.
324 * @dc: [in] current dc state
325 * @context: [in] new dc state
326 * @pipes: [in] DML pipe params array
327 * @pipe_cnt: [in] DML pipe count
328 *
329 * This function must be called AFTER the phantom pipes are added to context
330 * and run through DML (so that the DLG params for the phantom pipes can be
331 * populated), and BEFORE we program the timing for the phantom pipes.
332 */
dcn32_helper_populate_phantom_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)333 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
334 struct dc_state *context,
335 display_e2e_pipe_params_st *pipes,
336 int pipe_cnt)
337 {
338 uint32_t i, pipe_idx;
339
340 dc_assert_fp_enabled();
341
342 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
343 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
344
345 if (!pipe->stream)
346 continue;
347
348 if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
349 pipes[pipe_idx].pipe.dest.vstartup_start =
350 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
351 pipes[pipe_idx].pipe.dest.vupdate_offset =
352 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
353 pipes[pipe_idx].pipe.dest.vupdate_width =
354 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
355 pipes[pipe_idx].pipe.dest.vready_offset =
356 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
357 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
358 }
359 pipe_idx++;
360 }
361 }
362
calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st * entry)363 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
364 {
365 float memory_bw_kbytes_sec;
366 float fabric_bw_kbytes_sec;
367 float sdp_bw_kbytes_sec;
368 float limiting_bw_kbytes_sec;
369
370 memory_bw_kbytes_sec = entry->dram_speed_mts *
371 dcn3_2_soc.num_chans *
372 dcn3_2_soc.dram_channel_width_bytes *
373 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374
375 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
376 dcn3_2_soc.return_bus_width_bytes *
377 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
378
379 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
380 dcn3_2_soc.return_bus_width_bytes *
381 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
382
383 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
384
385 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
386 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
387
388 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
389 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
390
391 return limiting_bw_kbytes_sec;
392 }
393
get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st * entry)394 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
395 {
396 if (entry->dcfclk_mhz > 0) {
397 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
398
399 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
400 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
401 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
402 } else if (entry->fabricclk_mhz > 0) {
403 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
404
405 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
406 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
407 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
408 } else if (entry->dram_speed_mts > 0) {
409 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
410 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
411
412 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
413 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
414 }
415 }
416
insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,struct _vcs_dpi_voltage_scaling_st * entry)417 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
418 unsigned int *num_entries,
419 struct _vcs_dpi_voltage_scaling_st *entry)
420 {
421 int i = 0;
422 int index = 0;
423
424 dc_assert_fp_enabled();
425
426 if (*num_entries == 0) {
427 table[0] = *entry;
428 (*num_entries)++;
429 } else {
430 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
431 index++;
432 if (index >= *num_entries)
433 break;
434 }
435
436 for (i = *num_entries; i > index; i--)
437 table[i] = table[i - 1];
438
439 table[index] = *entry;
440 (*num_entries)++;
441 }
442 }
443
444 /**
445 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
446 * @dc: current dc state
447 * @context: new dc state
448 * @ref_pipe: Main pipe for the phantom stream
449 * @phantom_stream: target phantom stream state
450 * @pipes: DML pipe params
451 * @pipe_cnt: number of DML pipes
452 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
453 *
454 * Set timing params of the phantom stream based on calculated output from DML.
455 * This function first gets the DML pipe index using the DC pipe index, then
456 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
457 * lines required for SubVP MCLK switching and assigns to the phantom stream
458 * accordingly.
459 *
460 * - The number of SubVP lines calculated in DML does not take into account
461 * FW processing delays and required pstate allow width, so we must include
462 * that separately.
463 *
464 * - Set phantom backporch = vstartup of main pipe
465 */
dcn32_set_phantom_stream_timing(struct dc * dc,struct dc_state * context,struct pipe_ctx * ref_pipe,struct dc_stream_state * phantom_stream,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)466 void dcn32_set_phantom_stream_timing(struct dc *dc,
467 struct dc_state *context,
468 struct pipe_ctx *ref_pipe,
469 struct dc_stream_state *phantom_stream,
470 display_e2e_pipe_params_st *pipes,
471 unsigned int pipe_cnt,
472 unsigned int dc_pipe_idx)
473 {
474 unsigned int i, pipe_idx;
475 struct pipe_ctx *pipe;
476 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
477 unsigned int num_dpp;
478 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
479 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
480 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
481 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
482 struct dc_stream_state *main_stream = ref_pipe->stream;
483
484 dc_assert_fp_enabled();
485
486 // Find DML pipe index (pipe_idx) using dc_pipe_idx
487 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
488 pipe = &context->res_ctx.pipe_ctx[i];
489
490 if (!pipe->stream)
491 continue;
492
493 if (i == dc_pipe_idx)
494 break;
495
496 pipe_idx++;
497 }
498
499 // Calculate lines required for pstate allow width and FW processing delays
500 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
501 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
502 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
503 (double)ref_pipe->stream->timing.h_total;
504
505 // Update clks_cfg for calling into recalculate
506 pipes[0].clks_cfg.voltage = vlevel;
507 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
508 pipes[0].clks_cfg.socclk_mhz = socclk;
509
510 // DML calculation for MALL region doesn't take into account FW delay
511 // and required pstate allow width for multi-display cases
512 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
513 * to 2 swaths (i.e. 16 lines)
514 */
515 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
516 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
517
518 // W/A for DCC corruption with certain high resolution timings.
519 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
520 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
521 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
522
523 /* dc->debug.subvp_extra_lines 0 by default*/
524 phantom_vactive += dc->debug.subvp_extra_lines;
525
526 // For backporch of phantom pipe, use vstartup of the main pipe
527 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
528
529 phantom_stream->dst.y = 0;
530 phantom_stream->dst.height = phantom_vactive;
531 /* When scaling, DML provides the end to end required number of lines for MALL.
532 * dst.height is always correct for this case, but src.height is not which causes a
533 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
534 * phantom for this case.
535 */
536 phantom_stream->src.y = 0;
537 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
538
539 phantom_stream->timing.v_addressable = phantom_vactive;
540 phantom_stream->timing.v_front_porch = 1;
541 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
542 phantom_stream->timing.v_front_porch +
543 phantom_stream->timing.v_sync_width +
544 phantom_bp;
545 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
546 }
547
548 /**
549 * dcn32_get_num_free_pipes - Calculate number of free pipes
550 * @dc: current dc state
551 * @context: new dc state
552 *
553 * This function assumes that a "used" pipe is a pipe that has
554 * both a stream and a plane assigned to it.
555 *
556 * Return: Number of free pipes available in the context
557 */
dcn32_get_num_free_pipes(struct dc * dc,struct dc_state * context)558 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
559 {
560 unsigned int i;
561 unsigned int free_pipes = 0;
562 unsigned int num_pipes = 0;
563
564 for (i = 0; i < dc->res_pool->pipe_count; i++) {
565 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
566
567 if (pipe->stream && !pipe->top_pipe) {
568 while (pipe) {
569 num_pipes++;
570 pipe = pipe->bottom_pipe;
571 }
572 }
573 }
574
575 free_pipes = dc->res_pool->pipe_count - num_pipes;
576 return free_pipes;
577 }
578
579 /**
580 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
581 * @dc: current dc state
582 * @context: new dc state
583 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
584 *
585 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
586 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
587 * we are forcing SubVP P-State switching on the current config.
588 *
589 * The number of pipes used for the chosen surface must be less than or equal to the
590 * number of free pipes available.
591 *
592 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
593 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
594 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
595 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
596 *
597 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
598 */
dcn32_assign_subvp_pipe(struct dc * dc,struct dc_state * context,unsigned int * index)599 static bool dcn32_assign_subvp_pipe(struct dc *dc,
600 struct dc_state *context,
601 unsigned int *index)
602 {
603 unsigned int i, pipe_idx;
604 unsigned int max_frame_time = 0;
605 bool valid_assignment_found = false;
606 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
607 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
608
609 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
610 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
611 unsigned int num_pipes = 0;
612 unsigned int refresh_rate = 0;
613
614 if (!pipe->stream)
615 continue;
616
617 // Round up
618 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
619 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
620 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
621 /* SubVP pipe candidate requirements:
622 * - Refresh rate < 120hz
623 * - Not able to switch in vactive naturally (switching in active means the
624 * DET provides enough buffer to hide the P-State switch latency -- trying
625 * to combine this with SubVP can cause issues with the scheduling).
626 * - Not TMZ surface
627 */
628 if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) &&
629 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
630 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
631 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
632 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
633 !pipe->plane_state->address.tmz_surface &&
634 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
635 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
636 dcn32_allow_subvp_with_active_margin(pipe)))) {
637 while (pipe) {
638 num_pipes++;
639 pipe = pipe->bottom_pipe;
640 }
641
642 pipe = &context->res_ctx.pipe_ctx[i];
643 if (num_pipes <= free_pipes) {
644 struct dc_stream_state *stream = pipe->stream;
645 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
646 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
647 if (frame_us > max_frame_time) {
648 *index = i;
649 max_frame_time = frame_us;
650 valid_assignment_found = true;
651 }
652 }
653 }
654 pipe_idx++;
655 }
656 return valid_assignment_found;
657 }
658
659 /**
660 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
661 * @dc: current dc state
662 * @context: new dc state
663 *
664 * This function returns true if there are enough free pipes
665 * to create the required phantom pipes for any given stream
666 * (that does not already have phantom pipe assigned).
667 *
668 * e.g. For a 2 stream config where the first stream uses one
669 * pipe and the second stream uses 2 pipes (i.e. pipe split),
670 * this function will return true because there is 1 remaining
671 * pipe which can be used as the phantom pipe for the non pipe
672 * split pipe.
673 *
674 * Return:
675 * True if there are enough free pipes to assign phantom pipes to at least one
676 * stream that does not already have phantom pipes assigned. Otherwise false.
677 */
dcn32_enough_pipes_for_subvp(struct dc * dc,struct dc_state * context)678 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
679 {
680 unsigned int i, split_cnt, free_pipes;
681 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
682 bool subvp_possible = false;
683
684 for (i = 0; i < dc->res_pool->pipe_count; i++) {
685 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
686
687 // Find the minimum pipe split count for non SubVP pipes
688 if (resource_is_pipe_type(pipe, OPP_HEAD) &&
689 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
690 split_cnt = 0;
691 while (pipe) {
692 split_cnt++;
693 pipe = pipe->bottom_pipe;
694 }
695
696 if (split_cnt < min_pipe_split)
697 min_pipe_split = split_cnt;
698 }
699 }
700
701 free_pipes = dcn32_get_num_free_pipes(dc, context);
702
703 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
704 // should not equal to the pipe_count)
705 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
706 subvp_possible = true;
707
708 return subvp_possible;
709 }
710
711 /**
712 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
713 * @dc: current dc state
714 * @context: new dc state
715 *
716 * High level algorithm:
717 * 1. Find longest microschedule length (in us) between the two SubVP pipes
718 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
719 * pipes still allows for the maximum microschedule to fit in the active
720 * region for both pipes.
721 *
722 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
723 */
subvp_subvp_schedulable(struct dc * dc,struct dc_state * context)724 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
725 {
726 struct pipe_ctx *subvp_pipes[2] = {0};
727 struct dc_stream_state *phantom = NULL;
728 uint32_t microschedule_lines = 0;
729 uint32_t index = 0;
730 uint32_t i;
731 uint32_t max_microschedule_us = 0;
732 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
733
734 for (i = 0; i < dc->res_pool->pipe_count; i++) {
735 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
736 uint32_t time_us = 0;
737
738 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
739 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
740 */
741 phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
742 if (phantom && pipe->stream && pipe->plane_state && !pipe->top_pipe &&
743 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
744 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
745 phantom->timing.v_addressable;
746
747 // Round up when calculating microschedule time (+ 1 at the end)
748 time_us = (microschedule_lines * phantom->timing.h_total) /
749 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
750 dc->caps.subvp_prefetch_end_to_mall_start_us +
751 dc->caps.subvp_fw_processing_delay_us + 1;
752 if (time_us > max_microschedule_us)
753 max_microschedule_us = time_us;
754
755 subvp_pipes[index] = pipe;
756 index++;
757
758 // Maximum 2 SubVP pipes
759 if (index == 2)
760 break;
761 }
762 }
763 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
764 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
765 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
766 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
767 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
768 subvp_pipes[0]->stream->timing.h_total) /
769 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
770 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
771 subvp_pipes[1]->stream->timing.h_total) /
772 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
773
774 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
775 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
776 return true;
777
778 return false;
779 }
780
781 /**
782 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
783 * @dc: current dc state
784 * @context: new dc state
785 *
786 * High level algorithm:
787 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
788 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
789 * (the margin is equal to the MALL region + DRR margin (500us))
790 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
791 * then report the configuration as supported
792 *
793 * Return: True if the SubVP + DRR config is schedulable, false otherwise
794 */
subvp_drr_schedulable(struct dc * dc,struct dc_state * context)795 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
796 {
797 bool schedulable = false;
798 uint32_t i;
799 struct pipe_ctx *pipe = NULL;
800 struct pipe_ctx *drr_pipe = NULL;
801 struct dc_crtc_timing *main_timing = NULL;
802 struct dc_crtc_timing *phantom_timing = NULL;
803 struct dc_crtc_timing *drr_timing = NULL;
804 int16_t prefetch_us = 0;
805 int16_t mall_region_us = 0;
806 int16_t drr_frame_us = 0; // nominal frame time
807 int16_t subvp_active_us = 0;
808 int16_t stretched_drr_us = 0;
809 int16_t drr_stretched_vblank_us = 0;
810 int16_t max_vblank_mallregion = 0;
811 struct dc_stream_state *phantom_stream;
812 bool subvp_found = false;
813 bool drr_found = false;
814
815 // Find SubVP pipe
816 for (i = 0; i < dc->res_pool->pipe_count; i++) {
817 pipe = &context->res_ctx.pipe_ctx[i];
818
819 // We check for master pipe, but it shouldn't matter since we only need
820 // the pipe for timing info (stream should be same for any pipe splits)
821 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
822 !resource_is_pipe_type(pipe, DPP_PIPE))
823 continue;
824
825 // Find the SubVP pipe
826 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
827 subvp_found = true;
828 break;
829 }
830 }
831
832 // Find the DRR pipe
833 for (i = 0; i < dc->res_pool->pipe_count; i++) {
834 drr_pipe = &context->res_ctx.pipe_ctx[i];
835
836 // We check for master pipe only
837 if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
838 !resource_is_pipe_type(drr_pipe, DPP_PIPE))
839 continue;
840
841 if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
842 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
843 drr_found = true;
844 break;
845 }
846 }
847
848 phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
849 if (phantom_stream && subvp_found && drr_found) {
850 main_timing = &pipe->stream->timing;
851 phantom_timing = &phantom_stream->timing;
852 drr_timing = &drr_pipe->stream->timing;
853 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
854 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
855 dc->caps.subvp_prefetch_end_to_mall_start_us;
856 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
857 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
858 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
859 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
860 // P-State allow width and FW delays already included phantom_timing->v_addressable
861 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
862 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
863 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
864 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
865 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
866 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
867 }
868
869 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
870 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
871 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
872 * and the max of (VBLANK blanking time, MALL region)).
873 */
874 if (drr_timing &&
875 stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
876 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
877 schedulable = true;
878
879 return schedulable;
880 }
881
882
883 /**
884 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
885 * @dc: current dc state
886 * @context: new dc state
887 *
888 * High level algorithm:
889 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
890 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
891 * then report the configuration as supported
892 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
893 *
894 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
895 */
subvp_vblank_schedulable(struct dc * dc,struct dc_state * context)896 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
897 {
898 struct pipe_ctx *pipe = NULL;
899 struct pipe_ctx *subvp_pipe = NULL;
900 bool found = false;
901 bool schedulable = false;
902 uint32_t i = 0;
903 uint8_t vblank_index = 0;
904 uint16_t prefetch_us = 0;
905 uint16_t mall_region_us = 0;
906 uint16_t vblank_frame_us = 0;
907 uint16_t subvp_active_us = 0;
908 uint16_t vblank_blank_us = 0;
909 uint16_t max_vblank_mallregion = 0;
910 struct dc_crtc_timing *main_timing = NULL;
911 struct dc_crtc_timing *phantom_timing = NULL;
912 struct dc_crtc_timing *vblank_timing = NULL;
913 struct dc_stream_state *phantom_stream;
914 enum mall_stream_type pipe_mall_type;
915
916 /* For SubVP + VBLANK/DRR cases, we assume there can only be
917 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
918 * is supported, it is either a single VBLANK case or two VBLANK
919 * displays which are synchronized (in which case they have identical
920 * timings).
921 */
922 for (i = 0; i < dc->res_pool->pipe_count; i++) {
923 pipe = &context->res_ctx.pipe_ctx[i];
924 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
925
926 // We check for master pipe, but it shouldn't matter since we only need
927 // the pipe for timing info (stream should be same for any pipe splits)
928 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
929 !resource_is_pipe_type(pipe, DPP_PIPE))
930 continue;
931
932 if (!found && pipe_mall_type == SUBVP_NONE) {
933 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
934 vblank_index = i;
935 found = true;
936 }
937
938 if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
939 subvp_pipe = pipe;
940 }
941 if (found && subvp_pipe) {
942 phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
943 main_timing = &subvp_pipe->stream->timing;
944 phantom_timing = &phantom_stream->timing;
945 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
946 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
947 // Also include the prefetch end to mallstart delay time
948 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
949 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
950 dc->caps.subvp_prefetch_end_to_mall_start_us;
951 // P-State allow width and FW delays already included phantom_timing->v_addressable
952 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
953 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
954 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
955 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
956 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
957 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
958 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
959 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
960 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
961
962 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
963 // and the max of (VBLANK blanking time, MALL region)
964 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
965 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
966 schedulable = true;
967 }
968 return schedulable;
969 }
970
971 /**
972 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
973 *
974 * @dc: Current DC state
975 * @context: New DC state to be programmed
976 *
977 * SubVP + SubVP is admissible under the following conditions:
978 * - All SubVP pipes are < 120Hz OR
979 * - All SubVP pipes are >= 120hz
980 *
981 * Return: True if admissible, false otherwise
982 */
subvp_subvp_admissable(struct dc * dc,struct dc_state * context)983 static bool subvp_subvp_admissable(struct dc *dc,
984 struct dc_state *context)
985 {
986 bool result = false;
987 uint32_t i;
988 uint8_t subvp_count = 0;
989 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
990 uint64_t refresh_rate = 0;
991
992 for (i = 0; i < dc->res_pool->pipe_count; i++) {
993 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
994
995 if (!pipe->stream)
996 continue;
997
998 if (pipe->plane_state && !pipe->top_pipe &&
999 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
1000 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1001 pipe->stream->timing.v_total * (uint64_t)pipe->stream->timing.h_total - (uint64_t)1);
1002 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1003 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1004
1005 if ((uint32_t)refresh_rate < min_refresh)
1006 min_refresh = (uint32_t)refresh_rate;
1007 if ((uint32_t)refresh_rate > max_refresh)
1008 max_refresh = (uint32_t)refresh_rate;
1009 subvp_count++;
1010 }
1011 }
1012
1013 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1014 (min_refresh >= subvp_high_refresh_list.min_refresh &&
1015 max_refresh <= subvp_high_refresh_list.max_refresh)))
1016 result = true;
1017
1018 return result;
1019 }
1020
1021 /**
1022 * subvp_validate_static_schedulability - Check which SubVP case is calculated
1023 * and handle static analysis based on the case.
1024 * @dc: current dc state
1025 * @context: new dc state
1026 * @vlevel: Voltage level calculated by DML
1027 *
1028 * Three cases:
1029 * 1. SubVP + SubVP
1030 * 2. SubVP + VBLANK (DRR checked internally)
1031 * 3. SubVP + VACTIVE (currently unsupported)
1032 *
1033 * Return: True if statically schedulable, false otherwise
1034 */
subvp_validate_static_schedulability(struct dc * dc,struct dc_state * context,int vlevel)1035 static bool subvp_validate_static_schedulability(struct dc *dc,
1036 struct dc_state *context,
1037 int vlevel)
1038 {
1039 bool schedulable = false;
1040 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1041 uint32_t i, pipe_idx;
1042 uint8_t subvp_count = 0;
1043 uint8_t vactive_count = 0;
1044 uint8_t non_subvp_pipes = 0;
1045
1046 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1047 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1048 enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1049
1050 if (!pipe->stream)
1051 continue;
1052
1053 if (pipe->plane_state && !pipe->top_pipe) {
1054 if (pipe_mall_type == SUBVP_MAIN)
1055 subvp_count++;
1056 if (pipe_mall_type == SUBVP_NONE)
1057 non_subvp_pipes++;
1058 }
1059
1060 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1061 // switching (SubVP + VACTIVE unsupported). In situations where we force
1062 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1063 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1064 pipe_mall_type == SUBVP_NONE) {
1065 vactive_count++;
1066 }
1067 pipe_idx++;
1068 }
1069
1070 if (subvp_count == 2) {
1071 // Static schedulability check for SubVP + SubVP case
1072 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1073 } else if (subvp_count == 1 && non_subvp_pipes == 0) {
1074 // Single SubVP configs will be supported by default as long as it's suppported by DML
1075 schedulable = true;
1076 } else if (subvp_count == 1 && non_subvp_pipes == 1) {
1077 if (dcn32_subvp_drr_admissable(dc, context))
1078 schedulable = subvp_drr_schedulable(dc, context);
1079 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1080 schedulable = subvp_vblank_schedulable(dc, context);
1081 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1082 vactive_count > 0) {
1083 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1084 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1085 // SubVP + VACTIVE currently unsupported
1086 schedulable = false;
1087 }
1088 return schedulable;
1089 }
1090
assign_subvp_index(struct dc * dc,struct dc_state * context)1091 static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1092 {
1093 int i;
1094 int index = 0;
1095
1096 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1097 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1098
1099 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
1100 dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
1101 pipe_ctx->subvp_index = index++;
1102 } else {
1103 pipe_ctx->subvp_index = 0;
1104 }
1105 }
1106 }
1107
1108 struct pipe_slice_table {
1109 struct {
1110 struct dc_stream_state *stream;
1111 int slice_count;
1112 } odm_combines[MAX_STREAMS];
1113 int odm_combine_count;
1114
1115 struct {
1116 struct pipe_ctx *pri_pipe;
1117 struct dc_plane_state *plane;
1118 int slice_count;
1119 } mpc_combines[MAX_PLANES];
1120 int mpc_combine_count;
1121 };
1122
1123
update_slice_table_for_stream(struct pipe_slice_table * table,struct dc_stream_state * stream,int diff)1124 static void update_slice_table_for_stream(struct pipe_slice_table *table,
1125 struct dc_stream_state *stream, int diff)
1126 {
1127 int i;
1128
1129 for (i = 0; i < table->odm_combine_count; i++) {
1130 if (table->odm_combines[i].stream == stream) {
1131 table->odm_combines[i].slice_count += diff;
1132 break;
1133 }
1134 }
1135
1136 if (i == table->odm_combine_count) {
1137 table->odm_combine_count++;
1138 table->odm_combines[i].stream = stream;
1139 table->odm_combines[i].slice_count = diff;
1140 }
1141 }
1142
update_slice_table_for_plane(struct pipe_slice_table * table,struct pipe_ctx * dpp_pipe,struct dc_plane_state * plane,int diff)1143 static void update_slice_table_for_plane(struct pipe_slice_table *table,
1144 struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1145 {
1146 int i;
1147 struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1148
1149 for (i = 0; i < table->mpc_combine_count; i++) {
1150 if (table->mpc_combines[i].plane == plane &&
1151 table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1152 table->mpc_combines[i].slice_count += diff;
1153 break;
1154 }
1155 }
1156
1157 if (i == table->mpc_combine_count) {
1158 table->mpc_combine_count++;
1159 table->mpc_combines[i].plane = plane;
1160 table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1161 table->mpc_combines[i].slice_count = diff;
1162 }
1163 }
1164
init_pipe_slice_table_from_context(struct pipe_slice_table * table,struct dc_state * context)1165 static void init_pipe_slice_table_from_context(
1166 struct pipe_slice_table *table,
1167 struct dc_state *context)
1168 {
1169 int i, j;
1170 struct pipe_ctx *otg_master;
1171 struct pipe_ctx *dpp_pipes[MAX_PIPES];
1172 struct dc_stream_state *stream;
1173 int count;
1174
1175 memset(table, 0, sizeof(*table));
1176
1177 for (i = 0; i < context->stream_count; i++) {
1178 stream = context->streams[i];
1179 otg_master = resource_get_otg_master_for_stream(
1180 &context->res_ctx, stream);
1181 if (!otg_master)
1182 continue;
1183
1184 count = resource_get_odm_slice_count(otg_master);
1185 update_slice_table_for_stream(table, stream, count);
1186
1187 count = resource_get_dpp_pipes_for_opp_head(otg_master,
1188 &context->res_ctx, dpp_pipes);
1189 for (j = 0; j < count; j++)
1190 if (dpp_pipes[j]->plane_state)
1191 update_slice_table_for_plane(table, dpp_pipes[j],
1192 dpp_pipes[j]->plane_state, 1);
1193 }
1194 }
1195
update_pipe_slice_table_with_split_flags(struct pipe_slice_table * table,struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1196 static bool update_pipe_slice_table_with_split_flags(
1197 struct pipe_slice_table *table,
1198 struct dc *dc,
1199 struct dc_state *context,
1200 struct vba_vars_st *vba,
1201 int split[MAX_PIPES],
1202 bool merge[MAX_PIPES])
1203 {
1204 /* NOTE: we are deprecating the support for the concept of pipe splitting
1205 * or pipe merging. Instead we append slices to the end and remove
1206 * slices from the end. The following code converts a pipe split or
1207 * merge to an append or remove operation.
1208 *
1209 * For example:
1210 * When split flags describe the following pipe connection transition
1211 *
1212 * from:
1213 * pipe 0 (split=2) -> pipe 1 (split=2)
1214 * to: (old behavior)
1215 * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1216 *
1217 * the code below actually does:
1218 * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1219 *
1220 * This is the new intended behavior and for future DCNs we will retire
1221 * the old concept completely.
1222 */
1223 struct pipe_ctx *pipe;
1224 bool odm;
1225 int dc_pipe_idx, dml_pipe_idx = 0;
1226 bool updated = false;
1227
1228 for (dc_pipe_idx = 0;
1229 dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1230 pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1231 if (resource_is_pipe_type(pipe, FREE_PIPE))
1232 continue;
1233
1234 if (merge[dc_pipe_idx]) {
1235 if (resource_is_pipe_type(pipe, OPP_HEAD))
1236 /* merging OPP head means reducing ODM slice
1237 * count by 1
1238 */
1239 update_slice_table_for_stream(table, pipe->stream, -1);
1240 else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
1241 resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
1242 /* merging DPP pipe of the first ODM slice means
1243 * reducing MPC slice count by 1
1244 */
1245 update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
1246 updated = true;
1247 }
1248
1249 if (split[dc_pipe_idx]) {
1250 odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1251 dm_odm_combine_mode_disabled;
1252 if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
1253 update_slice_table_for_stream(
1254 table, pipe->stream, split[dc_pipe_idx] - 1);
1255 else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
1256 update_slice_table_for_plane(table, pipe,
1257 pipe->plane_state, split[dc_pipe_idx] - 1);
1258 updated = true;
1259 }
1260 dml_pipe_idx++;
1261 }
1262 return updated;
1263 }
1264
update_pipes_with_slice_table(struct dc * dc,struct dc_state * context,struct pipe_slice_table * table)1265 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1266 struct pipe_slice_table *table)
1267 {
1268 int i;
1269
1270 for (i = 0; i < table->odm_combine_count; i++)
1271 resource_update_pipes_for_stream_with_slice_count(context,
1272 dc->current_state, dc->res_pool,
1273 table->odm_combines[i].stream,
1274 table->odm_combines[i].slice_count);
1275
1276 for (i = 0; i < table->mpc_combine_count; i++)
1277 resource_update_pipes_for_plane_with_slice_count(context,
1278 dc->current_state, dc->res_pool,
1279 table->mpc_combines[i].plane,
1280 table->mpc_combines[i].slice_count);
1281 }
1282
update_pipes_with_split_flags(struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1283 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1284 struct vba_vars_st *vba, int split[MAX_PIPES],
1285 bool merge[MAX_PIPES])
1286 {
1287 struct pipe_slice_table slice_table;
1288 bool updated;
1289
1290 init_pipe_slice_table_from_context(&slice_table, context);
1291 updated = update_pipe_slice_table_with_split_flags(
1292 &slice_table, dc, context, vba,
1293 split, merge);
1294 update_pipes_with_slice_table(dc, context, &slice_table);
1295 return updated;
1296 }
1297
should_apply_odm_power_optimization(struct dc * dc,struct dc_state * context,struct vba_vars_st * v,int * split,bool * merge)1298 static bool should_apply_odm_power_optimization(struct dc *dc,
1299 struct dc_state *context, struct vba_vars_st *v, int *split,
1300 bool *merge)
1301 {
1302 struct dc_stream_state *stream = context->streams[0];
1303 struct pipe_slice_table slice_table;
1304 int i;
1305
1306 /*
1307 * this debug flag allows us to disable ODM power optimization feature
1308 * unconditionally. we force the feature off if this is set to false.
1309 */
1310 if (!dc->debug.enable_single_display_2to1_odm_policy)
1311 return false;
1312
1313 /* current design and test coverage is only limited to allow ODM power
1314 * optimization for single stream. Supporting it for multiple streams
1315 * use case would require additional algorithm to decide how to
1316 * optimize power consumption when there are not enough free pipes to
1317 * allocate for all the streams. This level of optimization would
1318 * require multiple attempts of revalidation to make an optimized
1319 * decision. Unfortunately We do not support revalidation flow in
1320 * current version of DML.
1321 */
1322 if (context->stream_count != 1)
1323 return false;
1324
1325 /*
1326 * Our hardware doesn't support ODM for HDMI TMDS
1327 */
1328 if (dc_is_hdmi_signal(stream->signal))
1329 return false;
1330
1331 /*
1332 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1333 * ODM segment has the same size.
1334 */
1335 if (!is_h_timing_divisible_by_2(stream))
1336 return false;
1337
1338 /*
1339 * No power benefits if the timing's pixel clock is not high enough to
1340 * raise display clock from minimum power state.
1341 */
1342 if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1343 return false;
1344
1345 if (dc->config.enable_windowed_mpo_odm) {
1346 /*
1347 * ODM power optimization should only be allowed if the feature
1348 * can be seamlessly toggled off within an update. This would
1349 * require that the feature is applied on top of a minimal
1350 * state. A minimal state is defined as a state validated
1351 * without the need of pipe split. Therefore, when transition to
1352 * toggle the feature off, the same stream and plane
1353 * configuration can be supported by the pipe resource in the
1354 * first ODM slice alone without the need to acquire extra
1355 * resources.
1356 */
1357 init_pipe_slice_table_from_context(&slice_table, context);
1358 update_pipe_slice_table_with_split_flags(
1359 &slice_table, dc, context, v,
1360 split, merge);
1361 for (i = 0; i < slice_table.mpc_combine_count; i++)
1362 if (slice_table.mpc_combines[i].slice_count > 1)
1363 return false;
1364
1365 for (i = 0; i < slice_table.odm_combine_count; i++)
1366 if (slice_table.odm_combines[i].slice_count > 1)
1367 return false;
1368 } else {
1369 /*
1370 * the new ODM power optimization feature reduces software
1371 * design limitation and allows ODM power optimization to be
1372 * supported even with presence of overlay planes. The new
1373 * feature is enabled based on enable_windowed_mpo_odm flag. If
1374 * the flag is not set, we limit our feature scope due to
1375 * previous software design limitation
1376 */
1377 if (context->stream_status[0].plane_count != 1)
1378 return false;
1379
1380 if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
1381 &stream->src, sizeof(struct rect)) != 0)
1382 return false;
1383
1384 if (stream->src.width >= 5120 &&
1385 stream->src.width > stream->dst.width)
1386 return false;
1387 }
1388 return true;
1389 }
1390
try_odm_power_optimization_and_revalidate(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * split,bool * merge,unsigned int * vlevel,int pipe_cnt)1391 static void try_odm_power_optimization_and_revalidate(
1392 struct dc *dc,
1393 struct dc_state *context,
1394 display_e2e_pipe_params_st *pipes,
1395 int *split,
1396 bool *merge,
1397 unsigned int *vlevel,
1398 int pipe_cnt)
1399 {
1400 int i;
1401 unsigned int new_vlevel;
1402 unsigned int cur_policy[MAX_PIPES];
1403
1404 for (i = 0; i < pipe_cnt; i++) {
1405 cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
1406 pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1407 }
1408
1409 new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1410
1411 if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1412 memset(split, 0, MAX_PIPES * sizeof(int));
1413 memset(merge, 0, MAX_PIPES * sizeof(bool));
1414 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
1415 context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1416 } else {
1417 for (i = 0; i < pipe_cnt; i++)
1418 pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
1419 }
1420 }
1421
is_test_pattern_enabled(struct dc_state * context)1422 static bool is_test_pattern_enabled(
1423 struct dc_state *context)
1424 {
1425 int i;
1426
1427 for (i = 0; i < context->stream_count; i++) {
1428 if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1429 return true;
1430 }
1431
1432 return false;
1433 }
1434
dcn32_full_validate_bw_helper(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * vlevel,int * split,bool * merge,int * pipe_cnt,bool * repopulate_pipes)1435 static bool dcn32_full_validate_bw_helper(struct dc *dc,
1436 struct dc_state *context,
1437 display_e2e_pipe_params_st *pipes,
1438 int *vlevel,
1439 int *split,
1440 bool *merge,
1441 int *pipe_cnt,
1442 bool *repopulate_pipes)
1443 {
1444 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1445 unsigned int dc_pipe_idx = 0;
1446 int i = 0;
1447 bool found_supported_config = false;
1448 int vlevel_temp = 0;
1449
1450 dc_assert_fp_enabled();
1451
1452 /*
1453 * DML favors voltage over p-state, but we're more interested in
1454 * supporting p-state over voltage. We can't support p-state in
1455 * prefetch mode > 0 so try capping the prefetch mode to start.
1456 * Override present for testing.
1457 */
1458 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1459 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1460 dm_prefetch_support_uclk_fclk_and_stutter;
1461 else
1462 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1463 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1464
1465 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1466 /* This may adjust vlevel and maxMpcComb */
1467 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1468 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1469 vba->VoltageLevel = *vlevel;
1470 }
1471
1472 /* Apply split and merge flags before checking for subvp */
1473 if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge))
1474 return false;
1475 memset(split, 0, MAX_PIPES * sizeof(int));
1476 memset(merge, 0, MAX_PIPES * sizeof(bool));
1477
1478 /* Conditions for setting up phantom pipes for SubVP:
1479 * 1. Not force disable SubVP
1480 * 2. Full update (i.e. !fast_validate)
1481 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1482 * 4. Display configuration passes validation
1483 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1484 */
1485 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1486 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1487 (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1488 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1489 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1490 dc->debug.force_subvp_mclk_switch)) {
1491
1492 vlevel_temp = *vlevel;
1493
1494 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1495 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1496 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1497 * Adding phantom pipes won't change the validation result, so change the DML input param
1498 * for P-State support before adding phantom pipes and recalculating the DML result.
1499 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1500 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1501 * enough to support MCLK switching.
1502 */
1503 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1504 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1505 dm_prefetch_support_uclk_fclk_and_stutter) {
1506 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1507 dm_prefetch_support_fclk_and_stutter;
1508 /* There are params (such as FabricClock) that need to be recalculated
1509 * after validation fails (otherwise it will be 0). Calculation for
1510 * phantom vactive requires call into DML, so we must ensure all the
1511 * vba params are valid otherwise we'll get incorrect phantom vactive.
1512 */
1513 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1514 }
1515
1516 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1517
1518 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1519 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1520 // so the phantom pipe DLG params can be assigned correctly.
1521 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1522 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1523
1524 /* Check that vlevel requested supports pstate or not
1525 * if not, select the lowest vlevel that supports it
1526 */
1527 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1528 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1529 *vlevel = i;
1530 break;
1531 }
1532 }
1533
1534 if (*vlevel < context->bw_ctx.dml.soc.num_states
1535 && subvp_validate_static_schedulability(dc, context, *vlevel))
1536 found_supported_config = true;
1537 if (found_supported_config) {
1538 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1539 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1540 /* find lowest vlevel that supports the config */
1541 for (i = *vlevel; i >= 0; i--) {
1542 if (vba->ModeSupport[i][vba->maxMpcComb]) {
1543 *vlevel = i;
1544 } else {
1545 break;
1546 }
1547 }
1548 }
1549 }
1550 }
1551
1552 if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1553 found_supported_config = false;
1554
1555 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1556 // remove phantom pipes and repopulate dml pipes
1557 if (!found_supported_config) {
1558 dc_state_remove_phantom_streams_and_planes(dc, context);
1559 dc_state_release_phantom_streams_and_planes(dc, context);
1560 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1561 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1562
1563 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1564 /* This may adjust vlevel and maxMpcComb */
1565 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1566 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1567 vba->VoltageLevel = *vlevel;
1568 }
1569 } else {
1570 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1571 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1572
1573 /* Call validate_apply_pipe_split flags after calling DML getters for
1574 * phantom dlg params, or some of the VBA params indicating pipe split
1575 * can be overwritten by the getters.
1576 *
1577 * When setting up SubVP config, all pipes are merged before attempting to
1578 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1579 * and phantom pipes will be split in the regular pipe splitting sequence.
1580 */
1581 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1582 vba->VoltageLevel = *vlevel;
1583 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1584 // until driver has acquired the DMCUB lock to do it safely.
1585 assign_subvp_index(dc, context);
1586 }
1587 }
1588
1589 if (should_apply_odm_power_optimization(dc, context, vba, split, merge))
1590 try_odm_power_optimization_and_revalidate(
1591 dc, context, pipes, split, merge, vlevel, *pipe_cnt);
1592
1593 return true;
1594 }
1595
is_dtbclk_required(struct dc * dc,struct dc_state * context)1596 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1597 {
1598 int i;
1599
1600 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1601 if (!context->res_ctx.pipe_ctx[i].stream)
1602 continue;
1603 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1604 return true;
1605 }
1606 return false;
1607 }
1608
dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing * dc_crtc_timing,int * vstartup_start)1609 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1610 {
1611 struct dc_crtc_timing patched_crtc_timing;
1612 uint32_t asic_blank_end = 0;
1613 uint32_t asic_blank_start = 0;
1614 uint32_t newVstartup = 0;
1615
1616 patched_crtc_timing = *dc_crtc_timing;
1617
1618 if (patched_crtc_timing.flags.INTERLACE == 1) {
1619 if (patched_crtc_timing.v_front_porch < 2)
1620 patched_crtc_timing.v_front_porch = 2;
1621 } else {
1622 if (patched_crtc_timing.v_front_porch < 1)
1623 patched_crtc_timing.v_front_porch = 1;
1624 }
1625
1626 /* blank_start = frame end - front porch */
1627 asic_blank_start = patched_crtc_timing.v_total -
1628 patched_crtc_timing.v_front_porch;
1629
1630 /* blank_end = blank_start - active */
1631 asic_blank_end = asic_blank_start -
1632 patched_crtc_timing.v_border_bottom -
1633 patched_crtc_timing.v_addressable -
1634 patched_crtc_timing.v_border_top;
1635
1636 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1637
1638 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1639 }
1640
dcn32_calculate_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1641 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1642 display_e2e_pipe_params_st *pipes,
1643 int pipe_cnt, int vlevel)
1644 {
1645 int i, pipe_idx, active_hubp_count = 0;
1646 bool usr_retraining_support = false;
1647 bool unbounded_req_enabled = false;
1648 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1649
1650 dc_assert_fp_enabled();
1651
1652 /* Writeback MCIF_WB arbitration parameters */
1653 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1654
1655 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1656 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1657 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1658 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1659 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1660 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1661 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1662 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1663 != dm_dram_clock_change_unsupported;
1664
1665 /* Pstate change might not be supported by hardware, but it might be
1666 * possible with firmware driven vertical blank stretching.
1667 */
1668 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1669
1670 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1671 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1672 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1673 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1674 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1675 else
1676 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1677
1678 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1679 ASSERT(usr_retraining_support);
1680
1681 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1682 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1683
1684 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1685
1686 if (unbounded_req_enabled && pipe_cnt > 1) {
1687 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1688 ASSERT(false);
1689 unbounded_req_enabled = false;
1690 }
1691
1692 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1693 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1694 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1695
1696 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1697 if (!context->res_ctx.pipe_ctx[i].stream)
1698 continue;
1699 if (context->res_ctx.pipe_ctx[i].plane_state)
1700 active_hubp_count++;
1701 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1702 pipe_idx);
1703 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1704 pipe_idx);
1705 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1706 pipe_idx);
1707 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1708 pipe_idx);
1709
1710 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1711 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1712 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1713 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1714 } else {
1715 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1716 pipe_idx);
1717 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1718 }
1719
1720 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1721 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1722 if (context->res_ctx.pipe_ctx[i].plane_state)
1723 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1724 else
1725 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1726 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1727
1728 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1729
1730 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1731 context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1732 else
1733 context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1734
1735 /* MALL Allocation Sizes */
1736 /* count from active, top pipes per plane only */
1737 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1738 (context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1739 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1740 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1741 /* SS: all active surfaces stored in MALL */
1742 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1743 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1744
1745 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1746 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1747 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1748 }
1749 } else {
1750 /* SUBVP: phantom surfaces only stored in MALL */
1751 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1752 }
1753 }
1754
1755 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1756 dcn20_adjust_freesync_v_startup(
1757 &context->res_ctx.pipe_ctx[i].stream->timing,
1758 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1759
1760 pipe_idx++;
1761 }
1762 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1763 if (!active_hubp_count) {
1764 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1765 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1766 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1767 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1768 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1769 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1770 context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1771 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1772 }
1773 /*save a original dppclock copy*/
1774 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1775 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1776 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1777 * 1000;
1778 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1779 * 1000;
1780
1781 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1782
1783 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1784
1785 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1786 if (context->res_ctx.pipe_ctx[i].stream)
1787 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1788 }
1789
1790 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1791
1792 if (!context->res_ctx.pipe_ctx[i].stream)
1793 continue;
1794
1795 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1796 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1797 pipe_cnt, pipe_idx);
1798
1799 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1800 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1801 pipe_idx++;
1802 }
1803 }
1804
dcn32_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1805 static struct pipe_ctx *dcn32_find_split_pipe(
1806 struct dc *dc,
1807 struct dc_state *context,
1808 int old_index)
1809 {
1810 struct pipe_ctx *pipe = NULL;
1811 int i;
1812
1813 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1814 pipe = &context->res_ctx.pipe_ctx[old_index];
1815 pipe->pipe_idx = old_index;
1816 }
1817
1818 if (!pipe)
1819 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1820 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1821 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1822 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1823 pipe = &context->res_ctx.pipe_ctx[i];
1824 pipe->pipe_idx = i;
1825 break;
1826 }
1827 }
1828 }
1829
1830 /*
1831 * May need to fix pipes getting tossed from 1 opp to another on flip
1832 * Add for debugging transient underflow during topology updates:
1833 * ASSERT(pipe);
1834 */
1835 if (!pipe)
1836 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1837 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1838 pipe = &context->res_ctx.pipe_ctx[i];
1839 pipe->pipe_idx = i;
1840 break;
1841 }
1842 }
1843
1844 return pipe;
1845 }
1846
dcn32_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1847 static bool dcn32_split_stream_for_mpc_or_odm(
1848 const struct dc *dc,
1849 struct resource_context *res_ctx,
1850 struct pipe_ctx *pri_pipe,
1851 struct pipe_ctx *sec_pipe,
1852 bool odm)
1853 {
1854 int pipe_idx = sec_pipe->pipe_idx;
1855 const struct resource_pool *pool = dc->res_pool;
1856
1857 DC_LOGGER_INIT(dc->ctx->logger);
1858
1859 if (odm && pri_pipe->plane_state) {
1860 /* ODM + window MPO, where MPO window is on left half only */
1861 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1862 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1863
1864 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1865 __func__,
1866 pri_pipe->pipe_idx);
1867 return true;
1868 }
1869
1870 /* ODM + window MPO, where MPO window is on right half only */
1871 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1872
1873 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1874 __func__,
1875 pri_pipe->pipe_idx);
1876 return true;
1877 }
1878 }
1879
1880 *sec_pipe = *pri_pipe;
1881
1882 sec_pipe->pipe_idx = pipe_idx;
1883 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1884 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1885 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1886 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1887 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1888 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1889 sec_pipe->stream_res.dsc = NULL;
1890 if (odm) {
1891 if (pri_pipe->next_odm_pipe) {
1892 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1893 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1894 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1895 }
1896 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1897 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1898 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1899 }
1900 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1901 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1902 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1903 }
1904 pri_pipe->next_odm_pipe = sec_pipe;
1905 sec_pipe->prev_odm_pipe = pri_pipe;
1906 ASSERT(sec_pipe->top_pipe == NULL);
1907
1908 if (!sec_pipe->top_pipe)
1909 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1910 else
1911 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1912 if (sec_pipe->stream->timing.flags.DSC == 1) {
1913 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1914 ASSERT(sec_pipe->stream_res.dsc);
1915 if (sec_pipe->stream_res.dsc == NULL)
1916 return false;
1917 }
1918 } else {
1919 if (pri_pipe->bottom_pipe) {
1920 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1921 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1922 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1923 }
1924 pri_pipe->bottom_pipe = sec_pipe;
1925 sec_pipe->top_pipe = pri_pipe;
1926
1927 ASSERT(pri_pipe->plane_state);
1928 }
1929
1930 return true;
1931 }
1932
dcn32_apply_merge_split_flags_helper(struct dc * dc,struct dc_state * context,bool * repopulate_pipes,int * split,bool * merge)1933 static bool dcn32_apply_merge_split_flags_helper(
1934 struct dc *dc,
1935 struct dc_state *context,
1936 bool *repopulate_pipes,
1937 int *split,
1938 bool *merge)
1939 {
1940 int i, pipe_idx;
1941 bool newly_split[MAX_PIPES] = { false };
1942 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1943
1944 if (dc->config.enable_windowed_mpo_odm) {
1945 if (update_pipes_with_split_flags(
1946 dc, context, vba, split, merge))
1947 *repopulate_pipes = true;
1948 } else {
1949
1950 /* the code below will be removed once windowed mpo odm is fully
1951 * enabled.
1952 */
1953 /* merge pipes if necessary */
1954 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1955 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1956
1957 /*skip pipes that don't need merging*/
1958 if (!merge[i])
1959 continue;
1960
1961 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1962 if (pipe->prev_odm_pipe) {
1963 /*split off odm pipe*/
1964 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1965 if (pipe->next_odm_pipe)
1966 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1967
1968 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1969 if (pipe->bottom_pipe) {
1970 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1971 /*MPC split rules will handle this case*/
1972 pipe->bottom_pipe->top_pipe = NULL;
1973 } else {
1974 /* when merging an ODM pipes, the bottom MPC pipe must now point to
1975 * the previous ODM pipe and its associated stream assets
1976 */
1977 if (pipe->prev_odm_pipe->bottom_pipe) {
1978 /* 3 plane MPO*/
1979 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1980 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1981 } else {
1982 /* 2 plane MPO*/
1983 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1984 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1985 }
1986
1987 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1988 }
1989 }
1990
1991 if (pipe->top_pipe) {
1992 pipe->top_pipe->bottom_pipe = NULL;
1993 }
1994
1995 pipe->bottom_pipe = NULL;
1996 pipe->next_odm_pipe = NULL;
1997 pipe->plane_state = NULL;
1998 pipe->stream = NULL;
1999 pipe->top_pipe = NULL;
2000 pipe->prev_odm_pipe = NULL;
2001 if (pipe->stream_res.dsc)
2002 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2003 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2004 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2005 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2006 *repopulate_pipes = true;
2007 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2008 struct pipe_ctx *top_pipe = pipe->top_pipe;
2009 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2010
2011 top_pipe->bottom_pipe = bottom_pipe;
2012 if (bottom_pipe)
2013 bottom_pipe->top_pipe = top_pipe;
2014
2015 pipe->top_pipe = NULL;
2016 pipe->bottom_pipe = NULL;
2017 pipe->plane_state = NULL;
2018 pipe->stream = NULL;
2019 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2020 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2021 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2022 *repopulate_pipes = true;
2023 } else
2024 ASSERT(0); /* Should never try to merge master pipe */
2025
2026 }
2027
2028 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2029 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2030 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2031 struct pipe_ctx *hsplit_pipe = NULL;
2032 bool odm;
2033 int old_index = -1;
2034
2035 if (!pipe->stream || newly_split[i])
2036 continue;
2037
2038 pipe_idx++;
2039 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2040
2041 if (!pipe->plane_state && !odm)
2042 continue;
2043
2044 if (split[i]) {
2045 if (odm) {
2046 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2047 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2048 else if (old_pipe->next_odm_pipe)
2049 old_index = old_pipe->next_odm_pipe->pipe_idx;
2050 } else {
2051 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2052 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2053 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2054 else if (old_pipe->bottom_pipe &&
2055 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2056 old_index = old_pipe->bottom_pipe->pipe_idx;
2057 }
2058 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2059 ASSERT(hsplit_pipe);
2060 if (!hsplit_pipe)
2061 return false;
2062
2063 if (!dcn32_split_stream_for_mpc_or_odm(
2064 dc, &context->res_ctx,
2065 pipe, hsplit_pipe, odm))
2066 return false;
2067
2068 newly_split[hsplit_pipe->pipe_idx] = true;
2069 *repopulate_pipes = true;
2070 }
2071 if (split[i] == 4) {
2072 struct pipe_ctx *pipe_4to1;
2073
2074 if (odm && old_pipe->next_odm_pipe)
2075 old_index = old_pipe->next_odm_pipe->pipe_idx;
2076 else if (!odm && old_pipe->bottom_pipe &&
2077 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2078 old_index = old_pipe->bottom_pipe->pipe_idx;
2079 else
2080 old_index = -1;
2081 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2082 ASSERT(pipe_4to1);
2083 if (!pipe_4to1)
2084 return false;
2085 if (!dcn32_split_stream_for_mpc_or_odm(
2086 dc, &context->res_ctx,
2087 pipe, pipe_4to1, odm))
2088 return false;
2089 newly_split[pipe_4to1->pipe_idx] = true;
2090
2091 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2092 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2093 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2094 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2095 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2096 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2097 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2098 else
2099 old_index = -1;
2100 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2101 ASSERT(pipe_4to1);
2102 if (!pipe_4to1)
2103 return false;
2104 if (!dcn32_split_stream_for_mpc_or_odm(
2105 dc, &context->res_ctx,
2106 hsplit_pipe, pipe_4to1, odm))
2107 return false;
2108 newly_split[pipe_4to1->pipe_idx] = true;
2109 }
2110 if (odm)
2111 dcn20_build_mapped_resource(dc, context, pipe->stream);
2112 }
2113
2114 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2115 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2116
2117 if (pipe->plane_state) {
2118 if (!resource_build_scaling_params(pipe))
2119 return false;
2120 }
2121 }
2122
2123 for (i = 0; i < context->stream_count; i++) {
2124 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx,
2125 context->streams[i]);
2126
2127 if (otg_master)
2128 resource_build_test_pattern_params(&context->res_ctx, otg_master);
2129 }
2130 }
2131 return true;
2132 }
2133
dcn32_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)2134 bool dcn32_internal_validate_bw(struct dc *dc,
2135 struct dc_state *context,
2136 display_e2e_pipe_params_st *pipes,
2137 int *pipe_cnt_out,
2138 int *vlevel_out,
2139 bool fast_validate)
2140 {
2141 bool out = false;
2142 bool repopulate_pipes = false;
2143 int split[MAX_PIPES] = { 0 };
2144 bool merge[MAX_PIPES] = { false };
2145 int pipe_cnt, i, pipe_idx;
2146 int vlevel = context->bw_ctx.dml.soc.num_states;
2147 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2148
2149 dc_assert_fp_enabled();
2150
2151 ASSERT(pipes);
2152 if (!pipes)
2153 return false;
2154
2155 /* For each full update, remove all existing phantom pipes first */
2156 dc_state_remove_phantom_streams_and_planes(dc, context);
2157 dc_state_release_phantom_streams_and_planes(dc, context);
2158
2159 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2160
2161 for (i = 0; i < context->stream_count; i++)
2162 resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, context->streams[i], 1);
2163 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2164
2165 if (!pipe_cnt) {
2166 out = true;
2167 goto validate_out;
2168 }
2169
2170 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
2171 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
2172
2173 if (!fast_validate) {
2174 if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge,
2175 &pipe_cnt, &repopulate_pipes))
2176 goto validate_fail;
2177 }
2178
2179 if (fast_validate ||
2180 (dc->debug.dml_disallow_alternate_prefetch_modes &&
2181 (vlevel == context->bw_ctx.dml.soc.num_states ||
2182 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
2183 /*
2184 * If dml_disallow_alternate_prefetch_modes is false, then we have already
2185 * tried alternate prefetch modes during full validation.
2186 *
2187 * If mode is unsupported or there is no p-state support, then
2188 * fall back to favouring voltage.
2189 *
2190 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
2191 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
2192 */
2193 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2194 dm_prefetch_support_none;
2195
2196 context->bw_ctx.dml.validate_max_state = fast_validate;
2197 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2198
2199 context->bw_ctx.dml.validate_max_state = false;
2200
2201 if (vlevel < context->bw_ctx.dml.soc.num_states) {
2202 memset(split, 0, sizeof(split));
2203 memset(merge, 0, sizeof(merge));
2204 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2205 /* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */
2206 vba->VoltageLevel = vlevel;
2207 }
2208 }
2209
2210 dml_log_mode_support_params(&context->bw_ctx.dml);
2211
2212 if (vlevel == context->bw_ctx.dml.soc.num_states)
2213 goto validate_fail;
2214
2215 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2216 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2217 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2218
2219 if (!pipe->stream)
2220 continue;
2221
2222 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2223 && !dc->config.enable_windowed_mpo_odm
2224 && pipe->plane_state && mpo_pipe
2225 && memcmp(&mpo_pipe->plane_state->clip_rect,
2226 &pipe->stream->src,
2227 sizeof(struct rect)) != 0) {
2228 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2229 goto validate_fail;
2230 }
2231 pipe_idx++;
2232 }
2233
2234 if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge))
2235 goto validate_fail;
2236
2237 /* Actual dsc count per stream dsc validation*/
2238 if (!dcn20_validate_dsc(dc, context)) {
2239 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2240 goto validate_fail;
2241 }
2242
2243 if (repopulate_pipes) {
2244 int flag_max_mpc_comb = vba->maxMpcComb;
2245 int flag_vlevel = vlevel;
2246 int i;
2247
2248 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2249 if (!dc->config.enable_windowed_mpo_odm)
2250 dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2251
2252 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2253 * we have to re-calculate the DET allocation and run through DML once more to
2254 * ensure all the params are calculated correctly. We do not need to run the
2255 * pipe split check again after this call (pipes are already split / merged).
2256 * */
2257 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2258 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2259
2260 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2261
2262 if (vlevel == context->bw_ctx.dml.soc.num_states) {
2263 /* failed after DET size changes */
2264 goto validate_fail;
2265 } else if (flag_max_mpc_comb == 0 &&
2266 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2267 /* check the context constructed with pipe split flags is still valid*/
2268 bool flags_valid = false;
2269 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2270 if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2271 vba->maxMpcComb = flag_max_mpc_comb;
2272 vba->VoltageLevel = i;
2273 vlevel = i;
2274 flags_valid = true;
2275 break;
2276 }
2277 }
2278
2279 /* this should never happen */
2280 if (!flags_valid)
2281 goto validate_fail;
2282 }
2283 }
2284 *vlevel_out = vlevel;
2285 *pipe_cnt_out = pipe_cnt;
2286
2287 out = true;
2288 goto validate_out;
2289
2290 validate_fail:
2291 out = false;
2292
2293 validate_out:
2294 return out;
2295 }
2296
2297
dcn32_calculate_wm_and_dlg_fpu(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2298 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2299 display_e2e_pipe_params_st *pipes,
2300 int pipe_cnt,
2301 int vlevel)
2302 {
2303 int i, pipe_idx, vlevel_temp = 0;
2304 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2305 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2306 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2307 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2308 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2309 dm_dram_clock_change_unsupported;
2310 unsigned int dummy_latency_index = 0;
2311 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2312 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2313 bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2314 unsigned int min_dram_speed_mts_margin;
2315 bool need_fclk_lat_as_dummy = false;
2316 bool is_subvp_p_drr = false;
2317 struct dc_stream_state *fpo_candidate_stream = NULL;
2318 struct dc_stream_status *stream_status = NULL;
2319
2320 dc_assert_fp_enabled();
2321
2322 /* need to find dummy latency index for subvp */
2323 if (subvp_in_use) {
2324 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2325 if (!pstate_en) {
2326 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2327 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2328 pstate_en = true;
2329 is_subvp_p_drr = true;
2330 }
2331 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2332 context, pipes, pipe_cnt, vlevel);
2333
2334 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2335 * scheduled correctly to account for dummy pstate.
2336 */
2337 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2338 need_fclk_lat_as_dummy = true;
2339 context->bw_ctx.dml.soc.fclk_change_latency_us =
2340 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2341 }
2342 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2343 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2344 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2345 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2346 if (is_subvp_p_drr) {
2347 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2348 }
2349 }
2350
2351 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2352 for (i = 0; i < context->stream_count; i++) {
2353 stream_status = NULL;
2354 if (context->streams[i])
2355 stream_status = dc_state_get_stream_status(context, context->streams[i]);
2356 if (stream_status)
2357 stream_status->fpo_in_use = false;
2358 }
2359
2360 if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2361 pstate_en && vlevel != 0)) {
2362 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2363 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2364 if (fpo_candidate_stream) {
2365 stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
2366 if (stream_status)
2367 stream_status->fpo_in_use = true;
2368 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2369 }
2370
2371 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2372 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2373 context, pipes, pipe_cnt, vlevel);
2374
2375 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2376 * we reinstate the original dram_clock_change_latency_us on the context
2377 * and all variables that may have changed up to this point, except the
2378 * newly found dummy_latency_index
2379 */
2380 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2381 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2382 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2383 * prefetch is scheduled correctly to account for dummy pstate.
2384 */
2385 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2386 need_fclk_lat_as_dummy = true;
2387 context->bw_ctx.dml.soc.fclk_change_latency_us =
2388 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2389 }
2390 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2391 if (vlevel_temp < vlevel) {
2392 vlevel = vlevel_temp;
2393 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2394 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2395 pstate_en = true;
2396 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2397 } else {
2398 /* Restore FCLK latency and re-run validation to go back to original validation
2399 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2400 * voltage level)
2401 */
2402 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2403 for (i = 0; i < context->stream_count; i++) {
2404 stream_status = NULL;
2405 if (context->streams[i])
2406 stream_status = dc_state_get_stream_status(context, context->streams[i]);
2407 if (stream_status)
2408 stream_status->fpo_in_use = false;
2409 }
2410 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2411 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2412 }
2413 }
2414 }
2415
2416 /* Set B:
2417 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2418 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2419 * calculations to cover bootup clocks.
2420 * DCFCLK: soc.clock_limits[2] when available
2421 * UCLK: soc.clock_limits[2] when available
2422 */
2423 if (dcn3_2_soc.num_states > 2) {
2424 vlevel_temp = 2;
2425 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2426 } else
2427 dcfclk = 615; //DCFCLK Vmin_lv
2428
2429 pipes[0].clks_cfg.voltage = vlevel_temp;
2430 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2431 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2432
2433 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2434 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2435 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2436 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2437 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2438 }
2439 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2440 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2441 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2442 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2443 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2444 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2445 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2446 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2447 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2448 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2449
2450 /* Set D:
2451 * All clocks min.
2452 * DCFCLK: Min, as reported by PM FW when available
2453 * UCLK : Min, as reported by PM FW when available
2454 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2455 */
2456
2457 /*
2458 if (dcn3_2_soc.num_states > 2) {
2459 vlevel_temp = 0;
2460 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2461 } else
2462 dcfclk = 615; //DCFCLK Vmin_lv
2463
2464 pipes[0].clks_cfg.voltage = vlevel_temp;
2465 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2466 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2467
2468 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2469 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2470 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2471 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2472 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2473 }
2474 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2475 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2476 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2477 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2478 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2479 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2480 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2481 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2482 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2483 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2484 */
2485
2486 /* Set C, for Dummy P-State:
2487 * All clocks min.
2488 * DCFCLK: Min, as reported by PM FW, when available
2489 * UCLK : Min, as reported by PM FW, when available
2490 * pstate latency as per UCLK state dummy pstate latency
2491 */
2492
2493 // For Set A and Set C use values from validation
2494 pipes[0].clks_cfg.voltage = vlevel;
2495 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2496 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2497
2498 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2499 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2500 }
2501
2502 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2503 min_dram_speed_mts = dram_speed_from_validation;
2504 min_dram_speed_mts_margin = 160;
2505
2506 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2507 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2508
2509 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2510 dm_dram_clock_change_unsupported) {
2511 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2512
2513 min_dram_speed_mts =
2514 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2515 }
2516
2517 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2518 /* find largest table entry that is lower than dram speed,
2519 * but lower than DPM0 still uses DPM0
2520 */
2521 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2522 if (min_dram_speed_mts + min_dram_speed_mts_margin >
2523 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2524 break;
2525 }
2526
2527 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2528 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2529
2530 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2531 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2532 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2533 }
2534
2535 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2536 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2537 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2538 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2539 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2540 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2541 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2542 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2543 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2544 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2545 * value.
2546 */
2547 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2548 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2549
2550 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2551 /* The only difference between A and C is p-state latency, if p-state is not supported
2552 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2553 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2554 */
2555 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2556 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2557 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2558 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2559 */
2560 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2561 } else {
2562 /* Set A:
2563 * All clocks min.
2564 * DCFCLK: Min, as reported by PM FW, when available
2565 * UCLK: Min, as reported by PM FW, when available
2566 */
2567
2568 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2569 */
2570 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2571 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2572 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2573
2574 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2575 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2576 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2577 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2578 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2579 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2580 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2581 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2582 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2583 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2584 }
2585
2586 /* Make set D = set A since we do not optimized watermarks for MALL */
2587 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2588
2589 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2590 if (!context->res_ctx.pipe_ctx[i].stream)
2591 continue;
2592
2593 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2594 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2595
2596 if (dc->config.forced_clocks) {
2597 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2598 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2599 }
2600 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2601 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2602 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2603 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2604
2605 pipe_idx++;
2606 }
2607
2608 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2609
2610 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2611 if (need_fclk_lat_as_dummy)
2612 context->bw_ctx.dml.soc.fclk_change_latency_us =
2613 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2614
2615 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2616
2617 if (!pstate_en)
2618 /* Restore full p-state latency */
2619 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2620 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2621
2622 /* revert fclk lat changes if required */
2623 if (need_fclk_lat_as_dummy)
2624 context->bw_ctx.dml.soc.fclk_change_latency_us =
2625 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2626 }
2627
dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2628 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2629 unsigned int *optimal_dcfclk,
2630 unsigned int *optimal_fclk)
2631 {
2632 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2633
2634 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2635 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2636 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2637 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2638
2639 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2640
2641 if (optimal_fclk)
2642 *optimal_fclk = bw_from_dram /
2643 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2644
2645 if (optimal_dcfclk)
2646 *optimal_dcfclk = bw_from_dram /
2647 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2648 }
2649
remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,unsigned int index)2650 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2651 unsigned int index)
2652 {
2653 int i;
2654
2655 if (*num_entries == 0)
2656 return;
2657
2658 for (i = index; i < *num_entries - 1; i++) {
2659 table[i] = table[i + 1];
2660 }
2661 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2662 }
2663
dcn32_patch_dpm_table(struct clk_bw_params * bw_params)2664 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2665 {
2666 int i;
2667 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2668 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2669
2670 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2671 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2672 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2673 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2674 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2675 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2676 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2677 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2678 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2679 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2680 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2681 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2682 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2683 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2684 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2685 }
2686
2687 /* Scan through clock values we currently have and if they are 0,
2688 * then populate it with dcn3_2_soc.clock_limits[] value.
2689 *
2690 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2691 * 0, will cause it to skip building the clock table.
2692 */
2693 if (max_dcfclk_mhz == 0)
2694 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2695 if (max_dispclk_mhz == 0)
2696 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2697 if (max_dtbclk_mhz == 0)
2698 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2699 if (max_uclk_mhz == 0)
2700 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2701 }
2702
swap_table_entries(struct _vcs_dpi_voltage_scaling_st * first_entry,struct _vcs_dpi_voltage_scaling_st * second_entry)2703 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2704 struct _vcs_dpi_voltage_scaling_st *second_entry)
2705 {
2706 struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2707 *first_entry = *second_entry;
2708 *second_entry = temp_entry;
2709 }
2710
2711 /*
2712 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2713 */
sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2714 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2715 {
2716 unsigned int start_index = 0;
2717 unsigned int end_index = 0;
2718 unsigned int current_bw = 0;
2719
2720 for (int i = 0; i < (*num_entries - 1); i++) {
2721 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2722 current_bw = table[i].net_bw_in_kbytes_sec;
2723 start_index = i;
2724 end_index = ++i;
2725
2726 while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2727 end_index = ++i;
2728 }
2729
2730 if (start_index != end_index) {
2731 for (int j = start_index; j < end_index; j++) {
2732 for (int k = start_index; k < end_index; k++) {
2733 if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2734 swap_table_entries(&table[k], &table[k+1]);
2735 }
2736 }
2737 }
2738
2739 start_index = 0;
2740 end_index = 0;
2741
2742 }
2743 }
2744
2745 /*
2746 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2747 * and remove entries that do not
2748 */
remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2749 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2750 {
2751 for (int i = 0; i < (*num_entries - 1); i++) {
2752 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2753 if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2754 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2755 remove_entry_from_table_at_index(table, num_entries, i);
2756 }
2757 }
2758 }
2759
2760 /*
2761 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2762 * Input:
2763 * max_clk_limit - struct containing the desired clock timings
2764 * Output:
2765 * curr_clk_limit - struct containing the timings that need to be overwritten
2766 * Return: 0 upon success, non-zero for failure
2767 */
override_max_clk_values(struct clk_limit_table_entry * max_clk_limit,struct clk_limit_table_entry * curr_clk_limit)2768 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2769 struct clk_limit_table_entry *curr_clk_limit)
2770 {
2771 if (NULL == max_clk_limit || NULL == curr_clk_limit)
2772 return -1; //invalid parameters
2773
2774 //only overwrite if desired max clock frequency is initialized
2775 if (max_clk_limit->dcfclk_mhz != 0)
2776 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2777
2778 if (max_clk_limit->fclk_mhz != 0)
2779 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2780
2781 if (max_clk_limit->memclk_mhz != 0)
2782 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2783
2784 if (max_clk_limit->socclk_mhz != 0)
2785 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2786
2787 if (max_clk_limit->dtbclk_mhz != 0)
2788 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2789
2790 if (max_clk_limit->dispclk_mhz != 0)
2791 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2792
2793 return 0;
2794 }
2795
build_synthetic_soc_states(bool disable_dc_mode_overwrite,struct clk_bw_params * bw_params,struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2796 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2797 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2798 {
2799 int i, j;
2800 struct _vcs_dpi_voltage_scaling_st entry = {0};
2801 struct clk_limit_table_entry max_clk_data = {0};
2802
2803 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2804
2805 static const unsigned int num_dcfclk_stas = 5;
2806 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2807
2808 unsigned int num_uclk_dpms = 0;
2809 unsigned int num_fclk_dpms = 0;
2810 unsigned int num_dcfclk_dpms = 0;
2811
2812 unsigned int num_dc_uclk_dpms = 0;
2813 unsigned int num_dc_fclk_dpms = 0;
2814 unsigned int num_dc_dcfclk_dpms = 0;
2815
2816 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2817 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2818 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2819 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2820 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2821 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2822 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2823 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2824 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2825 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2826 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2827 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2828 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2829 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2830 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2831
2832 if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2833 num_uclk_dpms++;
2834 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2835 num_dc_uclk_dpms++;
2836 }
2837 if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2838 num_fclk_dpms++;
2839 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2840 num_dc_fclk_dpms++;
2841 }
2842 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2843 num_dcfclk_dpms++;
2844 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2845 num_dc_dcfclk_dpms++;
2846 }
2847 }
2848
2849 if (!disable_dc_mode_overwrite) {
2850 //Overwrite max frequencies with max DC mode frequencies for DC mode systems
2851 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2852 num_uclk_dpms = num_dc_uclk_dpms;
2853 num_fclk_dpms = num_dc_fclk_dpms;
2854 num_dcfclk_dpms = num_dc_dcfclk_dpms;
2855 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2856 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2857 }
2858
2859 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2860 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2861
2862 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2863 return -1;
2864
2865 if (max_clk_data.dppclk_mhz == 0)
2866 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2867
2868 if (max_clk_data.fclk_mhz == 0)
2869 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2870 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2871 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2872
2873 if (max_clk_data.phyclk_mhz == 0)
2874 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2875
2876 *num_entries = 0;
2877 entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2878 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2879 entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2880 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2881 entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2882 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2883 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2884
2885 // Insert all the DCFCLK STAs
2886 for (i = 0; i < num_dcfclk_stas; i++) {
2887 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2888 entry.fabricclk_mhz = 0;
2889 entry.dram_speed_mts = 0;
2890
2891 get_optimal_ntuple(&entry);
2892 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2893 insert_entry_into_table_sorted(table, num_entries, &entry);
2894 }
2895
2896 // Insert the max DCFCLK
2897 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2898 entry.fabricclk_mhz = 0;
2899 entry.dram_speed_mts = 0;
2900
2901 get_optimal_ntuple(&entry);
2902 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2903 insert_entry_into_table_sorted(table, num_entries, &entry);
2904
2905 // Insert the UCLK DPMS
2906 for (i = 0; i < num_uclk_dpms; i++) {
2907 entry.dcfclk_mhz = 0;
2908 entry.fabricclk_mhz = 0;
2909 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2910
2911 get_optimal_ntuple(&entry);
2912 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2913 insert_entry_into_table_sorted(table, num_entries, &entry);
2914 }
2915
2916 // If FCLK is coarse grained, insert individual DPMs.
2917 if (num_fclk_dpms > 2) {
2918 for (i = 0; i < num_fclk_dpms; i++) {
2919 entry.dcfclk_mhz = 0;
2920 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2921 entry.dram_speed_mts = 0;
2922
2923 get_optimal_ntuple(&entry);
2924 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2925 insert_entry_into_table_sorted(table, num_entries, &entry);
2926 }
2927 }
2928 // If FCLK fine grained, only insert max
2929 else {
2930 entry.dcfclk_mhz = 0;
2931 entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2932 entry.dram_speed_mts = 0;
2933
2934 get_optimal_ntuple(&entry);
2935 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2936 insert_entry_into_table_sorted(table, num_entries, &entry);
2937 }
2938
2939 // At this point, the table contains all "points of interest" based on
2940 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2941 // ratios (by derate, are exact).
2942
2943 // Remove states that require higher clocks than are supported
2944 for (i = *num_entries - 1; i >= 0 ; i--) {
2945 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2946 table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2947 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2948 remove_entry_from_table_at_index(table, num_entries, i);
2949 }
2950
2951 // Insert entry with all max dc limits without bandwidth matching
2952 if (!disable_dc_mode_overwrite) {
2953 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2954
2955 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2956 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2957 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2958
2959 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2960 insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2961
2962 sort_entries_with_same_bw(table, num_entries);
2963 remove_inconsistent_entries(table, num_entries);
2964 }
2965
2966 // At this point, the table only contains supported points of interest
2967 // it could be used as is, but some states may be redundant due to
2968 // coarse grained nature of some clocks, so we want to round up to
2969 // coarse grained DPMs and remove duplicates.
2970
2971 // Round up UCLKs
2972 for (i = *num_entries - 1; i >= 0 ; i--) {
2973 for (j = 0; j < num_uclk_dpms; j++) {
2974 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2975 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2976 break;
2977 }
2978 }
2979 }
2980
2981 // If FCLK is coarse grained, round up to next DPMs
2982 if (num_fclk_dpms > 2) {
2983 for (i = *num_entries - 1; i >= 0 ; i--) {
2984 for (j = 0; j < num_fclk_dpms; j++) {
2985 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2986 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2987 break;
2988 }
2989 }
2990 }
2991 }
2992 // Otherwise, round up to minimum.
2993 else {
2994 for (i = *num_entries - 1; i >= 0 ; i--) {
2995 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2996 table[i].fabricclk_mhz = min_fclk_mhz;
2997 }
2998 }
2999 }
3000
3001 // Round DCFCLKs up to minimum
3002 for (i = *num_entries - 1; i >= 0 ; i--) {
3003 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
3004 table[i].dcfclk_mhz = min_dcfclk_mhz;
3005 }
3006 }
3007
3008 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
3009 i = 0;
3010 while (i < *num_entries - 1) {
3011 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
3012 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
3013 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
3014 remove_entry_from_table_at_index(table, num_entries, i + 1);
3015 else
3016 i++;
3017 }
3018
3019 // Fix up the state indicies
3020 for (i = *num_entries - 1; i >= 0 ; i--) {
3021 table[i].state = i;
3022 }
3023
3024 return 0;
3025 }
3026
3027 /*
3028 * dcn32_update_bw_bounding_box
3029 *
3030 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
3031 * spreadsheet with actual values as per dGPU SKU:
3032 * - with passed few options from dc->config
3033 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
3034 * need to get it from PM FW)
3035 * - with passed latency values (passed in ns units) in dc-> bb override for
3036 * debugging purposes
3037 * - with passed latencies from VBIOS (in 100_ns units) if available for
3038 * certain dGPU SKU
3039 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
3040 * of the same ASIC)
3041 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
3042 * FW for different clocks (which might differ for certain dGPU SKU of the
3043 * same ASIC)
3044 */
dcn32_update_bw_bounding_box_fpu(struct dc * dc,struct clk_bw_params * bw_params)3045 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
3046 {
3047 dc_assert_fp_enabled();
3048
3049 /* Overrides from dc->config options */
3050 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3051
3052 /* Override from passed dc->bb_overrides if available*/
3053 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3054 && dc->bb_overrides.sr_exit_time_ns) {
3055 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3056 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3057 }
3058
3059 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3060 != dc->bb_overrides.sr_enter_plus_exit_time_ns
3061 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3062 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3063 dcn3_2_soc.sr_enter_plus_exit_time_us =
3064 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3065 }
3066
3067 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3068 && dc->bb_overrides.urgent_latency_ns) {
3069 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3070 dc->dml2_options.bbox_overrides.urgent_latency_us =
3071 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3072 }
3073
3074 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3075 != dc->bb_overrides.dram_clock_change_latency_ns
3076 && dc->bb_overrides.dram_clock_change_latency_ns) {
3077 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3078 dcn3_2_soc.dram_clock_change_latency_us =
3079 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3080 }
3081
3082 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3083 != dc->bb_overrides.fclk_clock_change_latency_ns
3084 && dc->bb_overrides.fclk_clock_change_latency_ns) {
3085 dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3086 dcn3_2_soc.fclk_change_latency_us =
3087 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3088 }
3089
3090 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3091 != dc->bb_overrides.dummy_clock_change_latency_ns
3092 && dc->bb_overrides.dummy_clock_change_latency_ns) {
3093 dcn3_2_soc.dummy_pstate_latency_us =
3094 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3095 }
3096
3097 /* Override from VBIOS if VBIOS bb_info available */
3098 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3099 struct bp_soc_bb_info bb_info = {0};
3100
3101 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3102 if (bb_info.dram_clock_change_latency_100ns > 0)
3103 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3104 dcn3_2_soc.dram_clock_change_latency_us =
3105 bb_info.dram_clock_change_latency_100ns * 10;
3106
3107 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3108 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3109 dcn3_2_soc.sr_enter_plus_exit_time_us =
3110 bb_info.dram_sr_enter_exit_latency_100ns * 10;
3111
3112 if (bb_info.dram_sr_exit_latency_100ns > 0)
3113 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3114 dcn3_2_soc.sr_exit_time_us =
3115 bb_info.dram_sr_exit_latency_100ns * 10;
3116 }
3117 }
3118
3119 /* Override from VBIOS for num_chan */
3120 if (dc->ctx->dc_bios->vram_info.num_chans) {
3121 dc->dml2_options.bbox_overrides.dram_num_chan =
3122 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3123 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3124 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3125 }
3126
3127 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3128 dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3129 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3130
3131 /* DML DSC delay factor workaround */
3132 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3133
3134 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3135
3136 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3137 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3138 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3139 dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3140 dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3141 dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3142 dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3143
3144 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3145 if (bw_params->clk_table.entries[0].memclk_mhz) {
3146 if (dc->debug.use_legacy_soc_bb_mechanism) {
3147 unsigned int i = 0, j = 0, num_states = 0;
3148
3149 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3150 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3151 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3152 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3153 unsigned int min_dcfclk = UINT_MAX;
3154 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3155 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3156 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3157 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3158 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3159
3160 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3161 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3162 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3163 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3164 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3165 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3166 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3167 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3168 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3169 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3170 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3171 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3172 }
3173 if (min_dcfclk > dcfclk_sta_targets[0])
3174 dcfclk_sta_targets[0] = min_dcfclk;
3175 if (!max_dcfclk_mhz)
3176 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3177 if (!max_dispclk_mhz)
3178 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3179 if (!max_dppclk_mhz)
3180 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3181 if (!max_phyclk_mhz)
3182 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3183
3184 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3185 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3186 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3187 num_dcfclk_sta_targets++;
3188 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3189 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3190 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3191 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3192 dcfclk_sta_targets[i] = max_dcfclk_mhz;
3193 break;
3194 }
3195 }
3196 // Update size of array since we "removed" duplicates
3197 num_dcfclk_sta_targets = i + 1;
3198 }
3199
3200 num_uclk_states = bw_params->clk_table.num_entries;
3201
3202 // Calculate optimal dcfclk for each uclk
3203 for (i = 0; i < num_uclk_states; i++) {
3204 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3205 &optimal_dcfclk_for_uclk[i], NULL);
3206 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3207 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3208 }
3209 }
3210
3211 // Calculate optimal uclk for each dcfclk sta target
3212 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3213 for (j = 0; j < num_uclk_states; j++) {
3214 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3215 optimal_uclk_for_dcfclk_sta_targets[i] =
3216 bw_params->clk_table.entries[j].memclk_mhz * 16;
3217 break;
3218 }
3219 }
3220 }
3221
3222 i = 0;
3223 j = 0;
3224 // create the final dcfclk and uclk table
3225 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3226 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3227 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3228 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3229 } else {
3230 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3231 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3232 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3233 } else {
3234 j = num_uclk_states;
3235 }
3236 }
3237 }
3238
3239 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3240 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3241 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3242 }
3243
3244 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3245 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3246 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3247 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3248 }
3249
3250 /* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
3251 * MAX_NUM_DPM_LVL is 8.
3252 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
3253 * DC__VOLTAGE_STATES is 40.
3254 */
3255 if (num_states > MAX_NUM_DPM_LVL) {
3256 ASSERT(0);
3257 return;
3258 }
3259
3260 dcn3_2_soc.num_states = num_states;
3261 for (i = 0; i < dcn3_2_soc.num_states; i++) {
3262 dcn3_2_soc.clock_limits[i].state = i;
3263 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3264 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3265
3266 /* Fill all states with max values of all these clocks */
3267 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3268 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
3269 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
3270 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
3271
3272 /* Populate from bw_params for DTBCLK, SOCCLK */
3273 if (i > 0) {
3274 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3275 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3276 } else {
3277 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3278 }
3279 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3280 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3281 }
3282
3283 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3284 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3285 else
3286 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3287
3288 if (!dram_speed_mts[i] && i > 0)
3289 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3290 else
3291 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3292
3293 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3294 /* PHYCLK_D18, PHYCLK_D32 */
3295 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3296 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3297 }
3298 } else {
3299 build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
3300 dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3301 }
3302
3303 /* Re-init DML with updated bb */
3304 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3305 if (dc->current_state)
3306 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3307 }
3308
3309 if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3310 unsigned int i = 0;
3311
3312 dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3313
3314 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3315 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3316
3317 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3318 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3319
3320 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3321 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3322
3323 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3324 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3325
3326 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3327 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3328
3329 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3330 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3331
3332 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3333 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3334
3335 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3336 if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3337 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3338 dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3339 }
3340
3341 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3342 if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3343 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3344 dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3345 }
3346
3347 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3348 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3349 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3350 dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3351 }
3352
3353 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3354 if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3355 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3356 dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3357 }
3358
3359 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3360 if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3361 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3362 dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3363 }
3364
3365 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3366 if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3367 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3368 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3369 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3370 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3371 }
3372 }
3373 }
3374 }
3375
dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st * pipes,int pipe_cnt)3376 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3377 int pipe_cnt)
3378 {
3379 dc_assert_fp_enabled();
3380
3381 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3382 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3383 }
3384
dcn32_allow_subvp_with_active_margin(struct pipe_ctx * pipe)3385 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3386 {
3387 bool allow = false;
3388 uint32_t refresh_rate = 0;
3389 uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3390 uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3391 uint32_t i;
3392
3393 for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3394 uint32_t width = subvp_active_margin_list.res[i].width;
3395 uint32_t height = subvp_active_margin_list.res[i].height;
3396
3397 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3398 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3399 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
3400 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
3401
3402 if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3403 dcn32_check_native_scaling_for_res(pipe, width, height)) {
3404 allow = true;
3405 break;
3406 }
3407 }
3408 return allow;
3409 }
3410
3411 /**
3412 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3413 *
3414 * @dc: Current DC state
3415 * @context: New DC state to be programmed
3416 * @pipe: Pipe to be considered for use in subvp
3417 *
3418 * On high refresh rate display configs, we will allow subvp under the following conditions:
3419 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3420 * 2. Refresh rate is between 120hz - 165hz
3421 * 3. No scaling
3422 * 4. Freesync is inactive
3423 * 5. For single display cases, freesync must be disabled
3424 *
3425 * Return: True if pipe can be used for subvp, false otherwise
3426 */
dcn32_allow_subvp_high_refresh_rate(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe)3427 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3428 {
3429 bool allow = false;
3430 uint32_t refresh_rate = 0;
3431 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3432 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3433 uint32_t min_refresh = subvp_max_refresh;
3434 uint32_t i;
3435
3436 /* Only allow SubVP on high refresh displays if all connected displays
3437 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3438 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3439 */
3440 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3441 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3442
3443 if (!pipe_ctx->stream)
3444 continue;
3445 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3446 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3447 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3448
3449 if (refresh_rate < min_refresh)
3450 min_refresh = refresh_rate;
3451 }
3452
3453 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3454 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3455 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3456 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3457 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3458 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3459 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3460 uint32_t width = subvp_high_refresh_list.res[i].width;
3461 uint32_t height = subvp_high_refresh_list.res[i].height;
3462
3463 if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3464 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3465 allow = true;
3466 break;
3467 }
3468 }
3469 }
3470 }
3471 }
3472 return allow;
3473 }
3474
3475 /**
3476 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3477 *
3478 * @dc: Current DC state
3479 * @context: New DC state to be programmed
3480 *
3481 * Return: Max vratio for prefetch
3482 */
dcn32_determine_max_vratio_prefetch(struct dc * dc,struct dc_state * context)3483 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3484 {
3485 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3486 int i;
3487
3488 /* For single display MPO configs, allow the max vratio to be 8
3489 * if any plane is YUV420 format
3490 */
3491 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3492 for (i = 0; i < context->stream_status[0].plane_count; i++) {
3493 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3494 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3495 max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3496 }
3497 }
3498 }
3499 return max_vratio_pre;
3500 }
3501
3502 /**
3503 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3504 *
3505 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3506 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3507 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3508 * ActiveMargin <= 0 to be the FPO stream candidate if found.
3509 *
3510 *
3511 * @dc: current dc state
3512 * @context: new dc state
3513 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3514 *
3515 * Return: void
3516 */
dcn32_assign_fpo_vactive_candidate(struct dc * dc,const struct dc_state * context,struct dc_stream_state ** fpo_candidate_stream)3517 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3518 {
3519 unsigned int i, pipe_idx;
3520 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3521
3522 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3523 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3524
3525 /* In DCN32/321, FPO uses per-pipe P-State force.
3526 * If there's no planes, HUBP is power gated and
3527 * therefore programming UCLK_PSTATE_FORCE does
3528 * nothing (P-State will always be asserted naturally
3529 * on a pipe that has HUBP power gated. Therefore we
3530 * only want to enable FPO if the FPO pipe has both
3531 * a stream and a plane.
3532 */
3533 if (!pipe->stream || !pipe->plane_state)
3534 continue;
3535
3536 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3537 *fpo_candidate_stream = pipe->stream;
3538 break;
3539 }
3540 pipe_idx++;
3541 }
3542 }
3543
3544 /**
3545 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3546 *
3547 * @dc: current dc state
3548 * @context: new dc state
3549 * @fpo_candidate_stream: candidate stream to be chosen for FPO
3550 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3551 *
3552 * Return: True if VACTIVE display is found, false otherwise
3553 */
dcn32_find_vactive_pipe(struct dc * dc,const struct dc_state * context,struct dc_stream_state * fpo_candidate_stream,uint32_t vactive_margin_req_us)3554 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us)
3555 {
3556 unsigned int i, pipe_idx;
3557 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3558 bool vactive_found = true;
3559 unsigned int blank_us = 0;
3560
3561 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3562 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3563
3564 if (!pipe->stream)
3565 continue;
3566
3567 /* Don't need to check for vactive margin on the FPO candidate stream */
3568 if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) {
3569 pipe_idx++;
3570 continue;
3571 }
3572
3573 /* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin
3574 * in order for us to have found a valid "vactive" config for FPO + Vactive
3575 */
3576 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3577 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3578 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us ||
3579 pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) {
3580 vactive_found = false;
3581 break;
3582 }
3583 pipe_idx++;
3584 }
3585 return vactive_found;
3586 }
3587
dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st * soc_bb)3588 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3589 {
3590 dc_assert_fp_enabled();
3591 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3592 }
3593
dcn32_override_min_req_memclk(struct dc * dc,struct dc_state * context)3594 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3595 {
3596 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3597 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3598 dc->dml.soc.num_chans <= 8) {
3599 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3600
3601 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3602 num_mclk_levels > 1) {
3603 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3604 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3605 }
3606 }
3607 }
3608