1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 /* include DCE11 register header files */
29 #include "dce/dce_11_0_d.h"
30 #include "dce/dce_11_0_sh_mask.h"
31
32 #include "dc_types.h"
33 #include "dc_bios_types.h"
34 #include "dc.h"
35
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce110_timing_generator.h"
39
40 #include "timing_generator.h"
41
42
43 #define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
44
45 #define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
46 #define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
47
48 #define CRTC_REG(reg) (reg + tg110->offsets.crtc)
49 #define DCP_REG(reg) (reg + tg110->offsets.dcp)
50
51 /* Flowing register offsets are same in files of
52 * dce/dce_11_0_d.h
53 * dce/vi_polaris10_p/vi_polaris10_d.h
54 *
55 * So we can create dce110 timing generator to use it.
56 */
57
58
59 /*
60 * apply_front_porch_workaround
61 *
62 * This is a workaround for a bug that has existed since R5xx and has not been
63 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
64 */
dce110_timing_generator_apply_front_porch_workaround(struct timing_generator * tg,struct dc_crtc_timing * timing)65 static void dce110_timing_generator_apply_front_porch_workaround(
66 struct timing_generator *tg,
67 struct dc_crtc_timing *timing)
68 {
69 if (timing->flags.INTERLACE == 1) {
70 if (timing->v_front_porch < 2)
71 timing->v_front_porch = 2;
72 } else {
73 if (timing->v_front_porch < 1)
74 timing->v_front_porch = 1;
75 }
76 }
77
78 /*
79 *****************************************************************************
80 * Function: is_in_vertical_blank
81 *
82 * @brief
83 * check the current status of CRTC to check if we are in Vertical Blank
84 * regioneased" state
85 *
86 * @return
87 * true if currently in blank region, false otherwise
88 *
89 *****************************************************************************
90 */
dce110_timing_generator_is_in_vertical_blank(struct timing_generator * tg)91 static bool dce110_timing_generator_is_in_vertical_blank(
92 struct timing_generator *tg)
93 {
94 uint32_t addr = 0;
95 uint32_t value = 0;
96 uint32_t field = 0;
97 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
98
99 addr = CRTC_REG(mmCRTC_STATUS);
100 value = dm_read_reg(tg->ctx, addr);
101 field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
102 return field == 1;
103 }
104
dce110_timing_generator_set_early_control(struct timing_generator * tg,uint32_t early_cntl)105 void dce110_timing_generator_set_early_control(
106 struct timing_generator *tg,
107 uint32_t early_cntl)
108 {
109 uint32_t regval;
110 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
111 uint32_t address = CRTC_REG(mmCRTC_CONTROL);
112
113 regval = dm_read_reg(tg->ctx, address);
114 set_reg_field_value(regval, early_cntl,
115 CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
116 dm_write_reg(tg->ctx, address, regval);
117 }
118
119 /*
120 * Enable CRTC
121 * Enable CRTC - call ASIC Control Object to enable Timing generator.
122 */
dce110_timing_generator_enable_crtc(struct timing_generator * tg)123 bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
124 {
125 enum bp_result result;
126
127 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
128 uint32_t value = 0;
129
130 /*
131 * 3 is used to make sure V_UPDATE occurs at the beginning of the first
132 * line of vertical front porch
133 */
134 set_reg_field_value(
135 value,
136 0,
137 CRTC_MASTER_UPDATE_MODE,
138 MASTER_UPDATE_MODE);
139
140 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
141
142 /* TODO: may want this on to catch underflow */
143 value = 0;
144 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
145
146 result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
147
148 return result == BP_RESULT_OK;
149 }
150
dce110_timing_generator_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)151 void dce110_timing_generator_program_blank_color(
152 struct timing_generator *tg,
153 const struct tg_color *black_color)
154 {
155 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
156 uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
157 uint32_t value = dm_read_reg(tg->ctx, addr);
158
159 set_reg_field_value(
160 value,
161 black_color->color_b_cb,
162 CRTC_BLACK_COLOR,
163 CRTC_BLACK_COLOR_B_CB);
164 set_reg_field_value(
165 value,
166 black_color->color_g_y,
167 CRTC_BLACK_COLOR,
168 CRTC_BLACK_COLOR_G_Y);
169 set_reg_field_value(
170 value,
171 black_color->color_r_cr,
172 CRTC_BLACK_COLOR,
173 CRTC_BLACK_COLOR_R_CR);
174
175 dm_write_reg(tg->ctx, addr, value);
176 }
177
178 /*
179 *****************************************************************************
180 * Function: disable_stereo
181 *
182 * @brief
183 * Disables active stereo on controller
184 * Frame Packing need to be disabled in vBlank or when CRTC not running
185 *****************************************************************************
186 */
187 #if 0
188 @TODOSTEREO
189 static void disable_stereo(struct timing_generator *tg)
190 {
191 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
192 uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
193 uint32_t value = 0;
194 uint32_t test = 0;
195 uint32_t field = 0;
196 uint32_t struc_en = 0;
197 uint32_t struc_stereo_sel_ovr = 0;
198
199 value = dm_read_reg(tg->ctx, addr);
200 struc_en = get_reg_field_value(
201 value,
202 CRTC_3D_STRUCTURE_CONTROL,
203 CRTC_3D_STRUCTURE_EN);
204
205 struc_stereo_sel_ovr = get_reg_field_value(
206 value,
207 CRTC_3D_STRUCTURE_CONTROL,
208 CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
209
210 /*
211 * When disabling Frame Packing in 2 step mode, we need to program both
212 * registers at the same frame
213 * Programming it in the beginning of VActive makes sure we are ok
214 */
215
216 if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
217 tg->funcs->wait_for_vblank(tg);
218 tg->funcs->wait_for_vactive(tg);
219 }
220
221 value = 0;
222 dm_write_reg(tg->ctx, addr, value);
223
224 addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
225 dm_write_reg(tg->ctx, addr, value);
226 }
227 #endif
228
229 /*
230 * disable_crtc - call ASIC Control Object to disable Timing generator.
231 */
dce110_timing_generator_disable_crtc(struct timing_generator * tg)232 bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
233 {
234 enum bp_result result;
235
236 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
237
238 result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
239
240 /* Need to make sure stereo is disabled according to the DCE5.0 spec */
241
242 /*
243 * @TODOSTEREO call this when adding stereo support
244 * tg->funcs->disable_stereo(tg);
245 */
246
247 return result == BP_RESULT_OK;
248 }
249
250 /*
251 * program_horz_count_by_2
252 * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
253 */
program_horz_count_by_2(struct timing_generator * tg,const struct dc_crtc_timing * timing)254 static void program_horz_count_by_2(
255 struct timing_generator *tg,
256 const struct dc_crtc_timing *timing)
257 {
258 uint32_t regval;
259 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
260
261 regval = dm_read_reg(tg->ctx,
262 CRTC_REG(mmCRTC_COUNT_CONTROL));
263
264 set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
265 CRTC_HORZ_COUNT_BY2_EN);
266
267 if (timing->flags.HORZ_COUNT_BY_TWO)
268 set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
269 CRTC_HORZ_COUNT_BY2_EN);
270
271 dm_write_reg(tg->ctx,
272 CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
273 }
274
275 /*
276 * program_timing_generator
277 * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
278 * Call ASIC Control Object to program Timings.
279 */
dce110_timing_generator_program_timing_generator(struct timing_generator * tg,const struct dc_crtc_timing * dc_crtc_timing)280 bool dce110_timing_generator_program_timing_generator(
281 struct timing_generator *tg,
282 const struct dc_crtc_timing *dc_crtc_timing)
283 {
284 enum bp_result result;
285 struct bp_hw_crtc_timing_parameters bp_params;
286 struct dc_crtc_timing patched_crtc_timing;
287 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
288
289 uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
290 dc_crtc_timing->v_front_porch;
291 uint32_t v_sync_start = dc_crtc_timing->v_addressable + vsync_offset;
292
293 uint32_t hsync_offset = dc_crtc_timing->h_border_right +
294 dc_crtc_timing->h_front_porch;
295 uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
296
297 memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
298
299 /* Due to an asic bug we need to apply the Front Porch workaround prior
300 * to programming the timing.
301 */
302
303 patched_crtc_timing = *dc_crtc_timing;
304
305 dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
306
307 bp_params.controller_id = tg110->controller_id;
308
309 bp_params.h_total = patched_crtc_timing.h_total;
310 bp_params.h_addressable =
311 patched_crtc_timing.h_addressable;
312 bp_params.v_total = patched_crtc_timing.v_total;
313 bp_params.v_addressable = patched_crtc_timing.v_addressable;
314
315 bp_params.h_sync_start = h_sync_start;
316 bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
317 bp_params.v_sync_start = v_sync_start;
318 bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
319
320 /* Set overscan */
321 bp_params.h_overscan_left =
322 patched_crtc_timing.h_border_left;
323 bp_params.h_overscan_right =
324 patched_crtc_timing.h_border_right;
325 bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
326 bp_params.v_overscan_bottom =
327 patched_crtc_timing.v_border_bottom;
328
329 /* Set flags */
330 if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
331 bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
332
333 if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
334 bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
335
336 if (patched_crtc_timing.flags.INTERLACE == 1)
337 bp_params.flags.INTERLACE = 1;
338
339 if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
340 bp_params.flags.HORZ_COUNT_BY_TWO = 1;
341
342 result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
343
344 program_horz_count_by_2(tg, &patched_crtc_timing);
345
346 tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
347
348 /* Enable stereo - only when we need to pack 3D frame. Other types
349 * of stereo handled in explicit call */
350
351 return result == BP_RESULT_OK;
352 }
353
354 /*
355 *****************************************************************************
356 * Function: set_drr
357 *
358 * @brief
359 * Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
360 *
361 * @param [in] pHwCrtcTiming: point to H
362 * wCrtcTiming struct
363 *****************************************************************************
364 */
dce110_timing_generator_set_drr(struct timing_generator * tg,const struct drr_params * params)365 void dce110_timing_generator_set_drr(
366 struct timing_generator *tg,
367 const struct drr_params *params)
368 {
369 /* register values */
370 uint32_t v_total_min = 0;
371 uint32_t v_total_max = 0;
372 uint32_t v_total_cntl = 0;
373 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
374
375 uint32_t addr = 0;
376
377 addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
378 v_total_min = dm_read_reg(tg->ctx, addr);
379
380 addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
381 v_total_max = dm_read_reg(tg->ctx, addr);
382
383 addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
384 v_total_cntl = dm_read_reg(tg->ctx, addr);
385
386 if (params != NULL &&
387 params->vertical_total_max > 0 &&
388 params->vertical_total_min > 0) {
389
390 set_reg_field_value(v_total_max,
391 params->vertical_total_max - 1,
392 CRTC_V_TOTAL_MAX,
393 CRTC_V_TOTAL_MAX);
394
395 set_reg_field_value(v_total_min,
396 params->vertical_total_min - 1,
397 CRTC_V_TOTAL_MIN,
398 CRTC_V_TOTAL_MIN);
399
400 set_reg_field_value(v_total_cntl,
401 1,
402 CRTC_V_TOTAL_CONTROL,
403 CRTC_V_TOTAL_MIN_SEL);
404
405 set_reg_field_value(v_total_cntl,
406 1,
407 CRTC_V_TOTAL_CONTROL,
408 CRTC_V_TOTAL_MAX_SEL);
409
410 set_reg_field_value(v_total_cntl,
411 0,
412 CRTC_V_TOTAL_CONTROL,
413 CRTC_FORCE_LOCK_ON_EVENT);
414 set_reg_field_value(v_total_cntl,
415 0,
416 CRTC_V_TOTAL_CONTROL,
417 CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
418
419 set_reg_field_value(v_total_cntl,
420 0,
421 CRTC_V_TOTAL_CONTROL,
422 CRTC_SET_V_TOTAL_MIN_MASK_EN);
423
424 set_reg_field_value(v_total_cntl,
425 0,
426 CRTC_V_TOTAL_CONTROL,
427 CRTC_SET_V_TOTAL_MIN_MASK);
428 } else {
429 set_reg_field_value(v_total_cntl,
430 0,
431 CRTC_V_TOTAL_CONTROL,
432 CRTC_SET_V_TOTAL_MIN_MASK);
433 set_reg_field_value(v_total_cntl,
434 0,
435 CRTC_V_TOTAL_CONTROL,
436 CRTC_V_TOTAL_MIN_SEL);
437 set_reg_field_value(v_total_cntl,
438 0,
439 CRTC_V_TOTAL_CONTROL,
440 CRTC_V_TOTAL_MAX_SEL);
441 set_reg_field_value(v_total_min,
442 0,
443 CRTC_V_TOTAL_MIN,
444 CRTC_V_TOTAL_MIN);
445 set_reg_field_value(v_total_max,
446 0,
447 CRTC_V_TOTAL_MAX,
448 CRTC_V_TOTAL_MAX);
449 set_reg_field_value(v_total_cntl,
450 0,
451 CRTC_V_TOTAL_CONTROL,
452 CRTC_FORCE_LOCK_ON_EVENT);
453 set_reg_field_value(v_total_cntl,
454 0,
455 CRTC_V_TOTAL_CONTROL,
456 CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
457 }
458
459 addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
460 dm_write_reg(tg->ctx, addr, v_total_min);
461
462 addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
463 dm_write_reg(tg->ctx, addr, v_total_max);
464
465 addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
466 dm_write_reg(tg->ctx, addr, v_total_cntl);
467 }
468
dce110_timing_generator_set_static_screen_control(struct timing_generator * tg,uint32_t event_triggers,uint32_t num_frames)469 void dce110_timing_generator_set_static_screen_control(
470 struct timing_generator *tg,
471 uint32_t event_triggers,
472 uint32_t num_frames)
473 {
474 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
475 uint32_t static_screen_cntl = 0;
476 uint32_t addr = 0;
477
478 // By register spec, it only takes 8 bit value
479 if (num_frames > 0xFF)
480 num_frames = 0xFF;
481
482 addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
483 static_screen_cntl = dm_read_reg(tg->ctx, addr);
484
485 set_reg_field_value(static_screen_cntl,
486 event_triggers,
487 CRTC_STATIC_SCREEN_CONTROL,
488 CRTC_STATIC_SCREEN_EVENT_MASK);
489
490 set_reg_field_value(static_screen_cntl,
491 num_frames,
492 CRTC_STATIC_SCREEN_CONTROL,
493 CRTC_STATIC_SCREEN_FRAME_COUNT);
494
495 dm_write_reg(tg->ctx, addr, static_screen_cntl);
496 }
497
498 /*
499 * get_vblank_counter
500 *
501 * @brief
502 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
503 * holds the counter of frames.
504 *
505 * @param
506 * struct timing_generator *tg - [in] timing generator which controls the
507 * desired CRTC
508 *
509 * @return
510 * Counter of frames, which should equal to number of vblanks.
511 */
dce110_timing_generator_get_vblank_counter(struct timing_generator * tg)512 uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
513 {
514 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
515 uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
516 uint32_t value = dm_read_reg(tg->ctx, addr);
517 uint32_t field = get_reg_field_value(
518 value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
519
520 return field;
521 }
522
523 /*
524 *****************************************************************************
525 * Function: dce110_timing_generator_get_position
526 *
527 * @brief
528 * Returns CRTC vertical/horizontal counters
529 *
530 * @param [out] position
531 *****************************************************************************
532 */
dce110_timing_generator_get_position(struct timing_generator * tg,struct crtc_position * position)533 void dce110_timing_generator_get_position(struct timing_generator *tg,
534 struct crtc_position *position)
535 {
536 uint32_t value;
537 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
538
539 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
540
541 position->horizontal_count = get_reg_field_value(
542 value,
543 CRTC_STATUS_POSITION,
544 CRTC_HORZ_COUNT);
545
546 position->vertical_count = get_reg_field_value(
547 value,
548 CRTC_STATUS_POSITION,
549 CRTC_VERT_COUNT);
550
551 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
552
553 position->nominal_vcount = get_reg_field_value(
554 value,
555 CRTC_NOM_VERT_POSITION,
556 CRTC_VERT_COUNT_NOM);
557 }
558
559 /*
560 *****************************************************************************
561 * Function: get_crtc_scanoutpos
562 *
563 * @brief
564 * Returns CRTC vertical/horizontal counters
565 *
566 * @param [out] vpos, hpos
567 *****************************************************************************
568 */
dce110_timing_generator_get_crtc_scanoutpos(struct timing_generator * tg,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)569 void dce110_timing_generator_get_crtc_scanoutpos(
570 struct timing_generator *tg,
571 uint32_t *v_blank_start,
572 uint32_t *v_blank_end,
573 uint32_t *h_position,
574 uint32_t *v_position)
575 {
576 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
577 struct crtc_position position;
578
579 uint32_t value = dm_read_reg(tg->ctx,
580 CRTC_REG(mmCRTC_V_BLANK_START_END));
581
582 *v_blank_start = get_reg_field_value(value,
583 CRTC_V_BLANK_START_END,
584 CRTC_V_BLANK_START);
585 *v_blank_end = get_reg_field_value(value,
586 CRTC_V_BLANK_START_END,
587 CRTC_V_BLANK_END);
588
589 dce110_timing_generator_get_position(
590 tg, &position);
591
592 *h_position = position.horizontal_count;
593 *v_position = position.vertical_count;
594 }
595
596 /* TODO: is it safe to assume that mask/shift of Primary and Underlay
597 * are the same?
598 * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
599 * guaranteed? */
dce110_timing_generator_program_blanking(struct timing_generator * tg,const struct dc_crtc_timing * timing)600 void dce110_timing_generator_program_blanking(
601 struct timing_generator *tg,
602 const struct dc_crtc_timing *timing)
603 {
604 uint32_t vsync_offset = timing->v_border_bottom +
605 timing->v_front_porch;
606 uint32_t v_sync_start = timing->v_addressable + vsync_offset;
607
608 uint32_t hsync_offset = timing->h_border_right +
609 timing->h_front_porch;
610 uint32_t h_sync_start = timing->h_addressable + hsync_offset;
611 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
612
613 struct dc_context *ctx = tg->ctx;
614 uint32_t value = 0;
615 uint32_t addr = 0;
616 uint32_t tmp = 0;
617
618 addr = CRTC_REG(mmCRTC_H_TOTAL);
619 value = dm_read_reg(ctx, addr);
620 set_reg_field_value(
621 value,
622 timing->h_total - 1,
623 CRTC_H_TOTAL,
624 CRTC_H_TOTAL);
625 dm_write_reg(ctx, addr, value);
626
627 addr = CRTC_REG(mmCRTC_V_TOTAL);
628 value = dm_read_reg(ctx, addr);
629 set_reg_field_value(
630 value,
631 timing->v_total - 1,
632 CRTC_V_TOTAL,
633 CRTC_V_TOTAL);
634 dm_write_reg(ctx, addr, value);
635
636 /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
637 * V_TOTAL_MIN are equal to V_TOTAL.
638 */
639 addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
640 value = dm_read_reg(ctx, addr);
641 set_reg_field_value(
642 value,
643 timing->v_total - 1,
644 CRTC_V_TOTAL_MAX,
645 CRTC_V_TOTAL_MAX);
646 dm_write_reg(ctx, addr, value);
647
648 addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
649 value = dm_read_reg(ctx, addr);
650 set_reg_field_value(
651 value,
652 timing->v_total - 1,
653 CRTC_V_TOTAL_MIN,
654 CRTC_V_TOTAL_MIN);
655 dm_write_reg(ctx, addr, value);
656
657 addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
658 value = dm_read_reg(ctx, addr);
659
660 tmp = timing->h_total -
661 (h_sync_start + timing->h_border_left);
662
663 set_reg_field_value(
664 value,
665 tmp,
666 CRTC_H_BLANK_START_END,
667 CRTC_H_BLANK_END);
668
669 tmp = tmp + timing->h_addressable +
670 timing->h_border_left + timing->h_border_right;
671
672 set_reg_field_value(
673 value,
674 tmp,
675 CRTC_H_BLANK_START_END,
676 CRTC_H_BLANK_START);
677
678 dm_write_reg(ctx, addr, value);
679
680 addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
681 value = dm_read_reg(ctx, addr);
682
683 tmp = timing->v_total - (v_sync_start + timing->v_border_top);
684
685 set_reg_field_value(
686 value,
687 tmp,
688 CRTC_V_BLANK_START_END,
689 CRTC_V_BLANK_END);
690
691 tmp = tmp + timing->v_addressable + timing->v_border_top +
692 timing->v_border_bottom;
693
694 set_reg_field_value(
695 value,
696 tmp,
697 CRTC_V_BLANK_START_END,
698 CRTC_V_BLANK_START);
699
700 dm_write_reg(ctx, addr, value);
701 }
702
dce110_timing_generator_set_test_pattern(struct timing_generator * tg,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)703 void dce110_timing_generator_set_test_pattern(
704 struct timing_generator *tg,
705 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
706 * because this is not DP-specific (which is probably somewhere in DP
707 * encoder) */
708 enum controller_dp_test_pattern test_pattern,
709 enum dc_color_depth color_depth)
710 {
711 struct dc_context *ctx = tg->ctx;
712 uint32_t value;
713 uint32_t addr;
714 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
715 enum test_pattern_color_format bit_depth;
716 enum test_pattern_dyn_range dyn_range;
717 enum test_pattern_mode mode;
718 /* color ramp generator mixes 16-bits color */
719 uint32_t src_bpc = 16;
720 /* requested bpc */
721 uint32_t dst_bpc;
722 uint32_t index;
723 /* RGB values of the color bars.
724 * Produce two RGB colors: RGB0 - white (all Fs)
725 * and RGB1 - black (all 0s)
726 * (three RGB components for two colors)
727 */
728 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
729 0x0000, 0x0000};
730 /* dest color (converted to the specified color format) */
731 uint16_t dst_color[6];
732 uint32_t inc_base;
733
734 /* translate to bit depth */
735 switch (color_depth) {
736 case COLOR_DEPTH_666:
737 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
738 break;
739 case COLOR_DEPTH_888:
740 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
741 break;
742 case COLOR_DEPTH_101010:
743 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
744 break;
745 case COLOR_DEPTH_121212:
746 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
747 break;
748 default:
749 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
750 break;
751 }
752
753 switch (test_pattern) {
754 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
755 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
756 {
757 dyn_range = (test_pattern ==
758 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
759 TEST_PATTERN_DYN_RANGE_CEA :
760 TEST_PATTERN_DYN_RANGE_VESA);
761 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
762 value = 0;
763 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
764
765 set_reg_field_value(
766 value,
767 6,
768 CRTC_TEST_PATTERN_PARAMETERS,
769 CRTC_TEST_PATTERN_VRES);
770 set_reg_field_value(
771 value,
772 6,
773 CRTC_TEST_PATTERN_PARAMETERS,
774 CRTC_TEST_PATTERN_HRES);
775
776 dm_write_reg(ctx, addr, value);
777
778 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
779 value = 0;
780
781 set_reg_field_value(
782 value,
783 1,
784 CRTC_TEST_PATTERN_CONTROL,
785 CRTC_TEST_PATTERN_EN);
786
787 set_reg_field_value(
788 value,
789 mode,
790 CRTC_TEST_PATTERN_CONTROL,
791 CRTC_TEST_PATTERN_MODE);
792
793 set_reg_field_value(
794 value,
795 dyn_range,
796 CRTC_TEST_PATTERN_CONTROL,
797 CRTC_TEST_PATTERN_DYNAMIC_RANGE);
798 set_reg_field_value(
799 value,
800 bit_depth,
801 CRTC_TEST_PATTERN_CONTROL,
802 CRTC_TEST_PATTERN_COLOR_FORMAT);
803 dm_write_reg(ctx, addr, value);
804 }
805 break;
806
807 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
808 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
809 {
810 mode = (test_pattern ==
811 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
812 TEST_PATTERN_MODE_VERTICALBARS :
813 TEST_PATTERN_MODE_HORIZONTALBARS);
814
815 switch (bit_depth) {
816 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
817 dst_bpc = 6;
818 break;
819 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
820 dst_bpc = 8;
821 break;
822 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
823 dst_bpc = 10;
824 break;
825 default:
826 dst_bpc = 8;
827 break;
828 }
829
830 /* adjust color to the required colorFormat */
831 for (index = 0; index < 6; index++) {
832 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
833 * (srcBpc - dstBpc);
834 */
835 dst_color[index] =
836 src_color[index] >> (src_bpc - dst_bpc);
837 /* CRTC_TEST_PATTERN_DATA has 16 bits,
838 * lowest 6 are hardwired to ZERO
839 * color bits should be left aligned aligned to MSB
840 * XXXXXXXXXX000000 for 10 bit,
841 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
842 */
843 dst_color[index] <<= (16 - dst_bpc);
844 }
845
846 value = 0;
847 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
848 dm_write_reg(ctx, addr, value);
849
850 /* We have to write the mask before data, similar to pipeline.
851 * For example, for 8 bpc, if we want RGB0 to be magenta,
852 * and RGB1 to be cyan,
853 * we need to make 7 writes:
854 * MASK DATA
855 * 000001 00000000 00000000 set mask to R0
856 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
857 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
858 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
859 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
860 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
861 * 100000 11111111 00000000 B1 255, 0xFF00
862 *
863 * we will make a loop of 6 in which we prepare the mask,
864 * then write, then prepare the color for next write.
865 * first iteration will write mask only,
866 * but each next iteration color prepared in
867 * previous iteration will be written within new mask,
868 * the last component will written separately,
869 * mask is not changing between 6th and 7th write
870 * and color will be prepared by last iteration
871 */
872
873 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
874 * is B1, G1, R1, B0, G0, R0
875 */
876 value = 0;
877 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
878 for (index = 0; index < 6; index++) {
879 /* prepare color mask, first write PATTERN_DATA
880 * will have all zeros
881 */
882 set_reg_field_value(
883 value,
884 (1 << index),
885 CRTC_TEST_PATTERN_COLOR,
886 CRTC_TEST_PATTERN_MASK);
887 /* write color component */
888 dm_write_reg(ctx, addr, value);
889 /* prepare next color component,
890 * will be written in the next iteration
891 */
892 set_reg_field_value(
893 value,
894 dst_color[index],
895 CRTC_TEST_PATTERN_COLOR,
896 CRTC_TEST_PATTERN_DATA);
897 }
898 /* write last color component,
899 * it's been already prepared in the loop
900 */
901 dm_write_reg(ctx, addr, value);
902
903 /* enable test pattern */
904 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
905 value = 0;
906
907 set_reg_field_value(
908 value,
909 1,
910 CRTC_TEST_PATTERN_CONTROL,
911 CRTC_TEST_PATTERN_EN);
912
913 set_reg_field_value(
914 value,
915 mode,
916 CRTC_TEST_PATTERN_CONTROL,
917 CRTC_TEST_PATTERN_MODE);
918
919 set_reg_field_value(
920 value,
921 0,
922 CRTC_TEST_PATTERN_CONTROL,
923 CRTC_TEST_PATTERN_DYNAMIC_RANGE);
924
925 set_reg_field_value(
926 value,
927 bit_depth,
928 CRTC_TEST_PATTERN_CONTROL,
929 CRTC_TEST_PATTERN_COLOR_FORMAT);
930
931 dm_write_reg(ctx, addr, value);
932 }
933 break;
934
935 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
936 {
937 mode = (bit_depth ==
938 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
939 TEST_PATTERN_MODE_DUALRAMP_RGB :
940 TEST_PATTERN_MODE_SINGLERAMP_RGB);
941
942 switch (bit_depth) {
943 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
944 dst_bpc = 6;
945 break;
946 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
947 dst_bpc = 8;
948 break;
949 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
950 dst_bpc = 10;
951 break;
952 default:
953 dst_bpc = 8;
954 break;
955 }
956
957 /* increment for the first ramp for one color gradation
958 * 1 gradation for 6-bit color is 2^10
959 * gradations in 16-bit color
960 */
961 inc_base = (src_bpc - dst_bpc);
962
963 value = 0;
964 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
965
966 switch (bit_depth) {
967 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
968 {
969 set_reg_field_value(
970 value,
971 inc_base,
972 CRTC_TEST_PATTERN_PARAMETERS,
973 CRTC_TEST_PATTERN_INC0);
974 set_reg_field_value(
975 value,
976 0,
977 CRTC_TEST_PATTERN_PARAMETERS,
978 CRTC_TEST_PATTERN_INC1);
979 set_reg_field_value(
980 value,
981 6,
982 CRTC_TEST_PATTERN_PARAMETERS,
983 CRTC_TEST_PATTERN_HRES);
984 set_reg_field_value(
985 value,
986 6,
987 CRTC_TEST_PATTERN_PARAMETERS,
988 CRTC_TEST_PATTERN_VRES);
989 set_reg_field_value(
990 value,
991 0,
992 CRTC_TEST_PATTERN_PARAMETERS,
993 CRTC_TEST_PATTERN_RAMP0_OFFSET);
994 }
995 break;
996 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
997 {
998 set_reg_field_value(
999 value,
1000 inc_base,
1001 CRTC_TEST_PATTERN_PARAMETERS,
1002 CRTC_TEST_PATTERN_INC0);
1003 set_reg_field_value(
1004 value,
1005 0,
1006 CRTC_TEST_PATTERN_PARAMETERS,
1007 CRTC_TEST_PATTERN_INC1);
1008 set_reg_field_value(
1009 value,
1010 8,
1011 CRTC_TEST_PATTERN_PARAMETERS,
1012 CRTC_TEST_PATTERN_HRES);
1013 set_reg_field_value(
1014 value,
1015 6,
1016 CRTC_TEST_PATTERN_PARAMETERS,
1017 CRTC_TEST_PATTERN_VRES);
1018 set_reg_field_value(
1019 value,
1020 0,
1021 CRTC_TEST_PATTERN_PARAMETERS,
1022 CRTC_TEST_PATTERN_RAMP0_OFFSET);
1023 }
1024 break;
1025 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1026 {
1027 set_reg_field_value(
1028 value,
1029 inc_base,
1030 CRTC_TEST_PATTERN_PARAMETERS,
1031 CRTC_TEST_PATTERN_INC0);
1032 set_reg_field_value(
1033 value,
1034 inc_base + 2,
1035 CRTC_TEST_PATTERN_PARAMETERS,
1036 CRTC_TEST_PATTERN_INC1);
1037 set_reg_field_value(
1038 value,
1039 8,
1040 CRTC_TEST_PATTERN_PARAMETERS,
1041 CRTC_TEST_PATTERN_HRES);
1042 set_reg_field_value(
1043 value,
1044 5,
1045 CRTC_TEST_PATTERN_PARAMETERS,
1046 CRTC_TEST_PATTERN_VRES);
1047 set_reg_field_value(
1048 value,
1049 384 << 6,
1050 CRTC_TEST_PATTERN_PARAMETERS,
1051 CRTC_TEST_PATTERN_RAMP0_OFFSET);
1052 }
1053 break;
1054 default:
1055 break;
1056 }
1057 dm_write_reg(ctx, addr, value);
1058
1059 value = 0;
1060 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
1061 dm_write_reg(ctx, addr, value);
1062
1063 /* enable test pattern */
1064 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
1065 value = 0;
1066
1067 set_reg_field_value(
1068 value,
1069 1,
1070 CRTC_TEST_PATTERN_CONTROL,
1071 CRTC_TEST_PATTERN_EN);
1072
1073 set_reg_field_value(
1074 value,
1075 mode,
1076 CRTC_TEST_PATTERN_CONTROL,
1077 CRTC_TEST_PATTERN_MODE);
1078
1079 set_reg_field_value(
1080 value,
1081 0,
1082 CRTC_TEST_PATTERN_CONTROL,
1083 CRTC_TEST_PATTERN_DYNAMIC_RANGE);
1084 /* add color depth translation here */
1085 set_reg_field_value(
1086 value,
1087 bit_depth,
1088 CRTC_TEST_PATTERN_CONTROL,
1089 CRTC_TEST_PATTERN_COLOR_FORMAT);
1090
1091 dm_write_reg(ctx, addr, value);
1092 }
1093 break;
1094 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1095 {
1096 value = 0;
1097 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
1098 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
1099 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
1100 value);
1101 }
1102 break;
1103 default:
1104 break;
1105 }
1106 }
1107
1108 /*
1109 * dce110_timing_generator_validate_timing
1110 * The timing generators support a maximum display size of is 8192 x 8192 pixels,
1111 * including both active display and blanking periods. Check H Total and V Total.
1112 */
dce110_timing_generator_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,enum signal_type signal)1113 bool dce110_timing_generator_validate_timing(
1114 struct timing_generator *tg,
1115 const struct dc_crtc_timing *timing,
1116 enum signal_type signal)
1117 {
1118 uint32_t h_blank;
1119 uint32_t h_back_porch, hsync_offset, h_sync_start;
1120
1121 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1122
1123 ASSERT(timing != NULL);
1124
1125 if (!timing)
1126 return false;
1127
1128 hsync_offset = timing->h_border_right + timing->h_front_porch;
1129 h_sync_start = timing->h_addressable + hsync_offset;
1130
1131 /* Currently we don't support 3D, so block all 3D timings */
1132 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
1133 return false;
1134
1135 /* Temporarily blocking interlacing mode until it's supported */
1136 if (timing->flags.INTERLACE == 1)
1137 return false;
1138
1139 /* Check maximum number of pixels supported by Timing Generator
1140 * (Currently will never fail, in order to fail needs display which
1141 * needs more than 8192 horizontal and
1142 * more than 8192 vertical total pixels)
1143 */
1144 if (timing->h_total > tg110->max_h_total ||
1145 timing->v_total > tg110->max_v_total)
1146 return false;
1147
1148 h_blank = (timing->h_total - timing->h_addressable -
1149 timing->h_border_right -
1150 timing->h_border_left);
1151
1152 if (h_blank < tg110->min_h_blank)
1153 return false;
1154
1155 if (timing->h_front_porch < tg110->min_h_front_porch)
1156 return false;
1157
1158 h_back_porch = h_blank - (h_sync_start -
1159 timing->h_addressable -
1160 timing->h_border_right -
1161 timing->h_sync_width);
1162
1163 if (h_back_porch < tg110->min_h_back_porch)
1164 return false;
1165
1166 return true;
1167 }
1168
1169 /*
1170 * Wait till we are at the beginning of VBlank.
1171 */
dce110_timing_generator_wait_for_vblank(struct timing_generator * tg)1172 void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
1173 {
1174 /* We want to catch beginning of VBlank here, so if the first try are
1175 * in VBlank, we might be very close to Active, in this case wait for
1176 * another frame
1177 */
1178 while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1179 if (!dce110_timing_generator_is_counter_moving(tg)) {
1180 /* error - no point to wait if counter is not moving */
1181 break;
1182 }
1183 }
1184
1185 while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
1186 if (!dce110_timing_generator_is_counter_moving(tg)) {
1187 /* error - no point to wait if counter is not moving */
1188 break;
1189 }
1190 }
1191 }
1192
1193 /*
1194 * Wait till we are in VActive (anywhere in VActive)
1195 */
dce110_timing_generator_wait_for_vactive(struct timing_generator * tg)1196 void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
1197 {
1198 while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1199 if (!dce110_timing_generator_is_counter_moving(tg)) {
1200 /* error - no point to wait if counter is not moving */
1201 break;
1202 }
1203 }
1204 }
1205
1206 /*
1207 *****************************************************************************
1208 * Function: dce110_timing_generator_setup_global_swap_lock
1209 *
1210 * @brief
1211 * Setups Global Swap Lock group for current pipe
1212 * Pipe can join or leave GSL group, become a TimingServer or TimingClient
1213 *
1214 * @param [in] gsl_params: setup data
1215 *****************************************************************************
1216 */
dce110_timing_generator_setup_global_swap_lock(struct timing_generator * tg,const struct dcp_gsl_params * gsl_params)1217 void dce110_timing_generator_setup_global_swap_lock(
1218 struct timing_generator *tg,
1219 const struct dcp_gsl_params *gsl_params)
1220 {
1221 uint32_t value;
1222 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1223 uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1224 uint32_t check_point = FLIP_READY_BACK_LOOKUP;
1225
1226 value = dm_read_reg(tg->ctx, address);
1227
1228 /* This pipe will belong to GSL Group zero. */
1229 set_reg_field_value(value,
1230 1,
1231 DCP_GSL_CONTROL,
1232 DCP_GSL0_EN);
1233
1234 set_reg_field_value(value,
1235 gsl_params->gsl_master == tg->inst,
1236 DCP_GSL_CONTROL,
1237 DCP_GSL_MASTER_EN);
1238
1239 set_reg_field_value(value,
1240 HFLIP_READY_DELAY,
1241 DCP_GSL_CONTROL,
1242 DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1243
1244 /* Keep signal low (pending high) during 6 lines.
1245 * Also defines minimum interval before re-checking signal. */
1246 set_reg_field_value(value,
1247 HFLIP_CHECK_DELAY,
1248 DCP_GSL_CONTROL,
1249 DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1250
1251 dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
1252 value = 0;
1253
1254 set_reg_field_value(value,
1255 gsl_params->gsl_master,
1256 DCIO_GSL0_CNTL,
1257 DCIO_GSL0_VSYNC_SEL);
1258
1259 set_reg_field_value(value,
1260 0,
1261 DCIO_GSL0_CNTL,
1262 DCIO_GSL0_TIMING_SYNC_SEL);
1263
1264 set_reg_field_value(value,
1265 0,
1266 DCIO_GSL0_CNTL,
1267 DCIO_GSL0_GLOBAL_UNLOCK_SEL);
1268
1269 dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
1270
1271
1272 {
1273 uint32_t value_crtc_vtotal;
1274
1275 value_crtc_vtotal = dm_read_reg(tg->ctx,
1276 CRTC_REG(mmCRTC_V_TOTAL));
1277
1278 set_reg_field_value(value,
1279 0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
1280 DCP_GSL_CONTROL,
1281 DCP_GSL_SYNC_SOURCE);
1282
1283 /* Checkpoint relative to end of frame */
1284 check_point = get_reg_field_value(value_crtc_vtotal,
1285 CRTC_V_TOTAL,
1286 CRTC_V_TOTAL);
1287
1288 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
1289 }
1290
1291 set_reg_field_value(value,
1292 1,
1293 DCP_GSL_CONTROL,
1294 DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1295
1296 dm_write_reg(tg->ctx, address, value);
1297
1298 /********************************************************************/
1299 address = CRTC_REG(mmCRTC_GSL_CONTROL);
1300
1301 value = dm_read_reg(tg->ctx, address);
1302 set_reg_field_value(value,
1303 check_point - FLIP_READY_BACK_LOOKUP,
1304 CRTC_GSL_CONTROL,
1305 CRTC_GSL_CHECK_LINE_NUM);
1306
1307 set_reg_field_value(value,
1308 VFLIP_READY_DELAY,
1309 CRTC_GSL_CONTROL,
1310 CRTC_GSL_FORCE_DELAY);
1311
1312 dm_write_reg(tg->ctx, address, value);
1313 }
1314
dce110_timing_generator_tear_down_global_swap_lock(struct timing_generator * tg)1315 void dce110_timing_generator_tear_down_global_swap_lock(
1316 struct timing_generator *tg)
1317 {
1318 /* Clear all the register writes done by
1319 * dce110_timing_generator_setup_global_swap_lock
1320 */
1321
1322 uint32_t value;
1323 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1324 uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1325
1326 value = 0;
1327
1328 /* This pipe will belong to GSL Group zero. */
1329 /* Settig HW default values from reg specs */
1330 set_reg_field_value(value,
1331 0,
1332 DCP_GSL_CONTROL,
1333 DCP_GSL0_EN);
1334
1335 set_reg_field_value(value,
1336 0,
1337 DCP_GSL_CONTROL,
1338 DCP_GSL_MASTER_EN);
1339
1340 set_reg_field_value(value,
1341 0x2,
1342 DCP_GSL_CONTROL,
1343 DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1344
1345 set_reg_field_value(value,
1346 0x6,
1347 DCP_GSL_CONTROL,
1348 DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1349
1350 /* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
1351 {
1352 dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_V_TOTAL));
1353
1354 set_reg_field_value(value,
1355 0,
1356 DCP_GSL_CONTROL,
1357 DCP_GSL_SYNC_SOURCE);
1358 }
1359
1360 set_reg_field_value(value,
1361 0,
1362 DCP_GSL_CONTROL,
1363 DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1364
1365 dm_write_reg(tg->ctx, address, value);
1366
1367 /********************************************************************/
1368 address = CRTC_REG(mmCRTC_GSL_CONTROL);
1369
1370 value = 0;
1371 set_reg_field_value(value,
1372 0,
1373 CRTC_GSL_CONTROL,
1374 CRTC_GSL_CHECK_LINE_NUM);
1375
1376 set_reg_field_value(value,
1377 0x2,
1378 CRTC_GSL_CONTROL,
1379 CRTC_GSL_FORCE_DELAY);
1380
1381 dm_write_reg(tg->ctx, address, value);
1382 }
1383 /*
1384 *****************************************************************************
1385 * Function: is_counter_moving
1386 *
1387 * @brief
1388 * check if the timing generator is currently going
1389 *
1390 * @return
1391 * true if currently going, false if currently paused or stopped.
1392 *
1393 *****************************************************************************
1394 */
dce110_timing_generator_is_counter_moving(struct timing_generator * tg)1395 bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
1396 {
1397 struct crtc_position position1, position2;
1398
1399 tg->funcs->get_position(tg, &position1);
1400 tg->funcs->get_position(tg, &position2);
1401
1402 if (position1.horizontal_count == position2.horizontal_count &&
1403 position1.vertical_count == position2.vertical_count)
1404 return false;
1405 else
1406 return true;
1407 }
1408
dce110_timing_generator_enable_advanced_request(struct timing_generator * tg,bool enable,const struct dc_crtc_timing * timing)1409 void dce110_timing_generator_enable_advanced_request(
1410 struct timing_generator *tg,
1411 bool enable,
1412 const struct dc_crtc_timing *timing)
1413 {
1414 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1415 uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
1416 uint32_t value = dm_read_reg(tg->ctx, addr);
1417
1418 if (enable) {
1419 set_reg_field_value(
1420 value,
1421 0,
1422 CRTC_START_LINE_CONTROL,
1423 CRTC_LEGACY_REQUESTOR_EN);
1424 } else {
1425 set_reg_field_value(
1426 value,
1427 1,
1428 CRTC_START_LINE_CONTROL,
1429 CRTC_LEGACY_REQUESTOR_EN);
1430 }
1431
1432 if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
1433 set_reg_field_value(
1434 value,
1435 3,
1436 CRTC_START_LINE_CONTROL,
1437 CRTC_ADVANCED_START_LINE_POSITION);
1438 set_reg_field_value(
1439 value,
1440 0,
1441 CRTC_START_LINE_CONTROL,
1442 CRTC_PREFETCH_EN);
1443 } else {
1444 set_reg_field_value(
1445 value,
1446 4,
1447 CRTC_START_LINE_CONTROL,
1448 CRTC_ADVANCED_START_LINE_POSITION);
1449 set_reg_field_value(
1450 value,
1451 1,
1452 CRTC_START_LINE_CONTROL,
1453 CRTC_PREFETCH_EN);
1454 }
1455
1456 set_reg_field_value(
1457 value,
1458 1,
1459 CRTC_START_LINE_CONTROL,
1460 CRTC_PROGRESSIVE_START_LINE_EARLY);
1461
1462 set_reg_field_value(
1463 value,
1464 1,
1465 CRTC_START_LINE_CONTROL,
1466 CRTC_INTERLACE_START_LINE_EARLY);
1467
1468 dm_write_reg(tg->ctx, addr, value);
1469 }
1470
1471 /*TODO: Figure out if we need this function. */
dce110_timing_generator_set_lock_master(struct timing_generator * tg,bool lock)1472 void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
1473 bool lock)
1474 {
1475 struct dc_context *ctx = tg->ctx;
1476 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1477 uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
1478 uint32_t value = dm_read_reg(ctx, addr);
1479
1480 set_reg_field_value(
1481 value,
1482 lock ? 1 : 0,
1483 CRTC_MASTER_UPDATE_LOCK,
1484 MASTER_UPDATE_LOCK);
1485
1486 dm_write_reg(ctx, addr, value);
1487 }
1488
dce110_timing_generator_enable_reset_trigger(struct timing_generator * tg,int source_tg_inst)1489 void dce110_timing_generator_enable_reset_trigger(
1490 struct timing_generator *tg,
1491 int source_tg_inst)
1492 {
1493 uint32_t value;
1494 uint32_t rising_edge = 0;
1495 uint32_t falling_edge = 0;
1496 enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
1497 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1498
1499 /* Setup trigger edge */
1500 {
1501 uint32_t pol_value = dm_read_reg(tg->ctx,
1502 CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
1503
1504 /* Register spec has reversed definition:
1505 * 0 for positive, 1 for negative */
1506 if (get_reg_field_value(pol_value,
1507 CRTC_V_SYNC_A_CNTL,
1508 CRTC_V_SYNC_A_POL) == 0) {
1509 rising_edge = 1;
1510 } else {
1511 falling_edge = 1;
1512 }
1513 }
1514
1515 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1516
1517 trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
1518
1519 set_reg_field_value(value,
1520 trig_src_select,
1521 CRTC_TRIGB_CNTL,
1522 CRTC_TRIGB_SOURCE_SELECT);
1523
1524 set_reg_field_value(value,
1525 TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1526 CRTC_TRIGB_CNTL,
1527 CRTC_TRIGB_POLARITY_SELECT);
1528
1529 set_reg_field_value(value,
1530 rising_edge,
1531 CRTC_TRIGB_CNTL,
1532 CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1533
1534 set_reg_field_value(value,
1535 falling_edge,
1536 CRTC_TRIGB_CNTL,
1537 CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1538
1539 set_reg_field_value(value,
1540 0, /* send every signal */
1541 CRTC_TRIGB_CNTL,
1542 CRTC_TRIGB_FREQUENCY_SELECT);
1543
1544 set_reg_field_value(value,
1545 0, /* no delay */
1546 CRTC_TRIGB_CNTL,
1547 CRTC_TRIGB_DELAY);
1548
1549 set_reg_field_value(value,
1550 1, /* clear trigger status */
1551 CRTC_TRIGB_CNTL,
1552 CRTC_TRIGB_CLEAR);
1553
1554 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1555
1556 /**************************************************************/
1557
1558 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1559
1560 set_reg_field_value(value,
1561 2, /* force H count to H_TOTAL and V count to V_TOTAL */
1562 CRTC_FORCE_COUNT_NOW_CNTL,
1563 CRTC_FORCE_COUNT_NOW_MODE);
1564
1565 set_reg_field_value(value,
1566 1, /* TriggerB - we never use TriggerA */
1567 CRTC_FORCE_COUNT_NOW_CNTL,
1568 CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1569
1570 set_reg_field_value(value,
1571 1, /* clear trigger status */
1572 CRTC_FORCE_COUNT_NOW_CNTL,
1573 CRTC_FORCE_COUNT_NOW_CLEAR);
1574
1575 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1576 }
1577
dce110_timing_generator_enable_crtc_reset(struct timing_generator * tg,int source_tg_inst,struct crtc_trigger_info * crtc_tp)1578 void dce110_timing_generator_enable_crtc_reset(
1579 struct timing_generator *tg,
1580 int source_tg_inst,
1581 struct crtc_trigger_info *crtc_tp)
1582 {
1583 uint32_t value = 0;
1584 uint32_t rising_edge = 0;
1585 uint32_t falling_edge = 0;
1586 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1587
1588 /* Setup trigger edge */
1589 switch (crtc_tp->event) {
1590 case CRTC_EVENT_VSYNC_RISING:
1591 rising_edge = 1;
1592 break;
1593
1594 case CRTC_EVENT_VSYNC_FALLING:
1595 falling_edge = 1;
1596 break;
1597 }
1598
1599 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1600
1601 set_reg_field_value(value,
1602 source_tg_inst,
1603 CRTC_TRIGB_CNTL,
1604 CRTC_TRIGB_SOURCE_SELECT);
1605
1606 set_reg_field_value(value,
1607 TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1608 CRTC_TRIGB_CNTL,
1609 CRTC_TRIGB_POLARITY_SELECT);
1610
1611 set_reg_field_value(value,
1612 rising_edge,
1613 CRTC_TRIGB_CNTL,
1614 CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1615
1616 set_reg_field_value(value,
1617 falling_edge,
1618 CRTC_TRIGB_CNTL,
1619 CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1620
1621 set_reg_field_value(value,
1622 1, /* clear trigger status */
1623 CRTC_TRIGB_CNTL,
1624 CRTC_TRIGB_CLEAR);
1625
1626 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1627
1628 /**************************************************************/
1629
1630 switch (crtc_tp->delay) {
1631 case TRIGGER_DELAY_NEXT_LINE:
1632 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1633
1634 set_reg_field_value(value,
1635 0, /* force H count to H_TOTAL and V count to V_TOTAL */
1636 CRTC_FORCE_COUNT_NOW_CNTL,
1637 CRTC_FORCE_COUNT_NOW_MODE);
1638
1639 set_reg_field_value(value,
1640 0, /* TriggerB - we never use TriggerA */
1641 CRTC_FORCE_COUNT_NOW_CNTL,
1642 CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1643
1644 set_reg_field_value(value,
1645 1, /* clear trigger status */
1646 CRTC_FORCE_COUNT_NOW_CNTL,
1647 CRTC_FORCE_COUNT_NOW_CLEAR);
1648
1649 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1650
1651 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1652
1653 set_reg_field_value(value,
1654 1,
1655 CRTC_VERT_SYNC_CONTROL,
1656 CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1657
1658 set_reg_field_value(value,
1659 2,
1660 CRTC_VERT_SYNC_CONTROL,
1661 CRTC_AUTO_FORCE_VSYNC_MODE);
1662
1663 break;
1664
1665 case TRIGGER_DELAY_NEXT_PIXEL:
1666 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1667
1668 set_reg_field_value(value,
1669 1,
1670 CRTC_VERT_SYNC_CONTROL,
1671 CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1672
1673 set_reg_field_value(value,
1674 0,
1675 CRTC_VERT_SYNC_CONTROL,
1676 CRTC_AUTO_FORCE_VSYNC_MODE);
1677
1678 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1679
1680 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1681
1682 set_reg_field_value(value,
1683 2, /* force H count to H_TOTAL and V count to V_TOTAL */
1684 CRTC_FORCE_COUNT_NOW_CNTL,
1685 CRTC_FORCE_COUNT_NOW_MODE);
1686
1687 set_reg_field_value(value,
1688 1, /* TriggerB - we never use TriggerA */
1689 CRTC_FORCE_COUNT_NOW_CNTL,
1690 CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1691
1692 set_reg_field_value(value,
1693 1, /* clear trigger status */
1694 CRTC_FORCE_COUNT_NOW_CNTL,
1695 CRTC_FORCE_COUNT_NOW_CLEAR);
1696
1697 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1698 break;
1699 }
1700
1701 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
1702
1703 set_reg_field_value(value,
1704 2,
1705 CRTC_MASTER_UPDATE_MODE,
1706 MASTER_UPDATE_MODE);
1707
1708 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
1709 }
dce110_timing_generator_disable_reset_trigger(struct timing_generator * tg)1710 void dce110_timing_generator_disable_reset_trigger(
1711 struct timing_generator *tg)
1712 {
1713 uint32_t value;
1714 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1715
1716 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1717
1718 set_reg_field_value(value,
1719 0, /* force counter now mode is disabled */
1720 CRTC_FORCE_COUNT_NOW_CNTL,
1721 CRTC_FORCE_COUNT_NOW_MODE);
1722
1723 set_reg_field_value(value,
1724 1, /* clear trigger status */
1725 CRTC_FORCE_COUNT_NOW_CNTL,
1726 CRTC_FORCE_COUNT_NOW_CLEAR);
1727
1728 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1729
1730 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1731
1732 set_reg_field_value(value,
1733 1,
1734 CRTC_VERT_SYNC_CONTROL,
1735 CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1736
1737 set_reg_field_value(value,
1738 0,
1739 CRTC_VERT_SYNC_CONTROL,
1740 CRTC_AUTO_FORCE_VSYNC_MODE);
1741
1742 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1743
1744 /********************************************************************/
1745 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1746
1747 set_reg_field_value(value,
1748 TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
1749 CRTC_TRIGB_CNTL,
1750 CRTC_TRIGB_SOURCE_SELECT);
1751
1752 set_reg_field_value(value,
1753 TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1754 CRTC_TRIGB_CNTL,
1755 CRTC_TRIGB_POLARITY_SELECT);
1756
1757 set_reg_field_value(value,
1758 1, /* clear trigger status */
1759 CRTC_TRIGB_CNTL,
1760 CRTC_TRIGB_CLEAR);
1761
1762 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1763 }
1764
1765 /*
1766 *****************************************************************************
1767 * @brief
1768 * Checks whether CRTC triggered reset occurred
1769 *
1770 * @return
1771 * true if triggered reset occurred, false otherwise
1772 *****************************************************************************
1773 */
dce110_timing_generator_did_triggered_reset_occur(struct timing_generator * tg)1774 bool dce110_timing_generator_did_triggered_reset_occur(
1775 struct timing_generator *tg)
1776 {
1777 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1778 uint32_t value = dm_read_reg(tg->ctx,
1779 CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1780 uint32_t value1 = dm_read_reg(tg->ctx,
1781 CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1782 bool force = get_reg_field_value(value,
1783 CRTC_FORCE_COUNT_NOW_CNTL,
1784 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
1785 bool vert_sync = get_reg_field_value(value1,
1786 CRTC_VERT_SYNC_CONTROL,
1787 CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
1788
1789 return (force || vert_sync);
1790 }
1791
1792 /*
1793 * dce110_timing_generator_disable_vga
1794 * Turn OFF VGA Mode and Timing - DxVGA_CONTROL
1795 * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
1796 */
dce110_timing_generator_disable_vga(struct timing_generator * tg)1797 void dce110_timing_generator_disable_vga(
1798 struct timing_generator *tg)
1799 {
1800 uint32_t addr = 0;
1801 uint32_t value = 0;
1802
1803 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1804
1805 switch (tg110->controller_id) {
1806 case CONTROLLER_ID_D0:
1807 addr = mmD1VGA_CONTROL;
1808 break;
1809 case CONTROLLER_ID_D1:
1810 addr = mmD2VGA_CONTROL;
1811 break;
1812 case CONTROLLER_ID_D2:
1813 addr = mmD3VGA_CONTROL;
1814 break;
1815 case CONTROLLER_ID_D3:
1816 addr = mmD4VGA_CONTROL;
1817 break;
1818 case CONTROLLER_ID_D4:
1819 addr = mmD5VGA_CONTROL;
1820 break;
1821 case CONTROLLER_ID_D5:
1822 addr = mmD6VGA_CONTROL;
1823 break;
1824 default:
1825 break;
1826 }
1827 value = dm_read_reg(tg->ctx, addr);
1828
1829 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
1830 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
1831 set_reg_field_value(
1832 value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
1833 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
1834
1835 dm_write_reg(tg->ctx, addr, value);
1836 }
1837
1838 /*
1839 * set_overscan_color_black
1840 *
1841 * @param :black_color is one of the color space
1842 * :this routine will set overscan black color according to the color space.
1843 * @return none
1844 */
dce110_timing_generator_set_overscan_color_black(struct timing_generator * tg,const struct tg_color * color)1845 void dce110_timing_generator_set_overscan_color_black(
1846 struct timing_generator *tg,
1847 const struct tg_color *color)
1848 {
1849 struct dc_context *ctx = tg->ctx;
1850 uint32_t addr;
1851 uint32_t value = 0;
1852 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1853
1854 set_reg_field_value(
1855 value,
1856 color->color_b_cb,
1857 CRTC_OVERSCAN_COLOR,
1858 CRTC_OVERSCAN_COLOR_BLUE);
1859
1860 set_reg_field_value(
1861 value,
1862 color->color_r_cr,
1863 CRTC_OVERSCAN_COLOR,
1864 CRTC_OVERSCAN_COLOR_RED);
1865
1866 set_reg_field_value(
1867 value,
1868 color->color_g_y,
1869 CRTC_OVERSCAN_COLOR,
1870 CRTC_OVERSCAN_COLOR_GREEN);
1871
1872 addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1873 dm_write_reg(ctx, addr, value);
1874 addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1875 dm_write_reg(ctx, addr, value);
1876 /* This is desirable to have a constant DAC output voltage during the
1877 * blank time that is higher than the 0 volt reference level that the
1878 * DAC outputs when the NBLANK signal
1879 * is asserted low, such as for output to an analog TV. */
1880 addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1881 dm_write_reg(ctx, addr, value);
1882
1883 /* TO DO we have to program EXT registers and we need to know LB DATA
1884 * format because it is used when more 10 , i.e. 12 bits per color
1885 *
1886 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
1887 * m_mmDxCRTC_BLACK_COLOR_EXT
1888 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
1889 */
1890
1891 }
1892
dce110_tg_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)1893 void dce110_tg_program_blank_color(struct timing_generator *tg,
1894 const struct tg_color *black_color)
1895 {
1896 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1897 uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1898 uint32_t value = dm_read_reg(tg->ctx, addr);
1899
1900 set_reg_field_value(
1901 value,
1902 black_color->color_b_cb,
1903 CRTC_BLACK_COLOR,
1904 CRTC_BLACK_COLOR_B_CB);
1905 set_reg_field_value(
1906 value,
1907 black_color->color_g_y,
1908 CRTC_BLACK_COLOR,
1909 CRTC_BLACK_COLOR_G_Y);
1910 set_reg_field_value(
1911 value,
1912 black_color->color_r_cr,
1913 CRTC_BLACK_COLOR,
1914 CRTC_BLACK_COLOR_R_CR);
1915
1916 dm_write_reg(tg->ctx, addr, value);
1917
1918 addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1919 dm_write_reg(tg->ctx, addr, value);
1920 }
1921
dce110_tg_set_overscan_color(struct timing_generator * tg,const struct tg_color * overscan_color)1922 void dce110_tg_set_overscan_color(struct timing_generator *tg,
1923 const struct tg_color *overscan_color)
1924 {
1925 struct dc_context *ctx = tg->ctx;
1926 uint32_t value = 0;
1927 uint32_t addr;
1928 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1929
1930 set_reg_field_value(
1931 value,
1932 overscan_color->color_b_cb,
1933 CRTC_OVERSCAN_COLOR,
1934 CRTC_OVERSCAN_COLOR_BLUE);
1935
1936 set_reg_field_value(
1937 value,
1938 overscan_color->color_g_y,
1939 CRTC_OVERSCAN_COLOR,
1940 CRTC_OVERSCAN_COLOR_GREEN);
1941
1942 set_reg_field_value(
1943 value,
1944 overscan_color->color_r_cr,
1945 CRTC_OVERSCAN_COLOR,
1946 CRTC_OVERSCAN_COLOR_RED);
1947
1948 addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1949 dm_write_reg(ctx, addr, value);
1950 }
1951
dce110_tg_program_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,int pstate_keepout,const enum signal_type signal,bool use_vbios)1952 void dce110_tg_program_timing(struct timing_generator *tg,
1953 const struct dc_crtc_timing *timing,
1954 int vready_offset,
1955 int vstartup_start,
1956 int vupdate_offset,
1957 int vupdate_width,
1958 int pstate_keepout,
1959 const enum signal_type signal,
1960 bool use_vbios)
1961 {
1962 if (use_vbios)
1963 dce110_timing_generator_program_timing_generator(tg, timing);
1964 else
1965 dce110_timing_generator_program_blanking(tg, timing);
1966 }
1967
dce110_tg_is_blanked(struct timing_generator * tg)1968 bool dce110_tg_is_blanked(struct timing_generator *tg)
1969 {
1970 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1971 uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
1972
1973 if (get_reg_field_value(
1974 value,
1975 CRTC_BLANK_CONTROL,
1976 CRTC_BLANK_DATA_EN) == 1 &&
1977 get_reg_field_value(
1978 value,
1979 CRTC_BLANK_CONTROL,
1980 CRTC_CURRENT_BLANK_STATE) == 1)
1981 return true;
1982 return false;
1983 }
1984
dce110_tg_set_blank(struct timing_generator * tg,bool enable_blanking)1985 void dce110_tg_set_blank(struct timing_generator *tg,
1986 bool enable_blanking)
1987 {
1988 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1989 uint32_t value = 0;
1990
1991 set_reg_field_value(
1992 value,
1993 1,
1994 CRTC_DOUBLE_BUFFER_CONTROL,
1995 CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
1996
1997 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
1998 value = 0;
1999
2000 if (enable_blanking) {
2001 set_reg_field_value(
2002 value,
2003 1,
2004 CRTC_BLANK_CONTROL,
2005 CRTC_BLANK_DATA_EN);
2006
2007 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
2008
2009 } else
2010 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
2011 }
2012
dce110_tg_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing)2013 bool dce110_tg_validate_timing(struct timing_generator *tg,
2014 const struct dc_crtc_timing *timing)
2015 {
2016 return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
2017 }
2018
2019 /* "Container" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
2020 *
2021 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
2022 * container rate.
2023 *
2024 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
2025 * halved to maintain the correct pixel rate.
2026 *
2027 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
2028 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
2029 *
2030 */
dce110_is_two_pixels_per_container(const struct dc_crtc_timing * timing)2031 bool dce110_is_two_pixels_per_container(const struct dc_crtc_timing *timing)
2032 {
2033 return timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
2034 }
2035
dce110_tg_wait_for_state(struct timing_generator * tg,enum crtc_state state)2036 void dce110_tg_wait_for_state(struct timing_generator *tg,
2037 enum crtc_state state)
2038 {
2039 switch (state) {
2040 case CRTC_STATE_VBLANK:
2041 dce110_timing_generator_wait_for_vblank(tg);
2042 break;
2043
2044 case CRTC_STATE_VACTIVE:
2045 dce110_timing_generator_wait_for_vactive(tg);
2046 break;
2047
2048 default:
2049 break;
2050 }
2051 }
2052
dce110_tg_set_colors(struct timing_generator * tg,const struct tg_color * blank_color,const struct tg_color * overscan_color)2053 void dce110_tg_set_colors(struct timing_generator *tg,
2054 const struct tg_color *blank_color,
2055 const struct tg_color *overscan_color)
2056 {
2057 if (blank_color != NULL)
2058 dce110_tg_program_blank_color(tg, blank_color);
2059 if (overscan_color != NULL)
2060 dce110_tg_set_overscan_color(tg, overscan_color);
2061 }
2062
2063 /* Gets first line of blank region of the display timing for CRTC
2064 * and programms is as a trigger to fire vertical interrupt
2065 */
dce110_arm_vert_intr(struct timing_generator * tg,uint8_t width)2066 bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
2067 {
2068 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2069 uint32_t v_blank_start = 0;
2070 uint32_t v_blank_end = 0;
2071 uint32_t val = 0;
2072 uint32_t h_position, v_position;
2073
2074 tg->funcs->get_scanoutpos(
2075 tg,
2076 &v_blank_start,
2077 &v_blank_end,
2078 &h_position,
2079 &v_position);
2080
2081 if (v_blank_start == 0 || v_blank_end == 0)
2082 return false;
2083
2084 set_reg_field_value(
2085 val,
2086 v_blank_start,
2087 CRTC_VERTICAL_INTERRUPT0_POSITION,
2088 CRTC_VERTICAL_INTERRUPT0_LINE_START);
2089
2090 /* Set interval width for interrupt to fire to 1 scanline */
2091 set_reg_field_value(
2092 val,
2093 v_blank_start + width,
2094 CRTC_VERTICAL_INTERRUPT0_POSITION,
2095 CRTC_VERTICAL_INTERRUPT0_LINE_END);
2096
2097 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
2098
2099 return true;
2100 }
2101
dce110_is_tg_enabled(struct timing_generator * tg)2102 static bool dce110_is_tg_enabled(struct timing_generator *tg)
2103 {
2104 uint32_t addr = 0;
2105 uint32_t value = 0;
2106 uint32_t field = 0;
2107 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2108
2109 addr = CRTC_REG(mmCRTC_CONTROL);
2110 value = dm_read_reg(tg->ctx, addr);
2111 field = get_reg_field_value(value, CRTC_CONTROL,
2112 CRTC_CURRENT_MASTER_EN_STATE);
2113 return field == 1;
2114 }
2115
dce110_configure_crc(struct timing_generator * tg,const struct crc_params * params)2116 bool dce110_configure_crc(struct timing_generator *tg,
2117 const struct crc_params *params)
2118 {
2119 uint32_t cntl_addr = 0;
2120 uint32_t addr = 0;
2121 uint32_t value;
2122 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2123
2124 /* Cannot configure crc on a CRTC that is disabled */
2125 if (!dce110_is_tg_enabled(tg))
2126 return false;
2127
2128 cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
2129
2130 /* First, disable CRC before we configure it. */
2131 dm_write_reg(tg->ctx, cntl_addr, 0);
2132
2133 if (!params->enable)
2134 return true;
2135
2136 /* Program frame boundaries */
2137 /* Window A x axis start and end. */
2138 value = 0;
2139 addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
2140 set_reg_field_value(value, params->windowa_x_start,
2141 CRTC_CRC0_WINDOWA_X_CONTROL,
2142 CRTC_CRC0_WINDOWA_X_START);
2143 set_reg_field_value(value, params->windowa_x_end,
2144 CRTC_CRC0_WINDOWA_X_CONTROL,
2145 CRTC_CRC0_WINDOWA_X_END);
2146 dm_write_reg(tg->ctx, addr, value);
2147
2148 /* Window A y axis start and end. */
2149 value = 0;
2150 addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
2151 set_reg_field_value(value, params->windowa_y_start,
2152 CRTC_CRC0_WINDOWA_Y_CONTROL,
2153 CRTC_CRC0_WINDOWA_Y_START);
2154 set_reg_field_value(value, params->windowa_y_end,
2155 CRTC_CRC0_WINDOWA_Y_CONTROL,
2156 CRTC_CRC0_WINDOWA_Y_END);
2157 dm_write_reg(tg->ctx, addr, value);
2158
2159 /* Window B x axis start and end. */
2160 value = 0;
2161 addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
2162 set_reg_field_value(value, params->windowb_x_start,
2163 CRTC_CRC0_WINDOWB_X_CONTROL,
2164 CRTC_CRC0_WINDOWB_X_START);
2165 set_reg_field_value(value, params->windowb_x_end,
2166 CRTC_CRC0_WINDOWB_X_CONTROL,
2167 CRTC_CRC0_WINDOWB_X_END);
2168 dm_write_reg(tg->ctx, addr, value);
2169
2170 /* Window B y axis start and end. */
2171 value = 0;
2172 addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
2173 set_reg_field_value(value, params->windowb_y_start,
2174 CRTC_CRC0_WINDOWB_Y_CONTROL,
2175 CRTC_CRC0_WINDOWB_Y_START);
2176 set_reg_field_value(value, params->windowb_y_end,
2177 CRTC_CRC0_WINDOWB_Y_CONTROL,
2178 CRTC_CRC0_WINDOWB_Y_END);
2179 dm_write_reg(tg->ctx, addr, value);
2180
2181 /* Set crc mode and selection, and enable. Only using CRC0*/
2182 value = 0;
2183 set_reg_field_value(value, params->continuous_mode ? 1 : 0,
2184 CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
2185 set_reg_field_value(value, params->selection,
2186 CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
2187 set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
2188 dm_write_reg(tg->ctx, cntl_addr, value);
2189
2190 return true;
2191 }
2192
dce110_get_crc(struct timing_generator * tg,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)2193 bool dce110_get_crc(struct timing_generator *tg,
2194 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
2195 {
2196 uint32_t addr = 0;
2197 uint32_t value = 0;
2198 uint32_t field = 0;
2199 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2200
2201 addr = CRTC_REG(mmCRTC_CRC_CNTL);
2202 value = dm_read_reg(tg->ctx, addr);
2203 field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
2204
2205 /* Early return if CRC is not enabled for this CRTC */
2206 if (!field)
2207 return false;
2208
2209 addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
2210 value = dm_read_reg(tg->ctx, addr);
2211 *r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
2212 *g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
2213
2214 addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
2215 value = dm_read_reg(tg->ctx, addr);
2216 *b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
2217
2218 return true;
2219 }
2220
2221 static const struct timing_generator_funcs dce110_tg_funcs = {
2222 .validate_timing = dce110_tg_validate_timing,
2223 .program_timing = dce110_tg_program_timing,
2224 .enable_crtc = dce110_timing_generator_enable_crtc,
2225 .disable_crtc = dce110_timing_generator_disable_crtc,
2226 .is_counter_moving = dce110_timing_generator_is_counter_moving,
2227 .get_position = dce110_timing_generator_get_position,
2228 .get_frame_count = dce110_timing_generator_get_vblank_counter,
2229 .get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
2230 .set_early_control = dce110_timing_generator_set_early_control,
2231 .wait_for_state = dce110_tg_wait_for_state,
2232 .set_blank = dce110_tg_set_blank,
2233 .is_blanked = dce110_tg_is_blanked,
2234 .set_colors = dce110_tg_set_colors,
2235 .set_overscan_blank_color =
2236 dce110_timing_generator_set_overscan_color_black,
2237 .set_blank_color = dce110_timing_generator_program_blank_color,
2238 .disable_vga = dce110_timing_generator_disable_vga,
2239 .did_triggered_reset_occur =
2240 dce110_timing_generator_did_triggered_reset_occur,
2241 .setup_global_swap_lock =
2242 dce110_timing_generator_setup_global_swap_lock,
2243 .enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
2244 .enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
2245 .disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
2246 .tear_down_global_swap_lock =
2247 dce110_timing_generator_tear_down_global_swap_lock,
2248 .enable_advanced_request =
2249 dce110_timing_generator_enable_advanced_request,
2250 .set_drr =
2251 dce110_timing_generator_set_drr,
2252 .get_last_used_drr_vtotal = NULL,
2253 .set_static_screen_control =
2254 dce110_timing_generator_set_static_screen_control,
2255 .set_test_pattern = dce110_timing_generator_set_test_pattern,
2256 .arm_vert_intr = dce110_arm_vert_intr,
2257 .is_tg_enabled = dce110_is_tg_enabled,
2258 .configure_crc = dce110_configure_crc,
2259 .get_crc = dce110_get_crc,
2260 .is_two_pixels_per_container = dce110_is_two_pixels_per_container,
2261 };
2262
dce110_timing_generator_construct(struct dce110_timing_generator * tg110,struct dc_context * ctx,uint32_t instance,const struct dce110_timing_generator_offsets * offsets)2263 void dce110_timing_generator_construct(
2264 struct dce110_timing_generator *tg110,
2265 struct dc_context *ctx,
2266 uint32_t instance,
2267 const struct dce110_timing_generator_offsets *offsets)
2268 {
2269 tg110->controller_id = CONTROLLER_ID_D0 + instance;
2270 tg110->base.inst = instance;
2271
2272 tg110->offsets = *offsets;
2273
2274 tg110->base.funcs = &dce110_tg_funcs;
2275
2276 tg110->base.ctx = ctx;
2277 tg110->base.bp = ctx->dc_bios;
2278
2279 tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
2280 tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
2281
2282 tg110->min_h_blank = 56;
2283 tg110->min_h_front_porch = 4;
2284 tg110->min_h_back_porch = 4;
2285 }
2286