xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include <drm/ttm/ttm_tt.h>
37 #include <drm/drm_exec.h>
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_amdkfd.h"
41 #include "amdgpu_gmc.h"
42 #include "amdgpu_xgmi.h"
43 #include "amdgpu_dma_buf.h"
44 #include "amdgpu_res_cursor.h"
45 #include "kfd_svm.h"
46 
47 /**
48  * DOC: GPUVM
49  *
50  * GPUVM is the MMU functionality provided on the GPU.
51  * GPUVM is similar to the legacy GART on older asics, however
52  * rather than there being a single global GART table
53  * for the entire GPU, there can be multiple GPUVM page tables active
54  * at any given time.  The GPUVM page tables can contain a mix
55  * VRAM pages and system pages (both memory and MMIO) and system pages
56  * can be mapped as snooped (cached system pages) or unsnooped
57  * (uncached system pages).
58  *
59  * Each active GPUVM has an ID associated with it and there is a page table
60  * linked with each VMID.  When executing a command buffer,
61  * the kernel tells the engine what VMID to use for that command
62  * buffer.  VMIDs are allocated dynamically as commands are submitted.
63  * The userspace drivers maintain their own address space and the kernel
64  * sets up their pages tables accordingly when they submit their
65  * command buffers and a VMID is assigned.
66  * The hardware supports up to 16 active GPUVMs at any given time.
67  *
68  * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
69  * on the ASIC family.  GPUVM supports RWX attributes on each page as well
70  * as other features such as encryption and caching attributes.
71  *
72  * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
73  * addition to an aperture managed by a page table, VMID 0 also has
74  * several other apertures.  There is an aperture for direct access to VRAM
75  * and there is a legacy AGP aperture which just forwards accesses directly
76  * to the matching system physical addresses (or IOVAs when an IOMMU is
77  * present).  These apertures provide direct access to these memories without
78  * incurring the overhead of a page table.  VMID 0 is used by the kernel
79  * driver for tasks like memory management.
80  *
81  * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
82  * For user applications, each application can have their own unique GPUVM
83  * address space.  The application manages the address space and the kernel
84  * driver manages the GPUVM page tables for each process.  If an GPU client
85  * accesses an invalid page, it will generate a GPU page fault, similar to
86  * accessing an invalid page on a CPU.
87  */
88 
89 #define START(node) ((node)->start)
90 #define LAST(node) ((node)->last)
91 
92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
93 		     START, LAST, static, amdgpu_vm_it)
94 
95 #undef START
96 #undef LAST
97 
98 /**
99  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
100  */
101 struct amdgpu_prt_cb {
102 
103 	/**
104 	 * @adev: amdgpu device
105 	 */
106 	struct amdgpu_device *adev;
107 
108 	/**
109 	 * @cb: callback
110 	 */
111 	struct dma_fence_cb cb;
112 };
113 
114 /**
115  * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence
116  */
117 struct amdgpu_vm_tlb_seq_struct {
118 	/**
119 	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
120 	 */
121 	struct amdgpu_vm *vm;
122 
123 	/**
124 	 * @cb: callback
125 	 */
126 	struct dma_fence_cb cb;
127 };
128 
129 /**
130  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
131  *
132  * @adev: amdgpu_device pointer
133  * @vm: amdgpu_vm pointer
134  * @pasid: the pasid the VM is using on this GPU
135  *
136  * Set the pasid this VM is using on this GPU, can also be used to remove the
137  * pasid by passing in zero.
138  *
139  */
140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
141 			u32 pasid)
142 {
143 	int r;
144 
145 	if (vm->pasid == pasid)
146 		return 0;
147 
148 	if (vm->pasid) {
149 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
150 		if (r < 0)
151 			return r;
152 
153 		vm->pasid = 0;
154 	}
155 
156 	if (pasid) {
157 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
158 					GFP_KERNEL));
159 		if (r < 0)
160 			return r;
161 
162 		vm->pasid = pasid;
163 	}
164 
165 
166 	return 0;
167 }
168 
169 /**
170  * amdgpu_vm_bo_evicted - vm_bo is evicted
171  *
172  * @vm_bo: vm_bo which is evicted
173  *
174  * State for PDs/PTs and per VM BOs which are not at the location they should
175  * be.
176  */
177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
178 {
179 	struct amdgpu_vm *vm = vm_bo->vm;
180 	struct amdgpu_bo *bo = vm_bo->bo;
181 
182 	vm_bo->moved = true;
183 	spin_lock(&vm_bo->vm->status_lock);
184 	if (bo->tbo.type == ttm_bo_type_kernel)
185 		list_move(&vm_bo->vm_status, &vm->evicted);
186 	else
187 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
188 	spin_unlock(&vm_bo->vm->status_lock);
189 }
190 /**
191  * amdgpu_vm_bo_moved - vm_bo is moved
192  *
193  * @vm_bo: vm_bo which is moved
194  *
195  * State for per VM BOs which are moved, but that change is not yet reflected
196  * in the page tables.
197  */
198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
199 {
200 	spin_lock(&vm_bo->vm->status_lock);
201 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
202 	spin_unlock(&vm_bo->vm->status_lock);
203 }
204 
205 /**
206  * amdgpu_vm_bo_idle - vm_bo is idle
207  *
208  * @vm_bo: vm_bo which is now idle
209  *
210  * State for PDs/PTs and per VM BOs which have gone through the state machine
211  * and are now idle.
212  */
213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
214 {
215 	spin_lock(&vm_bo->vm->status_lock);
216 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
217 	spin_unlock(&vm_bo->vm->status_lock);
218 	vm_bo->moved = false;
219 }
220 
221 /**
222  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
223  *
224  * @vm_bo: vm_bo which is now invalidated
225  *
226  * State for normal BOs which are invalidated and that change not yet reflected
227  * in the PTs.
228  */
229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
230 {
231 	spin_lock(&vm_bo->vm->status_lock);
232 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
233 	spin_unlock(&vm_bo->vm->status_lock);
234 }
235 
236 /**
237  * amdgpu_vm_bo_relocated - vm_bo is reloacted
238  *
239  * @vm_bo: vm_bo which is relocated
240  *
241  * State for PDs/PTs which needs to update their parent PD.
242  * For the root PD, just move to idle state.
243  */
244 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
245 {
246 	if (vm_bo->bo->parent) {
247 		spin_lock(&vm_bo->vm->status_lock);
248 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
249 		spin_unlock(&vm_bo->vm->status_lock);
250 	} else {
251 		amdgpu_vm_bo_idle(vm_bo);
252 	}
253 }
254 
255 /**
256  * amdgpu_vm_bo_done - vm_bo is done
257  *
258  * @vm_bo: vm_bo which is now done
259  *
260  * State for normal BOs which are invalidated and that change has been updated
261  * in the PTs.
262  */
263 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
264 {
265 	spin_lock(&vm_bo->vm->status_lock);
266 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
267 	spin_unlock(&vm_bo->vm->status_lock);
268 }
269 
270 /**
271  * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine
272  * @vm: the VM which state machine to reset
273  *
274  * Move all vm_bo object in the VM into a state where they will be updated
275  * again during validation.
276  */
277 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm)
278 {
279 	struct amdgpu_vm_bo_base *vm_bo, *tmp;
280 
281 	spin_lock(&vm->status_lock);
282 	list_splice_init(&vm->done, &vm->invalidated);
283 	list_for_each_entry(vm_bo, &vm->invalidated, vm_status)
284 		vm_bo->moved = true;
285 	list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) {
286 		struct amdgpu_bo *bo = vm_bo->bo;
287 
288 		if (!bo || bo->tbo.type != ttm_bo_type_kernel)
289 			list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
290 		else if (bo->parent)
291 			list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
292 	}
293 	spin_unlock(&vm->status_lock);
294 }
295 
296 /**
297  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
298  *
299  * @base: base structure for tracking BO usage in a VM
300  * @vm: vm to which bo is to be added
301  * @bo: amdgpu buffer object
302  *
303  * Initialize a bo_va_base structure and add it to the appropriate lists
304  *
305  */
306 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
307 			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
308 {
309 	base->vm = vm;
310 	base->bo = bo;
311 	base->next = NULL;
312 	INIT_LIST_HEAD(&base->vm_status);
313 
314 	if (!bo)
315 		return;
316 	base->next = bo->vm_bo;
317 	bo->vm_bo = base;
318 
319 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
320 		return;
321 
322 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
323 
324 	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
325 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
326 		amdgpu_vm_bo_relocated(base);
327 	else
328 		amdgpu_vm_bo_idle(base);
329 
330 	if (bo->preferred_domains &
331 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
332 		return;
333 
334 	/*
335 	 * we checked all the prerequisites, but it looks like this per vm bo
336 	 * is currently evicted. add the bo to the evicted list to make sure it
337 	 * is validated on next vm use to avoid fault.
338 	 * */
339 	amdgpu_vm_bo_evicted(base);
340 }
341 
342 /**
343  * amdgpu_vm_lock_pd - lock PD in drm_exec
344  *
345  * @vm: vm providing the BOs
346  * @exec: drm execution context
347  * @num_fences: number of extra fences to reserve
348  *
349  * Lock the VM root PD in the DRM execution context.
350  */
351 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec,
352 		      unsigned int num_fences)
353 {
354 	/* We need at least two fences for the VM PD/PT updates */
355 	return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base,
356 				    2 + num_fences);
357 }
358 
359 /**
360  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
361  *
362  * @adev: amdgpu device pointer
363  * @vm: vm providing the BOs
364  *
365  * Move all BOs to the end of LRU and remember their positions to put them
366  * together.
367  */
368 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
369 				struct amdgpu_vm *vm)
370 {
371 	spin_lock(&adev->mman.bdev.lru_lock);
372 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
373 	spin_unlock(&adev->mman.bdev.lru_lock);
374 }
375 
376 /* Create scheduler entities for page table updates */
377 static int amdgpu_vm_init_entities(struct amdgpu_device *adev,
378 				   struct amdgpu_vm *vm)
379 {
380 	int r;
381 
382 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
383 				  adev->vm_manager.vm_pte_scheds,
384 				  adev->vm_manager.vm_pte_num_scheds, NULL);
385 	if (r)
386 		goto error;
387 
388 	return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
389 				     adev->vm_manager.vm_pte_scheds,
390 				     adev->vm_manager.vm_pte_num_scheds, NULL);
391 
392 error:
393 	drm_sched_entity_destroy(&vm->immediate);
394 	return r;
395 }
396 
397 /* Destroy the entities for page table updates again */
398 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm)
399 {
400 	drm_sched_entity_destroy(&vm->immediate);
401 	drm_sched_entity_destroy(&vm->delayed);
402 }
403 
404 /**
405  * amdgpu_vm_generation - return the page table re-generation counter
406  * @adev: the amdgpu_device
407  * @vm: optional VM to check, might be NULL
408  *
409  * Returns a page table re-generation token to allow checking if submissions
410  * are still valid to use this VM. The VM parameter might be NULL in which case
411  * just the VRAM lost counter will be used.
412  */
413 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm)
414 {
415 	uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32;
416 
417 	if (!vm)
418 		return result;
419 
420 	result += vm->generation;
421 	/* Add one if the page tables will be re-generated on next CS */
422 	if (drm_sched_entity_error(&vm->delayed))
423 		++result;
424 
425 	return result;
426 }
427 
428 /**
429  * amdgpu_vm_validate_pt_bos - validate the page table BOs
430  *
431  * @adev: amdgpu device pointer
432  * @vm: vm providing the BOs
433  * @validate: callback to do the validation
434  * @param: parameter for the validation callback
435  *
436  * Validate the page table BOs on command submission if neccessary.
437  *
438  * Returns:
439  * Validation result.
440  */
441 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
442 			      int (*validate)(void *p, struct amdgpu_bo *bo),
443 			      void *param)
444 {
445 	struct amdgpu_vm_bo_base *bo_base;
446 	struct amdgpu_bo *shadow;
447 	struct amdgpu_bo *bo;
448 	int r;
449 
450 	if (drm_sched_entity_error(&vm->delayed)) {
451 		++vm->generation;
452 		amdgpu_vm_bo_reset_state_machine(vm);
453 		amdgpu_vm_fini_entities(vm);
454 		r = amdgpu_vm_init_entities(adev, vm);
455 		if (r)
456 			return r;
457 	}
458 
459 	spin_lock(&vm->status_lock);
460 	while (!list_empty(&vm->evicted)) {
461 		bo_base = list_first_entry(&vm->evicted,
462 					   struct amdgpu_vm_bo_base,
463 					   vm_status);
464 		spin_unlock(&vm->status_lock);
465 
466 		bo = bo_base->bo;
467 		shadow = amdgpu_bo_shadowed(bo);
468 
469 		r = validate(param, bo);
470 		if (r)
471 			return r;
472 		if (shadow) {
473 			r = validate(param, shadow);
474 			if (r)
475 				return r;
476 		}
477 
478 		if (bo->tbo.type != ttm_bo_type_kernel) {
479 			amdgpu_vm_bo_moved(bo_base);
480 		} else {
481 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
482 			amdgpu_vm_bo_relocated(bo_base);
483 		}
484 		spin_lock(&vm->status_lock);
485 	}
486 	spin_unlock(&vm->status_lock);
487 
488 	amdgpu_vm_eviction_lock(vm);
489 	vm->evicting = false;
490 	amdgpu_vm_eviction_unlock(vm);
491 
492 	return 0;
493 }
494 
495 /**
496  * amdgpu_vm_ready - check VM is ready for updates
497  *
498  * @vm: VM to check
499  *
500  * Check if all VM PDs/PTs are ready for updates
501  *
502  * Returns:
503  * True if VM is not evicting.
504  */
505 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
506 {
507 	bool empty;
508 	bool ret;
509 
510 	amdgpu_vm_eviction_lock(vm);
511 	ret = !vm->evicting;
512 	amdgpu_vm_eviction_unlock(vm);
513 
514 	spin_lock(&vm->status_lock);
515 	empty = list_empty(&vm->evicted);
516 	spin_unlock(&vm->status_lock);
517 
518 	return ret && empty;
519 }
520 
521 /**
522  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
523  *
524  * @adev: amdgpu_device pointer
525  */
526 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
527 {
528 	const struct amdgpu_ip_block *ip_block;
529 	bool has_compute_vm_bug;
530 	struct amdgpu_ring *ring;
531 	int i;
532 
533 	has_compute_vm_bug = false;
534 
535 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
536 	if (ip_block) {
537 		/* Compute has a VM bug for GFX version < 7.
538 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
539 		if (ip_block->version->major <= 7)
540 			has_compute_vm_bug = true;
541 		else if (ip_block->version->major == 8)
542 			if (adev->gfx.mec_fw_version < 673)
543 				has_compute_vm_bug = true;
544 	}
545 
546 	for (i = 0; i < adev->num_rings; i++) {
547 		ring = adev->rings[i];
548 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
549 			/* only compute rings */
550 			ring->has_compute_vm_bug = has_compute_vm_bug;
551 		else
552 			ring->has_compute_vm_bug = false;
553 	}
554 }
555 
556 /**
557  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
558  *
559  * @ring: ring on which the job will be submitted
560  * @job: job to submit
561  *
562  * Returns:
563  * True if sync is needed.
564  */
565 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
566 				  struct amdgpu_job *job)
567 {
568 	struct amdgpu_device *adev = ring->adev;
569 	unsigned vmhub = ring->vm_hub;
570 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
571 
572 	if (job->vmid == 0)
573 		return false;
574 
575 	if (job->vm_needs_flush || ring->has_compute_vm_bug)
576 		return true;
577 
578 	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
579 		return true;
580 
581 	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
582 		return true;
583 
584 	return false;
585 }
586 
587 /**
588  * amdgpu_vm_flush - hardware flush the vm
589  *
590  * @ring: ring to use for flush
591  * @job:  related job
592  * @need_pipe_sync: is pipe sync needed
593  *
594  * Emit a VM flush when it is necessary.
595  *
596  * Returns:
597  * 0 on success, errno otherwise.
598  */
599 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
600 		    bool need_pipe_sync)
601 {
602 	struct amdgpu_device *adev = ring->adev;
603 	unsigned vmhub = ring->vm_hub;
604 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
605 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
606 	bool spm_update_needed = job->spm_update_needed;
607 	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
608 		job->gds_switch_needed;
609 	bool vm_flush_needed = job->vm_needs_flush;
610 	struct dma_fence *fence = NULL;
611 	bool pasid_mapping_needed = false;
612 	unsigned patch_offset = 0;
613 	int r;
614 
615 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
616 		gds_switch_needed = true;
617 		vm_flush_needed = true;
618 		pasid_mapping_needed = true;
619 		spm_update_needed = true;
620 	}
621 
622 	mutex_lock(&id_mgr->lock);
623 	if (id->pasid != job->pasid || !id->pasid_mapping ||
624 	    !dma_fence_is_signaled(id->pasid_mapping))
625 		pasid_mapping_needed = true;
626 	mutex_unlock(&id_mgr->lock);
627 
628 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
629 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
630 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
631 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
632 		ring->funcs->emit_wreg;
633 
634 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
635 		return 0;
636 
637 	amdgpu_ring_ib_begin(ring);
638 	if (ring->funcs->init_cond_exec)
639 		patch_offset = amdgpu_ring_init_cond_exec(ring);
640 
641 	if (need_pipe_sync)
642 		amdgpu_ring_emit_pipeline_sync(ring);
643 
644 	if (vm_flush_needed) {
645 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
646 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
647 	}
648 
649 	if (pasid_mapping_needed)
650 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
651 
652 	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
653 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
654 
655 	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
656 	    gds_switch_needed) {
657 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
658 					    job->gds_size, job->gws_base,
659 					    job->gws_size, job->oa_base,
660 					    job->oa_size);
661 	}
662 
663 	if (vm_flush_needed || pasid_mapping_needed) {
664 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
665 		if (r)
666 			return r;
667 	}
668 
669 	if (vm_flush_needed) {
670 		mutex_lock(&id_mgr->lock);
671 		dma_fence_put(id->last_flush);
672 		id->last_flush = dma_fence_get(fence);
673 		id->current_gpu_reset_count =
674 			atomic_read(&adev->gpu_reset_counter);
675 		mutex_unlock(&id_mgr->lock);
676 	}
677 
678 	if (pasid_mapping_needed) {
679 		mutex_lock(&id_mgr->lock);
680 		id->pasid = job->pasid;
681 		dma_fence_put(id->pasid_mapping);
682 		id->pasid_mapping = dma_fence_get(fence);
683 		mutex_unlock(&id_mgr->lock);
684 	}
685 	dma_fence_put(fence);
686 
687 	if (ring->funcs->patch_cond_exec)
688 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
689 
690 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
691 	if (ring->funcs->emit_switch_buffer) {
692 		amdgpu_ring_emit_switch_buffer(ring);
693 		amdgpu_ring_emit_switch_buffer(ring);
694 	}
695 	amdgpu_ring_ib_end(ring);
696 	return 0;
697 }
698 
699 /**
700  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
701  *
702  * @vm: requested vm
703  * @bo: requested buffer object
704  *
705  * Find @bo inside the requested vm.
706  * Search inside the @bos vm list for the requested vm
707  * Returns the found bo_va or NULL if none is found
708  *
709  * Object has to be reserved!
710  *
711  * Returns:
712  * Found bo_va or NULL.
713  */
714 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
715 				       struct amdgpu_bo *bo)
716 {
717 	struct amdgpu_vm_bo_base *base;
718 
719 	for (base = bo->vm_bo; base; base = base->next) {
720 		if (base->vm != vm)
721 			continue;
722 
723 		return container_of(base, struct amdgpu_bo_va, base);
724 	}
725 	return NULL;
726 }
727 
728 /**
729  * amdgpu_vm_map_gart - Resolve gart mapping of addr
730  *
731  * @pages_addr: optional DMA address to use for lookup
732  * @addr: the unmapped addr
733  *
734  * Look up the physical address of the page that the pte resolves
735  * to.
736  *
737  * Returns:
738  * The pointer for the page table entry.
739  */
740 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
741 {
742 	uint64_t result;
743 
744 	/* page table offset */
745 	result = pages_addr[addr >> PAGE_SHIFT];
746 
747 	/* in case cpu page size != gpu page size*/
748 	result |= addr & (~PAGE_MASK);
749 
750 	result &= 0xFFFFFFFFFFFFF000ULL;
751 
752 	return result;
753 }
754 
755 /**
756  * amdgpu_vm_update_pdes - make sure that all directories are valid
757  *
758  * @adev: amdgpu_device pointer
759  * @vm: requested vm
760  * @immediate: submit immediately to the paging queue
761  *
762  * Makes sure all directories are up to date.
763  *
764  * Returns:
765  * 0 for success, error for failure.
766  */
767 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
768 			  struct amdgpu_vm *vm, bool immediate)
769 {
770 	struct amdgpu_vm_update_params params;
771 	struct amdgpu_vm_bo_base *entry;
772 	bool flush_tlb_needed = false;
773 	LIST_HEAD(relocated);
774 	int r, idx;
775 
776 	spin_lock(&vm->status_lock);
777 	list_splice_init(&vm->relocated, &relocated);
778 	spin_unlock(&vm->status_lock);
779 
780 	if (list_empty(&relocated))
781 		return 0;
782 
783 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
784 		return -ENODEV;
785 
786 	memset(&params, 0, sizeof(params));
787 	params.adev = adev;
788 	params.vm = vm;
789 	params.immediate = immediate;
790 
791 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
792 	if (r)
793 		goto error;
794 
795 	list_for_each_entry(entry, &relocated, vm_status) {
796 		/* vm_flush_needed after updating moved PDEs */
797 		flush_tlb_needed |= entry->moved;
798 
799 		r = amdgpu_vm_pde_update(&params, entry);
800 		if (r)
801 			goto error;
802 	}
803 
804 	r = vm->update_funcs->commit(&params, &vm->last_update);
805 	if (r)
806 		goto error;
807 
808 	if (flush_tlb_needed)
809 		atomic64_inc(&vm->tlb_seq);
810 
811 	while (!list_empty(&relocated)) {
812 		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
813 					 vm_status);
814 		amdgpu_vm_bo_idle(entry);
815 	}
816 
817 error:
818 	drm_dev_exit(idx);
819 	return r;
820 }
821 
822 /**
823  * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
824  * @fence: unused
825  * @cb: the callback structure
826  *
827  * Increments the tlb sequence to make sure that future CS execute a VM flush.
828  */
829 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
830 				 struct dma_fence_cb *cb)
831 {
832 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
833 
834 	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
835 	atomic64_inc(&tlb_cb->vm->tlb_seq);
836 	kfree(tlb_cb);
837 }
838 
839 /**
840  * amdgpu_vm_update_range - update a range in the vm page table
841  *
842  * @adev: amdgpu_device pointer to use for commands
843  * @vm: the VM to update the range
844  * @immediate: immediate submission in a page fault
845  * @unlocked: unlocked invalidation during MM callback
846  * @flush_tlb: trigger tlb invalidation after update completed
847  * @allow_override: change MTYPE for local NUMA nodes
848  * @resv: fences we need to sync to
849  * @start: start of mapped range
850  * @last: last mapped entry
851  * @flags: flags for the entries
852  * @offset: offset into nodes and pages_addr
853  * @vram_base: base for vram mappings
854  * @res: ttm_resource to map
855  * @pages_addr: DMA addresses to use for mapping
856  * @fence: optional resulting fence
857  *
858  * Fill in the page table entries between @start and @last.
859  *
860  * Returns:
861  * 0 for success, negative erro code for failure.
862  */
863 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
864 			   bool immediate, bool unlocked, bool flush_tlb, bool allow_override,
865 			   struct dma_resv *resv, uint64_t start, uint64_t last,
866 			   uint64_t flags, uint64_t offset, uint64_t vram_base,
867 			   struct ttm_resource *res, dma_addr_t *pages_addr,
868 			   struct dma_fence **fence)
869 {
870 	struct amdgpu_vm_update_params params;
871 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
872 	struct amdgpu_res_cursor cursor;
873 	enum amdgpu_sync_mode sync_mode;
874 	int r, idx;
875 
876 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
877 		return -ENODEV;
878 
879 	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
880 	if (!tlb_cb) {
881 		r = -ENOMEM;
882 		goto error_unlock;
883 	}
884 
885 	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
886 	 * heavy-weight flush TLB unconditionally.
887 	 */
888 	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
889 		     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0);
890 
891 	/*
892 	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
893 	 */
894 	flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0);
895 
896 	memset(&params, 0, sizeof(params));
897 	params.adev = adev;
898 	params.vm = vm;
899 	params.immediate = immediate;
900 	params.pages_addr = pages_addr;
901 	params.unlocked = unlocked;
902 	params.allow_override = allow_override;
903 
904 	/* Implicitly sync to command submissions in the same VM before
905 	 * unmapping. Sync to moving fences before mapping.
906 	 */
907 	if (!(flags & AMDGPU_PTE_VALID))
908 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
909 	else
910 		sync_mode = AMDGPU_SYNC_EXPLICIT;
911 
912 	amdgpu_vm_eviction_lock(vm);
913 	if (vm->evicting) {
914 		r = -EBUSY;
915 		goto error_free;
916 	}
917 
918 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
919 		struct dma_fence *tmp = dma_fence_get_stub();
920 
921 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
922 		swap(vm->last_unlocked, tmp);
923 		dma_fence_put(tmp);
924 	}
925 
926 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
927 	if (r)
928 		goto error_free;
929 
930 	amdgpu_res_first(pages_addr ? NULL : res, offset,
931 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
932 	while (cursor.remaining) {
933 		uint64_t tmp, num_entries, addr;
934 
935 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
936 		if (pages_addr) {
937 			bool contiguous = true;
938 
939 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
940 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
941 				uint64_t count;
942 
943 				contiguous = pages_addr[pfn + 1] ==
944 					pages_addr[pfn] + PAGE_SIZE;
945 
946 				tmp = num_entries /
947 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
948 				for (count = 2; count < tmp; ++count) {
949 					uint64_t idx = pfn + count;
950 
951 					if (contiguous != (pages_addr[idx] ==
952 					    pages_addr[idx - 1] + PAGE_SIZE))
953 						break;
954 				}
955 				if (!contiguous)
956 					count--;
957 				num_entries = count *
958 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
959 			}
960 
961 			if (!contiguous) {
962 				addr = cursor.start;
963 				params.pages_addr = pages_addr;
964 			} else {
965 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
966 				params.pages_addr = NULL;
967 			}
968 
969 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
970 			addr = vram_base + cursor.start;
971 		} else {
972 			addr = 0;
973 		}
974 
975 		tmp = start + num_entries;
976 		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
977 		if (r)
978 			goto error_free;
979 
980 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
981 		start = tmp;
982 	}
983 
984 	r = vm->update_funcs->commit(&params, fence);
985 
986 	if (flush_tlb || params.table_freed) {
987 		tlb_cb->vm = vm;
988 		if (fence && *fence &&
989 		    !dma_fence_add_callback(*fence, &tlb_cb->cb,
990 					   amdgpu_vm_tlb_seq_cb)) {
991 			dma_fence_put(vm->last_tlb_flush);
992 			vm->last_tlb_flush = dma_fence_get(*fence);
993 		} else {
994 			amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
995 		}
996 		tlb_cb = NULL;
997 	}
998 
999 error_free:
1000 	kfree(tlb_cb);
1001 
1002 error_unlock:
1003 	amdgpu_vm_eviction_unlock(vm);
1004 	drm_dev_exit(idx);
1005 	return r;
1006 }
1007 
1008 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va,
1009 				    struct amdgpu_mem_stats *stats)
1010 {
1011 	struct amdgpu_vm *vm = bo_va->base.vm;
1012 	struct amdgpu_bo *bo = bo_va->base.bo;
1013 
1014 	if (!bo)
1015 		return;
1016 
1017 	/*
1018 	 * For now ignore BOs which are currently locked and potentially
1019 	 * changing their location.
1020 	 */
1021 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv &&
1022 	    !dma_resv_trylock(bo->tbo.base.resv))
1023 		return;
1024 
1025 	amdgpu_bo_get_memory(bo, stats);
1026 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
1027 	    dma_resv_unlock(bo->tbo.base.resv);
1028 }
1029 
1030 void amdgpu_vm_get_memory(struct amdgpu_vm *vm,
1031 			  struct amdgpu_mem_stats *stats)
1032 {
1033 	struct amdgpu_bo_va *bo_va, *tmp;
1034 
1035 	spin_lock(&vm->status_lock);
1036 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status)
1037 		amdgpu_vm_bo_get_memory(bo_va, stats);
1038 
1039 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status)
1040 		amdgpu_vm_bo_get_memory(bo_va, stats);
1041 
1042 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status)
1043 		amdgpu_vm_bo_get_memory(bo_va, stats);
1044 
1045 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status)
1046 		amdgpu_vm_bo_get_memory(bo_va, stats);
1047 
1048 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status)
1049 		amdgpu_vm_bo_get_memory(bo_va, stats);
1050 
1051 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status)
1052 		amdgpu_vm_bo_get_memory(bo_va, stats);
1053 	spin_unlock(&vm->status_lock);
1054 }
1055 
1056 /**
1057  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1058  *
1059  * @adev: amdgpu_device pointer
1060  * @bo_va: requested BO and VM object
1061  * @clear: if true clear the entries
1062  *
1063  * Fill in the page table entries for @bo_va.
1064  *
1065  * Returns:
1066  * 0 for success, -EINVAL for failure.
1067  */
1068 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1069 			bool clear)
1070 {
1071 	struct amdgpu_bo *bo = bo_va->base.bo;
1072 	struct amdgpu_vm *vm = bo_va->base.vm;
1073 	struct amdgpu_bo_va_mapping *mapping;
1074 	dma_addr_t *pages_addr = NULL;
1075 	struct ttm_resource *mem;
1076 	struct dma_fence **last_update;
1077 	bool flush_tlb = clear;
1078 	bool uncached;
1079 	struct dma_resv *resv;
1080 	uint64_t vram_base;
1081 	uint64_t flags;
1082 	int r;
1083 
1084 	if (clear || !bo) {
1085 		mem = NULL;
1086 		resv = vm->root.bo->tbo.base.resv;
1087 	} else {
1088 		struct drm_gem_object *obj = &bo->tbo.base;
1089 
1090 		resv = bo->tbo.base.resv;
1091 		if (obj->import_attach && bo_va->is_xgmi) {
1092 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1093 			struct drm_gem_object *gobj = dma_buf->priv;
1094 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1095 
1096 			if (abo->tbo.resource &&
1097 			    abo->tbo.resource->mem_type == TTM_PL_VRAM)
1098 				bo = gem_to_amdgpu_bo(gobj);
1099 		}
1100 		mem = bo->tbo.resource;
1101 		if (mem && (mem->mem_type == TTM_PL_TT ||
1102 			    mem->mem_type == AMDGPU_PL_PREEMPT))
1103 			pages_addr = bo->tbo.ttm->dma_address;
1104 	}
1105 
1106 	if (bo) {
1107 		struct amdgpu_device *bo_adev;
1108 
1109 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1110 
1111 		if (amdgpu_bo_encrypted(bo))
1112 			flags |= AMDGPU_PTE_TMZ;
1113 
1114 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1115 		vram_base = bo_adev->vm_manager.vram_base_offset;
1116 		uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0;
1117 	} else {
1118 		flags = 0x0;
1119 		vram_base = 0;
1120 		uncached = false;
1121 	}
1122 
1123 	if (clear || (bo && bo->tbo.base.resv ==
1124 		      vm->root.bo->tbo.base.resv))
1125 		last_update = &vm->last_update;
1126 	else
1127 		last_update = &bo_va->last_pt_update;
1128 
1129 	if (!clear && bo_va->base.moved) {
1130 		flush_tlb = true;
1131 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1132 
1133 	} else if (bo_va->cleared != clear) {
1134 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1135 	}
1136 
1137 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1138 		uint64_t update_flags = flags;
1139 
1140 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1141 		 * but in case of something, we filter the flags in first place
1142 		 */
1143 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1144 			update_flags &= ~AMDGPU_PTE_READABLE;
1145 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1146 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1147 
1148 		/* Apply ASIC specific mapping flags */
1149 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1150 
1151 		trace_amdgpu_vm_bo_update(mapping);
1152 
1153 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1154 					   !uncached, resv, mapping->start, mapping->last,
1155 					   update_flags, mapping->offset,
1156 					   vram_base, mem, pages_addr,
1157 					   last_update);
1158 		if (r)
1159 			return r;
1160 	}
1161 
1162 	/* If the BO is not in its preferred location add it back to
1163 	 * the evicted list so that it gets validated again on the
1164 	 * next command submission.
1165 	 */
1166 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1167 		uint32_t mem_type = bo->tbo.resource->mem_type;
1168 
1169 		if (!(bo->preferred_domains &
1170 		      amdgpu_mem_type_to_domain(mem_type)))
1171 			amdgpu_vm_bo_evicted(&bo_va->base);
1172 		else
1173 			amdgpu_vm_bo_idle(&bo_va->base);
1174 	} else {
1175 		amdgpu_vm_bo_done(&bo_va->base);
1176 	}
1177 
1178 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1179 	bo_va->cleared = clear;
1180 	bo_va->base.moved = false;
1181 
1182 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1183 		list_for_each_entry(mapping, &bo_va->valids, list)
1184 			trace_amdgpu_vm_bo_mapping(mapping);
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  * amdgpu_vm_update_prt_state - update the global PRT state
1192  *
1193  * @adev: amdgpu_device pointer
1194  */
1195 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1196 {
1197 	unsigned long flags;
1198 	bool enable;
1199 
1200 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1201 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1202 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1203 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1204 }
1205 
1206 /**
1207  * amdgpu_vm_prt_get - add a PRT user
1208  *
1209  * @adev: amdgpu_device pointer
1210  */
1211 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1212 {
1213 	if (!adev->gmc.gmc_funcs->set_prt)
1214 		return;
1215 
1216 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1217 		amdgpu_vm_update_prt_state(adev);
1218 }
1219 
1220 /**
1221  * amdgpu_vm_prt_put - drop a PRT user
1222  *
1223  * @adev: amdgpu_device pointer
1224  */
1225 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1226 {
1227 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1228 		amdgpu_vm_update_prt_state(adev);
1229 }
1230 
1231 /**
1232  * amdgpu_vm_prt_cb - callback for updating the PRT status
1233  *
1234  * @fence: fence for the callback
1235  * @_cb: the callback function
1236  */
1237 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1238 {
1239 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1240 
1241 	amdgpu_vm_prt_put(cb->adev);
1242 	kfree(cb);
1243 }
1244 
1245 /**
1246  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1247  *
1248  * @adev: amdgpu_device pointer
1249  * @fence: fence for the callback
1250  */
1251 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1252 				 struct dma_fence *fence)
1253 {
1254 	struct amdgpu_prt_cb *cb;
1255 
1256 	if (!adev->gmc.gmc_funcs->set_prt)
1257 		return;
1258 
1259 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1260 	if (!cb) {
1261 		/* Last resort when we are OOM */
1262 		if (fence)
1263 			dma_fence_wait(fence, false);
1264 
1265 		amdgpu_vm_prt_put(adev);
1266 	} else {
1267 		cb->adev = adev;
1268 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1269 						     amdgpu_vm_prt_cb))
1270 			amdgpu_vm_prt_cb(fence, &cb->cb);
1271 	}
1272 }
1273 
1274 /**
1275  * amdgpu_vm_free_mapping - free a mapping
1276  *
1277  * @adev: amdgpu_device pointer
1278  * @vm: requested vm
1279  * @mapping: mapping to be freed
1280  * @fence: fence of the unmap operation
1281  *
1282  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1283  */
1284 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1285 				   struct amdgpu_vm *vm,
1286 				   struct amdgpu_bo_va_mapping *mapping,
1287 				   struct dma_fence *fence)
1288 {
1289 	if (mapping->flags & AMDGPU_PTE_PRT)
1290 		amdgpu_vm_add_prt_cb(adev, fence);
1291 	kfree(mapping);
1292 }
1293 
1294 /**
1295  * amdgpu_vm_prt_fini - finish all prt mappings
1296  *
1297  * @adev: amdgpu_device pointer
1298  * @vm: requested vm
1299  *
1300  * Register a cleanup callback to disable PRT support after VM dies.
1301  */
1302 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1303 {
1304 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1305 	struct dma_resv_iter cursor;
1306 	struct dma_fence *fence;
1307 
1308 	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1309 		/* Add a callback for each fence in the reservation object */
1310 		amdgpu_vm_prt_get(adev);
1311 		amdgpu_vm_add_prt_cb(adev, fence);
1312 	}
1313 }
1314 
1315 /**
1316  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1317  *
1318  * @adev: amdgpu_device pointer
1319  * @vm: requested vm
1320  * @fence: optional resulting fence (unchanged if no work needed to be done
1321  * or if an error occurred)
1322  *
1323  * Make sure all freed BOs are cleared in the PT.
1324  * PTs have to be reserved and mutex must be locked!
1325  *
1326  * Returns:
1327  * 0 for success.
1328  *
1329  */
1330 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1331 			  struct amdgpu_vm *vm,
1332 			  struct dma_fence **fence)
1333 {
1334 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1335 	struct amdgpu_bo_va_mapping *mapping;
1336 	uint64_t init_pte_value = 0;
1337 	struct dma_fence *f = NULL;
1338 	int r;
1339 
1340 	while (!list_empty(&vm->freed)) {
1341 		mapping = list_first_entry(&vm->freed,
1342 			struct amdgpu_bo_va_mapping, list);
1343 		list_del(&mapping->list);
1344 
1345 		if (vm->pte_support_ats &&
1346 		    mapping->start < AMDGPU_GMC_HOLE_START)
1347 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1348 
1349 		r = amdgpu_vm_update_range(adev, vm, false, false, true, false,
1350 					   resv, mapping->start, mapping->last,
1351 					   init_pte_value, 0, 0, NULL, NULL,
1352 					   &f);
1353 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1354 		if (r) {
1355 			dma_fence_put(f);
1356 			return r;
1357 		}
1358 	}
1359 
1360 	if (fence && f) {
1361 		dma_fence_put(*fence);
1362 		*fence = f;
1363 	} else {
1364 		dma_fence_put(f);
1365 	}
1366 
1367 	return 0;
1368 
1369 }
1370 
1371 /**
1372  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1373  *
1374  * @adev: amdgpu_device pointer
1375  * @vm: requested vm
1376  * @ticket: optional reservation ticket used to reserve the VM
1377  *
1378  * Make sure all BOs which are moved are updated in the PTs.
1379  *
1380  * Returns:
1381  * 0 for success.
1382  *
1383  * PTs have to be reserved!
1384  */
1385 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1386 			   struct amdgpu_vm *vm,
1387 			   struct ww_acquire_ctx *ticket)
1388 {
1389 	struct amdgpu_bo_va *bo_va;
1390 	struct dma_resv *resv;
1391 	bool clear, unlock;
1392 	int r;
1393 
1394 	spin_lock(&vm->status_lock);
1395 	while (!list_empty(&vm->moved)) {
1396 		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1397 					 base.vm_status);
1398 		spin_unlock(&vm->status_lock);
1399 
1400 		/* Per VM BOs never need to bo cleared in the page tables */
1401 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1402 		if (r)
1403 			return r;
1404 		spin_lock(&vm->status_lock);
1405 	}
1406 
1407 	while (!list_empty(&vm->invalidated)) {
1408 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1409 					 base.vm_status);
1410 		resv = bo_va->base.bo->tbo.base.resv;
1411 		spin_unlock(&vm->status_lock);
1412 
1413 		/* Try to reserve the BO to avoid clearing its ptes */
1414 		if (!adev->debug_vm && dma_resv_trylock(resv)) {
1415 			clear = false;
1416 			unlock = true;
1417 		/* The caller is already holding the reservation lock */
1418 		} else if (ticket && dma_resv_locking_ctx(resv) == ticket) {
1419 			clear = false;
1420 			unlock = false;
1421 		/* Somebody else is using the BO right now */
1422 		} else {
1423 			clear = true;
1424 			unlock = false;
1425 		}
1426 
1427 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1428 		if (r)
1429 			return r;
1430 
1431 		if (unlock)
1432 			dma_resv_unlock(resv);
1433 		spin_lock(&vm->status_lock);
1434 	}
1435 	spin_unlock(&vm->status_lock);
1436 
1437 	return 0;
1438 }
1439 
1440 /**
1441  * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM
1442  *
1443  * @adev: amdgpu_device pointer
1444  * @vm: requested vm
1445  * @flush_type: flush type
1446  * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush.
1447  *
1448  * Flush TLB if needed for a compute VM.
1449  *
1450  * Returns:
1451  * 0 for success.
1452  */
1453 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev,
1454 				struct amdgpu_vm *vm,
1455 				uint32_t flush_type,
1456 				uint32_t xcc_mask)
1457 {
1458 	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1459 	bool all_hub = false;
1460 	int xcc = 0, r = 0;
1461 
1462 	WARN_ON_ONCE(!vm->is_compute_context);
1463 
1464 	/*
1465 	 * It can be that we race and lose here, but that is extremely unlikely
1466 	 * and the worst thing which could happen is that we flush the changes
1467 	 * into the TLB once more which is harmless.
1468 	 */
1469 	if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq)
1470 		return 0;
1471 
1472 	if (adev->family == AMDGPU_FAMILY_AI ||
1473 	    adev->family == AMDGPU_FAMILY_RV)
1474 		all_hub = true;
1475 
1476 	for_each_inst(xcc, xcc_mask) {
1477 		r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type,
1478 						   all_hub, xcc);
1479 		if (r)
1480 			break;
1481 	}
1482 	return r;
1483 }
1484 
1485 /**
1486  * amdgpu_vm_bo_add - add a bo to a specific vm
1487  *
1488  * @adev: amdgpu_device pointer
1489  * @vm: requested vm
1490  * @bo: amdgpu buffer object
1491  *
1492  * Add @bo into the requested vm.
1493  * Add @bo to the list of bos associated with the vm
1494  *
1495  * Returns:
1496  * Newly added bo_va or NULL for failure
1497  *
1498  * Object has to be reserved!
1499  */
1500 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1501 				      struct amdgpu_vm *vm,
1502 				      struct amdgpu_bo *bo)
1503 {
1504 	struct amdgpu_bo_va *bo_va;
1505 
1506 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1507 	if (bo_va == NULL) {
1508 		return NULL;
1509 	}
1510 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1511 
1512 	bo_va->ref_count = 1;
1513 	bo_va->last_pt_update = dma_fence_get_stub();
1514 	INIT_LIST_HEAD(&bo_va->valids);
1515 	INIT_LIST_HEAD(&bo_va->invalids);
1516 
1517 	if (!bo)
1518 		return bo_va;
1519 
1520 	dma_resv_assert_held(bo->tbo.base.resv);
1521 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1522 		bo_va->is_xgmi = true;
1523 		/* Power up XGMI if it can be potentially used */
1524 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
1525 	}
1526 
1527 	return bo_va;
1528 }
1529 
1530 
1531 /**
1532  * amdgpu_vm_bo_insert_map - insert a new mapping
1533  *
1534  * @adev: amdgpu_device pointer
1535  * @bo_va: bo_va to store the address
1536  * @mapping: the mapping to insert
1537  *
1538  * Insert a new mapping into all structures.
1539  */
1540 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1541 				    struct amdgpu_bo_va *bo_va,
1542 				    struct amdgpu_bo_va_mapping *mapping)
1543 {
1544 	struct amdgpu_vm *vm = bo_va->base.vm;
1545 	struct amdgpu_bo *bo = bo_va->base.bo;
1546 
1547 	mapping->bo_va = bo_va;
1548 	list_add(&mapping->list, &bo_va->invalids);
1549 	amdgpu_vm_it_insert(mapping, &vm->va);
1550 
1551 	if (mapping->flags & AMDGPU_PTE_PRT)
1552 		amdgpu_vm_prt_get(adev);
1553 
1554 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1555 	    !bo_va->base.moved) {
1556 		amdgpu_vm_bo_moved(&bo_va->base);
1557 	}
1558 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1559 }
1560 
1561 /**
1562  * amdgpu_vm_bo_map - map bo inside a vm
1563  *
1564  * @adev: amdgpu_device pointer
1565  * @bo_va: bo_va to store the address
1566  * @saddr: where to map the BO
1567  * @offset: requested offset in the BO
1568  * @size: BO size in bytes
1569  * @flags: attributes of pages (read/write/valid/etc.)
1570  *
1571  * Add a mapping of the BO at the specefied addr into the VM.
1572  *
1573  * Returns:
1574  * 0 for success, error for failure.
1575  *
1576  * Object has to be reserved and unreserved outside!
1577  */
1578 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1579 		     struct amdgpu_bo_va *bo_va,
1580 		     uint64_t saddr, uint64_t offset,
1581 		     uint64_t size, uint64_t flags)
1582 {
1583 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1584 	struct amdgpu_bo *bo = bo_va->base.bo;
1585 	struct amdgpu_vm *vm = bo_va->base.vm;
1586 	uint64_t eaddr;
1587 
1588 	/* validate the parameters */
1589 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
1590 		return -EINVAL;
1591 	if (saddr + size <= saddr || offset + size <= offset)
1592 		return -EINVAL;
1593 
1594 	/* make sure object fit at this offset */
1595 	eaddr = saddr + size - 1;
1596 	if ((bo && offset + size > amdgpu_bo_size(bo)) ||
1597 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
1598 		return -EINVAL;
1599 
1600 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1601 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1602 
1603 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1604 	if (tmp) {
1605 		/* bo and tmp overlap, invalid addr */
1606 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1607 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1608 			tmp->start, tmp->last + 1);
1609 		return -EINVAL;
1610 	}
1611 
1612 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1613 	if (!mapping)
1614 		return -ENOMEM;
1615 
1616 	mapping->start = saddr;
1617 	mapping->last = eaddr;
1618 	mapping->offset = offset;
1619 	mapping->flags = flags;
1620 
1621 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1622 
1623 	return 0;
1624 }
1625 
1626 /**
1627  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1628  *
1629  * @adev: amdgpu_device pointer
1630  * @bo_va: bo_va to store the address
1631  * @saddr: where to map the BO
1632  * @offset: requested offset in the BO
1633  * @size: BO size in bytes
1634  * @flags: attributes of pages (read/write/valid/etc.)
1635  *
1636  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1637  * mappings as we do so.
1638  *
1639  * Returns:
1640  * 0 for success, error for failure.
1641  *
1642  * Object has to be reserved and unreserved outside!
1643  */
1644 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1645 			     struct amdgpu_bo_va *bo_va,
1646 			     uint64_t saddr, uint64_t offset,
1647 			     uint64_t size, uint64_t flags)
1648 {
1649 	struct amdgpu_bo_va_mapping *mapping;
1650 	struct amdgpu_bo *bo = bo_va->base.bo;
1651 	uint64_t eaddr;
1652 	int r;
1653 
1654 	/* validate the parameters */
1655 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
1656 		return -EINVAL;
1657 	if (saddr + size <= saddr || offset + size <= offset)
1658 		return -EINVAL;
1659 
1660 	/* make sure object fit at this offset */
1661 	eaddr = saddr + size - 1;
1662 	if ((bo && offset + size > amdgpu_bo_size(bo)) ||
1663 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
1664 		return -EINVAL;
1665 
1666 	/* Allocate all the needed memory */
1667 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1668 	if (!mapping)
1669 		return -ENOMEM;
1670 
1671 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1672 	if (r) {
1673 		kfree(mapping);
1674 		return r;
1675 	}
1676 
1677 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1678 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1679 
1680 	mapping->start = saddr;
1681 	mapping->last = eaddr;
1682 	mapping->offset = offset;
1683 	mapping->flags = flags;
1684 
1685 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1686 
1687 	return 0;
1688 }
1689 
1690 /**
1691  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1692  *
1693  * @adev: amdgpu_device pointer
1694  * @bo_va: bo_va to remove the address from
1695  * @saddr: where to the BO is mapped
1696  *
1697  * Remove a mapping of the BO at the specefied addr from the VM.
1698  *
1699  * Returns:
1700  * 0 for success, error for failure.
1701  *
1702  * Object has to be reserved and unreserved outside!
1703  */
1704 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1705 		       struct amdgpu_bo_va *bo_va,
1706 		       uint64_t saddr)
1707 {
1708 	struct amdgpu_bo_va_mapping *mapping;
1709 	struct amdgpu_vm *vm = bo_va->base.vm;
1710 	bool valid = true;
1711 
1712 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1713 
1714 	list_for_each_entry(mapping, &bo_va->valids, list) {
1715 		if (mapping->start == saddr)
1716 			break;
1717 	}
1718 
1719 	if (&mapping->list == &bo_va->valids) {
1720 		valid = false;
1721 
1722 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1723 			if (mapping->start == saddr)
1724 				break;
1725 		}
1726 
1727 		if (&mapping->list == &bo_va->invalids)
1728 			return -ENOENT;
1729 	}
1730 
1731 	list_del(&mapping->list);
1732 	amdgpu_vm_it_remove(mapping, &vm->va);
1733 	mapping->bo_va = NULL;
1734 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1735 
1736 	if (valid)
1737 		list_add(&mapping->list, &vm->freed);
1738 	else
1739 		amdgpu_vm_free_mapping(adev, vm, mapping,
1740 				       bo_va->last_pt_update);
1741 
1742 	return 0;
1743 }
1744 
1745 /**
1746  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1747  *
1748  * @adev: amdgpu_device pointer
1749  * @vm: VM structure to use
1750  * @saddr: start of the range
1751  * @size: size of the range
1752  *
1753  * Remove all mappings in a range, split them as appropriate.
1754  *
1755  * Returns:
1756  * 0 for success, error for failure.
1757  */
1758 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1759 				struct amdgpu_vm *vm,
1760 				uint64_t saddr, uint64_t size)
1761 {
1762 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1763 	LIST_HEAD(removed);
1764 	uint64_t eaddr;
1765 
1766 	eaddr = saddr + size - 1;
1767 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1768 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1769 
1770 	/* Allocate all the needed memory */
1771 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1772 	if (!before)
1773 		return -ENOMEM;
1774 	INIT_LIST_HEAD(&before->list);
1775 
1776 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1777 	if (!after) {
1778 		kfree(before);
1779 		return -ENOMEM;
1780 	}
1781 	INIT_LIST_HEAD(&after->list);
1782 
1783 	/* Now gather all removed mappings */
1784 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1785 	while (tmp) {
1786 		/* Remember mapping split at the start */
1787 		if (tmp->start < saddr) {
1788 			before->start = tmp->start;
1789 			before->last = saddr - 1;
1790 			before->offset = tmp->offset;
1791 			before->flags = tmp->flags;
1792 			before->bo_va = tmp->bo_va;
1793 			list_add(&before->list, &tmp->bo_va->invalids);
1794 		}
1795 
1796 		/* Remember mapping split at the end */
1797 		if (tmp->last > eaddr) {
1798 			after->start = eaddr + 1;
1799 			after->last = tmp->last;
1800 			after->offset = tmp->offset;
1801 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1802 			after->flags = tmp->flags;
1803 			after->bo_va = tmp->bo_va;
1804 			list_add(&after->list, &tmp->bo_va->invalids);
1805 		}
1806 
1807 		list_del(&tmp->list);
1808 		list_add(&tmp->list, &removed);
1809 
1810 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1811 	}
1812 
1813 	/* And free them up */
1814 	list_for_each_entry_safe(tmp, next, &removed, list) {
1815 		amdgpu_vm_it_remove(tmp, &vm->va);
1816 		list_del(&tmp->list);
1817 
1818 		if (tmp->start < saddr)
1819 		    tmp->start = saddr;
1820 		if (tmp->last > eaddr)
1821 		    tmp->last = eaddr;
1822 
1823 		tmp->bo_va = NULL;
1824 		list_add(&tmp->list, &vm->freed);
1825 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1826 	}
1827 
1828 	/* Insert partial mapping before the range */
1829 	if (!list_empty(&before->list)) {
1830 		struct amdgpu_bo *bo = before->bo_va->base.bo;
1831 
1832 		amdgpu_vm_it_insert(before, &vm->va);
1833 		if (before->flags & AMDGPU_PTE_PRT)
1834 			amdgpu_vm_prt_get(adev);
1835 
1836 		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1837 		    !before->bo_va->base.moved)
1838 			amdgpu_vm_bo_moved(&before->bo_va->base);
1839 	} else {
1840 		kfree(before);
1841 	}
1842 
1843 	/* Insert partial mapping after the range */
1844 	if (!list_empty(&after->list)) {
1845 		struct amdgpu_bo *bo = after->bo_va->base.bo;
1846 
1847 		amdgpu_vm_it_insert(after, &vm->va);
1848 		if (after->flags & AMDGPU_PTE_PRT)
1849 			amdgpu_vm_prt_get(adev);
1850 
1851 		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1852 		    !after->bo_va->base.moved)
1853 			amdgpu_vm_bo_moved(&after->bo_va->base);
1854 	} else {
1855 		kfree(after);
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 /**
1862  * amdgpu_vm_bo_lookup_mapping - find mapping by address
1863  *
1864  * @vm: the requested VM
1865  * @addr: the address
1866  *
1867  * Find a mapping by it's address.
1868  *
1869  * Returns:
1870  * The amdgpu_bo_va_mapping matching for addr or NULL
1871  *
1872  */
1873 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
1874 							 uint64_t addr)
1875 {
1876 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
1877 }
1878 
1879 /**
1880  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
1881  *
1882  * @vm: the requested vm
1883  * @ticket: CS ticket
1884  *
1885  * Trace all mappings of BOs reserved during a command submission.
1886  */
1887 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
1888 {
1889 	struct amdgpu_bo_va_mapping *mapping;
1890 
1891 	if (!trace_amdgpu_vm_bo_cs_enabled())
1892 		return;
1893 
1894 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
1895 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
1896 		if (mapping->bo_va && mapping->bo_va->base.bo) {
1897 			struct amdgpu_bo *bo;
1898 
1899 			bo = mapping->bo_va->base.bo;
1900 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
1901 			    ticket)
1902 				continue;
1903 		}
1904 
1905 		trace_amdgpu_vm_bo_cs(mapping);
1906 	}
1907 }
1908 
1909 /**
1910  * amdgpu_vm_bo_del - remove a bo from a specific vm
1911  *
1912  * @adev: amdgpu_device pointer
1913  * @bo_va: requested bo_va
1914  *
1915  * Remove @bo_va->bo from the requested vm.
1916  *
1917  * Object have to be reserved!
1918  */
1919 void amdgpu_vm_bo_del(struct amdgpu_device *adev,
1920 		      struct amdgpu_bo_va *bo_va)
1921 {
1922 	struct amdgpu_bo_va_mapping *mapping, *next;
1923 	struct amdgpu_bo *bo = bo_va->base.bo;
1924 	struct amdgpu_vm *vm = bo_va->base.vm;
1925 	struct amdgpu_vm_bo_base **base;
1926 
1927 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
1928 
1929 	if (bo) {
1930 		dma_resv_assert_held(bo->tbo.base.resv);
1931 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
1932 			ttm_bo_set_bulk_move(&bo->tbo, NULL);
1933 
1934 		for (base = &bo_va->base.bo->vm_bo; *base;
1935 		     base = &(*base)->next) {
1936 			if (*base != &bo_va->base)
1937 				continue;
1938 
1939 			*base = bo_va->base.next;
1940 			break;
1941 		}
1942 	}
1943 
1944 	spin_lock(&vm->status_lock);
1945 	list_del(&bo_va->base.vm_status);
1946 	spin_unlock(&vm->status_lock);
1947 
1948 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1949 		list_del(&mapping->list);
1950 		amdgpu_vm_it_remove(mapping, &vm->va);
1951 		mapping->bo_va = NULL;
1952 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1953 		list_add(&mapping->list, &vm->freed);
1954 	}
1955 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1956 		list_del(&mapping->list);
1957 		amdgpu_vm_it_remove(mapping, &vm->va);
1958 		amdgpu_vm_free_mapping(adev, vm, mapping,
1959 				       bo_va->last_pt_update);
1960 	}
1961 
1962 	dma_fence_put(bo_va->last_pt_update);
1963 
1964 	if (bo && bo_va->is_xgmi)
1965 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
1966 
1967 	kfree(bo_va);
1968 }
1969 
1970 /**
1971  * amdgpu_vm_evictable - check if we can evict a VM
1972  *
1973  * @bo: A page table of the VM.
1974  *
1975  * Check if it is possible to evict a VM.
1976  */
1977 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
1978 {
1979 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
1980 
1981 	/* Page tables of a destroyed VM can go away immediately */
1982 	if (!bo_base || !bo_base->vm)
1983 		return true;
1984 
1985 	/* Don't evict VM page tables while they are busy */
1986 	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
1987 		return false;
1988 
1989 	/* Try to block ongoing updates */
1990 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
1991 		return false;
1992 
1993 	/* Don't evict VM page tables while they are updated */
1994 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
1995 		amdgpu_vm_eviction_unlock(bo_base->vm);
1996 		return false;
1997 	}
1998 
1999 	bo_base->vm->evicting = true;
2000 	amdgpu_vm_eviction_unlock(bo_base->vm);
2001 	return true;
2002 }
2003 
2004 /**
2005  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2006  *
2007  * @adev: amdgpu_device pointer
2008  * @bo: amdgpu buffer object
2009  * @evicted: is the BO evicted
2010  *
2011  * Mark @bo as invalid.
2012  */
2013 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2014 			     struct amdgpu_bo *bo, bool evicted)
2015 {
2016 	struct amdgpu_vm_bo_base *bo_base;
2017 
2018 	/* shadow bo doesn't have bo base, its validation needs its parent */
2019 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2020 		bo = bo->parent;
2021 
2022 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2023 		struct amdgpu_vm *vm = bo_base->vm;
2024 
2025 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2026 			amdgpu_vm_bo_evicted(bo_base);
2027 			continue;
2028 		}
2029 
2030 		if (bo_base->moved)
2031 			continue;
2032 		bo_base->moved = true;
2033 
2034 		if (bo->tbo.type == ttm_bo_type_kernel)
2035 			amdgpu_vm_bo_relocated(bo_base);
2036 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2037 			amdgpu_vm_bo_moved(bo_base);
2038 		else
2039 			amdgpu_vm_bo_invalidated(bo_base);
2040 	}
2041 }
2042 
2043 /**
2044  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2045  *
2046  * @vm_size: VM size
2047  *
2048  * Returns:
2049  * VM page table as power of two
2050  */
2051 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2052 {
2053 	/* Total bits covered by PD + PTs */
2054 	unsigned bits = ilog2(vm_size) + 18;
2055 
2056 	/* Make sure the PD is 4K in size up to 8GB address space.
2057 	   Above that split equal between PD and PTs */
2058 	if (vm_size <= 8)
2059 		return (bits - 9);
2060 	else
2061 		return ((bits + 3) / 2);
2062 }
2063 
2064 /**
2065  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2066  *
2067  * @adev: amdgpu_device pointer
2068  * @min_vm_size: the minimum vm size in GB if it's set auto
2069  * @fragment_size_default: Default PTE fragment size
2070  * @max_level: max VMPT level
2071  * @max_bits: max address space size in bits
2072  *
2073  */
2074 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2075 			   uint32_t fragment_size_default, unsigned max_level,
2076 			   unsigned max_bits)
2077 {
2078 	unsigned int max_size = 1 << (max_bits - 30);
2079 	unsigned int vm_size;
2080 	uint64_t tmp;
2081 
2082 	/* adjust vm size first */
2083 	if (amdgpu_vm_size != -1) {
2084 		vm_size = amdgpu_vm_size;
2085 		if (vm_size > max_size) {
2086 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2087 				 amdgpu_vm_size, max_size);
2088 			vm_size = max_size;
2089 		}
2090 	} else {
2091 		struct sysinfo si;
2092 		unsigned int phys_ram_gb;
2093 
2094 		/* Optimal VM size depends on the amount of physical
2095 		 * RAM available. Underlying requirements and
2096 		 * assumptions:
2097 		 *
2098 		 *  - Need to map system memory and VRAM from all GPUs
2099 		 *     - VRAM from other GPUs not known here
2100 		 *     - Assume VRAM <= system memory
2101 		 *  - On GFX8 and older, VM space can be segmented for
2102 		 *    different MTYPEs
2103 		 *  - Need to allow room for fragmentation, guard pages etc.
2104 		 *
2105 		 * This adds up to a rough guess of system memory x3.
2106 		 * Round up to power of two to maximize the available
2107 		 * VM size with the given page table size.
2108 		 */
2109 		si_meminfo(&si);
2110 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2111 			       (1 << 30) - 1) >> 30;
2112 		vm_size = roundup_pow_of_two(
2113 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2114 	}
2115 
2116 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2117 
2118 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2119 	if (amdgpu_vm_block_size != -1)
2120 		tmp >>= amdgpu_vm_block_size - 9;
2121 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2122 	adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp);
2123 	switch (adev->vm_manager.num_level) {
2124 	case 3:
2125 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2126 		break;
2127 	case 2:
2128 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2129 		break;
2130 	case 1:
2131 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2132 		break;
2133 	default:
2134 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2135 	}
2136 	/* block size depends on vm size and hw setup*/
2137 	if (amdgpu_vm_block_size != -1)
2138 		adev->vm_manager.block_size =
2139 			min((unsigned)amdgpu_vm_block_size, max_bits
2140 			    - AMDGPU_GPU_PAGE_SHIFT
2141 			    - 9 * adev->vm_manager.num_level);
2142 	else if (adev->vm_manager.num_level > 1)
2143 		adev->vm_manager.block_size = 9;
2144 	else
2145 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2146 
2147 	if (amdgpu_vm_fragment_size == -1)
2148 		adev->vm_manager.fragment_size = fragment_size_default;
2149 	else
2150 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2151 
2152 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2153 		 vm_size, adev->vm_manager.num_level + 1,
2154 		 adev->vm_manager.block_size,
2155 		 adev->vm_manager.fragment_size);
2156 }
2157 
2158 /**
2159  * amdgpu_vm_wait_idle - wait for the VM to become idle
2160  *
2161  * @vm: VM object to wait for
2162  * @timeout: timeout to wait for VM to become idle
2163  */
2164 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2165 {
2166 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2167 					DMA_RESV_USAGE_BOOKKEEP,
2168 					true, timeout);
2169 	if (timeout <= 0)
2170 		return timeout;
2171 
2172 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2173 }
2174 
2175 /**
2176  * amdgpu_vm_init - initialize a vm instance
2177  *
2178  * @adev: amdgpu_device pointer
2179  * @vm: requested vm
2180  * @xcp_id: GPU partition selection id
2181  *
2182  * Init @vm fields.
2183  *
2184  * Returns:
2185  * 0 for success, error for failure.
2186  */
2187 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2188 		   int32_t xcp_id)
2189 {
2190 	struct amdgpu_bo *root_bo;
2191 	struct amdgpu_bo_vm *root;
2192 	int r, i;
2193 
2194 	vm->va = RB_ROOT_CACHED;
2195 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2196 		vm->reserved_vmid[i] = NULL;
2197 	INIT_LIST_HEAD(&vm->evicted);
2198 	INIT_LIST_HEAD(&vm->relocated);
2199 	INIT_LIST_HEAD(&vm->moved);
2200 	INIT_LIST_HEAD(&vm->idle);
2201 	INIT_LIST_HEAD(&vm->invalidated);
2202 	spin_lock_init(&vm->status_lock);
2203 	INIT_LIST_HEAD(&vm->freed);
2204 	INIT_LIST_HEAD(&vm->done);
2205 	INIT_LIST_HEAD(&vm->pt_freed);
2206 	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2207 	INIT_KFIFO(vm->faults);
2208 
2209 	r = amdgpu_vm_init_entities(adev, vm);
2210 	if (r)
2211 		return r;
2212 
2213 	vm->pte_support_ats = false;
2214 	vm->is_compute_context = false;
2215 
2216 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2217 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2218 
2219 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2220 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2221 	WARN_ONCE((vm->use_cpu_for_update &&
2222 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2223 		  "CPU update of VM recommended only for large BAR system\n");
2224 
2225 	if (vm->use_cpu_for_update)
2226 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2227 	else
2228 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2229 
2230 	vm->last_update = dma_fence_get_stub();
2231 	vm->last_unlocked = dma_fence_get_stub();
2232 	vm->last_tlb_flush = dma_fence_get_stub();
2233 	vm->generation = 0;
2234 
2235 	mutex_init(&vm->eviction_lock);
2236 	vm->evicting = false;
2237 
2238 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2239 				false, &root, xcp_id);
2240 	if (r)
2241 		goto error_free_delayed;
2242 
2243 	root_bo = amdgpu_bo_ref(&root->bo);
2244 	r = amdgpu_bo_reserve(root_bo, true);
2245 	if (r) {
2246 		amdgpu_bo_unref(&root->shadow);
2247 		amdgpu_bo_unref(&root_bo);
2248 		goto error_free_delayed;
2249 	}
2250 
2251 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2252 	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2253 	if (r)
2254 		goto error_free_root;
2255 
2256 	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2257 	if (r)
2258 		goto error_free_root;
2259 
2260 	amdgpu_bo_unreserve(vm->root.bo);
2261 	amdgpu_bo_unref(&root_bo);
2262 
2263 	return 0;
2264 
2265 error_free_root:
2266 	amdgpu_vm_pt_free_root(adev, vm);
2267 	amdgpu_bo_unreserve(vm->root.bo);
2268 	amdgpu_bo_unref(&root_bo);
2269 
2270 error_free_delayed:
2271 	dma_fence_put(vm->last_tlb_flush);
2272 	dma_fence_put(vm->last_unlocked);
2273 	amdgpu_vm_fini_entities(vm);
2274 
2275 	return r;
2276 }
2277 
2278 /**
2279  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2280  *
2281  * @adev: amdgpu_device pointer
2282  * @vm: requested vm
2283  *
2284  * This only works on GFX VMs that don't have any BOs added and no
2285  * page tables allocated yet.
2286  *
2287  * Changes the following VM parameters:
2288  * - use_cpu_for_update
2289  * - pte_supports_ats
2290  *
2291  * Reinitializes the page directory to reflect the changed ATS
2292  * setting.
2293  *
2294  * Returns:
2295  * 0 for success, -errno for errors.
2296  */
2297 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2298 {
2299 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2300 	int r;
2301 
2302 	r = amdgpu_bo_reserve(vm->root.bo, true);
2303 	if (r)
2304 		return r;
2305 
2306 	/* Check if PD needs to be reinitialized and do it before
2307 	 * changing any other state, in case it fails.
2308 	 */
2309 	if (pte_support_ats != vm->pte_support_ats) {
2310 		/* Sanity checks */
2311 		if (!amdgpu_vm_pt_is_root_clean(adev, vm)) {
2312 			r = -EINVAL;
2313 			goto unreserve_bo;
2314 		}
2315 
2316 		vm->pte_support_ats = pte_support_ats;
2317 		r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo),
2318 				       false);
2319 		if (r)
2320 			goto unreserve_bo;
2321 	}
2322 
2323 	/* Update VM state */
2324 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2325 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2326 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2327 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2328 	WARN_ONCE((vm->use_cpu_for_update &&
2329 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2330 		  "CPU update of VM recommended only for large BAR system\n");
2331 
2332 	if (vm->use_cpu_for_update) {
2333 		/* Sync with last SDMA update/clear before switching to CPU */
2334 		r = amdgpu_bo_sync_wait(vm->root.bo,
2335 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2336 		if (r)
2337 			goto unreserve_bo;
2338 
2339 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2340 		r = amdgpu_vm_pt_map_tables(adev, vm);
2341 		if (r)
2342 			goto unreserve_bo;
2343 
2344 	} else {
2345 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2346 	}
2347 
2348 	dma_fence_put(vm->last_update);
2349 	vm->last_update = dma_fence_get_stub();
2350 	vm->is_compute_context = true;
2351 
2352 	/* Free the shadow bo for compute VM */
2353 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
2354 
2355 	goto unreserve_bo;
2356 
2357 unreserve_bo:
2358 	amdgpu_bo_unreserve(vm->root.bo);
2359 	return r;
2360 }
2361 
2362 /**
2363  * amdgpu_vm_release_compute - release a compute vm
2364  * @adev: amdgpu_device pointer
2365  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2366  *
2367  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2368  * pasid from vm. Compute should stop use of vm after this call.
2369  */
2370 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2371 {
2372 	amdgpu_vm_set_pasid(adev, vm, 0);
2373 	vm->is_compute_context = false;
2374 }
2375 
2376 /**
2377  * amdgpu_vm_fini - tear down a vm instance
2378  *
2379  * @adev: amdgpu_device pointer
2380  * @vm: requested vm
2381  *
2382  * Tear down @vm.
2383  * Unbind the VM and remove all bos from the vm bo list
2384  */
2385 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2386 {
2387 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2388 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2389 	struct amdgpu_bo *root;
2390 	unsigned long flags;
2391 	int i;
2392 
2393 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2394 
2395 	flush_work(&vm->pt_free_work);
2396 
2397 	root = amdgpu_bo_ref(vm->root.bo);
2398 	amdgpu_bo_reserve(root, true);
2399 	amdgpu_vm_set_pasid(adev, vm, 0);
2400 	dma_fence_wait(vm->last_unlocked, false);
2401 	dma_fence_put(vm->last_unlocked);
2402 	dma_fence_wait(vm->last_tlb_flush, false);
2403 	/* Make sure that all fence callbacks have completed */
2404 	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2405 	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2406 	dma_fence_put(vm->last_tlb_flush);
2407 
2408 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2409 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2410 			amdgpu_vm_prt_fini(adev, vm);
2411 			prt_fini_needed = false;
2412 		}
2413 
2414 		list_del(&mapping->list);
2415 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2416 	}
2417 
2418 	amdgpu_vm_pt_free_root(adev, vm);
2419 	amdgpu_bo_unreserve(root);
2420 	amdgpu_bo_unref(&root);
2421 	WARN_ON(vm->root.bo);
2422 
2423 	amdgpu_vm_fini_entities(vm);
2424 
2425 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2426 		dev_err(adev->dev, "still active bo inside vm\n");
2427 	}
2428 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2429 					     &vm->va.rb_root, rb) {
2430 		/* Don't remove the mapping here, we don't want to trigger a
2431 		 * rebalance and the tree is about to be destroyed anyway.
2432 		 */
2433 		list_del(&mapping->list);
2434 		kfree(mapping);
2435 	}
2436 
2437 	dma_fence_put(vm->last_update);
2438 
2439 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2440 		if (vm->reserved_vmid[i]) {
2441 			amdgpu_vmid_free_reserved(adev, i);
2442 			vm->reserved_vmid[i] = false;
2443 		}
2444 	}
2445 
2446 }
2447 
2448 /**
2449  * amdgpu_vm_manager_init - init the VM manager
2450  *
2451  * @adev: amdgpu_device pointer
2452  *
2453  * Initialize the VM manager structures
2454  */
2455 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2456 {
2457 	unsigned i;
2458 
2459 	/* Concurrent flushes are only possible starting with Vega10 and
2460 	 * are broken on Navi10 and Navi14.
2461 	 */
2462 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2463 					      adev->asic_type == CHIP_NAVI10 ||
2464 					      adev->asic_type == CHIP_NAVI14);
2465 	amdgpu_vmid_mgr_init(adev);
2466 
2467 	adev->vm_manager.fence_context =
2468 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2469 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2470 		adev->vm_manager.seqno[i] = 0;
2471 
2472 	spin_lock_init(&adev->vm_manager.prt_lock);
2473 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2474 
2475 	/* If not overridden by the user, by default, only in large BAR systems
2476 	 * Compute VM tables will be updated by CPU
2477 	 */
2478 #ifdef CONFIG_X86_64
2479 	if (amdgpu_vm_update_mode == -1) {
2480 		/* For asic with VF MMIO access protection
2481 		 * avoid using CPU for VM table updates
2482 		 */
2483 		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2484 		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2485 			adev->vm_manager.vm_update_mode =
2486 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2487 		else
2488 			adev->vm_manager.vm_update_mode = 0;
2489 	} else
2490 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2491 #else
2492 	adev->vm_manager.vm_update_mode = 0;
2493 #endif
2494 
2495 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
2496 }
2497 
2498 /**
2499  * amdgpu_vm_manager_fini - cleanup VM manager
2500  *
2501  * @adev: amdgpu_device pointer
2502  *
2503  * Cleanup the VM manager and free resources.
2504  */
2505 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2506 {
2507 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2508 	xa_destroy(&adev->vm_manager.pasids);
2509 
2510 	amdgpu_vmid_mgr_fini(adev);
2511 }
2512 
2513 /**
2514  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2515  *
2516  * @dev: drm device pointer
2517  * @data: drm_amdgpu_vm
2518  * @filp: drm file pointer
2519  *
2520  * Returns:
2521  * 0 for success, -errno for errors.
2522  */
2523 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2524 {
2525 	union drm_amdgpu_vm *args = data;
2526 	struct amdgpu_device *adev = drm_to_adev(dev);
2527 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2528 
2529 	/* No valid flags defined yet */
2530 	if (args->in.flags)
2531 		return -EINVAL;
2532 
2533 	switch (args->in.op) {
2534 	case AMDGPU_VM_OP_RESERVE_VMID:
2535 		/* We only have requirement to reserve vmid from gfxhub */
2536 		if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2537 			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0));
2538 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true;
2539 		}
2540 
2541 		break;
2542 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2543 		if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2544 			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0));
2545 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false;
2546 		}
2547 		break;
2548 	default:
2549 		return -EINVAL;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 /**
2556  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
2557  *
2558  * @adev: drm device pointer
2559  * @pasid: PASID identifier for VM
2560  * @task_info: task_info to fill.
2561  */
2562 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
2563 			 struct amdgpu_task_info *task_info)
2564 {
2565 	struct amdgpu_vm *vm;
2566 	unsigned long flags;
2567 
2568 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2569 
2570 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2571 	if (vm)
2572 		*task_info = vm->task_info;
2573 
2574 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2575 }
2576 
2577 /**
2578  * amdgpu_vm_set_task_info - Sets VMs task info.
2579  *
2580  * @vm: vm for which to set the info
2581  */
2582 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2583 {
2584 	if (vm->task_info.pid)
2585 		return;
2586 
2587 	vm->task_info.pid = current->pid;
2588 	get_task_comm(vm->task_info.task_name, current);
2589 
2590 	if (current->group_leader->mm != current->mm)
2591 		return;
2592 
2593 	vm->task_info.tgid = current->group_leader->pid;
2594 	get_task_comm(vm->task_info.process_name, current->group_leader);
2595 }
2596 
2597 /**
2598  * amdgpu_vm_handle_fault - graceful handling of VM faults.
2599  * @adev: amdgpu device pointer
2600  * @pasid: PASID of the VM
2601  * @vmid: VMID, only used for GFX 9.4.3.
2602  * @node_id: Node_id received in IH cookie. Only applicable for
2603  *           GFX 9.4.3.
2604  * @addr: Address of the fault
2605  * @write_fault: true is write fault, false is read fault
2606  *
2607  * Try to gracefully handle a VM fault. Return true if the fault was handled and
2608  * shouldn't be reported any more.
2609  */
2610 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2611 			    u32 vmid, u32 node_id, uint64_t addr,
2612 			    bool write_fault)
2613 {
2614 	bool is_compute_context = false;
2615 	struct amdgpu_bo *root;
2616 	unsigned long irqflags;
2617 	uint64_t value, flags;
2618 	struct amdgpu_vm *vm;
2619 	int r;
2620 
2621 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2622 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2623 	if (vm) {
2624 		root = amdgpu_bo_ref(vm->root.bo);
2625 		is_compute_context = vm->is_compute_context;
2626 	} else {
2627 		root = NULL;
2628 	}
2629 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2630 
2631 	if (!root)
2632 		return false;
2633 
2634 	addr /= AMDGPU_GPU_PAGE_SIZE;
2635 
2636 	if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid,
2637 	    node_id, addr, write_fault)) {
2638 		amdgpu_bo_unref(&root);
2639 		return true;
2640 	}
2641 
2642 	r = amdgpu_bo_reserve(root, true);
2643 	if (r)
2644 		goto error_unref;
2645 
2646 	/* Double check that the VM still exists */
2647 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2648 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2649 	if (vm && vm->root.bo != root)
2650 		vm = NULL;
2651 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2652 	if (!vm)
2653 		goto error_unlock;
2654 
2655 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2656 		AMDGPU_PTE_SYSTEM;
2657 
2658 	if (is_compute_context) {
2659 		/* Intentionally setting invalid PTE flag
2660 		 * combination to force a no-retry-fault
2661 		 */
2662 		flags = AMDGPU_VM_NORETRY_FLAGS;
2663 		value = 0;
2664 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2665 		/* Redirect the access to the dummy page */
2666 		value = adev->dummy_page_addr;
2667 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2668 			AMDGPU_PTE_WRITEABLE;
2669 
2670 	} else {
2671 		/* Let the hw retry silently on the PTE */
2672 		value = 0;
2673 	}
2674 
2675 	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2676 	if (r) {
2677 		pr_debug("failed %d to reserve fence slot\n", r);
2678 		goto error_unlock;
2679 	}
2680 
2681 	r = amdgpu_vm_update_range(adev, vm, true, false, false, false,
2682 				   NULL, addr, addr, flags, value, 0, NULL, NULL, NULL);
2683 	if (r)
2684 		goto error_unlock;
2685 
2686 	r = amdgpu_vm_update_pdes(adev, vm, true);
2687 
2688 error_unlock:
2689 	amdgpu_bo_unreserve(root);
2690 	if (r < 0)
2691 		DRM_ERROR("Can't handle page fault (%d)\n", r);
2692 
2693 error_unref:
2694 	amdgpu_bo_unref(&root);
2695 
2696 	return false;
2697 }
2698 
2699 #if defined(CONFIG_DEBUG_FS)
2700 /**
2701  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2702  *
2703  * @vm: Requested VM for printing BO info
2704  * @m: debugfs file
2705  *
2706  * Print BO information in debugfs file for the VM
2707  */
2708 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2709 {
2710 	struct amdgpu_bo_va *bo_va, *tmp;
2711 	u64 total_idle = 0;
2712 	u64 total_evicted = 0;
2713 	u64 total_relocated = 0;
2714 	u64 total_moved = 0;
2715 	u64 total_invalidated = 0;
2716 	u64 total_done = 0;
2717 	unsigned int total_idle_objs = 0;
2718 	unsigned int total_evicted_objs = 0;
2719 	unsigned int total_relocated_objs = 0;
2720 	unsigned int total_moved_objs = 0;
2721 	unsigned int total_invalidated_objs = 0;
2722 	unsigned int total_done_objs = 0;
2723 	unsigned int id = 0;
2724 
2725 	spin_lock(&vm->status_lock);
2726 	seq_puts(m, "\tIdle BOs:\n");
2727 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2728 		if (!bo_va->base.bo)
2729 			continue;
2730 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2731 	}
2732 	total_idle_objs = id;
2733 	id = 0;
2734 
2735 	seq_puts(m, "\tEvicted BOs:\n");
2736 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2737 		if (!bo_va->base.bo)
2738 			continue;
2739 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2740 	}
2741 	total_evicted_objs = id;
2742 	id = 0;
2743 
2744 	seq_puts(m, "\tRelocated BOs:\n");
2745 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2746 		if (!bo_va->base.bo)
2747 			continue;
2748 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2749 	}
2750 	total_relocated_objs = id;
2751 	id = 0;
2752 
2753 	seq_puts(m, "\tMoved BOs:\n");
2754 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2755 		if (!bo_va->base.bo)
2756 			continue;
2757 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2758 	}
2759 	total_moved_objs = id;
2760 	id = 0;
2761 
2762 	seq_puts(m, "\tInvalidated BOs:\n");
2763 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2764 		if (!bo_va->base.bo)
2765 			continue;
2766 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2767 	}
2768 	total_invalidated_objs = id;
2769 	id = 0;
2770 
2771 	seq_puts(m, "\tDone BOs:\n");
2772 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2773 		if (!bo_va->base.bo)
2774 			continue;
2775 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2776 	}
2777 	spin_unlock(&vm->status_lock);
2778 	total_done_objs = id;
2779 
2780 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2781 		   total_idle_objs);
2782 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2783 		   total_evicted_objs);
2784 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2785 		   total_relocated_objs);
2786 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2787 		   total_moved_objs);
2788 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2789 		   total_invalidated_objs);
2790 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2791 		   total_done_objs);
2792 }
2793 #endif
2794 
2795 /**
2796  * amdgpu_vm_update_fault_cache - update cached fault into.
2797  * @adev: amdgpu device pointer
2798  * @pasid: PASID of the VM
2799  * @addr: Address of the fault
2800  * @status: GPUVM fault status register
2801  * @vmhub: which vmhub got the fault
2802  *
2803  * Cache the fault info for later use by userspace in debugging.
2804  */
2805 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev,
2806 				  unsigned int pasid,
2807 				  uint64_t addr,
2808 				  uint32_t status,
2809 				  unsigned int vmhub)
2810 {
2811 	struct amdgpu_vm *vm;
2812 	unsigned long flags;
2813 
2814 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2815 
2816 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2817 	/* Don't update the fault cache if status is 0.  In the multiple
2818 	 * fault case, subsequent faults will return a 0 status which is
2819 	 * useless for userspace and replaces the useful fault status, so
2820 	 * only update if status is non-0.
2821 	 */
2822 	if (vm && status) {
2823 		vm->fault_info.addr = addr;
2824 		vm->fault_info.status = status;
2825 		if (AMDGPU_IS_GFXHUB(vmhub)) {
2826 			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX;
2827 			vm->fault_info.vmhub |=
2828 				(vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT;
2829 		} else if (AMDGPU_IS_MMHUB0(vmhub)) {
2830 			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0;
2831 			vm->fault_info.vmhub |=
2832 				(vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT;
2833 		} else if (AMDGPU_IS_MMHUB1(vmhub)) {
2834 			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1;
2835 			vm->fault_info.vmhub |=
2836 				(vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT;
2837 		} else {
2838 			WARN_ONCE(1, "Invalid vmhub %u\n", vmhub);
2839 		}
2840 	}
2841 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2842 }
2843 
2844