/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_trace.h" #include "amdgpu_amdkfd.h" #include "amdgpu_gmc.h" #include "amdgpu_xgmi.h" #include "amdgpu_dma_buf.h" #include "amdgpu_res_cursor.h" #include "kfd_svm.h" /** * DOC: GPUVM * * GPUVM is the MMU functionality provided on the GPU. * GPUVM is similar to the legacy GART on older asics, however * rather than there being a single global GART table * for the entire GPU, there can be multiple GPUVM page tables active * at any given time. The GPUVM page tables can contain a mix * VRAM pages and system pages (both memory and MMIO) and system pages * can be mapped as snooped (cached system pages) or unsnooped * (uncached system pages). * * Each active GPUVM has an ID associated with it and there is a page table * linked with each VMID. When executing a command buffer, * the kernel tells the engine what VMID to use for that command * buffer. VMIDs are allocated dynamically as commands are submitted. * The userspace drivers maintain their own address space and the kernel * sets up their pages tables accordingly when they submit their * command buffers and a VMID is assigned. * The hardware supports up to 16 active GPUVMs at any given time. * * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending * on the ASIC family. GPUVM supports RWX attributes on each page as well * as other features such as encryption and caching attributes. * * VMID 0 is special. It is the GPUVM used for the kernel driver. In * addition to an aperture managed by a page table, VMID 0 also has * several other apertures. There is an aperture for direct access to VRAM * and there is a legacy AGP aperture which just forwards accesses directly * to the matching system physical addresses (or IOVAs when an IOMMU is * present). These apertures provide direct access to these memories without * incurring the overhead of a page table. VMID 0 is used by the kernel * driver for tasks like memory management. * * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. * For user applications, each application can have their own unique GPUVM * address space. The application manages the address space and the kernel * driver manages the GPUVM page tables for each process. If an GPU client * accesses an invalid page, it will generate a GPU page fault, similar to * accessing an invalid page on a CPU. */ #define START(node) ((node)->start) #define LAST(node) ((node)->last) INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, START, LAST, static, amdgpu_vm_it) #undef START #undef LAST /** * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback */ struct amdgpu_prt_cb { /** * @adev: amdgpu device */ struct amdgpu_device *adev; /** * @cb: callback */ struct dma_fence_cb cb; }; /** * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence */ struct amdgpu_vm_tlb_seq_struct { /** * @vm: pointer to the amdgpu_vm structure to set the fence sequence on */ struct amdgpu_vm *vm; /** * @cb: callback */ struct dma_fence_cb cb; }; /** * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping * * @adev: amdgpu_device pointer * @vm: amdgpu_vm pointer * @pasid: the pasid the VM is using on this GPU * * Set the pasid this VM is using on this GPU, can also be used to remove the * pasid by passing in zero. * */ int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid) { int r; if (vm->pasid == pasid) return 0; if (vm->pasid) { r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); if (r < 0) return r; vm->pasid = 0; } if (pasid) { r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, GFP_KERNEL)); if (r < 0) return r; vm->pasid = pasid; } return 0; } /** * amdgpu_vm_bo_evicted - vm_bo is evicted * * @vm_bo: vm_bo which is evicted * * State for PDs/PTs and per VM BOs which are not at the location they should * be. */ static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) { struct amdgpu_vm *vm = vm_bo->vm; struct amdgpu_bo *bo = vm_bo->bo; vm_bo->moved = true; spin_lock(&vm_bo->vm->status_lock); if (bo->tbo.type == ttm_bo_type_kernel) list_move(&vm_bo->vm_status, &vm->evicted); else list_move_tail(&vm_bo->vm_status, &vm->evicted); spin_unlock(&vm_bo->vm->status_lock); } /** * amdgpu_vm_bo_moved - vm_bo is moved * * @vm_bo: vm_bo which is moved * * State for per VM BOs which are moved, but that change is not yet reflected * in the page tables. */ static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) { spin_lock(&vm_bo->vm->status_lock); list_move(&vm_bo->vm_status, &vm_bo->vm->moved); spin_unlock(&vm_bo->vm->status_lock); } /** * amdgpu_vm_bo_idle - vm_bo is idle * * @vm_bo: vm_bo which is now idle * * State for PDs/PTs and per VM BOs which have gone through the state machine * and are now idle. */ static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) { spin_lock(&vm_bo->vm->status_lock); list_move(&vm_bo->vm_status, &vm_bo->vm->idle); spin_unlock(&vm_bo->vm->status_lock); vm_bo->moved = false; } /** * amdgpu_vm_bo_invalidated - vm_bo is invalidated * * @vm_bo: vm_bo which is now invalidated * * State for normal BOs which are invalidated and that change not yet reflected * in the PTs. */ static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) { spin_lock(&vm_bo->vm->status_lock); list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); spin_unlock(&vm_bo->vm->status_lock); } /** * amdgpu_vm_bo_relocated - vm_bo is reloacted * * @vm_bo: vm_bo which is relocated * * State for PDs/PTs which needs to update their parent PD. * For the root PD, just move to idle state. */ static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) { if (vm_bo->bo->parent) { spin_lock(&vm_bo->vm->status_lock); list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); spin_unlock(&vm_bo->vm->status_lock); } else { amdgpu_vm_bo_idle(vm_bo); } } /** * amdgpu_vm_bo_done - vm_bo is done * * @vm_bo: vm_bo which is now done * * State for normal BOs which are invalidated and that change has been updated * in the PTs. */ static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) { spin_lock(&vm_bo->vm->status_lock); list_move(&vm_bo->vm_status, &vm_bo->vm->done); spin_unlock(&vm_bo->vm->status_lock); } /** * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine * @vm: the VM which state machine to reset * * Move all vm_bo object in the VM into a state where they will be updated * again during validation. */ static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) { struct amdgpu_vm_bo_base *vm_bo, *tmp; spin_lock(&vm->status_lock); list_splice_init(&vm->done, &vm->invalidated); list_for_each_entry(vm_bo, &vm->invalidated, vm_status) vm_bo->moved = true; list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { struct amdgpu_bo *bo = vm_bo->bo; if (!bo || bo->tbo.type != ttm_bo_type_kernel) list_move(&vm_bo->vm_status, &vm_bo->vm->moved); else if (bo->parent) list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); } spin_unlock(&vm->status_lock); } /** * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm * * @base: base structure for tracking BO usage in a VM * @vm: vm to which bo is to be added * @bo: amdgpu buffer object * * Initialize a bo_va_base structure and add it to the appropriate lists * */ void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, struct amdgpu_vm *vm, struct amdgpu_bo *bo) { base->vm = vm; base->bo = bo; base->next = NULL; INIT_LIST_HEAD(&base->vm_status); if (!bo) return; base->next = bo->vm_bo; bo->vm_bo = base; if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) return; dma_resv_assert_held(vm->root.bo->tbo.base.resv); ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) amdgpu_vm_bo_relocated(base); else amdgpu_vm_bo_idle(base); if (bo->preferred_domains & amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) return; /* * we checked all the prerequisites, but it looks like this per vm bo * is currently evicted. add the bo to the evicted list to make sure it * is validated on next vm use to avoid fault. * */ amdgpu_vm_bo_evicted(base); } /** * amdgpu_vm_lock_pd - lock PD in drm_exec * * @vm: vm providing the BOs * @exec: drm execution context * @num_fences: number of extra fences to reserve * * Lock the VM root PD in the DRM execution context. */ int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, unsigned int num_fences) { /* We need at least two fences for the VM PD/PT updates */ return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 2 + num_fences); } /** * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU * * @adev: amdgpu device pointer * @vm: vm providing the BOs * * Move all BOs to the end of LRU and remember their positions to put them * together. */ void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, struct amdgpu_vm *vm) { spin_lock(&adev->mman.bdev.lru_lock); ttm_lru_bulk_move_tail(&vm->lru_bulk_move); spin_unlock(&adev->mman.bdev.lru_lock); } /* Create scheduler entities for page table updates */ static int amdgpu_vm_init_entities(struct amdgpu_device *adev, struct amdgpu_vm *vm) { int r; r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, adev->vm_manager.vm_pte_scheds, adev->vm_manager.vm_pte_num_scheds, NULL); if (r) goto error; return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, adev->vm_manager.vm_pte_scheds, adev->vm_manager.vm_pte_num_scheds, NULL); error: drm_sched_entity_destroy(&vm->immediate); return r; } /* Destroy the entities for page table updates again */ static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) { drm_sched_entity_destroy(&vm->immediate); drm_sched_entity_destroy(&vm->delayed); } /** * amdgpu_vm_generation - return the page table re-generation counter * @adev: the amdgpu_device * @vm: optional VM to check, might be NULL * * Returns a page table re-generation token to allow checking if submissions * are still valid to use this VM. The VM parameter might be NULL in which case * just the VRAM lost counter will be used. */ uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) { uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; if (!vm) return result; result += vm->generation; /* Add one if the page tables will be re-generated on next CS */ if (drm_sched_entity_error(&vm->delayed)) ++result; return result; } /** * amdgpu_vm_validate_pt_bos - validate the page table BOs * * @adev: amdgpu device pointer * @vm: vm providing the BOs * @validate: callback to do the validation * @param: parameter for the validation callback * * Validate the page table BOs on command submission if neccessary. * * Returns: * Validation result. */ int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, int (*validate)(void *p, struct amdgpu_bo *bo), void *param) { struct amdgpu_vm_bo_base *bo_base; struct amdgpu_bo *shadow; struct amdgpu_bo *bo; int r; if (drm_sched_entity_error(&vm->delayed)) { ++vm->generation; amdgpu_vm_bo_reset_state_machine(vm); amdgpu_vm_fini_entities(vm); r = amdgpu_vm_init_entities(adev, vm); if (r) return r; } spin_lock(&vm->status_lock); while (!list_empty(&vm->evicted)) { bo_base = list_first_entry(&vm->evicted, struct amdgpu_vm_bo_base, vm_status); spin_unlock(&vm->status_lock); bo = bo_base->bo; shadow = amdgpu_bo_shadowed(bo); r = validate(param, bo); if (r) return r; if (shadow) { r = validate(param, shadow); if (r) return r; } if (bo->tbo.type != ttm_bo_type_kernel) { amdgpu_vm_bo_moved(bo_base); } else { vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); amdgpu_vm_bo_relocated(bo_base); } spin_lock(&vm->status_lock); } spin_unlock(&vm->status_lock); amdgpu_vm_eviction_lock(vm); vm->evicting = false; amdgpu_vm_eviction_unlock(vm); return 0; } /** * amdgpu_vm_ready - check VM is ready for updates * * @vm: VM to check * * Check if all VM PDs/PTs are ready for updates * * Returns: * True if VM is not evicting. */ bool amdgpu_vm_ready(struct amdgpu_vm *vm) { bool empty; bool ret; amdgpu_vm_eviction_lock(vm); ret = !vm->evicting; amdgpu_vm_eviction_unlock(vm); spin_lock(&vm->status_lock); empty = list_empty(&vm->evicted); spin_unlock(&vm->status_lock); return ret && empty; } /** * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug * * @adev: amdgpu_device pointer */ void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) { const struct amdgpu_ip_block *ip_block; bool has_compute_vm_bug; struct amdgpu_ring *ring; int i; has_compute_vm_bug = false; ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); if (ip_block) { /* Compute has a VM bug for GFX version < 7. Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ if (ip_block->version->major <= 7) has_compute_vm_bug = true; else if (ip_block->version->major == 8) if (adev->gfx.mec_fw_version < 673) has_compute_vm_bug = true; } for (i = 0; i < adev->num_rings; i++) { ring = adev->rings[i]; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) /* only compute rings */ ring->has_compute_vm_bug = has_compute_vm_bug; else ring->has_compute_vm_bug = false; } } /** * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. * * @ring: ring on which the job will be submitted * @job: job to submit * * Returns: * True if sync is needed. */ bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, struct amdgpu_job *job) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->vm_hub; struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; if (job->vmid == 0) return false; if (job->vm_needs_flush || ring->has_compute_vm_bug) return true; if (ring->funcs->emit_gds_switch && job->gds_switch_needed) return true; if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) return true; return false; } /** * amdgpu_vm_flush - hardware flush the vm * * @ring: ring to use for flush * @job: related job * @need_pipe_sync: is pipe sync needed * * Emit a VM flush when it is necessary. * * Returns: * 0 on success, errno otherwise. */ int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->vm_hub; struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; bool spm_update_needed = job->spm_update_needed; bool gds_switch_needed = ring->funcs->emit_gds_switch && job->gds_switch_needed; bool vm_flush_needed = job->vm_needs_flush; struct dma_fence *fence = NULL; bool pasid_mapping_needed = false; unsigned patch_offset = 0; int r; if (amdgpu_vmid_had_gpu_reset(adev, id)) { gds_switch_needed = true; vm_flush_needed = true; pasid_mapping_needed = true; spm_update_needed = true; } mutex_lock(&id_mgr->lock); if (id->pasid != job->pasid || !id->pasid_mapping || !dma_fence_is_signaled(id->pasid_mapping)) pasid_mapping_needed = true; mutex_unlock(&id_mgr->lock); gds_switch_needed &= !!ring->funcs->emit_gds_switch; vm_flush_needed &= !!ring->funcs->emit_vm_flush && job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && ring->funcs->emit_wreg; if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) return 0; amdgpu_ring_ib_begin(ring); if (ring->funcs->init_cond_exec) patch_offset = amdgpu_ring_init_cond_exec(ring); if (need_pipe_sync) amdgpu_ring_emit_pipeline_sync(ring); if (vm_flush_needed) { trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); } if (pasid_mapping_needed) amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && gds_switch_needed) { amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, job->gds_size, job->gws_base, job->gws_size, job->oa_base, job->oa_size); } if (vm_flush_needed || pasid_mapping_needed) { r = amdgpu_fence_emit(ring, &fence, NULL, 0); if (r) return r; } if (vm_flush_needed) { mutex_lock(&id_mgr->lock); dma_fence_put(id->last_flush); id->last_flush = dma_fence_get(fence); id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); mutex_unlock(&id_mgr->lock); } if (pasid_mapping_needed) { mutex_lock(&id_mgr->lock); id->pasid = job->pasid; dma_fence_put(id->pasid_mapping); id->pasid_mapping = dma_fence_get(fence); mutex_unlock(&id_mgr->lock); } dma_fence_put(fence); if (ring->funcs->patch_cond_exec) amdgpu_ring_patch_cond_exec(ring, patch_offset); /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ if (ring->funcs->emit_switch_buffer) { amdgpu_ring_emit_switch_buffer(ring); amdgpu_ring_emit_switch_buffer(ring); } amdgpu_ring_ib_end(ring); return 0; } /** * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo * * @vm: requested vm * @bo: requested buffer object * * Find @bo inside the requested vm. * Search inside the @bos vm list for the requested vm * Returns the found bo_va or NULL if none is found * * Object has to be reserved! * * Returns: * Found bo_va or NULL. */ struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_vm_bo_base *base; for (base = bo->vm_bo; base; base = base->next) { if (base->vm != vm) continue; return container_of(base, struct amdgpu_bo_va, base); } return NULL; } /** * amdgpu_vm_map_gart - Resolve gart mapping of addr * * @pages_addr: optional DMA address to use for lookup * @addr: the unmapped addr * * Look up the physical address of the page that the pte resolves * to. * * Returns: * The pointer for the page table entry. */ uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) { uint64_t result; /* page table offset */ result = pages_addr[addr >> PAGE_SHIFT]; /* in case cpu page size != gpu page size*/ result |= addr & (~PAGE_MASK); result &= 0xFFFFFFFFFFFFF000ULL; return result; } /** * amdgpu_vm_update_pdes - make sure that all directories are valid * * @adev: amdgpu_device pointer * @vm: requested vm * @immediate: submit immediately to the paging queue * * Makes sure all directories are up to date. * * Returns: * 0 for success, error for failure. */ int amdgpu_vm_update_pdes(struct amdgpu_device *adev, struct amdgpu_vm *vm, bool immediate) { struct amdgpu_vm_update_params params; struct amdgpu_vm_bo_base *entry; bool flush_tlb_needed = false; LIST_HEAD(relocated); int r, idx; spin_lock(&vm->status_lock); list_splice_init(&vm->relocated, &relocated); spin_unlock(&vm->status_lock); if (list_empty(&relocated)) return 0; if (!drm_dev_enter(adev_to_drm(adev), &idx)) return -ENODEV; memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; params.immediate = immediate; r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); if (r) goto error; list_for_each_entry(entry, &relocated, vm_status) { /* vm_flush_needed after updating moved PDEs */ flush_tlb_needed |= entry->moved; r = amdgpu_vm_pde_update(¶ms, entry); if (r) goto error; } r = vm->update_funcs->commit(¶ms, &vm->last_update); if (r) goto error; if (flush_tlb_needed) atomic64_inc(&vm->tlb_seq); while (!list_empty(&relocated)) { entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, vm_status); amdgpu_vm_bo_idle(entry); } error: drm_dev_exit(idx); return r; } /** * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence * @fence: unused * @cb: the callback structure * * Increments the tlb sequence to make sure that future CS execute a VM flush. */ static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, struct dma_fence_cb *cb) { struct amdgpu_vm_tlb_seq_struct *tlb_cb; tlb_cb = container_of(cb, typeof(*tlb_cb), cb); atomic64_inc(&tlb_cb->vm->tlb_seq); kfree(tlb_cb); } /** * amdgpu_vm_update_range - update a range in the vm page table * * @adev: amdgpu_device pointer to use for commands * @vm: the VM to update the range * @immediate: immediate submission in a page fault * @unlocked: unlocked invalidation during MM callback * @flush_tlb: trigger tlb invalidation after update completed * @allow_override: change MTYPE for local NUMA nodes * @resv: fences we need to sync to * @start: start of mapped range * @last: last mapped entry * @flags: flags for the entries * @offset: offset into nodes and pages_addr * @vram_base: base for vram mappings * @res: ttm_resource to map * @pages_addr: DMA addresses to use for mapping * @fence: optional resulting fence * * Fill in the page table entries between @start and @last. * * Returns: * 0 for success, negative erro code for failure. */ int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, bool immediate, bool unlocked, bool flush_tlb, bool allow_override, struct dma_resv *resv, uint64_t start, uint64_t last, uint64_t flags, uint64_t offset, uint64_t vram_base, struct ttm_resource *res, dma_addr_t *pages_addr, struct dma_fence **fence) { struct amdgpu_vm_update_params params; struct amdgpu_vm_tlb_seq_struct *tlb_cb; struct amdgpu_res_cursor cursor; enum amdgpu_sync_mode sync_mode; int r, idx; if (!drm_dev_enter(adev_to_drm(adev), &idx)) return -ENODEV; tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); if (!tlb_cb) { r = -ENOMEM; goto error_unlock; } /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, * heavy-weight flush TLB unconditionally. */ flush_tlb |= adev->gmc.xgmi.num_physical_nodes && amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); /* * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB */ flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; params.immediate = immediate; params.pages_addr = pages_addr; params.unlocked = unlocked; params.allow_override = allow_override; /* Implicitly sync to command submissions in the same VM before * unmapping. Sync to moving fences before mapping. */ if (!(flags & AMDGPU_PTE_VALID)) sync_mode = AMDGPU_SYNC_EQ_OWNER; else sync_mode = AMDGPU_SYNC_EXPLICIT; amdgpu_vm_eviction_lock(vm); if (vm->evicting) { r = -EBUSY; goto error_free; } if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { struct dma_fence *tmp = dma_fence_get_stub(); amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); swap(vm->last_unlocked, tmp); dma_fence_put(tmp); } r = vm->update_funcs->prepare(¶ms, resv, sync_mode); if (r) goto error_free; amdgpu_res_first(pages_addr ? NULL : res, offset, (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); while (cursor.remaining) { uint64_t tmp, num_entries, addr; num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; if (pages_addr) { bool contiguous = true; if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { uint64_t pfn = cursor.start >> PAGE_SHIFT; uint64_t count; contiguous = pages_addr[pfn + 1] == pages_addr[pfn] + PAGE_SIZE; tmp = num_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; for (count = 2; count < tmp; ++count) { uint64_t idx = pfn + count; if (contiguous != (pages_addr[idx] == pages_addr[idx - 1] + PAGE_SIZE)) break; } if (!contiguous) count--; num_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; } if (!contiguous) { addr = cursor.start; params.pages_addr = pages_addr; } else { addr = pages_addr[cursor.start >> PAGE_SHIFT]; params.pages_addr = NULL; } } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { addr = vram_base + cursor.start; } else { addr = 0; } tmp = start + num_entries; r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); if (r) goto error_free; amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); start = tmp; } r = vm->update_funcs->commit(¶ms, fence); if (flush_tlb || params.table_freed) { tlb_cb->vm = vm; if (fence && *fence && !dma_fence_add_callback(*fence, &tlb_cb->cb, amdgpu_vm_tlb_seq_cb)) { dma_fence_put(vm->last_tlb_flush); vm->last_tlb_flush = dma_fence_get(*fence); } else { amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); } tlb_cb = NULL; } error_free: kfree(tlb_cb); error_unlock: amdgpu_vm_eviction_unlock(vm); drm_dev_exit(idx); return r; } static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, struct amdgpu_mem_stats *stats) { struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_bo *bo = bo_va->base.bo; if (!bo) return; /* * For now ignore BOs which are currently locked and potentially * changing their location. */ if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv && !dma_resv_trylock(bo->tbo.base.resv)) return; amdgpu_bo_get_memory(bo, stats); if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) dma_resv_unlock(bo->tbo.base.resv); } void amdgpu_vm_get_memory(struct amdgpu_vm *vm, struct amdgpu_mem_stats *stats) { struct amdgpu_bo_va *bo_va, *tmp; spin_lock(&vm->status_lock); list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) amdgpu_vm_bo_get_memory(bo_va, stats); list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) amdgpu_vm_bo_get_memory(bo_va, stats); list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) amdgpu_vm_bo_get_memory(bo_va, stats); list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) amdgpu_vm_bo_get_memory(bo_va, stats); list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) amdgpu_vm_bo_get_memory(bo_va, stats); list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) amdgpu_vm_bo_get_memory(bo_va, stats); spin_unlock(&vm->status_lock); } /** * amdgpu_vm_bo_update - update all BO mappings in the vm page table * * @adev: amdgpu_device pointer * @bo_va: requested BO and VM object * @clear: if true clear the entries * * Fill in the page table entries for @bo_va. * * Returns: * 0 for success, -EINVAL for failure. */ int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, bool clear) { struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_bo_va_mapping *mapping; dma_addr_t *pages_addr = NULL; struct ttm_resource *mem; struct dma_fence **last_update; bool flush_tlb = clear; bool uncached; struct dma_resv *resv; uint64_t vram_base; uint64_t flags; int r; if (clear || !bo) { mem = NULL; resv = vm->root.bo->tbo.base.resv; } else { struct drm_gem_object *obj = &bo->tbo.base; resv = bo->tbo.base.resv; if (obj->import_attach && bo_va->is_xgmi) { struct dma_buf *dma_buf = obj->import_attach->dmabuf; struct drm_gem_object *gobj = dma_buf->priv; struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); if (abo->tbo.resource && abo->tbo.resource->mem_type == TTM_PL_VRAM) bo = gem_to_amdgpu_bo(gobj); } mem = bo->tbo.resource; if (mem && (mem->mem_type == TTM_PL_TT || mem->mem_type == AMDGPU_PL_PREEMPT)) pages_addr = bo->tbo.ttm->dma_address; } if (bo) { struct amdgpu_device *bo_adev; flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); if (amdgpu_bo_encrypted(bo)) flags |= AMDGPU_PTE_TMZ; bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); vram_base = bo_adev->vm_manager.vram_base_offset; uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; } else { flags = 0x0; vram_base = 0; uncached = false; } if (clear || (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv)) last_update = &vm->last_update; else last_update = &bo_va->last_pt_update; if (!clear && bo_va->base.moved) { flush_tlb = true; list_splice_init(&bo_va->valids, &bo_va->invalids); } else if (bo_va->cleared != clear) { list_splice_init(&bo_va->valids, &bo_va->invalids); } list_for_each_entry(mapping, &bo_va->invalids, list) { uint64_t update_flags = flags; /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here * but in case of something, we filter the flags in first place */ if (!(mapping->flags & AMDGPU_PTE_READABLE)) update_flags &= ~AMDGPU_PTE_READABLE; if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) update_flags &= ~AMDGPU_PTE_WRITEABLE; /* Apply ASIC specific mapping flags */ amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); trace_amdgpu_vm_bo_update(mapping); r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, !uncached, resv, mapping->start, mapping->last, update_flags, mapping->offset, vram_base, mem, pages_addr, last_update); if (r) return r; } /* If the BO is not in its preferred location add it back to * the evicted list so that it gets validated again on the * next command submission. */ if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { uint32_t mem_type = bo->tbo.resource->mem_type; if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) amdgpu_vm_bo_evicted(&bo_va->base); else amdgpu_vm_bo_idle(&bo_va->base); } else { amdgpu_vm_bo_done(&bo_va->base); } list_splice_init(&bo_va->invalids, &bo_va->valids); bo_va->cleared = clear; bo_va->base.moved = false; if (trace_amdgpu_vm_bo_mapping_enabled()) { list_for_each_entry(mapping, &bo_va->valids, list) trace_amdgpu_vm_bo_mapping(mapping); } return 0; } /** * amdgpu_vm_update_prt_state - update the global PRT state * * @adev: amdgpu_device pointer */ static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) { unsigned long flags; bool enable; spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); enable = !!atomic_read(&adev->vm_manager.num_prt_users); adev->gmc.gmc_funcs->set_prt(adev, enable); spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); } /** * amdgpu_vm_prt_get - add a PRT user * * @adev: amdgpu_device pointer */ static void amdgpu_vm_prt_get(struct amdgpu_device *adev) { if (!adev->gmc.gmc_funcs->set_prt) return; if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) amdgpu_vm_update_prt_state(adev); } /** * amdgpu_vm_prt_put - drop a PRT user * * @adev: amdgpu_device pointer */ static void amdgpu_vm_prt_put(struct amdgpu_device *adev) { if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) amdgpu_vm_update_prt_state(adev); } /** * amdgpu_vm_prt_cb - callback for updating the PRT status * * @fence: fence for the callback * @_cb: the callback function */ static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) { struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); amdgpu_vm_prt_put(cb->adev); kfree(cb); } /** * amdgpu_vm_add_prt_cb - add callback for updating the PRT status * * @adev: amdgpu_device pointer * @fence: fence for the callback */ static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, struct dma_fence *fence) { struct amdgpu_prt_cb *cb; if (!adev->gmc.gmc_funcs->set_prt) return; cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); if (!cb) { /* Last resort when we are OOM */ if (fence) dma_fence_wait(fence, false); amdgpu_vm_prt_put(adev); } else { cb->adev = adev; if (!fence || dma_fence_add_callback(fence, &cb->cb, amdgpu_vm_prt_cb)) amdgpu_vm_prt_cb(fence, &cb->cb); } } /** * amdgpu_vm_free_mapping - free a mapping * * @adev: amdgpu_device pointer * @vm: requested vm * @mapping: mapping to be freed * @fence: fence of the unmap operation * * Free a mapping and make sure we decrease the PRT usage count if applicable. */ static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo_va_mapping *mapping, struct dma_fence *fence) { if (mapping->flags & AMDGPU_PTE_PRT) amdgpu_vm_add_prt_cb(adev, fence); kfree(mapping); } /** * amdgpu_vm_prt_fini - finish all prt mappings * * @adev: amdgpu_device pointer * @vm: requested vm * * Register a cleanup callback to disable PRT support after VM dies. */ static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct dma_resv *resv = vm->root.bo->tbo.base.resv; struct dma_resv_iter cursor; struct dma_fence *fence; dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { /* Add a callback for each fence in the reservation object */ amdgpu_vm_prt_get(adev); amdgpu_vm_add_prt_cb(adev, fence); } } /** * amdgpu_vm_clear_freed - clear freed BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * @fence: optional resulting fence (unchanged if no work needed to be done * or if an error occurred) * * Make sure all freed BOs are cleared in the PT. * PTs have to be reserved and mutex must be locked! * * Returns: * 0 for success. * */ int amdgpu_vm_clear_freed(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct dma_fence **fence) { struct dma_resv *resv = vm->root.bo->tbo.base.resv; struct amdgpu_bo_va_mapping *mapping; uint64_t init_pte_value = 0; struct dma_fence *f = NULL; int r; while (!list_empty(&vm->freed)) { mapping = list_first_entry(&vm->freed, struct amdgpu_bo_va_mapping, list); list_del(&mapping->list); if (vm->pte_support_ats && mapping->start < AMDGPU_GMC_HOLE_START) init_pte_value = AMDGPU_PTE_DEFAULT_ATC; r = amdgpu_vm_update_range(adev, vm, false, false, true, false, resv, mapping->start, mapping->last, init_pte_value, 0, 0, NULL, NULL, &f); amdgpu_vm_free_mapping(adev, vm, mapping, f); if (r) { dma_fence_put(f); return r; } } if (fence && f) { dma_fence_put(*fence); *fence = f; } else { dma_fence_put(f); } return 0; } /** * amdgpu_vm_handle_moved - handle moved BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * @ticket: optional reservation ticket used to reserve the VM * * Make sure all BOs which are moved are updated in the PTs. * * Returns: * 0 for success. * * PTs have to be reserved! */ int amdgpu_vm_handle_moved(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) { struct amdgpu_bo_va *bo_va; struct dma_resv *resv; bool clear, unlock; int r; spin_lock(&vm->status_lock); while (!list_empty(&vm->moved)) { bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, base.vm_status); spin_unlock(&vm->status_lock); /* Per VM BOs never need to bo cleared in the page tables */ r = amdgpu_vm_bo_update(adev, bo_va, false); if (r) return r; spin_lock(&vm->status_lock); } while (!list_empty(&vm->invalidated)) { bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, base.vm_status); resv = bo_va->base.bo->tbo.base.resv; spin_unlock(&vm->status_lock); /* Try to reserve the BO to avoid clearing its ptes */ if (!adev->debug_vm && dma_resv_trylock(resv)) { clear = false; unlock = true; /* The caller is already holding the reservation lock */ } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { clear = false; unlock = false; /* Somebody else is using the BO right now */ } else { clear = true; unlock = false; } r = amdgpu_vm_bo_update(adev, bo_va, clear); if (r) return r; if (unlock) dma_resv_unlock(resv); spin_lock(&vm->status_lock); } spin_unlock(&vm->status_lock); return 0; } /** * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM * * @adev: amdgpu_device pointer * @vm: requested vm * @flush_type: flush type * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. * * Flush TLB if needed for a compute VM. * * Returns: * 0 for success. */ int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint32_t flush_type, uint32_t xcc_mask) { uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); bool all_hub = false; int xcc = 0, r = 0; WARN_ON_ONCE(!vm->is_compute_context); /* * It can be that we race and lose here, but that is extremely unlikely * and the worst thing which could happen is that we flush the changes * into the TLB once more which is harmless. */ if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) return 0; if (adev->family == AMDGPU_FAMILY_AI || adev->family == AMDGPU_FAMILY_RV) all_hub = true; for_each_inst(xcc, xcc_mask) { r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, all_hub, xcc); if (r) break; } return r; } /** * amdgpu_vm_bo_add - add a bo to a specific vm * * @adev: amdgpu_device pointer * @vm: requested vm * @bo: amdgpu buffer object * * Add @bo into the requested vm. * Add @bo to the list of bos associated with the vm * * Returns: * Newly added bo_va or NULL for failure * * Object has to be reserved! */ struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_bo_va *bo_va; bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); if (bo_va == NULL) { return NULL; } amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); bo_va->ref_count = 1; bo_va->last_pt_update = dma_fence_get_stub(); INIT_LIST_HEAD(&bo_va->valids); INIT_LIST_HEAD(&bo_va->invalids); if (!bo) return bo_va; dma_resv_assert_held(bo->tbo.base.resv); if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { bo_va->is_xgmi = true; /* Power up XGMI if it can be potentially used */ amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); } return bo_va; } /** * amdgpu_vm_bo_insert_map - insert a new mapping * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @mapping: the mapping to insert * * Insert a new mapping into all structures. */ static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, struct amdgpu_bo_va_mapping *mapping) { struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_bo *bo = bo_va->base.bo; mapping->bo_va = bo_va; list_add(&mapping->list, &bo_va->invalids); amdgpu_vm_it_insert(mapping, &vm->va); if (mapping->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && !bo_va->base.moved) { amdgpu_vm_bo_moved(&bo_va->base); } trace_amdgpu_vm_bo_map(bo_va, mapping); } /** * amdgpu_vm_bo_map - map bo inside a vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @saddr: where to map the BO * @offset: requested offset in the BO * @size: BO size in bytes * @flags: attributes of pages (read/write/valid/etc.) * * Add a mapping of the BO at the specefied addr into the VM. * * Returns: * 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr, uint64_t offset, uint64_t size, uint64_t flags) { struct amdgpu_bo_va_mapping *mapping, *tmp; struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; uint64_t eaddr; /* validate the parameters */ if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK) return -EINVAL; if (saddr + size <= saddr || offset + size <= offset) return -EINVAL; /* make sure object fit at this offset */ eaddr = saddr + size - 1; if ((bo && offset + size > amdgpu_bo_size(bo)) || (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) return -EINVAL; saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); if (tmp) { /* bo and tmp overlap, invalid addr */ dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, tmp->start, tmp->last + 1); return -EINVAL; } mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; mapping->start = saddr; mapping->last = eaddr; mapping->offset = offset; mapping->flags = flags; amdgpu_vm_bo_insert_map(adev, bo_va, mapping); return 0; } /** * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @saddr: where to map the BO * @offset: requested offset in the BO * @size: BO size in bytes * @flags: attributes of pages (read/write/valid/etc.) * * Add a mapping of the BO at the specefied addr into the VM. Replace existing * mappings as we do so. * * Returns: * 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr, uint64_t offset, uint64_t size, uint64_t flags) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_bo *bo = bo_va->base.bo; uint64_t eaddr; int r; /* validate the parameters */ if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK) return -EINVAL; if (saddr + size <= saddr || offset + size <= offset) return -EINVAL; /* make sure object fit at this offset */ eaddr = saddr + size - 1; if ((bo && offset + size > amdgpu_bo_size(bo)) || (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) return -EINVAL; /* Allocate all the needed memory */ mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); if (r) { kfree(mapping); return r; } saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; mapping->start = saddr; mapping->last = eaddr; mapping->offset = offset; mapping->flags = flags; amdgpu_vm_bo_insert_map(adev, bo_va, mapping); return 0; } /** * amdgpu_vm_bo_unmap - remove bo mapping from vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to remove the address from * @saddr: where to the BO is mapped * * Remove a mapping of the BO at the specefied addr from the VM. * * Returns: * 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_vm *vm = bo_va->base.vm; bool valid = true; saddr /= AMDGPU_GPU_PAGE_SIZE; list_for_each_entry(mapping, &bo_va->valids, list) { if (mapping->start == saddr) break; } if (&mapping->list == &bo_va->valids) { valid = false; list_for_each_entry(mapping, &bo_va->invalids, list) { if (mapping->start == saddr) break; } if (&mapping->list == &bo_va->invalids) return -ENOENT; } list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); mapping->bo_va = NULL; trace_amdgpu_vm_bo_unmap(bo_va, mapping); if (valid) list_add(&mapping->list, &vm->freed); else amdgpu_vm_free_mapping(adev, vm, mapping, bo_va->last_pt_update); return 0; } /** * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range * * @adev: amdgpu_device pointer * @vm: VM structure to use * @saddr: start of the range * @size: size of the range * * Remove all mappings in a range, split them as appropriate. * * Returns: * 0 for success, error for failure. */ int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t saddr, uint64_t size) { struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; LIST_HEAD(removed); uint64_t eaddr; eaddr = saddr + size - 1; saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; /* Allocate all the needed memory */ before = kzalloc(sizeof(*before), GFP_KERNEL); if (!before) return -ENOMEM; INIT_LIST_HEAD(&before->list); after = kzalloc(sizeof(*after), GFP_KERNEL); if (!after) { kfree(before); return -ENOMEM; } INIT_LIST_HEAD(&after->list); /* Now gather all removed mappings */ tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); while (tmp) { /* Remember mapping split at the start */ if (tmp->start < saddr) { before->start = tmp->start; before->last = saddr - 1; before->offset = tmp->offset; before->flags = tmp->flags; before->bo_va = tmp->bo_va; list_add(&before->list, &tmp->bo_va->invalids); } /* Remember mapping split at the end */ if (tmp->last > eaddr) { after->start = eaddr + 1; after->last = tmp->last; after->offset = tmp->offset; after->offset += (after->start - tmp->start) << PAGE_SHIFT; after->flags = tmp->flags; after->bo_va = tmp->bo_va; list_add(&after->list, &tmp->bo_va->invalids); } list_del(&tmp->list); list_add(&tmp->list, &removed); tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); } /* And free them up */ list_for_each_entry_safe(tmp, next, &removed, list) { amdgpu_vm_it_remove(tmp, &vm->va); list_del(&tmp->list); if (tmp->start < saddr) tmp->start = saddr; if (tmp->last > eaddr) tmp->last = eaddr; tmp->bo_va = NULL; list_add(&tmp->list, &vm->freed); trace_amdgpu_vm_bo_unmap(NULL, tmp); } /* Insert partial mapping before the range */ if (!list_empty(&before->list)) { struct amdgpu_bo *bo = before->bo_va->base.bo; amdgpu_vm_it_insert(before, &vm->va); if (before->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && !before->bo_va->base.moved) amdgpu_vm_bo_moved(&before->bo_va->base); } else { kfree(before); } /* Insert partial mapping after the range */ if (!list_empty(&after->list)) { struct amdgpu_bo *bo = after->bo_va->base.bo; amdgpu_vm_it_insert(after, &vm->va); if (after->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && !after->bo_va->base.moved) amdgpu_vm_bo_moved(&after->bo_va->base); } else { kfree(after); } return 0; } /** * amdgpu_vm_bo_lookup_mapping - find mapping by address * * @vm: the requested VM * @addr: the address * * Find a mapping by it's address. * * Returns: * The amdgpu_bo_va_mapping matching for addr or NULL * */ struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, uint64_t addr) { return amdgpu_vm_it_iter_first(&vm->va, addr, addr); } /** * amdgpu_vm_bo_trace_cs - trace all reserved mappings * * @vm: the requested vm * @ticket: CS ticket * * Trace all mappings of BOs reserved during a command submission. */ void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) { struct amdgpu_bo_va_mapping *mapping; if (!trace_amdgpu_vm_bo_cs_enabled()) return; for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { if (mapping->bo_va && mapping->bo_va->base.bo) { struct amdgpu_bo *bo; bo = mapping->bo_va->base.bo; if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) continue; } trace_amdgpu_vm_bo_cs(mapping); } } /** * amdgpu_vm_bo_del - remove a bo from a specific vm * * @adev: amdgpu_device pointer * @bo_va: requested bo_va * * Remove @bo_va->bo from the requested vm. * * Object have to be reserved! */ void amdgpu_vm_bo_del(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va) { struct amdgpu_bo_va_mapping *mapping, *next; struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_vm_bo_base **base; dma_resv_assert_held(vm->root.bo->tbo.base.resv); if (bo) { dma_resv_assert_held(bo->tbo.base.resv); if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) ttm_bo_set_bulk_move(&bo->tbo, NULL); for (base = &bo_va->base.bo->vm_bo; *base; base = &(*base)->next) { if (*base != &bo_va->base) continue; *base = bo_va->base.next; break; } } spin_lock(&vm->status_lock); list_del(&bo_va->base.vm_status); spin_unlock(&vm->status_lock); list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); mapping->bo_va = NULL; trace_amdgpu_vm_bo_unmap(bo_va, mapping); list_add(&mapping->list, &vm->freed); } list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); amdgpu_vm_free_mapping(adev, vm, mapping, bo_va->last_pt_update); } dma_fence_put(bo_va->last_pt_update); if (bo && bo_va->is_xgmi) amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); kfree(bo_va); } /** * amdgpu_vm_evictable - check if we can evict a VM * * @bo: A page table of the VM. * * Check if it is possible to evict a VM. */ bool amdgpu_vm_evictable(struct amdgpu_bo *bo) { struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; /* Page tables of a destroyed VM can go away immediately */ if (!bo_base || !bo_base->vm) return true; /* Don't evict VM page tables while they are busy */ if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) return false; /* Try to block ongoing updates */ if (!amdgpu_vm_eviction_trylock(bo_base->vm)) return false; /* Don't evict VM page tables while they are updated */ if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { amdgpu_vm_eviction_unlock(bo_base->vm); return false; } bo_base->vm->evicting = true; amdgpu_vm_eviction_unlock(bo_base->vm); return true; } /** * amdgpu_vm_bo_invalidate - mark the bo as invalid * * @adev: amdgpu_device pointer * @bo: amdgpu buffer object * @evicted: is the BO evicted * * Mark @bo as invalid. */ void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, struct amdgpu_bo *bo, bool evicted) { struct amdgpu_vm_bo_base *bo_base; /* shadow bo doesn't have bo base, its validation needs its parent */ if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) bo = bo->parent; for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { struct amdgpu_vm *vm = bo_base->vm; if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { amdgpu_vm_bo_evicted(bo_base); continue; } if (bo_base->moved) continue; bo_base->moved = true; if (bo->tbo.type == ttm_bo_type_kernel) amdgpu_vm_bo_relocated(bo_base); else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) amdgpu_vm_bo_moved(bo_base); else amdgpu_vm_bo_invalidated(bo_base); } } /** * amdgpu_vm_get_block_size - calculate VM page table size as power of two * * @vm_size: VM size * * Returns: * VM page table as power of two */ static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) { /* Total bits covered by PD + PTs */ unsigned bits = ilog2(vm_size) + 18; /* Make sure the PD is 4K in size up to 8GB address space. Above that split equal between PD and PTs */ if (vm_size <= 8) return (bits - 9); else return ((bits + 3) / 2); } /** * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size * * @adev: amdgpu_device pointer * @min_vm_size: the minimum vm size in GB if it's set auto * @fragment_size_default: Default PTE fragment size * @max_level: max VMPT level * @max_bits: max address space size in bits * */ void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, uint32_t fragment_size_default, unsigned max_level, unsigned max_bits) { unsigned int max_size = 1 << (max_bits - 30); unsigned int vm_size; uint64_t tmp; /* adjust vm size first */ if (amdgpu_vm_size != -1) { vm_size = amdgpu_vm_size; if (vm_size > max_size) { dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", amdgpu_vm_size, max_size); vm_size = max_size; } } else { struct sysinfo si; unsigned int phys_ram_gb; /* Optimal VM size depends on the amount of physical * RAM available. Underlying requirements and * assumptions: * * - Need to map system memory and VRAM from all GPUs * - VRAM from other GPUs not known here * - Assume VRAM <= system memory * - On GFX8 and older, VM space can be segmented for * different MTYPEs * - Need to allow room for fragmentation, guard pages etc. * * This adds up to a rough guess of system memory x3. * Round up to power of two to maximize the available * VM size with the given page table size. */ si_meminfo(&si); phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + (1 << 30) - 1) >> 30; vm_size = roundup_pow_of_two( min(max(phys_ram_gb * 3, min_vm_size), max_size)); } adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); if (amdgpu_vm_block_size != -1) tmp >>= amdgpu_vm_block_size - 9; tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); switch (adev->vm_manager.num_level) { case 3: adev->vm_manager.root_level = AMDGPU_VM_PDB2; break; case 2: adev->vm_manager.root_level = AMDGPU_VM_PDB1; break; case 1: adev->vm_manager.root_level = AMDGPU_VM_PDB0; break; default: dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); } /* block size depends on vm size and hw setup*/ if (amdgpu_vm_block_size != -1) adev->vm_manager.block_size = min((unsigned)amdgpu_vm_block_size, max_bits - AMDGPU_GPU_PAGE_SHIFT - 9 * adev->vm_manager.num_level); else if (adev->vm_manager.num_level > 1) adev->vm_manager.block_size = 9; else adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); if (amdgpu_vm_fragment_size == -1) adev->vm_manager.fragment_size = fragment_size_default; else adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", vm_size, adev->vm_manager.num_level + 1, adev->vm_manager.block_size, adev->vm_manager.fragment_size); } /** * amdgpu_vm_wait_idle - wait for the VM to become idle * * @vm: VM object to wait for * @timeout: timeout to wait for VM to become idle */ long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) { timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP, true, timeout); if (timeout <= 0) return timeout; return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); } /** * amdgpu_vm_init - initialize a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * @xcp_id: GPU partition selection id * * Init @vm fields. * * Returns: * 0 for success, error for failure. */ int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, int32_t xcp_id) { struct amdgpu_bo *root_bo; struct amdgpu_bo_vm *root; int r, i; vm->va = RB_ROOT_CACHED; for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) vm->reserved_vmid[i] = NULL; INIT_LIST_HEAD(&vm->evicted); INIT_LIST_HEAD(&vm->relocated); INIT_LIST_HEAD(&vm->moved); INIT_LIST_HEAD(&vm->idle); INIT_LIST_HEAD(&vm->invalidated); spin_lock_init(&vm->status_lock); INIT_LIST_HEAD(&vm->freed); INIT_LIST_HEAD(&vm->done); INIT_LIST_HEAD(&vm->pt_freed); INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); INIT_KFIFO(vm->faults); r = amdgpu_vm_init_entities(adev, vm); if (r) return r; vm->pte_support_ats = false; vm->is_compute_context = false; vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & AMDGPU_VM_USE_CPU_FOR_GFX); DRM_DEBUG_DRIVER("VM update mode is %s\n", vm->use_cpu_for_update ? "CPU" : "SDMA"); WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), "CPU update of VM recommended only for large BAR system\n"); if (vm->use_cpu_for_update) vm->update_funcs = &amdgpu_vm_cpu_funcs; else vm->update_funcs = &amdgpu_vm_sdma_funcs; vm->last_update = dma_fence_get_stub(); vm->last_unlocked = dma_fence_get_stub(); vm->last_tlb_flush = dma_fence_get_stub(); vm->generation = 0; mutex_init(&vm->eviction_lock); vm->evicting = false; r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, false, &root, xcp_id); if (r) goto error_free_delayed; root_bo = amdgpu_bo_ref(&root->bo); r = amdgpu_bo_reserve(root_bo, true); if (r) { amdgpu_bo_unref(&root->shadow); amdgpu_bo_unref(&root_bo); goto error_free_delayed; } amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); if (r) goto error_free_root; r = amdgpu_vm_pt_clear(adev, vm, root, false); if (r) goto error_free_root; amdgpu_bo_unreserve(vm->root.bo); amdgpu_bo_unref(&root_bo); return 0; error_free_root: amdgpu_vm_pt_free_root(adev, vm); amdgpu_bo_unreserve(vm->root.bo); amdgpu_bo_unref(&root_bo); error_free_delayed: dma_fence_put(vm->last_tlb_flush); dma_fence_put(vm->last_unlocked); amdgpu_vm_fini_entities(vm); return r; } /** * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM * * @adev: amdgpu_device pointer * @vm: requested vm * * This only works on GFX VMs that don't have any BOs added and no * page tables allocated yet. * * Changes the following VM parameters: * - use_cpu_for_update * - pte_supports_ats * * Reinitializes the page directory to reflect the changed ATS * setting. * * Returns: * 0 for success, -errno for errors. */ int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) { bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); int r; r = amdgpu_bo_reserve(vm->root.bo, true); if (r) return r; /* Check if PD needs to be reinitialized and do it before * changing any other state, in case it fails. */ if (pte_support_ats != vm->pte_support_ats) { /* Sanity checks */ if (!amdgpu_vm_pt_is_root_clean(adev, vm)) { r = -EINVAL; goto unreserve_bo; } vm->pte_support_ats = pte_support_ats; r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo), false); if (r) goto unreserve_bo; } /* Update VM state */ vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & AMDGPU_VM_USE_CPU_FOR_COMPUTE); DRM_DEBUG_DRIVER("VM update mode is %s\n", vm->use_cpu_for_update ? "CPU" : "SDMA"); WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), "CPU update of VM recommended only for large BAR system\n"); if (vm->use_cpu_for_update) { /* Sync with last SDMA update/clear before switching to CPU */ r = amdgpu_bo_sync_wait(vm->root.bo, AMDGPU_FENCE_OWNER_UNDEFINED, true); if (r) goto unreserve_bo; vm->update_funcs = &amdgpu_vm_cpu_funcs; r = amdgpu_vm_pt_map_tables(adev, vm); if (r) goto unreserve_bo; } else { vm->update_funcs = &amdgpu_vm_sdma_funcs; } dma_fence_put(vm->last_update); vm->last_update = dma_fence_get_stub(); vm->is_compute_context = true; /* Free the shadow bo for compute VM */ amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); goto unreserve_bo; unreserve_bo: amdgpu_bo_unreserve(vm->root.bo); return r; } /** * amdgpu_vm_release_compute - release a compute vm * @adev: amdgpu_device pointer * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute * * This is a correspondant of amdgpu_vm_make_compute. It decouples compute * pasid from vm. Compute should stop use of vm after this call. */ void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) { amdgpu_vm_set_pasid(adev, vm, 0); vm->is_compute_context = false; } /** * amdgpu_vm_fini - tear down a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * * Tear down @vm. * Unbind the VM and remove all bos from the vm bo list */ void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_bo_va_mapping *mapping, *tmp; bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; struct amdgpu_bo *root; unsigned long flags; int i; amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); flush_work(&vm->pt_free_work); root = amdgpu_bo_ref(vm->root.bo); amdgpu_bo_reserve(root, true); amdgpu_vm_set_pasid(adev, vm, 0); dma_fence_wait(vm->last_unlocked, false); dma_fence_put(vm->last_unlocked); dma_fence_wait(vm->last_tlb_flush, false); /* Make sure that all fence callbacks have completed */ spin_lock_irqsave(vm->last_tlb_flush->lock, flags); spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); dma_fence_put(vm->last_tlb_flush); list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { amdgpu_vm_prt_fini(adev, vm); prt_fini_needed = false; } list_del(&mapping->list); amdgpu_vm_free_mapping(adev, vm, mapping, NULL); } amdgpu_vm_pt_free_root(adev, vm); amdgpu_bo_unreserve(root); amdgpu_bo_unref(&root); WARN_ON(vm->root.bo); amdgpu_vm_fini_entities(vm); if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { dev_err(adev->dev, "still active bo inside vm\n"); } rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va.rb_root, rb) { /* Don't remove the mapping here, we don't want to trigger a * rebalance and the tree is about to be destroyed anyway. */ list_del(&mapping->list); kfree(mapping); } dma_fence_put(vm->last_update); for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { if (vm->reserved_vmid[i]) { amdgpu_vmid_free_reserved(adev, i); vm->reserved_vmid[i] = false; } } } /** * amdgpu_vm_manager_init - init the VM manager * * @adev: amdgpu_device pointer * * Initialize the VM manager structures */ void amdgpu_vm_manager_init(struct amdgpu_device *adev) { unsigned i; /* Concurrent flushes are only possible starting with Vega10 and * are broken on Navi10 and Navi14. */ adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || adev->asic_type == CHIP_NAVI10 || adev->asic_type == CHIP_NAVI14); amdgpu_vmid_mgr_init(adev); adev->vm_manager.fence_context = dma_fence_context_alloc(AMDGPU_MAX_RINGS); for (i = 0; i < AMDGPU_MAX_RINGS; ++i) adev->vm_manager.seqno[i] = 0; spin_lock_init(&adev->vm_manager.prt_lock); atomic_set(&adev->vm_manager.num_prt_users, 0); /* If not overridden by the user, by default, only in large BAR systems * Compute VM tables will be updated by CPU */ #ifdef CONFIG_X86_64 if (amdgpu_vm_update_mode == -1) { /* For asic with VF MMIO access protection * avoid using CPU for VM table updates */ if (amdgpu_gmc_vram_full_visible(&adev->gmc) && !amdgpu_sriov_vf_mmio_access_protection(adev)) adev->vm_manager.vm_update_mode = AMDGPU_VM_USE_CPU_FOR_COMPUTE; else adev->vm_manager.vm_update_mode = 0; } else adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; #else adev->vm_manager.vm_update_mode = 0; #endif xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); } /** * amdgpu_vm_manager_fini - cleanup VM manager * * @adev: amdgpu_device pointer * * Cleanup the VM manager and free resources. */ void amdgpu_vm_manager_fini(struct amdgpu_device *adev) { WARN_ON(!xa_empty(&adev->vm_manager.pasids)); xa_destroy(&adev->vm_manager.pasids); amdgpu_vmid_mgr_fini(adev); } /** * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. * * @dev: drm device pointer * @data: drm_amdgpu_vm * @filp: drm file pointer * * Returns: * 0 for success, -errno for errors. */ int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { union drm_amdgpu_vm *args = data; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_fpriv *fpriv = filp->driver_priv; /* No valid flags defined yet */ if (args->in.flags) return -EINVAL; switch (args->in.op) { case AMDGPU_VM_OP_RESERVE_VMID: /* We only have requirement to reserve vmid from gfxhub */ if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; } break; case AMDGPU_VM_OP_UNRESERVE_VMID: if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; } break; default: return -EINVAL; } return 0; } /** * amdgpu_vm_get_task_info - Extracts task info for a PASID. * * @adev: drm device pointer * @pasid: PASID identifier for VM * @task_info: task_info to fill. */ void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, struct amdgpu_task_info *task_info) { struct amdgpu_vm *vm; unsigned long flags; xa_lock_irqsave(&adev->vm_manager.pasids, flags); vm = xa_load(&adev->vm_manager.pasids, pasid); if (vm) *task_info = vm->task_info; xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); } /** * amdgpu_vm_set_task_info - Sets VMs task info. * * @vm: vm for which to set the info */ void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) { if (vm->task_info.pid) return; vm->task_info.pid = current->pid; get_task_comm(vm->task_info.task_name, current); if (current->group_leader->mm != current->mm) return; vm->task_info.tgid = current->group_leader->pid; get_task_comm(vm->task_info.process_name, current->group_leader); } /** * amdgpu_vm_handle_fault - graceful handling of VM faults. * @adev: amdgpu device pointer * @pasid: PASID of the VM * @vmid: VMID, only used for GFX 9.4.3. * @node_id: Node_id received in IH cookie. Only applicable for * GFX 9.4.3. * @addr: Address of the fault * @write_fault: true is write fault, false is read fault * * Try to gracefully handle a VM fault. Return true if the fault was handled and * shouldn't be reported any more. */ bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, u32 vmid, u32 node_id, uint64_t addr, bool write_fault) { bool is_compute_context = false; struct amdgpu_bo *root; unsigned long irqflags; uint64_t value, flags; struct amdgpu_vm *vm; int r; xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); vm = xa_load(&adev->vm_manager.pasids, pasid); if (vm) { root = amdgpu_bo_ref(vm->root.bo); is_compute_context = vm->is_compute_context; } else { root = NULL; } xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); if (!root) return false; addr /= AMDGPU_GPU_PAGE_SIZE; if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, node_id, addr, write_fault)) { amdgpu_bo_unref(&root); return true; } r = amdgpu_bo_reserve(root, true); if (r) goto error_unref; /* Double check that the VM still exists */ xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); vm = xa_load(&adev->vm_manager.pasids, pasid); if (vm && vm->root.bo != root) vm = NULL; xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); if (!vm) goto error_unlock; flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | AMDGPU_PTE_SYSTEM; if (is_compute_context) { /* Intentionally setting invalid PTE flag * combination to force a no-retry-fault */ flags = AMDGPU_VM_NORETRY_FLAGS; value = 0; } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { /* Redirect the access to the dummy page */ value = adev->dummy_page_addr; flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | AMDGPU_PTE_WRITEABLE; } else { /* Let the hw retry silently on the PTE */ value = 0; } r = dma_resv_reserve_fences(root->tbo.base.resv, 1); if (r) { pr_debug("failed %d to reserve fence slot\n", r); goto error_unlock; } r = amdgpu_vm_update_range(adev, vm, true, false, false, false, NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); if (r) goto error_unlock; r = amdgpu_vm_update_pdes(adev, vm, true); error_unlock: amdgpu_bo_unreserve(root); if (r < 0) DRM_ERROR("Can't handle page fault (%d)\n", r); error_unref: amdgpu_bo_unref(&root); return false; } #if defined(CONFIG_DEBUG_FS) /** * amdgpu_debugfs_vm_bo_info - print BO info for the VM * * @vm: Requested VM for printing BO info * @m: debugfs file * * Print BO information in debugfs file for the VM */ void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) { struct amdgpu_bo_va *bo_va, *tmp; u64 total_idle = 0; u64 total_evicted = 0; u64 total_relocated = 0; u64 total_moved = 0; u64 total_invalidated = 0; u64 total_done = 0; unsigned int total_idle_objs = 0; unsigned int total_evicted_objs = 0; unsigned int total_relocated_objs = 0; unsigned int total_moved_objs = 0; unsigned int total_invalidated_objs = 0; unsigned int total_done_objs = 0; unsigned int id = 0; spin_lock(&vm->status_lock); seq_puts(m, "\tIdle BOs:\n"); list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { if (!bo_va->base.bo) continue; total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); } total_idle_objs = id; id = 0; seq_puts(m, "\tEvicted BOs:\n"); list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { if (!bo_va->base.bo) continue; total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); } total_evicted_objs = id; id = 0; seq_puts(m, "\tRelocated BOs:\n"); list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { if (!bo_va->base.bo) continue; total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); } total_relocated_objs = id; id = 0; seq_puts(m, "\tMoved BOs:\n"); list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { if (!bo_va->base.bo) continue; total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); } total_moved_objs = id; id = 0; seq_puts(m, "\tInvalidated BOs:\n"); list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { if (!bo_va->base.bo) continue; total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); } total_invalidated_objs = id; id = 0; seq_puts(m, "\tDone BOs:\n"); list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { if (!bo_va->base.bo) continue; total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); } spin_unlock(&vm->status_lock); total_done_objs = id; seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, total_idle_objs); seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, total_evicted_objs); seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, total_relocated_objs); seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, total_moved_objs); seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, total_invalidated_objs); seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, total_done_objs); } #endif /** * amdgpu_vm_update_fault_cache - update cached fault into. * @adev: amdgpu device pointer * @pasid: PASID of the VM * @addr: Address of the fault * @status: GPUVM fault status register * @vmhub: which vmhub got the fault * * Cache the fault info for later use by userspace in debugging. */ void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, unsigned int pasid, uint64_t addr, uint32_t status, unsigned int vmhub) { struct amdgpu_vm *vm; unsigned long flags; xa_lock_irqsave(&adev->vm_manager.pasids, flags); vm = xa_load(&adev->vm_manager.pasids, pasid); /* Don't update the fault cache if status is 0. In the multiple * fault case, subsequent faults will return a 0 status which is * useless for userspace and replaces the useful fault status, so * only update if status is non-0. */ if (vm && status) { vm->fault_info.addr = addr; vm->fault_info.status = status; if (AMDGPU_IS_GFXHUB(vmhub)) { vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; vm->fault_info.vmhub |= (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; } else if (AMDGPU_IS_MMHUB0(vmhub)) { vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; vm->fault_info.vmhub |= (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; } else if (AMDGPU_IS_MMHUB1(vmhub)) { vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; vm->fault_info.vmhub |= (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; } else { WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); } } xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); }