1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include "amdgpu_ras_eeprom.h" 25 #include "amdgpu.h" 26 #include "amdgpu_ras.h" 27 #include <linux/bits.h> 28 #include "atom.h" 29 #include "amdgpu_eeprom.h" 30 #include "amdgpu_atomfirmware.h" 31 #include <linux/debugfs.h> 32 #include <linux/uaccess.h> 33 34 #include "amdgpu_reset.h" 35 36 /* These are memory addresses as would be seen by one or more EEPROM 37 * chips strung on the I2C bus, usually by manipulating pins 1-3 of a 38 * set of EEPROM devices. They form a continuous memory space. 39 * 40 * The I2C device address includes the device type identifier, 1010b, 41 * which is a reserved value and indicates that this is an I2C EEPROM 42 * device. It also includes the top 3 bits of the 19 bit EEPROM memory 43 * address, namely bits 18, 17, and 16. This makes up the 7 bit 44 * address sent on the I2C bus with bit 0 being the direction bit, 45 * which is not represented here, and sent by the hardware directly. 46 * 47 * For instance, 48 * 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0. 49 * 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h. 50 * 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h. 51 * Depending on the size of the I2C EEPROM device(s), bits 18:16 may 52 * address memory in a device or a device on the I2C bus, depending on 53 * the status of pins 1-3. See top of amdgpu_eeprom.c. 54 * 55 * The RAS table lives either at address 0 or address 40000h of EEPROM. 56 */ 57 #define EEPROM_I2C_MADDR_0 0x0 58 #define EEPROM_I2C_MADDR_4 0x40000 59 60 /* 61 * The 2 macros below represent the actual size in bytes that 62 * those entities occupy in the EEPROM memory. 63 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which 64 * uses uint64 to store 6b fields such as retired_page. 65 */ 66 #define RAS_TABLE_HEADER_SIZE 20 67 #define RAS_TABLE_RECORD_SIZE 24 68 69 /* Table hdr is 'AMDR' */ 70 #define RAS_TABLE_HDR_VAL 0x414d4452 71 72 /* Bad GPU tag ‘BADG’ */ 73 #define RAS_TABLE_HDR_BAD 0x42414447 74 75 /* 76 * EEPROM Table structure v1 77 * --------------------------------- 78 * | | 79 * | EEPROM TABLE HEADER | 80 * | ( size 20 Bytes ) | 81 * | | 82 * --------------------------------- 83 * | | 84 * | BAD PAGE RECORD AREA | 85 * | | 86 * --------------------------------- 87 */ 88 89 /* Assume 2-Mbit size EEPROM and take up the whole space. */ 90 #define RAS_TBL_SIZE_BYTES (256 * 1024) 91 #define RAS_TABLE_START 0 92 #define RAS_HDR_START RAS_TABLE_START 93 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) 94 #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ 95 / RAS_TABLE_RECORD_SIZE) 96 97 /* 98 * EEPROM Table structrue v2.1 99 * --------------------------------- 100 * | | 101 * | EEPROM TABLE HEADER | 102 * | ( size 20 Bytes ) | 103 * | | 104 * --------------------------------- 105 * | | 106 * | EEPROM TABLE RAS INFO | 107 * | (available info size 4 Bytes) | 108 * | ( reserved size 252 Bytes ) | 109 * | | 110 * --------------------------------- 111 * | | 112 * | BAD PAGE RECORD AREA | 113 * | | 114 * --------------------------------- 115 */ 116 117 /* EEPROM Table V2_1 */ 118 #define RAS_TABLE_V2_1_INFO_SIZE 256 119 #define RAS_TABLE_V2_1_INFO_START RAS_TABLE_HEADER_SIZE 120 #define RAS_RECORD_START_V2_1 (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \ 121 RAS_TABLE_V2_1_INFO_SIZE) 122 #define RAS_MAX_RECORD_COUNT_V2_1 ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \ 123 RAS_TABLE_V2_1_INFO_SIZE) \ 124 / RAS_TABLE_RECORD_SIZE) 125 126 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM 127 * offset off of RAS_TABLE_START. That is, this is something you can 128 * add to control->i2c_address, and then tell I2C layer to read 129 * from/write to there. _N is the so called absolute index, 130 * because it starts right after the table header. 131 */ 132 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ 133 (_N) * RAS_TABLE_RECORD_SIZE) 134 135 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ 136 (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) 137 138 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off 139 * of "fri", return the absolute record index off of the end of 140 * the table header. 141 */ 142 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ 143 (_C)->ras_max_record_count) 144 145 #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 146 RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) 147 148 #define RAS_NUM_RECS_V2_1(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 149 RAS_TABLE_HEADER_SIZE - \ 150 RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE) 151 152 #define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev) 153 154 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) 155 { 156 switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { 157 case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */ 158 case IP_VERSION(11, 0, 7): /* Sienna cichlid */ 159 case IP_VERSION(13, 0, 0): 160 case IP_VERSION(13, 0, 2): /* Aldebaran */ 161 case IP_VERSION(13, 0, 10): 162 return true; 163 case IP_VERSION(13, 0, 6): 164 case IP_VERSION(13, 0, 14): 165 return (adev->gmc.is_app_apu) ? false : true; 166 default: 167 return false; 168 } 169 } 170 171 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, 172 struct amdgpu_ras_eeprom_control *control) 173 { 174 struct atom_context *atom_ctx = adev->mode_info.atom_context; 175 u8 i2c_addr; 176 177 if (!control) 178 return false; 179 180 if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { 181 /* The address given by VBIOS is an 8-bit, wire-format 182 * address, i.e. the most significant byte. 183 * 184 * Normalize it to a 19-bit EEPROM address. Remove the 185 * device type identifier and make it a 7-bit address; 186 * then make it a 19-bit EEPROM address. See top of 187 * amdgpu_eeprom.c. 188 */ 189 i2c_addr = (i2c_addr & 0x0F) >> 1; 190 control->i2c_address = ((u32) i2c_addr) << 16; 191 192 return true; 193 } 194 195 switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { 196 case IP_VERSION(11, 0, 2): 197 /* VEGA20 and ARCTURUS */ 198 if (adev->asic_type == CHIP_VEGA20) 199 control->i2c_address = EEPROM_I2C_MADDR_0; 200 else if (strnstr(atom_ctx->vbios_pn, 201 "D342", 202 sizeof(atom_ctx->vbios_pn))) 203 control->i2c_address = EEPROM_I2C_MADDR_0; 204 else 205 control->i2c_address = EEPROM_I2C_MADDR_4; 206 return true; 207 case IP_VERSION(11, 0, 7): 208 control->i2c_address = EEPROM_I2C_MADDR_0; 209 return true; 210 case IP_VERSION(13, 0, 2): 211 if (strnstr(atom_ctx->vbios_pn, "D673", 212 sizeof(atom_ctx->vbios_pn))) 213 control->i2c_address = EEPROM_I2C_MADDR_4; 214 else 215 control->i2c_address = EEPROM_I2C_MADDR_0; 216 return true; 217 case IP_VERSION(13, 0, 0): 218 if (strnstr(atom_ctx->vbios_pn, "D707", 219 sizeof(atom_ctx->vbios_pn))) 220 control->i2c_address = EEPROM_I2C_MADDR_0; 221 else 222 control->i2c_address = EEPROM_I2C_MADDR_4; 223 return true; 224 case IP_VERSION(13, 0, 6): 225 case IP_VERSION(13, 0, 10): 226 case IP_VERSION(13, 0, 14): 227 control->i2c_address = EEPROM_I2C_MADDR_4; 228 return true; 229 default: 230 return false; 231 } 232 } 233 234 static void 235 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, 236 unsigned char *buf) 237 { 238 u32 *pp = (uint32_t *)buf; 239 240 pp[0] = cpu_to_le32(hdr->header); 241 pp[1] = cpu_to_le32(hdr->version); 242 pp[2] = cpu_to_le32(hdr->first_rec_offset); 243 pp[3] = cpu_to_le32(hdr->tbl_size); 244 pp[4] = cpu_to_le32(hdr->checksum); 245 } 246 247 static void 248 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, 249 unsigned char *buf) 250 { 251 u32 *pp = (uint32_t *)buf; 252 253 hdr->header = le32_to_cpu(pp[0]); 254 hdr->version = le32_to_cpu(pp[1]); 255 hdr->first_rec_offset = le32_to_cpu(pp[2]); 256 hdr->tbl_size = le32_to_cpu(pp[3]); 257 hdr->checksum = le32_to_cpu(pp[4]); 258 } 259 260 static int __write_table_header(struct amdgpu_ras_eeprom_control *control) 261 { 262 u8 buf[RAS_TABLE_HEADER_SIZE]; 263 struct amdgpu_device *adev = to_amdgpu_device(control); 264 int res; 265 266 memset(buf, 0, sizeof(buf)); 267 __encode_table_header_to_buf(&control->tbl_hdr, buf); 268 269 /* i2c may be unstable in gpu reset */ 270 down_read(&adev->reset_domain->sem); 271 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 272 control->i2c_address + 273 control->ras_header_offset, 274 buf, RAS_TABLE_HEADER_SIZE); 275 up_read(&adev->reset_domain->sem); 276 277 if (res < 0) { 278 DRM_ERROR("Failed to write EEPROM table header:%d", res); 279 } else if (res < RAS_TABLE_HEADER_SIZE) { 280 DRM_ERROR("Short write:%d out of %d\n", 281 res, RAS_TABLE_HEADER_SIZE); 282 res = -EIO; 283 } else { 284 res = 0; 285 } 286 287 return res; 288 } 289 290 static void 291 __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, 292 unsigned char *buf) 293 { 294 u32 *pp = (uint32_t *)buf; 295 u32 tmp; 296 297 tmp = ((uint32_t)(rai->rma_status) & 0xFF) | 298 (((uint32_t)(rai->health_percent) << 8) & 0xFF00) | 299 (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000); 300 pp[0] = cpu_to_le32(tmp); 301 } 302 303 static void 304 __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, 305 unsigned char *buf) 306 { 307 u32 *pp = (uint32_t *)buf; 308 u32 tmp; 309 310 tmp = le32_to_cpu(pp[0]); 311 rai->rma_status = tmp & 0xFF; 312 rai->health_percent = (tmp >> 8) & 0xFF; 313 rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF; 314 } 315 316 static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control) 317 { 318 struct amdgpu_device *adev = to_amdgpu_device(control); 319 u8 *buf; 320 int res; 321 322 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); 323 if (!buf) { 324 DRM_ERROR("Failed to alloc buf to write table ras info\n"); 325 return -ENOMEM; 326 } 327 328 __encode_table_ras_info_to_buf(&control->tbl_rai, buf); 329 330 /* i2c may be unstable in gpu reset */ 331 down_read(&adev->reset_domain->sem); 332 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 333 control->i2c_address + 334 control->ras_info_offset, 335 buf, RAS_TABLE_V2_1_INFO_SIZE); 336 up_read(&adev->reset_domain->sem); 337 338 if (res < 0) { 339 DRM_ERROR("Failed to write EEPROM table ras info:%d", res); 340 } else if (res < RAS_TABLE_V2_1_INFO_SIZE) { 341 DRM_ERROR("Short write:%d out of %d\n", 342 res, RAS_TABLE_V2_1_INFO_SIZE); 343 res = -EIO; 344 } else { 345 res = 0; 346 } 347 348 kfree(buf); 349 350 return res; 351 } 352 353 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) 354 { 355 int ii; 356 u8 *pp, csum; 357 size_t sz; 358 359 /* Header checksum, skip checksum field in the calculation */ 360 sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); 361 pp = (u8 *) &control->tbl_hdr; 362 csum = 0; 363 for (ii = 0; ii < sz; ii++, pp++) 364 csum += *pp; 365 366 return csum; 367 } 368 369 static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control) 370 { 371 int ii; 372 u8 *pp, csum; 373 size_t sz; 374 375 sz = sizeof(control->tbl_rai); 376 pp = (u8 *) &control->tbl_rai; 377 csum = 0; 378 for (ii = 0; ii < sz; ii++, pp++) 379 csum += *pp; 380 381 return csum; 382 } 383 384 static int amdgpu_ras_eeprom_correct_header_tag( 385 struct amdgpu_ras_eeprom_control *control, 386 uint32_t header) 387 { 388 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 389 u8 *hh; 390 int res; 391 u8 csum; 392 393 csum = -hdr->checksum; 394 395 hh = (void *) &hdr->header; 396 csum -= (hh[0] + hh[1] + hh[2] + hh[3]); 397 hh = (void *) &header; 398 csum += hh[0] + hh[1] + hh[2] + hh[3]; 399 csum = -csum; 400 mutex_lock(&control->ras_tbl_mutex); 401 hdr->header = header; 402 hdr->checksum = csum; 403 res = __write_table_header(control); 404 mutex_unlock(&control->ras_tbl_mutex); 405 406 return res; 407 } 408 409 static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control) 410 { 411 struct amdgpu_device *adev = to_amdgpu_device(control); 412 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 413 414 switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) { 415 case IP_VERSION(8, 10, 0): 416 case IP_VERSION(12, 0, 0): 417 hdr->version = RAS_TABLE_VER_V2_1; 418 return; 419 default: 420 hdr->version = RAS_TABLE_VER_V1; 421 return; 422 } 423 } 424 425 /** 426 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table 427 * @control: pointer to control structure 428 * 429 * Reset the contents of the header of the RAS EEPROM table. 430 * Return 0 on success, -errno on error. 431 */ 432 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) 433 { 434 struct amdgpu_device *adev = to_amdgpu_device(control); 435 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 436 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; 437 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 438 u8 csum; 439 int res; 440 441 mutex_lock(&control->ras_tbl_mutex); 442 443 hdr->header = RAS_TABLE_HDR_VAL; 444 amdgpu_ras_set_eeprom_table_version(control); 445 446 if (hdr->version == RAS_TABLE_VER_V2_1) { 447 hdr->first_rec_offset = RAS_RECORD_START_V2_1; 448 hdr->tbl_size = RAS_TABLE_HEADER_SIZE + 449 RAS_TABLE_V2_1_INFO_SIZE; 450 rai->rma_status = GPU_HEALTH_USABLE; 451 /** 452 * GPU health represented as a percentage. 453 * 0 means worst health, 100 means fully health. 454 */ 455 rai->health_percent = 100; 456 /* ecc_page_threshold = 0 means disable bad page retirement */ 457 rai->ecc_page_threshold = con->bad_page_cnt_threshold; 458 } else { 459 hdr->first_rec_offset = RAS_RECORD_START; 460 hdr->tbl_size = RAS_TABLE_HEADER_SIZE; 461 } 462 463 csum = __calc_hdr_byte_sum(control); 464 if (hdr->version == RAS_TABLE_VER_V2_1) 465 csum += __calc_ras_info_byte_sum(control); 466 csum = -csum; 467 hdr->checksum = csum; 468 res = __write_table_header(control); 469 if (!res && hdr->version > RAS_TABLE_VER_V1) 470 res = __write_table_ras_info(control); 471 472 control->ras_num_recs = 0; 473 control->ras_num_bad_pages = 0; 474 control->ras_fri = 0; 475 476 amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_bad_pages); 477 478 control->bad_channel_bitmap = 0; 479 amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap); 480 con->update_channel_flag = false; 481 482 amdgpu_ras_debugfs_set_ret_size(control); 483 484 mutex_unlock(&control->ras_tbl_mutex); 485 486 return res; 487 } 488 489 static void 490 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, 491 struct eeprom_table_record *record, 492 unsigned char *buf) 493 { 494 __le64 tmp = 0; 495 int i = 0; 496 497 /* Next are all record fields according to EEPROM page spec in LE foramt */ 498 buf[i++] = record->err_type; 499 500 buf[i++] = record->bank; 501 502 tmp = cpu_to_le64(record->ts); 503 memcpy(buf + i, &tmp, 8); 504 i += 8; 505 506 tmp = cpu_to_le64((record->offset & 0xffffffffffff)); 507 memcpy(buf + i, &tmp, 6); 508 i += 6; 509 510 buf[i++] = record->mem_channel; 511 buf[i++] = record->mcumc_id; 512 513 tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); 514 memcpy(buf + i, &tmp, 6); 515 } 516 517 static void 518 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, 519 struct eeprom_table_record *record, 520 unsigned char *buf) 521 { 522 __le64 tmp = 0; 523 int i = 0; 524 525 /* Next are all record fields according to EEPROM page spec in LE foramt */ 526 record->err_type = buf[i++]; 527 528 record->bank = buf[i++]; 529 530 memcpy(&tmp, buf + i, 8); 531 record->ts = le64_to_cpu(tmp); 532 i += 8; 533 534 memcpy(&tmp, buf + i, 6); 535 record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); 536 i += 6; 537 538 record->mem_channel = buf[i++]; 539 record->mcumc_id = buf[i++]; 540 541 memcpy(&tmp, buf + i, 6); 542 record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); 543 } 544 545 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) 546 { 547 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 548 549 if (!__is_ras_eeprom_supported(adev) || 550 !amdgpu_bad_page_threshold) 551 return false; 552 553 /* skip check eeprom table for VEGA20 Gaming */ 554 if (!con) 555 return false; 556 else 557 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) 558 return false; 559 560 if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { 561 if (amdgpu_bad_page_threshold == -1) { 562 dev_warn(adev->dev, "RAS records:%d exceed threshold:%d", 563 con->eeprom_control.ras_num_bad_pages, con->bad_page_cnt_threshold); 564 dev_warn(adev->dev, 565 "But GPU can be operated due to bad_page_threshold = -1.\n"); 566 return false; 567 } else { 568 dev_warn(adev->dev, "This GPU is in BAD status."); 569 dev_warn(adev->dev, "Please retire it or set a larger " 570 "threshold value when reloading driver.\n"); 571 return true; 572 } 573 } 574 575 return false; 576 } 577 578 /** 579 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM 580 * @control: pointer to control structure 581 * @buf: pointer to buffer containing data to write 582 * @fri: start writing at this index 583 * @num: number of records to write 584 * 585 * The caller must hold the table mutex in @control. 586 * Return 0 on success, -errno otherwise. 587 */ 588 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, 589 u8 *buf, const u32 fri, const u32 num) 590 { 591 struct amdgpu_device *adev = to_amdgpu_device(control); 592 u32 buf_size; 593 int res; 594 595 /* i2c may be unstable in gpu reset */ 596 down_read(&adev->reset_domain->sem); 597 buf_size = num * RAS_TABLE_RECORD_SIZE; 598 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 599 control->i2c_address + 600 RAS_INDEX_TO_OFFSET(control, fri), 601 buf, buf_size); 602 up_read(&adev->reset_domain->sem); 603 if (res < 0) { 604 DRM_ERROR("Writing %d EEPROM table records error:%d", 605 num, res); 606 } else if (res < buf_size) { 607 /* Short write, return error. 608 */ 609 DRM_ERROR("Wrote %d records out of %d", 610 res / RAS_TABLE_RECORD_SIZE, num); 611 res = -EIO; 612 } else { 613 res = 0; 614 } 615 616 return res; 617 } 618 619 static int 620 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, 621 struct eeprom_table_record *record, 622 const u32 num) 623 { 624 struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control)); 625 struct amdgpu_device *adev = to_amdgpu_device(control); 626 u32 a, b, i; 627 u8 *buf, *pp; 628 int res; 629 630 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 631 if (!buf) 632 return -ENOMEM; 633 634 /* Encode all of them in one go. 635 */ 636 pp = buf; 637 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 638 __encode_table_record_to_buf(control, &record[i], pp); 639 640 /* update bad channel bitmap */ 641 if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && 642 !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 643 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 644 con->update_channel_flag = true; 645 } 646 } 647 648 /* a, first record index to write into. 649 * b, last record index to write into. 650 * a = first index to read (fri) + number of records in the table, 651 * b = a + @num - 1. 652 * Let N = control->ras_max_num_record_count, then we have, 653 * case 0: 0 <= a <= b < N, 654 * just append @num records starting at a; 655 * case 1: 0 <= a < N <= b, 656 * append (N - a) records starting at a, and 657 * append the remainder, b % N + 1, starting at 0. 658 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, 659 * case 2a: 0 <= a <= b < N 660 * append num records starting at a; and fix fri if b overwrote it, 661 * and since a <= b, if b overwrote it then a must've also, 662 * and if b didn't overwrite it, then a didn't also. 663 * case 2b: 0 <= b < a < N 664 * write num records starting at a, which wraps around 0=N 665 * and overwrite fri unconditionally. Now from case 2a, 666 * this means that b eclipsed fri to overwrite it and wrap 667 * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally 668 * set fri = b + 1 (mod N). 669 * Now, since fri is updated in every case, except the trivial case 0, 670 * the number of records present in the table after writing, is, 671 * num_recs - 1 = b - fri (mod N), and we take the positive value, 672 * by adding an arbitrary multiple of N before taking the modulo N 673 * as shown below. 674 */ 675 a = control->ras_fri + control->ras_num_recs; 676 b = a + num - 1; 677 if (b < control->ras_max_record_count) { 678 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 679 } else if (a < control->ras_max_record_count) { 680 u32 g0, g1; 681 682 g0 = control->ras_max_record_count - a; 683 g1 = b % control->ras_max_record_count + 1; 684 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 685 if (res) 686 goto Out; 687 res = __amdgpu_ras_eeprom_write(control, 688 buf + g0 * RAS_TABLE_RECORD_SIZE, 689 0, g1); 690 if (res) 691 goto Out; 692 if (g1 > control->ras_fri) 693 control->ras_fri = g1 % control->ras_max_record_count; 694 } else { 695 a %= control->ras_max_record_count; 696 b %= control->ras_max_record_count; 697 698 if (a <= b) { 699 /* Note that, b - a + 1 = num. */ 700 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 701 if (res) 702 goto Out; 703 if (b >= control->ras_fri) 704 control->ras_fri = (b + 1) % control->ras_max_record_count; 705 } else { 706 u32 g0, g1; 707 708 /* b < a, which means, we write from 709 * a to the end of the table, and from 710 * the start of the table to b. 711 */ 712 g0 = control->ras_max_record_count - a; 713 g1 = b + 1; 714 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 715 if (res) 716 goto Out; 717 res = __amdgpu_ras_eeprom_write(control, 718 buf + g0 * RAS_TABLE_RECORD_SIZE, 719 0, g1); 720 if (res) 721 goto Out; 722 control->ras_fri = g1 % control->ras_max_record_count; 723 } 724 } 725 control->ras_num_recs = 1 + (control->ras_max_record_count + b 726 - control->ras_fri) 727 % control->ras_max_record_count; 728 729 if (control->rec_type == AMDGPU_RAS_EEPROM_REC_PA) 730 control->ras_num_bad_pages = control->ras_num_recs; 731 else 732 control->ras_num_bad_pages = 733 control->ras_num_recs * adev->umc.retire_unit; 734 Out: 735 kfree(buf); 736 return res; 737 } 738 739 static int 740 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) 741 { 742 struct amdgpu_device *adev = to_amdgpu_device(control); 743 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 744 u8 *buf, *pp, csum; 745 u32 buf_size; 746 int res; 747 748 /* Modify the header if it exceeds. 749 */ 750 if (amdgpu_bad_page_threshold != 0 && 751 control->ras_num_bad_pages >= ras->bad_page_cnt_threshold) { 752 dev_warn(adev->dev, 753 "Saved bad pages %d reaches threshold value %d\n", 754 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 755 control->tbl_hdr.header = RAS_TABLE_HDR_BAD; 756 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) { 757 control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD; 758 control->tbl_rai.health_percent = 0; 759 } 760 761 if (amdgpu_bad_page_threshold != -1) 762 ras->is_rma = true; 763 764 /* ignore the -ENOTSUPP return value */ 765 amdgpu_dpm_send_rma_reason(adev); 766 } 767 768 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) 769 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + 770 RAS_TABLE_V2_1_INFO_SIZE + 771 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 772 else 773 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + 774 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 775 control->tbl_hdr.checksum = 0; 776 777 buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 778 buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 779 if (!buf) { 780 DRM_ERROR("allocating memory for table of size %d bytes failed\n", 781 control->tbl_hdr.tbl_size); 782 res = -ENOMEM; 783 goto Out; 784 } 785 786 down_read(&adev->reset_domain->sem); 787 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 788 control->i2c_address + 789 control->ras_record_offset, 790 buf, buf_size); 791 up_read(&adev->reset_domain->sem); 792 if (res < 0) { 793 DRM_ERROR("EEPROM failed reading records:%d\n", 794 res); 795 goto Out; 796 } else if (res < buf_size) { 797 DRM_ERROR("EEPROM read %d out of %d bytes\n", 798 res, buf_size); 799 res = -EIO; 800 goto Out; 801 } 802 803 /** 804 * bad page records have been stored in eeprom, 805 * now calculate gpu health percent 806 */ 807 if (amdgpu_bad_page_threshold != 0 && 808 control->tbl_hdr.version == RAS_TABLE_VER_V2_1 && 809 control->ras_num_bad_pages < ras->bad_page_cnt_threshold) 810 control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold - 811 control->ras_num_bad_pages) * 100) / 812 ras->bad_page_cnt_threshold; 813 814 /* Recalc the checksum. 815 */ 816 csum = 0; 817 for (pp = buf; pp < buf + buf_size; pp++) 818 csum += *pp; 819 820 csum += __calc_hdr_byte_sum(control); 821 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) 822 csum += __calc_ras_info_byte_sum(control); 823 /* avoid sign extension when assigning to "checksum" */ 824 csum = -csum; 825 control->tbl_hdr.checksum = csum; 826 res = __write_table_header(control); 827 if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1) 828 res = __write_table_ras_info(control); 829 Out: 830 kfree(buf); 831 return res; 832 } 833 834 /** 835 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table 836 * @control: pointer to control structure 837 * @record: array of records to append 838 * @num: number of records in @record array 839 * 840 * Append @num records to the table, calculate the checksum and write 841 * the table back to EEPROM. The maximum number of records that 842 * can be appended is between 1 and control->ras_max_record_count, 843 * regardless of how many records are already stored in the table. 844 * 845 * Return 0 on success or if EEPROM is not supported, -errno on error. 846 */ 847 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, 848 struct eeprom_table_record *record, 849 const u32 num) 850 { 851 struct amdgpu_device *adev = to_amdgpu_device(control); 852 int res, i; 853 854 if (!__is_ras_eeprom_supported(adev)) 855 return 0; 856 857 if (num == 0) { 858 DRM_ERROR("will not append 0 records\n"); 859 return -EINVAL; 860 } else if (num > control->ras_max_record_count) { 861 DRM_ERROR("cannot append %d records than the size of table %d\n", 862 num, control->ras_max_record_count); 863 return -EINVAL; 864 } 865 866 /* set the new channel index flag */ 867 for (i = 0; i < num; i++) 868 record[i].retired_page |= UMC_CHANNEL_IDX_V2; 869 870 mutex_lock(&control->ras_tbl_mutex); 871 872 res = amdgpu_ras_eeprom_append_table(control, record, num); 873 if (!res) 874 res = amdgpu_ras_eeprom_update_header(control); 875 if (!res) 876 amdgpu_ras_debugfs_set_ret_size(control); 877 878 mutex_unlock(&control->ras_tbl_mutex); 879 880 /* clear channel index flag, the flag is only saved on eeprom */ 881 for (i = 0; i < num; i++) 882 record[i].retired_page &= ~UMC_CHANNEL_IDX_V2; 883 884 return res; 885 } 886 887 /** 888 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer 889 * @control: pointer to control structure 890 * @buf: pointer to buffer to read into 891 * @fri: first record index, start reading at this index, absolute index 892 * @num: number of records to read 893 * 894 * The caller must hold the table mutex in @control. 895 * Return 0 on success, -errno otherwise. 896 */ 897 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 898 u8 *buf, const u32 fri, const u32 num) 899 { 900 struct amdgpu_device *adev = to_amdgpu_device(control); 901 u32 buf_size; 902 int res; 903 904 /* i2c may be unstable in gpu reset */ 905 down_read(&adev->reset_domain->sem); 906 buf_size = num * RAS_TABLE_RECORD_SIZE; 907 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 908 control->i2c_address + 909 RAS_INDEX_TO_OFFSET(control, fri), 910 buf, buf_size); 911 up_read(&adev->reset_domain->sem); 912 if (res < 0) { 913 DRM_ERROR("Reading %d EEPROM table records error:%d", 914 num, res); 915 } else if (res < buf_size) { 916 /* Short read, return error. 917 */ 918 DRM_ERROR("Read %d records out of %d", 919 res / RAS_TABLE_RECORD_SIZE, num); 920 res = -EIO; 921 } else { 922 res = 0; 923 } 924 925 return res; 926 } 927 928 /** 929 * amdgpu_ras_eeprom_read -- read EEPROM 930 * @control: pointer to control structure 931 * @record: array of records to read into 932 * @num: number of records in @record 933 * 934 * Reads num records from the RAS table in EEPROM and 935 * writes the data into @record array. 936 * 937 * Returns 0 on success, -errno on error. 938 */ 939 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 940 struct eeprom_table_record *record, 941 const u32 num) 942 { 943 struct amdgpu_device *adev = to_amdgpu_device(control); 944 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 945 int i, res; 946 u8 *buf, *pp; 947 u32 g0, g1; 948 949 if (!__is_ras_eeprom_supported(adev)) 950 return 0; 951 952 if (num == 0) { 953 DRM_ERROR("will not read 0 records\n"); 954 return -EINVAL; 955 } else if (num > control->ras_num_recs) { 956 DRM_ERROR("too many records to read:%d available:%d\n", 957 num, control->ras_num_recs); 958 return -EINVAL; 959 } 960 961 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 962 if (!buf) 963 return -ENOMEM; 964 965 /* Determine how many records to read, from the first record 966 * index, fri, to the end of the table, and from the beginning 967 * of the table, such that the total number of records is 968 * @num, and we handle wrap around when fri > 0 and 969 * fri + num > RAS_MAX_RECORD_COUNT. 970 * 971 * First we compute the index of the last element 972 * which would be fetched from each region, 973 * g0 is in [fri, fri + num - 1], and 974 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. 975 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of 976 * the last element to fetch, we set g0 to _the number_ 977 * of elements to fetch, @num, since we know that the last 978 * indexed to be fetched does not exceed the table. 979 * 980 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then 981 * we set g0 to the number of elements to read 982 * until the end of the table, and g1 to the number of 983 * elements to read from the beginning of the table. 984 */ 985 g0 = control->ras_fri + num - 1; 986 g1 = g0 % control->ras_max_record_count; 987 if (g0 < control->ras_max_record_count) { 988 g0 = num; 989 g1 = 0; 990 } else { 991 g0 = control->ras_max_record_count - control->ras_fri; 992 g1 += 1; 993 } 994 995 mutex_lock(&control->ras_tbl_mutex); 996 res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); 997 if (res) 998 goto Out; 999 if (g1) { 1000 res = __amdgpu_ras_eeprom_read(control, 1001 buf + g0 * RAS_TABLE_RECORD_SIZE, 1002 0, g1); 1003 if (res) 1004 goto Out; 1005 } 1006 1007 res = 0; 1008 1009 /* Read up everything? Then transform. 1010 */ 1011 pp = buf; 1012 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 1013 __decode_table_record_from_buf(control, &record[i], pp); 1014 1015 /* update bad channel bitmap */ 1016 if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && 1017 !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 1018 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 1019 con->update_channel_flag = true; 1020 } 1021 } 1022 Out: 1023 kfree(buf); 1024 mutex_unlock(&control->ras_tbl_mutex); 1025 1026 return res; 1027 } 1028 1029 uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control) 1030 { 1031 /* get available eeprom table version first before eeprom table init */ 1032 amdgpu_ras_set_eeprom_table_version(control); 1033 1034 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) 1035 return RAS_MAX_RECORD_COUNT_V2_1; 1036 else 1037 return RAS_MAX_RECORD_COUNT; 1038 } 1039 1040 static ssize_t 1041 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, 1042 size_t size, loff_t *pos) 1043 { 1044 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1045 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1046 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 1047 u8 data[50]; 1048 int res; 1049 1050 if (!size) 1051 return size; 1052 1053 if (!ras || !control) { 1054 res = snprintf(data, sizeof(data), "Not supported\n"); 1055 } else { 1056 res = snprintf(data, sizeof(data), "%d bytes or %d records\n", 1057 RAS_TBL_SIZE_BYTES, control->ras_max_record_count); 1058 } 1059 1060 if (*pos >= res) 1061 return 0; 1062 1063 res -= *pos; 1064 res = min_t(size_t, res, size); 1065 1066 if (copy_to_user(buf, &data[*pos], res)) 1067 return -EFAULT; 1068 1069 *pos += res; 1070 1071 return res; 1072 } 1073 1074 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { 1075 .owner = THIS_MODULE, 1076 .read = amdgpu_ras_debugfs_eeprom_size_read, 1077 .write = NULL, 1078 .llseek = default_llseek, 1079 }; 1080 1081 static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; 1082 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; 1083 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) 1084 static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; 1085 static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; 1086 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) 1087 1088 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { 1089 "ignore", 1090 "re", 1091 "ue", 1092 }; 1093 1094 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) 1095 { 1096 return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + 1097 strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; 1098 } 1099 1100 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) 1101 { 1102 struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, 1103 eeprom_control); 1104 struct dentry *de = ras->de_ras_eeprom_table; 1105 1106 if (de) 1107 d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); 1108 } 1109 1110 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, 1111 size_t size, loff_t *pos) 1112 { 1113 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1114 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1115 struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; 1116 const size_t orig_size = size; 1117 int res = -EFAULT; 1118 size_t data_len; 1119 1120 mutex_lock(&control->ras_tbl_mutex); 1121 1122 /* We want *pos - data_len > 0, which means there's 1123 * bytes to be printed from data. 1124 */ 1125 data_len = strlen(tbl_hdr_str); 1126 if (*pos < data_len) { 1127 data_len -= *pos; 1128 data_len = min_t(size_t, data_len, size); 1129 if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) 1130 goto Out; 1131 buf += data_len; 1132 size -= data_len; 1133 *pos += data_len; 1134 } 1135 1136 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; 1137 if (*pos < data_len && size > 0) { 1138 u8 data[tbl_hdr_fmt_size + 1]; 1139 loff_t lpos; 1140 1141 snprintf(data, sizeof(data), tbl_hdr_fmt, 1142 control->tbl_hdr.header, 1143 control->tbl_hdr.version, 1144 control->tbl_hdr.first_rec_offset, 1145 control->tbl_hdr.tbl_size, 1146 control->tbl_hdr.checksum); 1147 1148 data_len -= *pos; 1149 data_len = min_t(size_t, data_len, size); 1150 lpos = *pos - strlen(tbl_hdr_str); 1151 if (copy_to_user(buf, &data[lpos], data_len)) 1152 goto Out; 1153 buf += data_len; 1154 size -= data_len; 1155 *pos += data_len; 1156 } 1157 1158 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); 1159 if (*pos < data_len && size > 0) { 1160 loff_t lpos; 1161 1162 data_len -= *pos; 1163 data_len = min_t(size_t, data_len, size); 1164 lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; 1165 if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) 1166 goto Out; 1167 buf += data_len; 1168 size -= data_len; 1169 *pos += data_len; 1170 } 1171 1172 data_len = amdgpu_ras_debugfs_table_size(control); 1173 if (*pos < data_len && size > 0) { 1174 u8 dare[RAS_TABLE_RECORD_SIZE]; 1175 u8 data[rec_hdr_fmt_size + 1]; 1176 struct eeprom_table_record record; 1177 int s, r; 1178 1179 /* Find the starting record index 1180 */ 1181 s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 1182 strlen(rec_hdr_str); 1183 s = s / rec_hdr_fmt_size; 1184 r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 1185 strlen(rec_hdr_str); 1186 r = r % rec_hdr_fmt_size; 1187 1188 for ( ; size > 0 && s < control->ras_num_recs; s++) { 1189 u32 ai = RAS_RI_TO_AI(control, s); 1190 /* Read a single record 1191 */ 1192 res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); 1193 if (res) 1194 goto Out; 1195 __decode_table_record_from_buf(control, &record, dare); 1196 snprintf(data, sizeof(data), rec_hdr_fmt, 1197 s, 1198 RAS_INDEX_TO_OFFSET(control, ai), 1199 record_err_type_str[record.err_type], 1200 record.bank, 1201 record.ts, 1202 record.offset, 1203 record.mem_channel, 1204 record.mcumc_id, 1205 record.retired_page); 1206 1207 data_len = min_t(size_t, rec_hdr_fmt_size - r, size); 1208 if (copy_to_user(buf, &data[r], data_len)) { 1209 res = -EFAULT; 1210 goto Out; 1211 } 1212 buf += data_len; 1213 size -= data_len; 1214 *pos += data_len; 1215 r = 0; 1216 } 1217 } 1218 res = 0; 1219 Out: 1220 mutex_unlock(&control->ras_tbl_mutex); 1221 return res < 0 ? res : orig_size - size; 1222 } 1223 1224 static ssize_t 1225 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, 1226 size_t size, loff_t *pos) 1227 { 1228 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1229 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1230 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 1231 u8 data[81]; 1232 int res; 1233 1234 if (!size) 1235 return size; 1236 1237 if (!ras || !control) { 1238 res = snprintf(data, sizeof(data), "Not supported\n"); 1239 if (*pos >= res) 1240 return 0; 1241 1242 res -= *pos; 1243 res = min_t(size_t, res, size); 1244 1245 if (copy_to_user(buf, &data[*pos], res)) 1246 return -EFAULT; 1247 1248 *pos += res; 1249 1250 return res; 1251 } else { 1252 return amdgpu_ras_debugfs_table_read(f, buf, size, pos); 1253 } 1254 } 1255 1256 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { 1257 .owner = THIS_MODULE, 1258 .read = amdgpu_ras_debugfs_eeprom_table_read, 1259 .write = NULL, 1260 .llseek = default_llseek, 1261 }; 1262 1263 /** 1264 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum 1265 * @control: pointer to control structure 1266 * 1267 * Check the checksum of the stored in EEPROM RAS table. 1268 * 1269 * Return 0 if the checksum is correct, 1270 * positive if it is not correct, and 1271 * -errno on I/O error. 1272 */ 1273 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) 1274 { 1275 struct amdgpu_device *adev = to_amdgpu_device(control); 1276 int buf_size, res; 1277 u8 csum, *buf, *pp; 1278 1279 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) 1280 buf_size = RAS_TABLE_HEADER_SIZE + 1281 RAS_TABLE_V2_1_INFO_SIZE + 1282 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1283 else 1284 buf_size = RAS_TABLE_HEADER_SIZE + 1285 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1286 1287 buf = kzalloc(buf_size, GFP_KERNEL); 1288 if (!buf) { 1289 DRM_ERROR("Out of memory checking RAS table checksum.\n"); 1290 return -ENOMEM; 1291 } 1292 1293 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1294 control->i2c_address + 1295 control->ras_header_offset, 1296 buf, buf_size); 1297 if (res < buf_size) { 1298 DRM_ERROR("Partial read for checksum, res:%d\n", res); 1299 /* On partial reads, return -EIO. 1300 */ 1301 if (res >= 0) 1302 res = -EIO; 1303 goto Out; 1304 } 1305 1306 csum = 0; 1307 for (pp = buf; pp < buf + buf_size; pp++) 1308 csum += *pp; 1309 Out: 1310 kfree(buf); 1311 return res < 0 ? res : csum; 1312 } 1313 1314 static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control) 1315 { 1316 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; 1317 struct amdgpu_device *adev = to_amdgpu_device(control); 1318 unsigned char *buf; 1319 int res; 1320 1321 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); 1322 if (!buf) { 1323 DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n"); 1324 return -ENOMEM; 1325 } 1326 1327 /** 1328 * EEPROM table V2_1 supports ras info, 1329 * read EEPROM table ras info 1330 */ 1331 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1332 control->i2c_address + control->ras_info_offset, 1333 buf, RAS_TABLE_V2_1_INFO_SIZE); 1334 if (res < RAS_TABLE_V2_1_INFO_SIZE) { 1335 DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res); 1336 res = res >= 0 ? -EIO : res; 1337 goto Out; 1338 } 1339 1340 __decode_table_ras_info_from_buf(rai, buf); 1341 1342 Out: 1343 kfree(buf); 1344 return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res; 1345 } 1346 1347 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control) 1348 { 1349 struct amdgpu_device *adev = to_amdgpu_device(control); 1350 unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; 1351 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1352 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1353 int res; 1354 1355 ras->is_rma = false; 1356 1357 if (!__is_ras_eeprom_supported(adev)) 1358 return 0; 1359 1360 /* Verify i2c adapter is initialized */ 1361 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1362 return -ENOENT; 1363 1364 if (!__get_eeprom_i2c_addr(adev, control)) 1365 return -EINVAL; 1366 1367 control->ras_header_offset = RAS_HDR_START; 1368 control->ras_info_offset = RAS_TABLE_V2_1_INFO_START; 1369 mutex_init(&control->ras_tbl_mutex); 1370 1371 /* Read the table header from EEPROM address */ 1372 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1373 control->i2c_address + control->ras_header_offset, 1374 buf, RAS_TABLE_HEADER_SIZE); 1375 if (res < RAS_TABLE_HEADER_SIZE) { 1376 DRM_ERROR("Failed to read EEPROM table header, res:%d", res); 1377 return res >= 0 ? -EIO : res; 1378 } 1379 1380 __decode_table_header_from_buf(hdr, buf); 1381 1382 if (hdr->version == RAS_TABLE_VER_V2_1) { 1383 control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr); 1384 control->ras_record_offset = RAS_RECORD_START_V2_1; 1385 control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1; 1386 } else { 1387 control->ras_num_recs = RAS_NUM_RECS(hdr); 1388 control->ras_record_offset = RAS_RECORD_START; 1389 control->ras_max_record_count = RAS_MAX_RECORD_COUNT; 1390 } 1391 control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); 1392 1393 return 0; 1394 } 1395 1396 int amdgpu_ras_eeprom_check(struct amdgpu_ras_eeprom_control *control) 1397 { 1398 struct amdgpu_device *adev = to_amdgpu_device(control); 1399 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1400 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1401 int res; 1402 1403 if (!__is_ras_eeprom_supported(adev)) 1404 return 0; 1405 1406 /* Verify i2c adapter is initialized */ 1407 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1408 return -ENOENT; 1409 1410 if (!__get_eeprom_i2c_addr(adev, control)) 1411 return -EINVAL; 1412 1413 if (control->rec_type == AMDGPU_RAS_EEPROM_REC_PA) 1414 control->ras_num_bad_pages = control->ras_num_recs; 1415 else 1416 control->ras_num_bad_pages = 1417 control->ras_num_recs * adev->umc.retire_unit; 1418 1419 if (hdr->header == RAS_TABLE_HDR_VAL) { 1420 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", 1421 control->ras_num_bad_pages); 1422 1423 if (hdr->version == RAS_TABLE_VER_V2_1) { 1424 res = __read_table_ras_info(control); 1425 if (res) 1426 return res; 1427 } 1428 1429 res = __verify_ras_table_checksum(control); 1430 if (res) 1431 DRM_ERROR("RAS table incorrect checksum or error:%d\n", 1432 res); 1433 1434 /* Warn if we are at 90% of the threshold or above 1435 */ 1436 if (10 * control->ras_num_bad_pages >= 9 * ras->bad_page_cnt_threshold) 1437 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", 1438 control->ras_num_bad_pages, 1439 ras->bad_page_cnt_threshold); 1440 } else if (hdr->header == RAS_TABLE_HDR_BAD && 1441 amdgpu_bad_page_threshold != 0) { 1442 if (hdr->version == RAS_TABLE_VER_V2_1) { 1443 res = __read_table_ras_info(control); 1444 if (res) 1445 return res; 1446 } 1447 1448 res = __verify_ras_table_checksum(control); 1449 if (res) { 1450 dev_err(adev->dev, "RAS Table incorrect checksum or error:%d\n", 1451 res); 1452 return -EINVAL; 1453 } 1454 if (ras->bad_page_cnt_threshold > control->ras_num_bad_pages) { 1455 /* This means that, the threshold was increased since 1456 * the last time the system was booted, and now, 1457 * ras->bad_page_cnt_threshold - control->num_recs > 0, 1458 * so that at least one more record can be saved, 1459 * before the page count threshold is reached. 1460 */ 1461 dev_info(adev->dev, 1462 "records:%d threshold:%d, resetting " 1463 "RAS table header signature", 1464 control->ras_num_bad_pages, 1465 ras->bad_page_cnt_threshold); 1466 res = amdgpu_ras_eeprom_correct_header_tag(control, 1467 RAS_TABLE_HDR_VAL); 1468 } else { 1469 dev_err(adev->dev, "RAS records:%d exceed threshold:%d", 1470 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 1471 if (amdgpu_bad_page_threshold == -1) { 1472 dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1."); 1473 res = 0; 1474 } else { 1475 ras->is_rma = true; 1476 dev_err(adev->dev, 1477 "RAS records:%d exceed threshold:%d, " 1478 "GPU will not be initialized. Replace this GPU or increase the threshold", 1479 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 1480 } 1481 } 1482 } else { 1483 DRM_INFO("Creating a new EEPROM table"); 1484 1485 res = amdgpu_ras_eeprom_reset_table(control); 1486 } 1487 1488 return res < 0 ? res : 0; 1489 } 1490