xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ras_eeprom.c (revision 994aeacbb3c039b4f3e02e76e6d39407920e76c6)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "atom.h"
29 #include "amdgpu_eeprom.h"
30 #include "amdgpu_atomfirmware.h"
31 #include <linux/debugfs.h>
32 #include <linux/uaccess.h>
33 
34 #include "amdgpu_reset.h"
35 
36 /* These are memory addresses as would be seen by one or more EEPROM
37  * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
38  * set of EEPROM devices. They form a continuous memory space.
39  *
40  * The I2C device address includes the device type identifier, 1010b,
41  * which is a reserved value and indicates that this is an I2C EEPROM
42  * device. It also includes the top 3 bits of the 19 bit EEPROM memory
43  * address, namely bits 18, 17, and 16. This makes up the 7 bit
44  * address sent on the I2C bus with bit 0 being the direction bit,
45  * which is not represented here, and sent by the hardware directly.
46  *
47  * For instance,
48  *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
49  *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
50  *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
51  * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
52  * address memory in a device or a device on the I2C bus, depending on
53  * the status of pins 1-3. See top of amdgpu_eeprom.c.
54  *
55  * The RAS table lives either at address 0 or address 40000h of EEPROM.
56  */
57 #define EEPROM_I2C_MADDR_0      0x0
58 #define EEPROM_I2C_MADDR_4      0x40000
59 
60 /*
61  * The 2 macros below represent the actual size in bytes that
62  * those entities occupy in the EEPROM memory.
63  * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
64  * uses uint64 to store 6b fields such as retired_page.
65  */
66 #define RAS_TABLE_HEADER_SIZE   20
67 #define RAS_TABLE_RECORD_SIZE   24
68 
69 /* Table hdr is 'AMDR' */
70 #define RAS_TABLE_HDR_VAL       0x414d4452
71 
72 /* Bad GPU tag ‘BADG’ */
73 #define RAS_TABLE_HDR_BAD       0x42414447
74 
75 /*
76  * EEPROM Table structure v1
77  * ---------------------------------
78  * |                               |
79  * |     EEPROM TABLE HEADER       |
80  * |      ( size 20 Bytes )        |
81  * |                               |
82  * ---------------------------------
83  * |                               |
84  * |    BAD PAGE RECORD AREA       |
85  * |                               |
86  * ---------------------------------
87  */
88 
89 /* Assume 2-Mbit size EEPROM and take up the whole space. */
90 #define RAS_TBL_SIZE_BYTES      (256 * 1024)
91 #define RAS_TABLE_START         0
92 #define RAS_HDR_START           RAS_TABLE_START
93 #define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
94 #define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
95 				 / RAS_TABLE_RECORD_SIZE)
96 
97 /*
98  * EEPROM Table structrue v2.1
99  * ---------------------------------
100  * |                               |
101  * |     EEPROM TABLE HEADER       |
102  * |      ( size 20 Bytes )        |
103  * |                               |
104  * ---------------------------------
105  * |                               |
106  * |     EEPROM TABLE RAS INFO     |
107  * | (available info size 4 Bytes) |
108  * |  ( reserved size 252 Bytes )  |
109  * |                               |
110  * ---------------------------------
111  * |                               |
112  * |     BAD PAGE RECORD AREA      |
113  * |                               |
114  * ---------------------------------
115  */
116 
117 /* EEPROM Table V2_1 */
118 #define RAS_TABLE_V2_1_INFO_SIZE       256
119 #define RAS_TABLE_V2_1_INFO_START      RAS_TABLE_HEADER_SIZE
120 #define RAS_RECORD_START_V2_1          (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
121 					RAS_TABLE_V2_1_INFO_SIZE)
122 #define RAS_MAX_RECORD_COUNT_V2_1      ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
123 					RAS_TABLE_V2_1_INFO_SIZE) \
124 					/ RAS_TABLE_RECORD_SIZE)
125 
126 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
127  * offset off of RAS_TABLE_START.  That is, this is something you can
128  * add to control->i2c_address, and then tell I2C layer to read
129  * from/write to there. _N is the so called absolute index,
130  * because it starts right after the table header.
131  */
132 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
133 				     (_N) * RAS_TABLE_RECORD_SIZE)
134 
135 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
136 				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
137 
138 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
139  * of "fri", return the absolute record index off of the end of
140  * the table header.
141  */
142 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
143 			      (_C)->ras_max_record_count)
144 
145 #define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
146 				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
147 
148 #define RAS_NUM_RECS_V2_1(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
149 				       RAS_TABLE_HEADER_SIZE - \
150 				       RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
151 
152 #define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev)
153 
__is_ras_eeprom_supported(struct amdgpu_device * adev)154 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
155 {
156 	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
157 	case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */
158 	case IP_VERSION(11, 0, 7): /* Sienna cichlid */
159 	case IP_VERSION(13, 0, 0):
160 	case IP_VERSION(13, 0, 2): /* Aldebaran */
161 	case IP_VERSION(13, 0, 10):
162 		return true;
163 	case IP_VERSION(13, 0, 6):
164 	case IP_VERSION(13, 0, 14):
165 		return (adev->gmc.is_app_apu) ? false : true;
166 	default:
167 		return false;
168 	}
169 }
170 
__get_eeprom_i2c_addr(struct amdgpu_device * adev,struct amdgpu_ras_eeprom_control * control)171 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
172 				  struct amdgpu_ras_eeprom_control *control)
173 {
174 	struct atom_context *atom_ctx = adev->mode_info.atom_context;
175 	u8 i2c_addr;
176 
177 	if (!control)
178 		return false;
179 
180 	if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
181 		/* The address given by VBIOS is an 8-bit, wire-format
182 		 * address, i.e. the most significant byte.
183 		 *
184 		 * Normalize it to a 19-bit EEPROM address. Remove the
185 		 * device type identifier and make it a 7-bit address;
186 		 * then make it a 19-bit EEPROM address. See top of
187 		 * amdgpu_eeprom.c.
188 		 */
189 		i2c_addr = (i2c_addr & 0x0F) >> 1;
190 		control->i2c_address = ((u32) i2c_addr) << 16;
191 
192 		return true;
193 	}
194 
195 	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
196 	case IP_VERSION(11, 0, 2):
197 		/* VEGA20 and ARCTURUS */
198 		if (adev->asic_type == CHIP_VEGA20)
199 			control->i2c_address = EEPROM_I2C_MADDR_0;
200 		else if (strnstr(atom_ctx->vbios_pn,
201 				 "D342",
202 				 sizeof(atom_ctx->vbios_pn)))
203 			control->i2c_address = EEPROM_I2C_MADDR_0;
204 		else
205 			control->i2c_address = EEPROM_I2C_MADDR_4;
206 		return true;
207 	case IP_VERSION(11, 0, 7):
208 		control->i2c_address = EEPROM_I2C_MADDR_0;
209 		return true;
210 	case IP_VERSION(13, 0, 2):
211 		if (strnstr(atom_ctx->vbios_pn, "D673",
212 			    sizeof(atom_ctx->vbios_pn)))
213 			control->i2c_address = EEPROM_I2C_MADDR_4;
214 		else
215 			control->i2c_address = EEPROM_I2C_MADDR_0;
216 		return true;
217 	case IP_VERSION(13, 0, 0):
218 		if (strnstr(atom_ctx->vbios_pn, "D707",
219 			    sizeof(atom_ctx->vbios_pn)))
220 			control->i2c_address = EEPROM_I2C_MADDR_0;
221 		else
222 			control->i2c_address = EEPROM_I2C_MADDR_4;
223 		return true;
224 	case IP_VERSION(13, 0, 6):
225 	case IP_VERSION(13, 0, 10):
226 	case IP_VERSION(13, 0, 14):
227 		control->i2c_address = EEPROM_I2C_MADDR_4;
228 		return true;
229 	default:
230 		return false;
231 	}
232 }
233 
234 static void
__encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header * hdr,unsigned char * buf)235 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
236 			     unsigned char *buf)
237 {
238 	u32 *pp = (uint32_t *)buf;
239 
240 	pp[0] = cpu_to_le32(hdr->header);
241 	pp[1] = cpu_to_le32(hdr->version);
242 	pp[2] = cpu_to_le32(hdr->first_rec_offset);
243 	pp[3] = cpu_to_le32(hdr->tbl_size);
244 	pp[4] = cpu_to_le32(hdr->checksum);
245 }
246 
247 static void
__decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header * hdr,unsigned char * buf)248 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
249 			       unsigned char *buf)
250 {
251 	u32 *pp = (uint32_t *)buf;
252 
253 	hdr->header	      = le32_to_cpu(pp[0]);
254 	hdr->version	      = le32_to_cpu(pp[1]);
255 	hdr->first_rec_offset = le32_to_cpu(pp[2]);
256 	hdr->tbl_size	      = le32_to_cpu(pp[3]);
257 	hdr->checksum	      = le32_to_cpu(pp[4]);
258 }
259 
__write_table_header(struct amdgpu_ras_eeprom_control * control)260 static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
261 {
262 	u8 buf[RAS_TABLE_HEADER_SIZE];
263 	struct amdgpu_device *adev = to_amdgpu_device(control);
264 	int res;
265 
266 	memset(buf, 0, sizeof(buf));
267 	__encode_table_header_to_buf(&control->tbl_hdr, buf);
268 
269 	/* i2c may be unstable in gpu reset */
270 	down_read(&adev->reset_domain->sem);
271 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
272 				  control->i2c_address +
273 				  control->ras_header_offset,
274 				  buf, RAS_TABLE_HEADER_SIZE);
275 	up_read(&adev->reset_domain->sem);
276 
277 	if (res < 0) {
278 		DRM_ERROR("Failed to write EEPROM table header:%d", res);
279 	} else if (res < RAS_TABLE_HEADER_SIZE) {
280 		DRM_ERROR("Short write:%d out of %d\n",
281 			  res, RAS_TABLE_HEADER_SIZE);
282 		res = -EIO;
283 	} else {
284 		res = 0;
285 	}
286 
287 	return res;
288 }
289 
290 static void
__encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info * rai,unsigned char * buf)291 __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
292 			       unsigned char *buf)
293 {
294 	u32 *pp = (uint32_t *)buf;
295 	u32 tmp;
296 
297 	tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
298 	      (((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
299 	      (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
300 	pp[0] = cpu_to_le32(tmp);
301 }
302 
303 static void
__decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info * rai,unsigned char * buf)304 __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
305 				 unsigned char *buf)
306 {
307 	u32 *pp = (uint32_t *)buf;
308 	u32 tmp;
309 
310 	tmp = le32_to_cpu(pp[0]);
311 	rai->rma_status = tmp & 0xFF;
312 	rai->health_percent = (tmp >> 8) & 0xFF;
313 	rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
314 }
315 
__write_table_ras_info(struct amdgpu_ras_eeprom_control * control)316 static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control)
317 {
318 	struct amdgpu_device *adev = to_amdgpu_device(control);
319 	u8 *buf;
320 	int res;
321 
322 	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
323 	if (!buf) {
324 		DRM_ERROR("Failed to alloc buf to write table ras info\n");
325 		return -ENOMEM;
326 	}
327 
328 	__encode_table_ras_info_to_buf(&control->tbl_rai, buf);
329 
330 	/* i2c may be unstable in gpu reset */
331 	down_read(&adev->reset_domain->sem);
332 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
333 				  control->i2c_address +
334 				  control->ras_info_offset,
335 				  buf, RAS_TABLE_V2_1_INFO_SIZE);
336 	up_read(&adev->reset_domain->sem);
337 
338 	if (res < 0) {
339 		DRM_ERROR("Failed to write EEPROM table ras info:%d", res);
340 	} else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
341 		DRM_ERROR("Short write:%d out of %d\n",
342 			  res, RAS_TABLE_V2_1_INFO_SIZE);
343 		res = -EIO;
344 	} else {
345 		res = 0;
346 	}
347 
348 	kfree(buf);
349 
350 	return res;
351 }
352 
__calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control * control)353 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
354 {
355 	int ii;
356 	u8  *pp, csum;
357 	size_t sz;
358 
359 	/* Header checksum, skip checksum field in the calculation */
360 	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
361 	pp = (u8 *) &control->tbl_hdr;
362 	csum = 0;
363 	for (ii = 0; ii < sz; ii++, pp++)
364 		csum += *pp;
365 
366 	return csum;
367 }
368 
__calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control * control)369 static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control)
370 {
371 	int ii;
372 	u8  *pp, csum;
373 	size_t sz;
374 
375 	sz = sizeof(control->tbl_rai);
376 	pp = (u8 *) &control->tbl_rai;
377 	csum = 0;
378 	for (ii = 0; ii < sz; ii++, pp++)
379 		csum += *pp;
380 
381 	return csum;
382 }
383 
amdgpu_ras_eeprom_correct_header_tag(struct amdgpu_ras_eeprom_control * control,uint32_t header)384 static int amdgpu_ras_eeprom_correct_header_tag(
385 	struct amdgpu_ras_eeprom_control *control,
386 	uint32_t header)
387 {
388 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
389 	u8 *hh;
390 	int res;
391 	u8 csum;
392 
393 	csum = -hdr->checksum;
394 
395 	hh = (void *) &hdr->header;
396 	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
397 	hh = (void *) &header;
398 	csum += hh[0] + hh[1] + hh[2] + hh[3];
399 	csum = -csum;
400 	mutex_lock(&control->ras_tbl_mutex);
401 	hdr->header = header;
402 	hdr->checksum = csum;
403 	res = __write_table_header(control);
404 	mutex_unlock(&control->ras_tbl_mutex);
405 
406 	return res;
407 }
408 
amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control * control)409 static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control)
410 {
411 	struct amdgpu_device *adev = to_amdgpu_device(control);
412 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
413 
414 	switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) {
415 	case IP_VERSION(8, 10, 0):
416 	case IP_VERSION(12, 0, 0):
417 		hdr->version = RAS_TABLE_VER_V2_1;
418 		return;
419 	default:
420 		hdr->version = RAS_TABLE_VER_V1;
421 		return;
422 	}
423 }
424 
425 /**
426  * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
427  * @control: pointer to control structure
428  *
429  * Reset the contents of the header of the RAS EEPROM table.
430  * Return 0 on success, -errno on error.
431  */
amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control * control)432 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
433 {
434 	struct amdgpu_device *adev = to_amdgpu_device(control);
435 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
436 	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
437 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
438 	u8 csum;
439 	int res;
440 
441 	mutex_lock(&control->ras_tbl_mutex);
442 
443 	hdr->header = RAS_TABLE_HDR_VAL;
444 	amdgpu_ras_set_eeprom_table_version(control);
445 
446 	if (hdr->version == RAS_TABLE_VER_V2_1) {
447 		hdr->first_rec_offset = RAS_RECORD_START_V2_1;
448 		hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
449 				RAS_TABLE_V2_1_INFO_SIZE;
450 		rai->rma_status = GPU_HEALTH_USABLE;
451 		/**
452 		 * GPU health represented as a percentage.
453 		 * 0 means worst health, 100 means fully health.
454 		 */
455 		rai->health_percent = 100;
456 		/* ecc_page_threshold = 0 means disable bad page retirement */
457 		rai->ecc_page_threshold = con->bad_page_cnt_threshold;
458 	} else {
459 		hdr->first_rec_offset = RAS_RECORD_START;
460 		hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
461 	}
462 
463 	csum = __calc_hdr_byte_sum(control);
464 	if (hdr->version == RAS_TABLE_VER_V2_1)
465 		csum += __calc_ras_info_byte_sum(control);
466 	csum = -csum;
467 	hdr->checksum = csum;
468 	res = __write_table_header(control);
469 	if (!res && hdr->version > RAS_TABLE_VER_V1)
470 		res = __write_table_ras_info(control);
471 
472 	control->ras_num_recs = 0;
473 	control->ras_fri = 0;
474 
475 	amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
476 
477 	control->bad_channel_bitmap = 0;
478 	amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
479 	con->update_channel_flag = false;
480 
481 	amdgpu_ras_debugfs_set_ret_size(control);
482 
483 	mutex_unlock(&control->ras_tbl_mutex);
484 
485 	return res;
486 }
487 
488 static void
__encode_table_record_to_buf(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,unsigned char * buf)489 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
490 			     struct eeprom_table_record *record,
491 			     unsigned char *buf)
492 {
493 	__le64 tmp = 0;
494 	int i = 0;
495 
496 	/* Next are all record fields according to EEPROM page spec in LE foramt */
497 	buf[i++] = record->err_type;
498 
499 	buf[i++] = record->bank;
500 
501 	tmp = cpu_to_le64(record->ts);
502 	memcpy(buf + i, &tmp, 8);
503 	i += 8;
504 
505 	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
506 	memcpy(buf + i, &tmp, 6);
507 	i += 6;
508 
509 	buf[i++] = record->mem_channel;
510 	buf[i++] = record->mcumc_id;
511 
512 	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
513 	memcpy(buf + i, &tmp, 6);
514 }
515 
516 static void
__decode_table_record_from_buf(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,unsigned char * buf)517 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
518 			       struct eeprom_table_record *record,
519 			       unsigned char *buf)
520 {
521 	__le64 tmp = 0;
522 	int i =  0;
523 
524 	/* Next are all record fields according to EEPROM page spec in LE foramt */
525 	record->err_type = buf[i++];
526 
527 	record->bank = buf[i++];
528 
529 	memcpy(&tmp, buf + i, 8);
530 	record->ts = le64_to_cpu(tmp);
531 	i += 8;
532 
533 	memcpy(&tmp, buf + i, 6);
534 	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
535 	i += 6;
536 
537 	record->mem_channel = buf[i++];
538 	record->mcumc_id = buf[i++];
539 
540 	memcpy(&tmp, buf + i,  6);
541 	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
542 }
543 
amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device * adev)544 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
545 {
546 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
547 
548 	if (!__is_ras_eeprom_supported(adev) ||
549 	    !amdgpu_bad_page_threshold)
550 		return false;
551 
552 	/* skip check eeprom table for VEGA20 Gaming */
553 	if (!con)
554 		return false;
555 	else
556 		if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
557 			return false;
558 
559 	if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
560 		if (amdgpu_bad_page_threshold == -1) {
561 			dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
562 				con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
563 			dev_warn(adev->dev,
564 				"But GPU can be operated due to bad_page_threshold = -1.\n");
565 			return false;
566 		} else {
567 			dev_warn(adev->dev, "This GPU is in BAD status.");
568 			dev_warn(adev->dev, "Please retire it or set a larger "
569 				 "threshold value when reloading driver.\n");
570 			return true;
571 		}
572 	}
573 
574 	return false;
575 }
576 
577 /**
578  * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
579  * @control: pointer to control structure
580  * @buf: pointer to buffer containing data to write
581  * @fri: start writing at this index
582  * @num: number of records to write
583  *
584  * The caller must hold the table mutex in @control.
585  * Return 0 on success, -errno otherwise.
586  */
__amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control * control,u8 * buf,const u32 fri,const u32 num)587 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
588 				     u8 *buf, const u32 fri, const u32 num)
589 {
590 	struct amdgpu_device *adev = to_amdgpu_device(control);
591 	u32 buf_size;
592 	int res;
593 
594 	/* i2c may be unstable in gpu reset */
595 	down_read(&adev->reset_domain->sem);
596 	buf_size = num * RAS_TABLE_RECORD_SIZE;
597 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
598 				  control->i2c_address +
599 				  RAS_INDEX_TO_OFFSET(control, fri),
600 				  buf, buf_size);
601 	up_read(&adev->reset_domain->sem);
602 	if (res < 0) {
603 		DRM_ERROR("Writing %d EEPROM table records error:%d",
604 			  num, res);
605 	} else if (res < buf_size) {
606 		/* Short write, return error.
607 		 */
608 		DRM_ERROR("Wrote %d records out of %d",
609 			  res / RAS_TABLE_RECORD_SIZE, num);
610 		res = -EIO;
611 	} else {
612 		res = 0;
613 	}
614 
615 	return res;
616 }
617 
618 static int
amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)619 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
620 			       struct eeprom_table_record *record,
621 			       const u32 num)
622 {
623 	struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
624 	u32 a, b, i;
625 	u8 *buf, *pp;
626 	int res;
627 
628 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
629 	if (!buf)
630 		return -ENOMEM;
631 
632 	/* Encode all of them in one go.
633 	 */
634 	pp = buf;
635 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
636 		__encode_table_record_to_buf(control, &record[i], pp);
637 
638 		/* update bad channel bitmap */
639 		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
640 		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
641 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
642 			con->update_channel_flag = true;
643 		}
644 	}
645 
646 	/* a, first record index to write into.
647 	 * b, last record index to write into.
648 	 * a = first index to read (fri) + number of records in the table,
649 	 * b = a + @num - 1.
650 	 * Let N = control->ras_max_num_record_count, then we have,
651 	 * case 0: 0 <= a <= b < N,
652 	 *   just append @num records starting at a;
653 	 * case 1: 0 <= a < N <= b,
654 	 *   append (N - a) records starting at a, and
655 	 *   append the remainder,  b % N + 1, starting at 0.
656 	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
657 	 * case 2a: 0 <= a <= b < N
658 	 *   append num records starting at a; and fix fri if b overwrote it,
659 	 *   and since a <= b, if b overwrote it then a must've also,
660 	 *   and if b didn't overwrite it, then a didn't also.
661 	 * case 2b: 0 <= b < a < N
662 	 *   write num records starting at a, which wraps around 0=N
663 	 *   and overwrite fri unconditionally. Now from case 2a,
664 	 *   this means that b eclipsed fri to overwrite it and wrap
665 	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
666 	 *   set fri = b + 1 (mod N).
667 	 * Now, since fri is updated in every case, except the trivial case 0,
668 	 * the number of records present in the table after writing, is,
669 	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
670 	 * by adding an arbitrary multiple of N before taking the modulo N
671 	 * as shown below.
672 	 */
673 	a = control->ras_fri + control->ras_num_recs;
674 	b = a + num  - 1;
675 	if (b < control->ras_max_record_count) {
676 		res = __amdgpu_ras_eeprom_write(control, buf, a, num);
677 	} else if (a < control->ras_max_record_count) {
678 		u32 g0, g1;
679 
680 		g0 = control->ras_max_record_count - a;
681 		g1 = b % control->ras_max_record_count + 1;
682 		res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
683 		if (res)
684 			goto Out;
685 		res = __amdgpu_ras_eeprom_write(control,
686 						buf + g0 * RAS_TABLE_RECORD_SIZE,
687 						0, g1);
688 		if (res)
689 			goto Out;
690 		if (g1 > control->ras_fri)
691 			control->ras_fri = g1 % control->ras_max_record_count;
692 	} else {
693 		a %= control->ras_max_record_count;
694 		b %= control->ras_max_record_count;
695 
696 		if (a <= b) {
697 			/* Note that, b - a + 1 = num. */
698 			res = __amdgpu_ras_eeprom_write(control, buf, a, num);
699 			if (res)
700 				goto Out;
701 			if (b >= control->ras_fri)
702 				control->ras_fri = (b + 1) % control->ras_max_record_count;
703 		} else {
704 			u32 g0, g1;
705 
706 			/* b < a, which means, we write from
707 			 * a to the end of the table, and from
708 			 * the start of the table to b.
709 			 */
710 			g0 = control->ras_max_record_count - a;
711 			g1 = b + 1;
712 			res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
713 			if (res)
714 				goto Out;
715 			res = __amdgpu_ras_eeprom_write(control,
716 							buf + g0 * RAS_TABLE_RECORD_SIZE,
717 							0, g1);
718 			if (res)
719 				goto Out;
720 			control->ras_fri = g1 % control->ras_max_record_count;
721 		}
722 	}
723 	control->ras_num_recs = 1 + (control->ras_max_record_count + b
724 				     - control->ras_fri)
725 		% control->ras_max_record_count;
726 Out:
727 	kfree(buf);
728 	return res;
729 }
730 
731 static int
amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control * control)732 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
733 {
734 	struct amdgpu_device *adev = to_amdgpu_device(control);
735 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
736 	u8 *buf, *pp, csum;
737 	u32 buf_size;
738 	int res;
739 
740 	/* Modify the header if it exceeds.
741 	 */
742 	if (amdgpu_bad_page_threshold != 0 &&
743 	    control->ras_num_recs >= ras->bad_page_cnt_threshold) {
744 		dev_warn(adev->dev,
745 			"Saved bad pages %d reaches threshold value %d\n",
746 			control->ras_num_recs, ras->bad_page_cnt_threshold);
747 		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
748 		if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) {
749 			control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD;
750 			control->tbl_rai.health_percent = 0;
751 		}
752 
753 		if (amdgpu_bad_page_threshold != -1)
754 			ras->is_rma = true;
755 
756 		/* ignore the -ENOTSUPP return value */
757 		amdgpu_dpm_send_rma_reason(adev);
758 	}
759 
760 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
761 		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
762 					    RAS_TABLE_V2_1_INFO_SIZE +
763 					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
764 	else
765 		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
766 					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
767 	control->tbl_hdr.checksum = 0;
768 
769 	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
770 	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
771 	if (!buf) {
772 		DRM_ERROR("allocating memory for table of size %d bytes failed\n",
773 			  control->tbl_hdr.tbl_size);
774 		res = -ENOMEM;
775 		goto Out;
776 	}
777 
778 	down_read(&adev->reset_domain->sem);
779 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
780 				 control->i2c_address +
781 				 control->ras_record_offset,
782 				 buf, buf_size);
783 	up_read(&adev->reset_domain->sem);
784 	if (res < 0) {
785 		DRM_ERROR("EEPROM failed reading records:%d\n",
786 			  res);
787 		goto Out;
788 	} else if (res < buf_size) {
789 		DRM_ERROR("EEPROM read %d out of %d bytes\n",
790 			  res, buf_size);
791 		res = -EIO;
792 		goto Out;
793 	}
794 
795 	/**
796 	 * bad page records have been stored in eeprom,
797 	 * now calculate gpu health percent
798 	 */
799 	if (amdgpu_bad_page_threshold != 0 &&
800 	    control->tbl_hdr.version == RAS_TABLE_VER_V2_1 &&
801 	    control->ras_num_recs < ras->bad_page_cnt_threshold)
802 		control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold -
803 						   control->ras_num_recs) * 100) /
804 						   ras->bad_page_cnt_threshold;
805 
806 	/* Recalc the checksum.
807 	 */
808 	csum = 0;
809 	for (pp = buf; pp < buf + buf_size; pp++)
810 		csum += *pp;
811 
812 	csum += __calc_hdr_byte_sum(control);
813 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
814 		csum += __calc_ras_info_byte_sum(control);
815 	/* avoid sign extension when assigning to "checksum" */
816 	csum = -csum;
817 	control->tbl_hdr.checksum = csum;
818 	res = __write_table_header(control);
819 	if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
820 		res = __write_table_ras_info(control);
821 Out:
822 	kfree(buf);
823 	return res;
824 }
825 
826 /**
827  * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
828  * @control: pointer to control structure
829  * @record: array of records to append
830  * @num: number of records in @record array
831  *
832  * Append @num records to the table, calculate the checksum and write
833  * the table back to EEPROM. The maximum number of records that
834  * can be appended is between 1 and control->ras_max_record_count,
835  * regardless of how many records are already stored in the table.
836  *
837  * Return 0 on success or if EEPROM is not supported, -errno on error.
838  */
amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)839 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
840 			     struct eeprom_table_record *record,
841 			     const u32 num)
842 {
843 	struct amdgpu_device *adev = to_amdgpu_device(control);
844 	int res;
845 
846 	if (!__is_ras_eeprom_supported(adev))
847 		return 0;
848 
849 	if (num == 0) {
850 		DRM_ERROR("will not append 0 records\n");
851 		return -EINVAL;
852 	} else if (num > control->ras_max_record_count) {
853 		DRM_ERROR("cannot append %d records than the size of table %d\n",
854 			  num, control->ras_max_record_count);
855 		return -EINVAL;
856 	}
857 
858 	mutex_lock(&control->ras_tbl_mutex);
859 
860 	res = amdgpu_ras_eeprom_append_table(control, record, num);
861 	if (!res)
862 		res = amdgpu_ras_eeprom_update_header(control);
863 	if (!res)
864 		amdgpu_ras_debugfs_set_ret_size(control);
865 
866 	mutex_unlock(&control->ras_tbl_mutex);
867 	return res;
868 }
869 
870 /**
871  * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
872  * @control: pointer to control structure
873  * @buf: pointer to buffer to read into
874  * @fri: first record index, start reading at this index, absolute index
875  * @num: number of records to read
876  *
877  * The caller must hold the table mutex in @control.
878  * Return 0 on success, -errno otherwise.
879  */
__amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control * control,u8 * buf,const u32 fri,const u32 num)880 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
881 				    u8 *buf, const u32 fri, const u32 num)
882 {
883 	struct amdgpu_device *adev = to_amdgpu_device(control);
884 	u32 buf_size;
885 	int res;
886 
887 	/* i2c may be unstable in gpu reset */
888 	down_read(&adev->reset_domain->sem);
889 	buf_size = num * RAS_TABLE_RECORD_SIZE;
890 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
891 				 control->i2c_address +
892 				 RAS_INDEX_TO_OFFSET(control, fri),
893 				 buf, buf_size);
894 	up_read(&adev->reset_domain->sem);
895 	if (res < 0) {
896 		DRM_ERROR("Reading %d EEPROM table records error:%d",
897 			  num, res);
898 	} else if (res < buf_size) {
899 		/* Short read, return error.
900 		 */
901 		DRM_ERROR("Read %d records out of %d",
902 			  res / RAS_TABLE_RECORD_SIZE, num);
903 		res = -EIO;
904 	} else {
905 		res = 0;
906 	}
907 
908 	return res;
909 }
910 
911 /**
912  * amdgpu_ras_eeprom_read -- read EEPROM
913  * @control: pointer to control structure
914  * @record: array of records to read into
915  * @num: number of records in @record
916  *
917  * Reads num records from the RAS table in EEPROM and
918  * writes the data into @record array.
919  *
920  * Returns 0 on success, -errno on error.
921  */
amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)922 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
923 			   struct eeprom_table_record *record,
924 			   const u32 num)
925 {
926 	struct amdgpu_device *adev = to_amdgpu_device(control);
927 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
928 	int i, res;
929 	u8 *buf, *pp;
930 	u32 g0, g1;
931 
932 	if (!__is_ras_eeprom_supported(adev))
933 		return 0;
934 
935 	if (num == 0) {
936 		DRM_ERROR("will not read 0 records\n");
937 		return -EINVAL;
938 	} else if (num > control->ras_num_recs) {
939 		DRM_ERROR("too many records to read:%d available:%d\n",
940 			  num, control->ras_num_recs);
941 		return -EINVAL;
942 	}
943 
944 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
945 	if (!buf)
946 		return -ENOMEM;
947 
948 	/* Determine how many records to read, from the first record
949 	 * index, fri, to the end of the table, and from the beginning
950 	 * of the table, such that the total number of records is
951 	 * @num, and we handle wrap around when fri > 0 and
952 	 * fri + num > RAS_MAX_RECORD_COUNT.
953 	 *
954 	 * First we compute the index of the last element
955 	 * which would be fetched from each region,
956 	 * g0 is in [fri, fri + num - 1], and
957 	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
958 	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
959 	 * the last element to fetch, we set g0 to _the number_
960 	 * of elements to fetch, @num, since we know that the last
961 	 * indexed to be fetched does not exceed the table.
962 	 *
963 	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
964 	 * we set g0 to the number of elements to read
965 	 * until the end of the table, and g1 to the number of
966 	 * elements to read from the beginning of the table.
967 	 */
968 	g0 = control->ras_fri + num - 1;
969 	g1 = g0 % control->ras_max_record_count;
970 	if (g0 < control->ras_max_record_count) {
971 		g0 = num;
972 		g1 = 0;
973 	} else {
974 		g0 = control->ras_max_record_count - control->ras_fri;
975 		g1 += 1;
976 	}
977 
978 	mutex_lock(&control->ras_tbl_mutex);
979 	res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
980 	if (res)
981 		goto Out;
982 	if (g1) {
983 		res = __amdgpu_ras_eeprom_read(control,
984 					       buf + g0 * RAS_TABLE_RECORD_SIZE,
985 					       0, g1);
986 		if (res)
987 			goto Out;
988 	}
989 
990 	res = 0;
991 
992 	/* Read up everything? Then transform.
993 	 */
994 	pp = buf;
995 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
996 		__decode_table_record_from_buf(control, &record[i], pp);
997 
998 		/* update bad channel bitmap */
999 		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
1000 		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
1001 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
1002 			con->update_channel_flag = true;
1003 		}
1004 	}
1005 Out:
1006 	kfree(buf);
1007 	mutex_unlock(&control->ras_tbl_mutex);
1008 
1009 	return res;
1010 }
1011 
amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control * control)1012 uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control)
1013 {
1014 	/* get available eeprom table version first before eeprom table init */
1015 	amdgpu_ras_set_eeprom_table_version(control);
1016 
1017 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1018 		return RAS_MAX_RECORD_COUNT_V2_1;
1019 	else
1020 		return RAS_MAX_RECORD_COUNT;
1021 }
1022 
1023 static ssize_t
amdgpu_ras_debugfs_eeprom_size_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1024 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
1025 				    size_t size, loff_t *pos)
1026 {
1027 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1028 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1029 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1030 	u8 data[50];
1031 	int res;
1032 
1033 	if (!size)
1034 		return size;
1035 
1036 	if (!ras || !control) {
1037 		res = snprintf(data, sizeof(data), "Not supported\n");
1038 	} else {
1039 		res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
1040 			       RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
1041 	}
1042 
1043 	if (*pos >= res)
1044 		return 0;
1045 
1046 	res -= *pos;
1047 	res = min_t(size_t, res, size);
1048 
1049 	if (copy_to_user(buf, &data[*pos], res))
1050 		return -EFAULT;
1051 
1052 	*pos += res;
1053 
1054 	return res;
1055 }
1056 
1057 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
1058 	.owner = THIS_MODULE,
1059 	.read = amdgpu_ras_debugfs_eeprom_size_read,
1060 	.write = NULL,
1061 	.llseek = default_llseek,
1062 };
1063 
1064 static const char *tbl_hdr_str = " Signature    Version  FirstOffs       Size   Checksum\n";
1065 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
1066 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
1067 static const char *rec_hdr_str = "Index  Offset ErrType Bank/CU          TimeStamp      Offs/Addr MemChl MCUMCID    RetiredPage\n";
1068 static const char *rec_hdr_fmt = "%5d 0x%05X %7s    0x%02X 0x%016llX 0x%012llX   0x%02X    0x%02X 0x%012llX\n";
1069 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
1070 
1071 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
1072 	"ignore",
1073 	"re",
1074 	"ue",
1075 };
1076 
amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control * control)1077 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
1078 {
1079 	return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
1080 		strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
1081 }
1082 
amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control * control)1083 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
1084 {
1085 	struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
1086 					      eeprom_control);
1087 	struct dentry *de = ras->de_ras_eeprom_table;
1088 
1089 	if (de)
1090 		d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
1091 }
1092 
amdgpu_ras_debugfs_table_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1093 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
1094 					     size_t size, loff_t *pos)
1095 {
1096 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1097 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1098 	struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
1099 	const size_t orig_size = size;
1100 	int res = -EFAULT;
1101 	size_t data_len;
1102 
1103 	mutex_lock(&control->ras_tbl_mutex);
1104 
1105 	/* We want *pos - data_len > 0, which means there's
1106 	 * bytes to be printed from data.
1107 	 */
1108 	data_len = strlen(tbl_hdr_str);
1109 	if (*pos < data_len) {
1110 		data_len -= *pos;
1111 		data_len = min_t(size_t, data_len, size);
1112 		if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
1113 			goto Out;
1114 		buf += data_len;
1115 		size -= data_len;
1116 		*pos += data_len;
1117 	}
1118 
1119 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
1120 	if (*pos < data_len && size > 0) {
1121 		u8 data[tbl_hdr_fmt_size + 1];
1122 		loff_t lpos;
1123 
1124 		snprintf(data, sizeof(data), tbl_hdr_fmt,
1125 			 control->tbl_hdr.header,
1126 			 control->tbl_hdr.version,
1127 			 control->tbl_hdr.first_rec_offset,
1128 			 control->tbl_hdr.tbl_size,
1129 			 control->tbl_hdr.checksum);
1130 
1131 		data_len -= *pos;
1132 		data_len = min_t(size_t, data_len, size);
1133 		lpos = *pos - strlen(tbl_hdr_str);
1134 		if (copy_to_user(buf, &data[lpos], data_len))
1135 			goto Out;
1136 		buf += data_len;
1137 		size -= data_len;
1138 		*pos += data_len;
1139 	}
1140 
1141 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
1142 	if (*pos < data_len && size > 0) {
1143 		loff_t lpos;
1144 
1145 		data_len -= *pos;
1146 		data_len = min_t(size_t, data_len, size);
1147 		lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
1148 		if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
1149 			goto Out;
1150 		buf += data_len;
1151 		size -= data_len;
1152 		*pos += data_len;
1153 	}
1154 
1155 	data_len = amdgpu_ras_debugfs_table_size(control);
1156 	if (*pos < data_len && size > 0) {
1157 		u8 dare[RAS_TABLE_RECORD_SIZE];
1158 		u8 data[rec_hdr_fmt_size + 1];
1159 		struct eeprom_table_record record;
1160 		int s, r;
1161 
1162 		/* Find the starting record index
1163 		 */
1164 		s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1165 			strlen(rec_hdr_str);
1166 		s = s / rec_hdr_fmt_size;
1167 		r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1168 			strlen(rec_hdr_str);
1169 		r = r % rec_hdr_fmt_size;
1170 
1171 		for ( ; size > 0 && s < control->ras_num_recs; s++) {
1172 			u32 ai = RAS_RI_TO_AI(control, s);
1173 			/* Read a single record
1174 			 */
1175 			res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1176 			if (res)
1177 				goto Out;
1178 			__decode_table_record_from_buf(control, &record, dare);
1179 			snprintf(data, sizeof(data), rec_hdr_fmt,
1180 				 s,
1181 				 RAS_INDEX_TO_OFFSET(control, ai),
1182 				 record_err_type_str[record.err_type],
1183 				 record.bank,
1184 				 record.ts,
1185 				 record.offset,
1186 				 record.mem_channel,
1187 				 record.mcumc_id,
1188 				 record.retired_page);
1189 
1190 			data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1191 			if (copy_to_user(buf, &data[r], data_len)) {
1192 				res = -EFAULT;
1193 				goto Out;
1194 			}
1195 			buf += data_len;
1196 			size -= data_len;
1197 			*pos += data_len;
1198 			r = 0;
1199 		}
1200 	}
1201 	res = 0;
1202 Out:
1203 	mutex_unlock(&control->ras_tbl_mutex);
1204 	return res < 0 ? res : orig_size - size;
1205 }
1206 
1207 static ssize_t
amdgpu_ras_debugfs_eeprom_table_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1208 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1209 				     size_t size, loff_t *pos)
1210 {
1211 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1212 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1213 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1214 	u8 data[81];
1215 	int res;
1216 
1217 	if (!size)
1218 		return size;
1219 
1220 	if (!ras || !control) {
1221 		res = snprintf(data, sizeof(data), "Not supported\n");
1222 		if (*pos >= res)
1223 			return 0;
1224 
1225 		res -= *pos;
1226 		res = min_t(size_t, res, size);
1227 
1228 		if (copy_to_user(buf, &data[*pos], res))
1229 			return -EFAULT;
1230 
1231 		*pos += res;
1232 
1233 		return res;
1234 	} else {
1235 		return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1236 	}
1237 }
1238 
1239 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1240 	.owner = THIS_MODULE,
1241 	.read = amdgpu_ras_debugfs_eeprom_table_read,
1242 	.write = NULL,
1243 	.llseek = default_llseek,
1244 };
1245 
1246 /**
1247  * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1248  * @control: pointer to control structure
1249  *
1250  * Check the checksum of the stored in EEPROM RAS table.
1251  *
1252  * Return 0 if the checksum is correct,
1253  * positive if it is not correct, and
1254  * -errno on I/O error.
1255  */
__verify_ras_table_checksum(struct amdgpu_ras_eeprom_control * control)1256 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1257 {
1258 	struct amdgpu_device *adev = to_amdgpu_device(control);
1259 	int buf_size, res;
1260 	u8  csum, *buf, *pp;
1261 
1262 	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1263 		buf_size = RAS_TABLE_HEADER_SIZE +
1264 			   RAS_TABLE_V2_1_INFO_SIZE +
1265 			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1266 	else
1267 		buf_size = RAS_TABLE_HEADER_SIZE +
1268 			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1269 
1270 	buf = kzalloc(buf_size, GFP_KERNEL);
1271 	if (!buf) {
1272 		DRM_ERROR("Out of memory checking RAS table checksum.\n");
1273 		return -ENOMEM;
1274 	}
1275 
1276 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1277 				 control->i2c_address +
1278 				 control->ras_header_offset,
1279 				 buf, buf_size);
1280 	if (res < buf_size) {
1281 		DRM_ERROR("Partial read for checksum, res:%d\n", res);
1282 		/* On partial reads, return -EIO.
1283 		 */
1284 		if (res >= 0)
1285 			res = -EIO;
1286 		goto Out;
1287 	}
1288 
1289 	csum = 0;
1290 	for (pp = buf; pp < buf + buf_size; pp++)
1291 		csum += *pp;
1292 Out:
1293 	kfree(buf);
1294 	return res < 0 ? res : csum;
1295 }
1296 
__read_table_ras_info(struct amdgpu_ras_eeprom_control * control)1297 static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control)
1298 {
1299 	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1300 	struct amdgpu_device *adev = to_amdgpu_device(control);
1301 	unsigned char *buf;
1302 	int res;
1303 
1304 	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
1305 	if (!buf) {
1306 		DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n");
1307 		return -ENOMEM;
1308 	}
1309 
1310 	/**
1311 	 * EEPROM table V2_1 supports ras info,
1312 	 * read EEPROM table ras info
1313 	 */
1314 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1315 				 control->i2c_address + control->ras_info_offset,
1316 				 buf, RAS_TABLE_V2_1_INFO_SIZE);
1317 	if (res < RAS_TABLE_V2_1_INFO_SIZE) {
1318 		DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res);
1319 		res = res >= 0 ? -EIO : res;
1320 		goto Out;
1321 	}
1322 
1323 	__decode_table_ras_info_from_buf(rai, buf);
1324 
1325 Out:
1326 	kfree(buf);
1327 	return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
1328 }
1329 
amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control * control)1330 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
1331 {
1332 	struct amdgpu_device *adev = to_amdgpu_device(control);
1333 	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1334 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1335 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1336 	int res;
1337 
1338 	ras->is_rma = false;
1339 
1340 	if (!__is_ras_eeprom_supported(adev))
1341 		return 0;
1342 
1343 	/* Verify i2c adapter is initialized */
1344 	if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1345 		return -ENOENT;
1346 
1347 	if (!__get_eeprom_i2c_addr(adev, control))
1348 		return -EINVAL;
1349 
1350 	control->ras_header_offset = RAS_HDR_START;
1351 	control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
1352 	mutex_init(&control->ras_tbl_mutex);
1353 
1354 	/* Read the table header from EEPROM address */
1355 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1356 				 control->i2c_address + control->ras_header_offset,
1357 				 buf, RAS_TABLE_HEADER_SIZE);
1358 	if (res < RAS_TABLE_HEADER_SIZE) {
1359 		DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1360 		return res >= 0 ? -EIO : res;
1361 	}
1362 
1363 	__decode_table_header_from_buf(hdr, buf);
1364 
1365 	if (hdr->version == RAS_TABLE_VER_V2_1) {
1366 		control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
1367 		control->ras_record_offset = RAS_RECORD_START_V2_1;
1368 		control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
1369 	} else {
1370 		control->ras_num_recs = RAS_NUM_RECS(hdr);
1371 		control->ras_record_offset = RAS_RECORD_START;
1372 		control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
1373 	}
1374 	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1375 
1376 	if (hdr->header == RAS_TABLE_HDR_VAL) {
1377 		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1378 				 control->ras_num_recs);
1379 
1380 		if (hdr->version == RAS_TABLE_VER_V2_1) {
1381 			res = __read_table_ras_info(control);
1382 			if (res)
1383 				return res;
1384 		}
1385 
1386 		res = __verify_ras_table_checksum(control);
1387 		if (res)
1388 			DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1389 				  res);
1390 
1391 		/* Warn if we are at 90% of the threshold or above
1392 		 */
1393 		if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1394 			dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1395 					control->ras_num_recs,
1396 					ras->bad_page_cnt_threshold);
1397 	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1398 		   amdgpu_bad_page_threshold != 0) {
1399 		if (hdr->version == RAS_TABLE_VER_V2_1) {
1400 			res = __read_table_ras_info(control);
1401 			if (res)
1402 				return res;
1403 		}
1404 
1405 		res = __verify_ras_table_checksum(control);
1406 		if (res)
1407 			DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1408 				  res);
1409 		if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1410 			/* This means that, the threshold was increased since
1411 			 * the last time the system was booted, and now,
1412 			 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1413 			 * so that at least one more record can be saved,
1414 			 * before the page count threshold is reached.
1415 			 */
1416 			dev_info(adev->dev,
1417 				 "records:%d threshold:%d, resetting "
1418 				 "RAS table header signature",
1419 				 control->ras_num_recs,
1420 				 ras->bad_page_cnt_threshold);
1421 			res = amdgpu_ras_eeprom_correct_header_tag(control,
1422 								   RAS_TABLE_HDR_VAL);
1423 		} else {
1424 			dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1425 				control->ras_num_recs, ras->bad_page_cnt_threshold);
1426 			if (amdgpu_bad_page_threshold == -1) {
1427 				dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
1428 				res = 0;
1429 			} else {
1430 				ras->is_rma = true;
1431 				dev_err(adev->dev,
1432 					"RAS records:%d exceed threshold:%d, "
1433 					"GPU will not be initialized. Replace this GPU or increase the threshold",
1434 					control->ras_num_recs, ras->bad_page_cnt_threshold);
1435 			}
1436 		}
1437 	} else {
1438 		DRM_INFO("Creating a new EEPROM table");
1439 
1440 		res = amdgpu_ras_eeprom_reset_table(control);
1441 	}
1442 
1443 	return res < 0 ? res : 0;
1444 }
1445