xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ras_eeprom.c (revision c9d23f9657cabfd2836a096bf6eddf8df2cf1434)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "atom.h"
29 #include "amdgpu_eeprom.h"
30 #include "amdgpu_atomfirmware.h"
31 #include <linux/debugfs.h>
32 #include <linux/uaccess.h>
33 
34 #include "amdgpu_reset.h"
35 
36 /* These are memory addresses as would be seen by one or more EEPROM
37  * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
38  * set of EEPROM devices. They form a continuous memory space.
39  *
40  * The I2C device address includes the device type identifier, 1010b,
41  * which is a reserved value and indicates that this is an I2C EEPROM
42  * device. It also includes the top 3 bits of the 19 bit EEPROM memory
43  * address, namely bits 18, 17, and 16. This makes up the 7 bit
44  * address sent on the I2C bus with bit 0 being the direction bit,
45  * which is not represented here, and sent by the hardware directly.
46  *
47  * For instance,
48  *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
49  *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
50  *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
51  * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
52  * address memory in a device or a device on the I2C bus, depending on
53  * the status of pins 1-3. See top of amdgpu_eeprom.c.
54  *
55  * The RAS table lives either at address 0 or address 40000h of EEPROM.
56  */
57 #define EEPROM_I2C_MADDR_0      0x0
58 #define EEPROM_I2C_MADDR_4      0x40000
59 
60 /*
61  * The 2 macros bellow represent the actual size in bytes that
62  * those entities occupy in the EEPROM memory.
63  * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
64  * uses uint64 to store 6b fields such as retired_page.
65  */
66 #define RAS_TABLE_HEADER_SIZE   20
67 #define RAS_TABLE_RECORD_SIZE   24
68 
69 /* Table hdr is 'AMDR' */
70 #define RAS_TABLE_HDR_VAL       0x414d4452
71 #define RAS_TABLE_VER           0x00010000
72 
73 /* Bad GPU tag ‘BADG’ */
74 #define RAS_TABLE_HDR_BAD       0x42414447
75 
76 /* Assume 2-Mbit size EEPROM and take up the whole space. */
77 #define RAS_TBL_SIZE_BYTES      (256 * 1024)
78 #define RAS_TABLE_START         0
79 #define RAS_HDR_START           RAS_TABLE_START
80 #define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
81 #define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
82 				 / RAS_TABLE_RECORD_SIZE)
83 
84 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
85  * offset off of RAS_TABLE_START.  That is, this is something you can
86  * add to control->i2c_address, and then tell I2C layer to read
87  * from/write to there. _N is the so called absolute index,
88  * because it starts right after the table header.
89  */
90 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
91 				     (_N) * RAS_TABLE_RECORD_SIZE)
92 
93 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
94 				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
95 
96 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
97  * of "fri", return the absolute record index off of the end of
98  * the table header.
99  */
100 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
101 			      (_C)->ras_max_record_count)
102 
103 #define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
104 				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
105 
106 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
107 
108 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
109 {
110 	if (adev->asic_type == CHIP_IP_DISCOVERY) {
111 		switch (adev->ip_versions[MP1_HWIP][0]) {
112 		case IP_VERSION(13, 0, 0):
113 		case IP_VERSION(13, 0, 10):
114 			return true;
115 		default:
116 			return false;
117 		}
118 	}
119 
120 	return  adev->asic_type == CHIP_VEGA20 ||
121 		adev->asic_type == CHIP_ARCTURUS ||
122 		adev->asic_type == CHIP_SIENNA_CICHLID ||
123 		adev->asic_type == CHIP_ALDEBARAN;
124 }
125 
126 static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
127 				       struct amdgpu_ras_eeprom_control *control)
128 {
129 	struct atom_context *atom_ctx = adev->mode_info.atom_context;
130 
131 	if (!control || !atom_ctx)
132 		return false;
133 
134 	if (strnstr(atom_ctx->vbios_version,
135 	            "D342",
136 		    sizeof(atom_ctx->vbios_version)))
137 		control->i2c_address = EEPROM_I2C_MADDR_0;
138 	else
139 		control->i2c_address = EEPROM_I2C_MADDR_4;
140 
141 	return true;
142 }
143 
144 static bool __get_eeprom_i2c_addr_ip_discovery(struct amdgpu_device *adev,
145 				       struct amdgpu_ras_eeprom_control *control)
146 {
147 	switch (adev->ip_versions[MP1_HWIP][0]) {
148 	case IP_VERSION(13, 0, 0):
149 	case IP_VERSION(13, 0, 10):
150 		control->i2c_address = EEPROM_I2C_MADDR_4;
151 		return true;
152 	default:
153 		return false;
154 	}
155 }
156 
157 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
158 				  struct amdgpu_ras_eeprom_control *control)
159 {
160 	struct atom_context *atom_ctx = adev->mode_info.atom_context;
161 	u8 i2c_addr;
162 
163 	if (!control)
164 		return false;
165 
166 	if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
167 		/* The address given by VBIOS is an 8-bit, wire-format
168 		 * address, i.e. the most significant byte.
169 		 *
170 		 * Normalize it to a 19-bit EEPROM address. Remove the
171 		 * device type identifier and make it a 7-bit address;
172 		 * then make it a 19-bit EEPROM address. See top of
173 		 * amdgpu_eeprom.c.
174 		 */
175 		i2c_addr = (i2c_addr & 0x0F) >> 1;
176 		control->i2c_address = ((u32) i2c_addr) << 16;
177 
178 		return true;
179 	}
180 
181 	switch (adev->asic_type) {
182 	case CHIP_VEGA20:
183 		control->i2c_address = EEPROM_I2C_MADDR_0;
184 		break;
185 
186 	case CHIP_ARCTURUS:
187 		return __get_eeprom_i2c_addr_arct(adev, control);
188 
189 	case CHIP_SIENNA_CICHLID:
190 		control->i2c_address = EEPROM_I2C_MADDR_0;
191 		break;
192 
193 	case CHIP_ALDEBARAN:
194 		if (strnstr(atom_ctx->vbios_version, "D673",
195 			    sizeof(atom_ctx->vbios_version)))
196 			control->i2c_address = EEPROM_I2C_MADDR_4;
197 		else
198 			control->i2c_address = EEPROM_I2C_MADDR_0;
199 		break;
200 
201 	case CHIP_IP_DISCOVERY:
202 		return __get_eeprom_i2c_addr_ip_discovery(adev, control);
203 
204 	default:
205 		return false;
206 	}
207 
208 	switch (adev->ip_versions[MP1_HWIP][0]) {
209 	case IP_VERSION(13, 0, 0):
210 		control->i2c_address = EEPROM_I2C_MADDR_4;
211 		break;
212 
213 	default:
214 		break;
215 	}
216 
217 	return true;
218 }
219 
220 static void
221 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
222 			     unsigned char *buf)
223 {
224 	u32 *pp = (uint32_t *)buf;
225 
226 	pp[0] = cpu_to_le32(hdr->header);
227 	pp[1] = cpu_to_le32(hdr->version);
228 	pp[2] = cpu_to_le32(hdr->first_rec_offset);
229 	pp[3] = cpu_to_le32(hdr->tbl_size);
230 	pp[4] = cpu_to_le32(hdr->checksum);
231 }
232 
233 static void
234 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
235 			       unsigned char *buf)
236 {
237 	u32 *pp = (uint32_t *)buf;
238 
239 	hdr->header	      = le32_to_cpu(pp[0]);
240 	hdr->version	      = le32_to_cpu(pp[1]);
241 	hdr->first_rec_offset = le32_to_cpu(pp[2]);
242 	hdr->tbl_size	      = le32_to_cpu(pp[3]);
243 	hdr->checksum	      = le32_to_cpu(pp[4]);
244 }
245 
246 static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
247 {
248 	u8 buf[RAS_TABLE_HEADER_SIZE];
249 	struct amdgpu_device *adev = to_amdgpu_device(control);
250 	int res;
251 
252 	memset(buf, 0, sizeof(buf));
253 	__encode_table_header_to_buf(&control->tbl_hdr, buf);
254 
255 	/* i2c may be unstable in gpu reset */
256 	down_read(&adev->reset_domain->sem);
257 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
258 				  control->i2c_address +
259 				  control->ras_header_offset,
260 				  buf, RAS_TABLE_HEADER_SIZE);
261 	up_read(&adev->reset_domain->sem);
262 
263 	if (res < 0) {
264 		DRM_ERROR("Failed to write EEPROM table header:%d", res);
265 	} else if (res < RAS_TABLE_HEADER_SIZE) {
266 		DRM_ERROR("Short write:%d out of %d\n",
267 			  res, RAS_TABLE_HEADER_SIZE);
268 		res = -EIO;
269 	} else {
270 		res = 0;
271 	}
272 
273 	return res;
274 }
275 
276 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
277 {
278 	int ii;
279 	u8  *pp, csum;
280 	size_t sz;
281 
282 	/* Header checksum, skip checksum field in the calculation */
283 	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
284 	pp = (u8 *) &control->tbl_hdr;
285 	csum = 0;
286 	for (ii = 0; ii < sz; ii++, pp++)
287 		csum += *pp;
288 
289 	return csum;
290 }
291 
292 static int amdgpu_ras_eeprom_correct_header_tag(
293 	struct amdgpu_ras_eeprom_control *control,
294 	uint32_t header)
295 {
296 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
297 	u8 *hh;
298 	int res;
299 	u8 csum;
300 
301 	csum = -hdr->checksum;
302 
303 	hh = (void *) &hdr->header;
304 	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
305 	hh = (void *) &header;
306 	csum += hh[0] + hh[1] + hh[2] + hh[3];
307 	csum = -csum;
308 	mutex_lock(&control->ras_tbl_mutex);
309 	hdr->header = header;
310 	hdr->checksum = csum;
311 	res = __write_table_header(control);
312 	mutex_unlock(&control->ras_tbl_mutex);
313 
314 	return res;
315 }
316 
317 /**
318  * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
319  * @control: pointer to control structure
320  *
321  * Reset the contents of the header of the RAS EEPROM table.
322  * Return 0 on success, -errno on error.
323  */
324 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
325 {
326 	struct amdgpu_device *adev = to_amdgpu_device(control);
327 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
328 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
329 	u8 csum;
330 	int res;
331 
332 	mutex_lock(&control->ras_tbl_mutex);
333 
334 	hdr->header = RAS_TABLE_HDR_VAL;
335 	hdr->version = RAS_TABLE_VER;
336 	hdr->first_rec_offset = RAS_RECORD_START;
337 	hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
338 
339 	csum = __calc_hdr_byte_sum(control);
340 	csum = -csum;
341 	hdr->checksum = csum;
342 	res = __write_table_header(control);
343 
344 	control->ras_num_recs = 0;
345 	control->ras_fri = 0;
346 
347 	amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
348 
349 	control->bad_channel_bitmap = 0;
350 	amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
351 	con->update_channel_flag = false;
352 
353 	amdgpu_ras_debugfs_set_ret_size(control);
354 
355 	mutex_unlock(&control->ras_tbl_mutex);
356 
357 	return res;
358 }
359 
360 static void
361 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
362 			     struct eeprom_table_record *record,
363 			     unsigned char *buf)
364 {
365 	__le64 tmp = 0;
366 	int i = 0;
367 
368 	/* Next are all record fields according to EEPROM page spec in LE foramt */
369 	buf[i++] = record->err_type;
370 
371 	buf[i++] = record->bank;
372 
373 	tmp = cpu_to_le64(record->ts);
374 	memcpy(buf + i, &tmp, 8);
375 	i += 8;
376 
377 	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
378 	memcpy(buf + i, &tmp, 6);
379 	i += 6;
380 
381 	buf[i++] = record->mem_channel;
382 	buf[i++] = record->mcumc_id;
383 
384 	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
385 	memcpy(buf + i, &tmp, 6);
386 }
387 
388 static void
389 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
390 			       struct eeprom_table_record *record,
391 			       unsigned char *buf)
392 {
393 	__le64 tmp = 0;
394 	int i =  0;
395 
396 	/* Next are all record fields according to EEPROM page spec in LE foramt */
397 	record->err_type = buf[i++];
398 
399 	record->bank = buf[i++];
400 
401 	memcpy(&tmp, buf + i, 8);
402 	record->ts = le64_to_cpu(tmp);
403 	i += 8;
404 
405 	memcpy(&tmp, buf + i, 6);
406 	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
407 	i += 6;
408 
409 	record->mem_channel = buf[i++];
410 	record->mcumc_id = buf[i++];
411 
412 	memcpy(&tmp, buf + i,  6);
413 	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
414 }
415 
416 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
417 {
418 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
419 
420 	if (!__is_ras_eeprom_supported(adev) ||
421 	    !amdgpu_bad_page_threshold)
422 		return false;
423 
424 	/* skip check eeprom table for VEGA20 Gaming */
425 	if (!con)
426 		return false;
427 	else
428 		if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
429 			return false;
430 
431 	if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
432 		if (amdgpu_bad_page_threshold == -1) {
433 			dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
434 				con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
435 			dev_warn(adev->dev,
436 				"But GPU can be operated due to bad_page_threshold = -1.\n");
437 			return false;
438 		} else {
439 			dev_warn(adev->dev, "This GPU is in BAD status.");
440 			dev_warn(adev->dev, "Please retire it or set a larger "
441 				 "threshold value when reloading driver.\n");
442 			return true;
443 		}
444 	}
445 
446 	return false;
447 }
448 
449 /**
450  * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
451  * @control: pointer to control structure
452  * @buf: pointer to buffer containing data to write
453  * @fri: start writing at this index
454  * @num: number of records to write
455  *
456  * The caller must hold the table mutex in @control.
457  * Return 0 on success, -errno otherwise.
458  */
459 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
460 				     u8 *buf, const u32 fri, const u32 num)
461 {
462 	struct amdgpu_device *adev = to_amdgpu_device(control);
463 	u32 buf_size;
464 	int res;
465 
466 	/* i2c may be unstable in gpu reset */
467 	down_read(&adev->reset_domain->sem);
468 	buf_size = num * RAS_TABLE_RECORD_SIZE;
469 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
470 				  control->i2c_address +
471 				  RAS_INDEX_TO_OFFSET(control, fri),
472 				  buf, buf_size);
473 	up_read(&adev->reset_domain->sem);
474 	if (res < 0) {
475 		DRM_ERROR("Writing %d EEPROM table records error:%d",
476 			  num, res);
477 	} else if (res < buf_size) {
478 		/* Short write, return error.
479 		 */
480 		DRM_ERROR("Wrote %d records out of %d",
481 			  res / RAS_TABLE_RECORD_SIZE, num);
482 		res = -EIO;
483 	} else {
484 		res = 0;
485 	}
486 
487 	return res;
488 }
489 
490 static int
491 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
492 			       struct eeprom_table_record *record,
493 			       const u32 num)
494 {
495 	struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
496 	u32 a, b, i;
497 	u8 *buf, *pp;
498 	int res;
499 
500 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
501 	if (!buf)
502 		return -ENOMEM;
503 
504 	/* Encode all of them in one go.
505 	 */
506 	pp = buf;
507 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
508 		__encode_table_record_to_buf(control, &record[i], pp);
509 
510 		/* update bad channel bitmap */
511 		if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
512 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
513 			con->update_channel_flag = true;
514 		}
515 	}
516 
517 	/* a, first record index to write into.
518 	 * b, last record index to write into.
519 	 * a = first index to read (fri) + number of records in the table,
520 	 * b = a + @num - 1.
521 	 * Let N = control->ras_max_num_record_count, then we have,
522 	 * case 0: 0 <= a <= b < N,
523 	 *   just append @num records starting at a;
524 	 * case 1: 0 <= a < N <= b,
525 	 *   append (N - a) records starting at a, and
526 	 *   append the remainder,  b % N + 1, starting at 0.
527 	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
528 	 * case 2a: 0 <= a <= b < N
529 	 *   append num records starting at a; and fix fri if b overwrote it,
530 	 *   and since a <= b, if b overwrote it then a must've also,
531 	 *   and if b didn't overwrite it, then a didn't also.
532 	 * case 2b: 0 <= b < a < N
533 	 *   write num records starting at a, which wraps around 0=N
534 	 *   and overwrite fri unconditionally. Now from case 2a,
535 	 *   this means that b eclipsed fri to overwrite it and wrap
536 	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
537 	 *   set fri = b + 1 (mod N).
538 	 * Now, since fri is updated in every case, except the trivial case 0,
539 	 * the number of records present in the table after writing, is,
540 	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
541 	 * by adding an arbitrary multiple of N before taking the modulo N
542 	 * as shown below.
543 	 */
544 	a = control->ras_fri + control->ras_num_recs;
545 	b = a + num  - 1;
546 	if (b < control->ras_max_record_count) {
547 		res = __amdgpu_ras_eeprom_write(control, buf, a, num);
548 	} else if (a < control->ras_max_record_count) {
549 		u32 g0, g1;
550 
551 		g0 = control->ras_max_record_count - a;
552 		g1 = b % control->ras_max_record_count + 1;
553 		res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
554 		if (res)
555 			goto Out;
556 		res = __amdgpu_ras_eeprom_write(control,
557 						buf + g0 * RAS_TABLE_RECORD_SIZE,
558 						0, g1);
559 		if (res)
560 			goto Out;
561 		if (g1 > control->ras_fri)
562 			control->ras_fri = g1 % control->ras_max_record_count;
563 	} else {
564 		a %= control->ras_max_record_count;
565 		b %= control->ras_max_record_count;
566 
567 		if (a <= b) {
568 			/* Note that, b - a + 1 = num. */
569 			res = __amdgpu_ras_eeprom_write(control, buf, a, num);
570 			if (res)
571 				goto Out;
572 			if (b >= control->ras_fri)
573 				control->ras_fri = (b + 1) % control->ras_max_record_count;
574 		} else {
575 			u32 g0, g1;
576 
577 			/* b < a, which means, we write from
578 			 * a to the end of the table, and from
579 			 * the start of the table to b.
580 			 */
581 			g0 = control->ras_max_record_count - a;
582 			g1 = b + 1;
583 			res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
584 			if (res)
585 				goto Out;
586 			res = __amdgpu_ras_eeprom_write(control,
587 							buf + g0 * RAS_TABLE_RECORD_SIZE,
588 							0, g1);
589 			if (res)
590 				goto Out;
591 			control->ras_fri = g1 % control->ras_max_record_count;
592 		}
593 	}
594 	control->ras_num_recs = 1 + (control->ras_max_record_count + b
595 				     - control->ras_fri)
596 		% control->ras_max_record_count;
597 Out:
598 	kfree(buf);
599 	return res;
600 }
601 
602 static int
603 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
604 {
605 	struct amdgpu_device *adev = to_amdgpu_device(control);
606 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
607 	u8 *buf, *pp, csum;
608 	u32 buf_size;
609 	int res;
610 
611 	/* Modify the header if it exceeds.
612 	 */
613 	if (amdgpu_bad_page_threshold != 0 &&
614 	    control->ras_num_recs >= ras->bad_page_cnt_threshold) {
615 		dev_warn(adev->dev,
616 			"Saved bad pages %d reaches threshold value %d\n",
617 			control->ras_num_recs, ras->bad_page_cnt_threshold);
618 		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
619 	}
620 
621 	control->tbl_hdr.version = RAS_TABLE_VER;
622 	control->tbl_hdr.first_rec_offset = RAS_INDEX_TO_OFFSET(control, control->ras_fri);
623 	control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
624 	control->tbl_hdr.checksum = 0;
625 
626 	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
627 	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
628 	if (!buf) {
629 		DRM_ERROR("allocating memory for table of size %d bytes failed\n",
630 			  control->tbl_hdr.tbl_size);
631 		res = -ENOMEM;
632 		goto Out;
633 	}
634 
635 	down_read(&adev->reset_domain->sem);
636 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
637 				 control->i2c_address +
638 				 control->ras_record_offset,
639 				 buf, buf_size);
640 	up_read(&adev->reset_domain->sem);
641 	if (res < 0) {
642 		DRM_ERROR("EEPROM failed reading records:%d\n",
643 			  res);
644 		goto Out;
645 	} else if (res < buf_size) {
646 		DRM_ERROR("EEPROM read %d out of %d bytes\n",
647 			  res, buf_size);
648 		res = -EIO;
649 		goto Out;
650 	}
651 
652 	/* Recalc the checksum.
653 	 */
654 	csum = 0;
655 	for (pp = buf; pp < buf + buf_size; pp++)
656 		csum += *pp;
657 
658 	csum += __calc_hdr_byte_sum(control);
659 	/* avoid sign extension when assigning to "checksum" */
660 	csum = -csum;
661 	control->tbl_hdr.checksum = csum;
662 	res = __write_table_header(control);
663 Out:
664 	kfree(buf);
665 	return res;
666 }
667 
668 /**
669  * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
670  * @control: pointer to control structure
671  * @record: array of records to append
672  * @num: number of records in @record array
673  *
674  * Append @num records to the table, calculate the checksum and write
675  * the table back to EEPROM. The maximum number of records that
676  * can be appended is between 1 and control->ras_max_record_count,
677  * regardless of how many records are already stored in the table.
678  *
679  * Return 0 on success or if EEPROM is not supported, -errno on error.
680  */
681 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
682 			     struct eeprom_table_record *record,
683 			     const u32 num)
684 {
685 	struct amdgpu_device *adev = to_amdgpu_device(control);
686 	int res;
687 
688 	if (!__is_ras_eeprom_supported(adev))
689 		return 0;
690 
691 	if (num == 0) {
692 		DRM_ERROR("will not append 0 records\n");
693 		return -EINVAL;
694 	} else if (num > control->ras_max_record_count) {
695 		DRM_ERROR("cannot append %d records than the size of table %d\n",
696 			  num, control->ras_max_record_count);
697 		return -EINVAL;
698 	}
699 
700 	mutex_lock(&control->ras_tbl_mutex);
701 
702 	res = amdgpu_ras_eeprom_append_table(control, record, num);
703 	if (!res)
704 		res = amdgpu_ras_eeprom_update_header(control);
705 	if (!res)
706 		amdgpu_ras_debugfs_set_ret_size(control);
707 
708 	mutex_unlock(&control->ras_tbl_mutex);
709 	return res;
710 }
711 
712 /**
713  * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
714  * @control: pointer to control structure
715  * @buf: pointer to buffer to read into
716  * @fri: first record index, start reading at this index, absolute index
717  * @num: number of records to read
718  *
719  * The caller must hold the table mutex in @control.
720  * Return 0 on success, -errno otherwise.
721  */
722 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
723 				    u8 *buf, const u32 fri, const u32 num)
724 {
725 	struct amdgpu_device *adev = to_amdgpu_device(control);
726 	u32 buf_size;
727 	int res;
728 
729 	/* i2c may be unstable in gpu reset */
730 	down_read(&adev->reset_domain->sem);
731 	buf_size = num * RAS_TABLE_RECORD_SIZE;
732 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
733 				 control->i2c_address +
734 				 RAS_INDEX_TO_OFFSET(control, fri),
735 				 buf, buf_size);
736 	up_read(&adev->reset_domain->sem);
737 	if (res < 0) {
738 		DRM_ERROR("Reading %d EEPROM table records error:%d",
739 			  num, res);
740 	} else if (res < buf_size) {
741 		/* Short read, return error.
742 		 */
743 		DRM_ERROR("Read %d records out of %d",
744 			  res / RAS_TABLE_RECORD_SIZE, num);
745 		res = -EIO;
746 	} else {
747 		res = 0;
748 	}
749 
750 	return res;
751 }
752 
753 /**
754  * amdgpu_ras_eeprom_read -- read EEPROM
755  * @control: pointer to control structure
756  * @record: array of records to read into
757  * @num: number of records in @record
758  *
759  * Reads num records from the RAS table in EEPROM and
760  * writes the data into @record array.
761  *
762  * Returns 0 on success, -errno on error.
763  */
764 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
765 			   struct eeprom_table_record *record,
766 			   const u32 num)
767 {
768 	struct amdgpu_device *adev = to_amdgpu_device(control);
769 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
770 	int i, res;
771 	u8 *buf, *pp;
772 	u32 g0, g1;
773 
774 	if (!__is_ras_eeprom_supported(adev))
775 		return 0;
776 
777 	if (num == 0) {
778 		DRM_ERROR("will not read 0 records\n");
779 		return -EINVAL;
780 	} else if (num > control->ras_num_recs) {
781 		DRM_ERROR("too many records to read:%d available:%d\n",
782 			  num, control->ras_num_recs);
783 		return -EINVAL;
784 	}
785 
786 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
787 	if (!buf)
788 		return -ENOMEM;
789 
790 	/* Determine how many records to read, from the first record
791 	 * index, fri, to the end of the table, and from the beginning
792 	 * of the table, such that the total number of records is
793 	 * @num, and we handle wrap around when fri > 0 and
794 	 * fri + num > RAS_MAX_RECORD_COUNT.
795 	 *
796 	 * First we compute the index of the last element
797 	 * which would be fetched from each region,
798 	 * g0 is in [fri, fri + num - 1], and
799 	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
800 	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
801 	 * the last element to fetch, we set g0 to _the number_
802 	 * of elements to fetch, @num, since we know that the last
803 	 * indexed to be fetched does not exceed the table.
804 	 *
805 	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
806 	 * we set g0 to the number of elements to read
807 	 * until the end of the table, and g1 to the number of
808 	 * elements to read from the beginning of the table.
809 	 */
810 	g0 = control->ras_fri + num - 1;
811 	g1 = g0 % control->ras_max_record_count;
812 	if (g0 < control->ras_max_record_count) {
813 		g0 = num;
814 		g1 = 0;
815 	} else {
816 		g0 = control->ras_max_record_count - control->ras_fri;
817 		g1 += 1;
818 	}
819 
820 	mutex_lock(&control->ras_tbl_mutex);
821 	res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
822 	if (res)
823 		goto Out;
824 	if (g1) {
825 		res = __amdgpu_ras_eeprom_read(control,
826 					       buf + g0 * RAS_TABLE_RECORD_SIZE,
827 					       0, g1);
828 		if (res)
829 			goto Out;
830 	}
831 
832 	res = 0;
833 
834 	/* Read up everything? Then transform.
835 	 */
836 	pp = buf;
837 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
838 		__decode_table_record_from_buf(control, &record[i], pp);
839 
840 		/* update bad channel bitmap */
841 		if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
842 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
843 			con->update_channel_flag = true;
844 		}
845 	}
846 Out:
847 	kfree(buf);
848 	mutex_unlock(&control->ras_tbl_mutex);
849 
850 	return res;
851 }
852 
853 uint32_t amdgpu_ras_eeprom_max_record_count(void)
854 {
855 	return RAS_MAX_RECORD_COUNT;
856 }
857 
858 static ssize_t
859 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
860 				    size_t size, loff_t *pos)
861 {
862 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
863 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
864 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
865 	u8 data[50];
866 	int res;
867 
868 	if (!size)
869 		return size;
870 
871 	if (!ras || !control) {
872 		res = snprintf(data, sizeof(data), "Not supported\n");
873 	} else {
874 		res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
875 			       RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
876 	}
877 
878 	if (*pos >= res)
879 		return 0;
880 
881 	res -= *pos;
882 	res = min_t(size_t, res, size);
883 
884 	if (copy_to_user(buf, &data[*pos], res))
885 		return -EFAULT;
886 
887 	*pos += res;
888 
889 	return res;
890 }
891 
892 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
893 	.owner = THIS_MODULE,
894 	.read = amdgpu_ras_debugfs_eeprom_size_read,
895 	.write = NULL,
896 	.llseek = default_llseek,
897 };
898 
899 static const char *tbl_hdr_str = " Signature    Version  FirstOffs       Size   Checksum\n";
900 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
901 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
902 static const char *rec_hdr_str = "Index  Offset ErrType Bank/CU          TimeStamp      Offs/Addr MemChl MCUMCID    RetiredPage\n";
903 static const char *rec_hdr_fmt = "%5d 0x%05X %7s    0x%02X 0x%016llX 0x%012llX   0x%02X    0x%02X 0x%012llX\n";
904 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
905 
906 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
907 	"ignore",
908 	"re",
909 	"ue",
910 };
911 
912 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
913 {
914 	return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
915 		strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
916 }
917 
918 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
919 {
920 	struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
921 					      eeprom_control);
922 	struct dentry *de = ras->de_ras_eeprom_table;
923 
924 	if (de)
925 		d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
926 }
927 
928 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
929 					     size_t size, loff_t *pos)
930 {
931 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
932 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
933 	struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
934 	const size_t orig_size = size;
935 	int res = -EFAULT;
936 	size_t data_len;
937 
938 	mutex_lock(&control->ras_tbl_mutex);
939 
940 	/* We want *pos - data_len > 0, which means there's
941 	 * bytes to be printed from data.
942 	 */
943 	data_len = strlen(tbl_hdr_str);
944 	if (*pos < data_len) {
945 		data_len -= *pos;
946 		data_len = min_t(size_t, data_len, size);
947 		if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
948 			goto Out;
949 		buf += data_len;
950 		size -= data_len;
951 		*pos += data_len;
952 	}
953 
954 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
955 	if (*pos < data_len && size > 0) {
956 		u8 data[tbl_hdr_fmt_size + 1];
957 		loff_t lpos;
958 
959 		snprintf(data, sizeof(data), tbl_hdr_fmt,
960 			 control->tbl_hdr.header,
961 			 control->tbl_hdr.version,
962 			 control->tbl_hdr.first_rec_offset,
963 			 control->tbl_hdr.tbl_size,
964 			 control->tbl_hdr.checksum);
965 
966 		data_len -= *pos;
967 		data_len = min_t(size_t, data_len, size);
968 		lpos = *pos - strlen(tbl_hdr_str);
969 		if (copy_to_user(buf, &data[lpos], data_len))
970 			goto Out;
971 		buf += data_len;
972 		size -= data_len;
973 		*pos += data_len;
974 	}
975 
976 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
977 	if (*pos < data_len && size > 0) {
978 		loff_t lpos;
979 
980 		data_len -= *pos;
981 		data_len = min_t(size_t, data_len, size);
982 		lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
983 		if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
984 			goto Out;
985 		buf += data_len;
986 		size -= data_len;
987 		*pos += data_len;
988 	}
989 
990 	data_len = amdgpu_ras_debugfs_table_size(control);
991 	if (*pos < data_len && size > 0) {
992 		u8 dare[RAS_TABLE_RECORD_SIZE];
993 		u8 data[rec_hdr_fmt_size + 1];
994 		struct eeprom_table_record record;
995 		int s, r;
996 
997 		/* Find the starting record index
998 		 */
999 		s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1000 			strlen(rec_hdr_str);
1001 		s = s / rec_hdr_fmt_size;
1002 		r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1003 			strlen(rec_hdr_str);
1004 		r = r % rec_hdr_fmt_size;
1005 
1006 		for ( ; size > 0 && s < control->ras_num_recs; s++) {
1007 			u32 ai = RAS_RI_TO_AI(control, s);
1008 			/* Read a single record
1009 			 */
1010 			res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1011 			if (res)
1012 				goto Out;
1013 			__decode_table_record_from_buf(control, &record, dare);
1014 			snprintf(data, sizeof(data), rec_hdr_fmt,
1015 				 s,
1016 				 RAS_INDEX_TO_OFFSET(control, ai),
1017 				 record_err_type_str[record.err_type],
1018 				 record.bank,
1019 				 record.ts,
1020 				 record.offset,
1021 				 record.mem_channel,
1022 				 record.mcumc_id,
1023 				 record.retired_page);
1024 
1025 			data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1026 			if (copy_to_user(buf, &data[r], data_len)) {
1027 				res = -EFAULT;
1028 				goto Out;
1029 			}
1030 			buf += data_len;
1031 			size -= data_len;
1032 			*pos += data_len;
1033 			r = 0;
1034 		}
1035 	}
1036 	res = 0;
1037 Out:
1038 	mutex_unlock(&control->ras_tbl_mutex);
1039 	return res < 0 ? res : orig_size - size;
1040 }
1041 
1042 static ssize_t
1043 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1044 				     size_t size, loff_t *pos)
1045 {
1046 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1047 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1048 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1049 	u8 data[81];
1050 	int res;
1051 
1052 	if (!size)
1053 		return size;
1054 
1055 	if (!ras || !control) {
1056 		res = snprintf(data, sizeof(data), "Not supported\n");
1057 		if (*pos >= res)
1058 			return 0;
1059 
1060 		res -= *pos;
1061 		res = min_t(size_t, res, size);
1062 
1063 		if (copy_to_user(buf, &data[*pos], res))
1064 			return -EFAULT;
1065 
1066 		*pos += res;
1067 
1068 		return res;
1069 	} else {
1070 		return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1071 	}
1072 }
1073 
1074 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1075 	.owner = THIS_MODULE,
1076 	.read = amdgpu_ras_debugfs_eeprom_table_read,
1077 	.write = NULL,
1078 	.llseek = default_llseek,
1079 };
1080 
1081 /**
1082  * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1083  * @control: pointer to control structure
1084  *
1085  * Check the checksum of the stored in EEPROM RAS table.
1086  *
1087  * Return 0 if the checksum is correct,
1088  * positive if it is not correct, and
1089  * -errno on I/O error.
1090  */
1091 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1092 {
1093 	struct amdgpu_device *adev = to_amdgpu_device(control);
1094 	int buf_size, res;
1095 	u8  csum, *buf, *pp;
1096 
1097 	buf_size = RAS_TABLE_HEADER_SIZE +
1098 		control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1099 	buf = kzalloc(buf_size, GFP_KERNEL);
1100 	if (!buf) {
1101 		DRM_ERROR("Out of memory checking RAS table checksum.\n");
1102 		return -ENOMEM;
1103 	}
1104 
1105 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1106 				 control->i2c_address +
1107 				 control->ras_header_offset,
1108 				 buf, buf_size);
1109 	if (res < buf_size) {
1110 		DRM_ERROR("Partial read for checksum, res:%d\n", res);
1111 		/* On partial reads, return -EIO.
1112 		 */
1113 		if (res >= 0)
1114 			res = -EIO;
1115 		goto Out;
1116 	}
1117 
1118 	csum = 0;
1119 	for (pp = buf; pp < buf + buf_size; pp++)
1120 		csum += *pp;
1121 Out:
1122 	kfree(buf);
1123 	return res < 0 ? res : csum;
1124 }
1125 
1126 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
1127 			   bool *exceed_err_limit)
1128 {
1129 	struct amdgpu_device *adev = to_amdgpu_device(control);
1130 	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1131 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1132 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1133 	int res;
1134 
1135 	*exceed_err_limit = false;
1136 
1137 	if (!__is_ras_eeprom_supported(adev))
1138 		return 0;
1139 
1140 	/* Verify i2c adapter is initialized */
1141 	if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1142 		return -ENOENT;
1143 
1144 	if (!__get_eeprom_i2c_addr(adev, control))
1145 		return -EINVAL;
1146 
1147 	control->ras_header_offset = RAS_HDR_START;
1148 	control->ras_record_offset = RAS_RECORD_START;
1149 	control->ras_max_record_count  = RAS_MAX_RECORD_COUNT;
1150 	mutex_init(&control->ras_tbl_mutex);
1151 
1152 	/* Read the table header from EEPROM address */
1153 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1154 				 control->i2c_address + control->ras_header_offset,
1155 				 buf, RAS_TABLE_HEADER_SIZE);
1156 	if (res < RAS_TABLE_HEADER_SIZE) {
1157 		DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1158 		return res >= 0 ? -EIO : res;
1159 	}
1160 
1161 	__decode_table_header_from_buf(hdr, buf);
1162 
1163 	control->ras_num_recs = RAS_NUM_RECS(hdr);
1164 	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1165 
1166 	if (hdr->header == RAS_TABLE_HDR_VAL) {
1167 		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1168 				 control->ras_num_recs);
1169 		res = __verify_ras_table_checksum(control);
1170 		if (res)
1171 			DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1172 				  res);
1173 
1174 		/* Warn if we are at 90% of the threshold or above
1175 		 */
1176 		if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1177 			dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1178 					control->ras_num_recs,
1179 					ras->bad_page_cnt_threshold);
1180 	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1181 		   amdgpu_bad_page_threshold != 0) {
1182 		res = __verify_ras_table_checksum(control);
1183 		if (res)
1184 			DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1185 				  res);
1186 		if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1187 			/* This means that, the threshold was increased since
1188 			 * the last time the system was booted, and now,
1189 			 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1190 			 * so that at least one more record can be saved,
1191 			 * before the page count threshold is reached.
1192 			 */
1193 			dev_info(adev->dev,
1194 				 "records:%d threshold:%d, resetting "
1195 				 "RAS table header signature",
1196 				 control->ras_num_recs,
1197 				 ras->bad_page_cnt_threshold);
1198 			res = amdgpu_ras_eeprom_correct_header_tag(control,
1199 								   RAS_TABLE_HDR_VAL);
1200 		} else {
1201 			dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1202 				control->ras_num_recs, ras->bad_page_cnt_threshold);
1203 			if (amdgpu_bad_page_threshold == -1) {
1204 				dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
1205 				res = 0;
1206 			} else {
1207 				*exceed_err_limit = true;
1208 				dev_err(adev->dev,
1209 					"RAS records:%d exceed threshold:%d, "
1210 					"GPU will not be initialized. Replace this GPU or increase the threshold",
1211 					control->ras_num_recs, ras->bad_page_cnt_threshold);
1212 			}
1213 		}
1214 	} else {
1215 		DRM_INFO("Creating a new EEPROM table");
1216 
1217 		res = amdgpu_ras_eeprom_reset_table(control);
1218 	}
1219 
1220 	return res < 0 ? res : 0;
1221 }
1222