1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include "amdgpu_ras_eeprom.h" 25 #include "amdgpu.h" 26 #include "amdgpu_ras.h" 27 #include <linux/bits.h> 28 #include "atom.h" 29 #include "amdgpu_eeprom.h" 30 #include "amdgpu_atomfirmware.h" 31 #include <linux/debugfs.h> 32 #include <linux/uaccess.h> 33 34 #include "amdgpu_reset.h" 35 36 /* These are memory addresses as would be seen by one or more EEPROM 37 * chips strung on the I2C bus, usually by manipulating pins 1-3 of a 38 * set of EEPROM devices. They form a continuous memory space. 39 * 40 * The I2C device address includes the device type identifier, 1010b, 41 * which is a reserved value and indicates that this is an I2C EEPROM 42 * device. It also includes the top 3 bits of the 19 bit EEPROM memory 43 * address, namely bits 18, 17, and 16. This makes up the 7 bit 44 * address sent on the I2C bus with bit 0 being the direction bit, 45 * which is not represented here, and sent by the hardware directly. 46 * 47 * For instance, 48 * 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0. 49 * 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h. 50 * 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h. 51 * Depending on the size of the I2C EEPROM device(s), bits 18:16 may 52 * address memory in a device or a device on the I2C bus, depending on 53 * the status of pins 1-3. See top of amdgpu_eeprom.c. 54 * 55 * The RAS table lives either at address 0 or address 40000h of EEPROM. 56 */ 57 #define EEPROM_I2C_MADDR_0 0x0 58 #define EEPROM_I2C_MADDR_4 0x40000 59 60 /* 61 * The 2 macros below represent the actual size in bytes that 62 * those entities occupy in the EEPROM memory. 63 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which 64 * uses uint64 to store 6b fields such as retired_page. 65 */ 66 #define RAS_TABLE_HEADER_SIZE 20 67 #define RAS_TABLE_RECORD_SIZE 24 68 69 /* Table hdr is 'AMDR' */ 70 #define RAS_TABLE_HDR_VAL 0x414d4452 71 72 /* Bad GPU tag ‘BADG’ */ 73 #define RAS_TABLE_HDR_BAD 0x42414447 74 75 /* 76 * EEPROM Table structure v1 77 * --------------------------------- 78 * | | 79 * | EEPROM TABLE HEADER | 80 * | ( size 20 Bytes ) | 81 * | | 82 * --------------------------------- 83 * | | 84 * | BAD PAGE RECORD AREA | 85 * | | 86 * --------------------------------- 87 */ 88 89 /* Assume 2-Mbit size EEPROM and take up the whole space. */ 90 #define RAS_TBL_SIZE_BYTES (256 * 1024) 91 #define RAS_TABLE_START 0 92 #define RAS_HDR_START RAS_TABLE_START 93 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) 94 #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ 95 / RAS_TABLE_RECORD_SIZE) 96 97 /* 98 * EEPROM Table structrue v2.1 99 * --------------------------------- 100 * | | 101 * | EEPROM TABLE HEADER | 102 * | ( size 20 Bytes ) | 103 * | | 104 * --------------------------------- 105 * | | 106 * | EEPROM TABLE RAS INFO | 107 * | (available info size 4 Bytes) | 108 * | ( reserved size 252 Bytes ) | 109 * | | 110 * --------------------------------- 111 * | | 112 * | BAD PAGE RECORD AREA | 113 * | | 114 * --------------------------------- 115 */ 116 117 /* EEPROM Table V2_1 */ 118 #define RAS_TABLE_V2_1_INFO_SIZE 256 119 #define RAS_TABLE_V2_1_INFO_START RAS_TABLE_HEADER_SIZE 120 #define RAS_RECORD_START_V2_1 (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \ 121 RAS_TABLE_V2_1_INFO_SIZE) 122 #define RAS_MAX_RECORD_COUNT_V2_1 ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \ 123 RAS_TABLE_V2_1_INFO_SIZE) \ 124 / RAS_TABLE_RECORD_SIZE) 125 126 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM 127 * offset off of RAS_TABLE_START. That is, this is something you can 128 * add to control->i2c_address, and then tell I2C layer to read 129 * from/write to there. _N is the so called absolute index, 130 * because it starts right after the table header. 131 */ 132 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ 133 (_N) * RAS_TABLE_RECORD_SIZE) 134 135 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ 136 (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) 137 138 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off 139 * of "fri", return the absolute record index off of the end of 140 * the table header. 141 */ 142 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ 143 (_C)->ras_max_record_count) 144 145 #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 146 RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) 147 148 #define RAS_NUM_RECS_V2_1(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 149 RAS_TABLE_HEADER_SIZE - \ 150 RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE) 151 152 #define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev) 153 154 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) 155 { 156 switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { 157 case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */ 158 case IP_VERSION(11, 0, 7): /* Sienna cichlid */ 159 case IP_VERSION(13, 0, 0): 160 case IP_VERSION(13, 0, 2): /* Aldebaran */ 161 case IP_VERSION(13, 0, 10): 162 return true; 163 case IP_VERSION(13, 0, 6): 164 case IP_VERSION(13, 0, 12): 165 case IP_VERSION(13, 0, 14): 166 return (adev->gmc.is_app_apu) ? false : true; 167 default: 168 return false; 169 } 170 } 171 172 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, 173 struct amdgpu_ras_eeprom_control *control) 174 { 175 struct atom_context *atom_ctx = adev->mode_info.atom_context; 176 u8 i2c_addr; 177 178 if (!control) 179 return false; 180 181 if (adev->bios && amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { 182 /* The address given by VBIOS is an 8-bit, wire-format 183 * address, i.e. the most significant byte. 184 * 185 * Normalize it to a 19-bit EEPROM address. Remove the 186 * device type identifier and make it a 7-bit address; 187 * then make it a 19-bit EEPROM address. See top of 188 * amdgpu_eeprom.c. 189 */ 190 i2c_addr = (i2c_addr & 0x0F) >> 1; 191 control->i2c_address = ((u32) i2c_addr) << 16; 192 193 return true; 194 } 195 196 switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { 197 case IP_VERSION(11, 0, 2): 198 /* VEGA20 and ARCTURUS */ 199 if (adev->asic_type == CHIP_VEGA20) 200 control->i2c_address = EEPROM_I2C_MADDR_0; 201 else if (strnstr(atom_ctx->vbios_pn, 202 "D342", 203 sizeof(atom_ctx->vbios_pn))) 204 control->i2c_address = EEPROM_I2C_MADDR_0; 205 else 206 control->i2c_address = EEPROM_I2C_MADDR_4; 207 return true; 208 case IP_VERSION(11, 0, 7): 209 control->i2c_address = EEPROM_I2C_MADDR_0; 210 return true; 211 case IP_VERSION(13, 0, 2): 212 if (strnstr(atom_ctx->vbios_pn, "D673", 213 sizeof(atom_ctx->vbios_pn))) 214 control->i2c_address = EEPROM_I2C_MADDR_4; 215 else 216 control->i2c_address = EEPROM_I2C_MADDR_0; 217 return true; 218 case IP_VERSION(13, 0, 0): 219 if (strnstr(atom_ctx->vbios_pn, "D707", 220 sizeof(atom_ctx->vbios_pn))) 221 control->i2c_address = EEPROM_I2C_MADDR_0; 222 else 223 control->i2c_address = EEPROM_I2C_MADDR_4; 224 return true; 225 case IP_VERSION(13, 0, 6): 226 case IP_VERSION(13, 0, 10): 227 case IP_VERSION(13, 0, 12): 228 case IP_VERSION(13, 0, 14): 229 control->i2c_address = EEPROM_I2C_MADDR_4; 230 return true; 231 default: 232 return false; 233 } 234 } 235 236 static void 237 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, 238 unsigned char *buf) 239 { 240 u32 *pp = (uint32_t *)buf; 241 242 pp[0] = cpu_to_le32(hdr->header); 243 pp[1] = cpu_to_le32(hdr->version); 244 pp[2] = cpu_to_le32(hdr->first_rec_offset); 245 pp[3] = cpu_to_le32(hdr->tbl_size); 246 pp[4] = cpu_to_le32(hdr->checksum); 247 } 248 249 static void 250 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, 251 unsigned char *buf) 252 { 253 u32 *pp = (uint32_t *)buf; 254 255 hdr->header = le32_to_cpu(pp[0]); 256 hdr->version = le32_to_cpu(pp[1]); 257 hdr->first_rec_offset = le32_to_cpu(pp[2]); 258 hdr->tbl_size = le32_to_cpu(pp[3]); 259 hdr->checksum = le32_to_cpu(pp[4]); 260 } 261 262 static int __write_table_header(struct amdgpu_ras_eeprom_control *control) 263 { 264 u8 buf[RAS_TABLE_HEADER_SIZE]; 265 struct amdgpu_device *adev = to_amdgpu_device(control); 266 int res; 267 268 memset(buf, 0, sizeof(buf)); 269 __encode_table_header_to_buf(&control->tbl_hdr, buf); 270 271 /* i2c may be unstable in gpu reset */ 272 down_read(&adev->reset_domain->sem); 273 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 274 control->i2c_address + 275 control->ras_header_offset, 276 buf, RAS_TABLE_HEADER_SIZE); 277 up_read(&adev->reset_domain->sem); 278 279 if (res < 0) { 280 DRM_ERROR("Failed to write EEPROM table header:%d", res); 281 } else if (res < RAS_TABLE_HEADER_SIZE) { 282 DRM_ERROR("Short write:%d out of %d\n", 283 res, RAS_TABLE_HEADER_SIZE); 284 res = -EIO; 285 } else { 286 res = 0; 287 } 288 289 return res; 290 } 291 292 static void 293 __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, 294 unsigned char *buf) 295 { 296 u32 *pp = (uint32_t *)buf; 297 u32 tmp; 298 299 tmp = ((uint32_t)(rai->rma_status) & 0xFF) | 300 (((uint32_t)(rai->health_percent) << 8) & 0xFF00) | 301 (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000); 302 pp[0] = cpu_to_le32(tmp); 303 } 304 305 static void 306 __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, 307 unsigned char *buf) 308 { 309 u32 *pp = (uint32_t *)buf; 310 u32 tmp; 311 312 tmp = le32_to_cpu(pp[0]); 313 rai->rma_status = tmp & 0xFF; 314 rai->health_percent = (tmp >> 8) & 0xFF; 315 rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF; 316 } 317 318 static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control) 319 { 320 struct amdgpu_device *adev = to_amdgpu_device(control); 321 u8 *buf; 322 int res; 323 324 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); 325 if (!buf) { 326 DRM_ERROR("Failed to alloc buf to write table ras info\n"); 327 return -ENOMEM; 328 } 329 330 __encode_table_ras_info_to_buf(&control->tbl_rai, buf); 331 332 /* i2c may be unstable in gpu reset */ 333 down_read(&adev->reset_domain->sem); 334 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 335 control->i2c_address + 336 control->ras_info_offset, 337 buf, RAS_TABLE_V2_1_INFO_SIZE); 338 up_read(&adev->reset_domain->sem); 339 340 if (res < 0) { 341 DRM_ERROR("Failed to write EEPROM table ras info:%d", res); 342 } else if (res < RAS_TABLE_V2_1_INFO_SIZE) { 343 DRM_ERROR("Short write:%d out of %d\n", 344 res, RAS_TABLE_V2_1_INFO_SIZE); 345 res = -EIO; 346 } else { 347 res = 0; 348 } 349 350 kfree(buf); 351 352 return res; 353 } 354 355 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) 356 { 357 int ii; 358 u8 *pp, csum; 359 size_t sz; 360 361 /* Header checksum, skip checksum field in the calculation */ 362 sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); 363 pp = (u8 *) &control->tbl_hdr; 364 csum = 0; 365 for (ii = 0; ii < sz; ii++, pp++) 366 csum += *pp; 367 368 return csum; 369 } 370 371 static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control) 372 { 373 int ii; 374 u8 *pp, csum; 375 size_t sz; 376 377 sz = sizeof(control->tbl_rai); 378 pp = (u8 *) &control->tbl_rai; 379 csum = 0; 380 for (ii = 0; ii < sz; ii++, pp++) 381 csum += *pp; 382 383 return csum; 384 } 385 386 static int amdgpu_ras_eeprom_correct_header_tag( 387 struct amdgpu_ras_eeprom_control *control, 388 uint32_t header) 389 { 390 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 391 u8 *hh; 392 int res; 393 u8 csum; 394 395 csum = -hdr->checksum; 396 397 hh = (void *) &hdr->header; 398 csum -= (hh[0] + hh[1] + hh[2] + hh[3]); 399 hh = (void *) &header; 400 csum += hh[0] + hh[1] + hh[2] + hh[3]; 401 csum = -csum; 402 mutex_lock(&control->ras_tbl_mutex); 403 hdr->header = header; 404 hdr->checksum = csum; 405 res = __write_table_header(control); 406 mutex_unlock(&control->ras_tbl_mutex); 407 408 return res; 409 } 410 411 static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control) 412 { 413 struct amdgpu_device *adev = to_amdgpu_device(control); 414 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 415 416 switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) { 417 case IP_VERSION(8, 10, 0): 418 hdr->version = RAS_TABLE_VER_V2_1; 419 return; 420 case IP_VERSION(12, 0, 0): 421 case IP_VERSION(12, 5, 0): 422 hdr->version = RAS_TABLE_VER_V3; 423 return; 424 default: 425 hdr->version = RAS_TABLE_VER_V1; 426 return; 427 } 428 } 429 430 /** 431 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table 432 * @control: pointer to control structure 433 * 434 * Reset the contents of the header of the RAS EEPROM table. 435 * Return 0 on success, -errno on error. 436 */ 437 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) 438 { 439 struct amdgpu_device *adev = to_amdgpu_device(control); 440 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 441 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; 442 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 443 u8 csum; 444 int res; 445 446 mutex_lock(&control->ras_tbl_mutex); 447 448 hdr->header = RAS_TABLE_HDR_VAL; 449 amdgpu_ras_set_eeprom_table_version(control); 450 451 if (hdr->version >= RAS_TABLE_VER_V2_1) { 452 hdr->first_rec_offset = RAS_RECORD_START_V2_1; 453 hdr->tbl_size = RAS_TABLE_HEADER_SIZE + 454 RAS_TABLE_V2_1_INFO_SIZE; 455 rai->rma_status = GPU_HEALTH_USABLE; 456 /** 457 * GPU health represented as a percentage. 458 * 0 means worst health, 100 means fully health. 459 */ 460 rai->health_percent = 100; 461 /* ecc_page_threshold = 0 means disable bad page retirement */ 462 rai->ecc_page_threshold = con->bad_page_cnt_threshold; 463 } else { 464 hdr->first_rec_offset = RAS_RECORD_START; 465 hdr->tbl_size = RAS_TABLE_HEADER_SIZE; 466 } 467 468 csum = __calc_hdr_byte_sum(control); 469 if (hdr->version >= RAS_TABLE_VER_V2_1) 470 csum += __calc_ras_info_byte_sum(control); 471 csum = -csum; 472 hdr->checksum = csum; 473 res = __write_table_header(control); 474 if (!res && hdr->version > RAS_TABLE_VER_V1) 475 res = __write_table_ras_info(control); 476 477 control->ras_num_recs = 0; 478 control->ras_num_bad_pages = 0; 479 control->ras_fri = 0; 480 481 amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_bad_pages); 482 483 control->bad_channel_bitmap = 0; 484 amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap); 485 con->update_channel_flag = false; 486 487 amdgpu_ras_debugfs_set_ret_size(control); 488 489 mutex_unlock(&control->ras_tbl_mutex); 490 491 return res; 492 } 493 494 static void 495 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, 496 struct eeprom_table_record *record, 497 unsigned char *buf) 498 { 499 __le64 tmp = 0; 500 int i = 0; 501 502 /* Next are all record fields according to EEPROM page spec in LE foramt */ 503 buf[i++] = record->err_type; 504 505 buf[i++] = record->bank; 506 507 tmp = cpu_to_le64(record->ts); 508 memcpy(buf + i, &tmp, 8); 509 i += 8; 510 511 tmp = cpu_to_le64((record->offset & 0xffffffffffff)); 512 memcpy(buf + i, &tmp, 6); 513 i += 6; 514 515 buf[i++] = record->mem_channel; 516 buf[i++] = record->mcumc_id; 517 518 tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); 519 memcpy(buf + i, &tmp, 6); 520 } 521 522 static void 523 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, 524 struct eeprom_table_record *record, 525 unsigned char *buf) 526 { 527 __le64 tmp = 0; 528 int i = 0; 529 530 /* Next are all record fields according to EEPROM page spec in LE foramt */ 531 record->err_type = buf[i++]; 532 533 record->bank = buf[i++]; 534 535 memcpy(&tmp, buf + i, 8); 536 record->ts = le64_to_cpu(tmp); 537 i += 8; 538 539 memcpy(&tmp, buf + i, 6); 540 record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); 541 i += 6; 542 543 record->mem_channel = buf[i++]; 544 record->mcumc_id = buf[i++]; 545 546 memcpy(&tmp, buf + i, 6); 547 record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); 548 } 549 550 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) 551 { 552 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 553 554 if (!__is_ras_eeprom_supported(adev) || 555 !amdgpu_bad_page_threshold) 556 return false; 557 558 /* skip check eeprom table for VEGA20 Gaming */ 559 if (!con) 560 return false; 561 else 562 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) 563 return false; 564 565 if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { 566 if (con->eeprom_control.ras_num_bad_pages > con->bad_page_cnt_threshold) 567 dev_warn(adev->dev, "RAS records:%d exceed threshold:%d", 568 con->eeprom_control.ras_num_bad_pages, con->bad_page_cnt_threshold); 569 if ((amdgpu_bad_page_threshold == -1) || 570 (amdgpu_bad_page_threshold == -2)) { 571 dev_warn(adev->dev, 572 "Please consult AMD Service Action Guide (SAG) for appropriate service procedures.\n"); 573 return false; 574 } else { 575 dev_warn(adev->dev, 576 "Please consider adjusting the customized threshold.\n"); 577 return true; 578 } 579 } 580 581 return false; 582 } 583 584 /** 585 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM 586 * @control: pointer to control structure 587 * @buf: pointer to buffer containing data to write 588 * @fri: start writing at this index 589 * @num: number of records to write 590 * 591 * The caller must hold the table mutex in @control. 592 * Return 0 on success, -errno otherwise. 593 */ 594 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, 595 u8 *buf, const u32 fri, const u32 num) 596 { 597 struct amdgpu_device *adev = to_amdgpu_device(control); 598 u32 buf_size; 599 int res; 600 601 /* i2c may be unstable in gpu reset */ 602 down_read(&adev->reset_domain->sem); 603 buf_size = num * RAS_TABLE_RECORD_SIZE; 604 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 605 control->i2c_address + 606 RAS_INDEX_TO_OFFSET(control, fri), 607 buf, buf_size); 608 up_read(&adev->reset_domain->sem); 609 if (res < 0) { 610 DRM_ERROR("Writing %d EEPROM table records error:%d", 611 num, res); 612 } else if (res < buf_size) { 613 /* Short write, return error. 614 */ 615 DRM_ERROR("Wrote %d records out of %d", 616 res / RAS_TABLE_RECORD_SIZE, num); 617 res = -EIO; 618 } else { 619 res = 0; 620 } 621 622 return res; 623 } 624 625 static int 626 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, 627 struct eeprom_table_record *record, 628 const u32 num) 629 { 630 struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control)); 631 struct amdgpu_device *adev = to_amdgpu_device(control); 632 u32 a, b, i; 633 u8 *buf, *pp; 634 int res; 635 636 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 637 if (!buf) 638 return -ENOMEM; 639 640 /* Encode all of them in one go. 641 */ 642 pp = buf; 643 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 644 __encode_table_record_to_buf(control, &record[i], pp); 645 646 /* update bad channel bitmap */ 647 if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && 648 !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 649 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 650 con->update_channel_flag = true; 651 } 652 } 653 654 /* a, first record index to write into. 655 * b, last record index to write into. 656 * a = first index to read (fri) + number of records in the table, 657 * b = a + @num - 1. 658 * Let N = control->ras_max_num_record_count, then we have, 659 * case 0: 0 <= a <= b < N, 660 * just append @num records starting at a; 661 * case 1: 0 <= a < N <= b, 662 * append (N - a) records starting at a, and 663 * append the remainder, b % N + 1, starting at 0. 664 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, 665 * case 2a: 0 <= a <= b < N 666 * append num records starting at a; and fix fri if b overwrote it, 667 * and since a <= b, if b overwrote it then a must've also, 668 * and if b didn't overwrite it, then a didn't also. 669 * case 2b: 0 <= b < a < N 670 * write num records starting at a, which wraps around 0=N 671 * and overwrite fri unconditionally. Now from case 2a, 672 * this means that b eclipsed fri to overwrite it and wrap 673 * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally 674 * set fri = b + 1 (mod N). 675 * Now, since fri is updated in every case, except the trivial case 0, 676 * the number of records present in the table after writing, is, 677 * num_recs - 1 = b - fri (mod N), and we take the positive value, 678 * by adding an arbitrary multiple of N before taking the modulo N 679 * as shown below. 680 */ 681 a = control->ras_fri + control->ras_num_recs; 682 b = a + num - 1; 683 if (b < control->ras_max_record_count) { 684 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 685 } else if (a < control->ras_max_record_count) { 686 u32 g0, g1; 687 688 g0 = control->ras_max_record_count - a; 689 g1 = b % control->ras_max_record_count + 1; 690 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 691 if (res) 692 goto Out; 693 res = __amdgpu_ras_eeprom_write(control, 694 buf + g0 * RAS_TABLE_RECORD_SIZE, 695 0, g1); 696 if (res) 697 goto Out; 698 if (g1 > control->ras_fri) 699 control->ras_fri = g1 % control->ras_max_record_count; 700 } else { 701 a %= control->ras_max_record_count; 702 b %= control->ras_max_record_count; 703 704 if (a <= b) { 705 /* Note that, b - a + 1 = num. */ 706 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 707 if (res) 708 goto Out; 709 if (b >= control->ras_fri) 710 control->ras_fri = (b + 1) % control->ras_max_record_count; 711 } else { 712 u32 g0, g1; 713 714 /* b < a, which means, we write from 715 * a to the end of the table, and from 716 * the start of the table to b. 717 */ 718 g0 = control->ras_max_record_count - a; 719 g1 = b + 1; 720 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 721 if (res) 722 goto Out; 723 res = __amdgpu_ras_eeprom_write(control, 724 buf + g0 * RAS_TABLE_RECORD_SIZE, 725 0, g1); 726 if (res) 727 goto Out; 728 control->ras_fri = g1 % control->ras_max_record_count; 729 } 730 } 731 control->ras_num_recs = 1 + (control->ras_max_record_count + b 732 - control->ras_fri) 733 % control->ras_max_record_count; 734 735 /*old asics only save pa to eeprom like before*/ 736 if (IP_VERSION_MAJ(amdgpu_ip_version(adev, UMC_HWIP, 0)) < 12) 737 control->ras_num_pa_recs += num; 738 else 739 control->ras_num_mca_recs += num; 740 741 control->ras_num_bad_pages = control->ras_num_pa_recs + 742 control->ras_num_mca_recs * adev->umc.retire_unit; 743 Out: 744 kfree(buf); 745 return res; 746 } 747 748 static int 749 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) 750 { 751 struct amdgpu_device *adev = to_amdgpu_device(control); 752 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 753 u8 *buf, *pp, csum; 754 u32 buf_size; 755 int res; 756 757 /* Modify the header if it exceeds. 758 */ 759 if (amdgpu_bad_page_threshold != 0 && 760 control->ras_num_bad_pages > ras->bad_page_cnt_threshold) { 761 dev_warn(adev->dev, 762 "Saved bad pages %d reaches threshold value %d\n", 763 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 764 control->tbl_hdr.header = RAS_TABLE_HDR_BAD; 765 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) { 766 control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD; 767 control->tbl_rai.health_percent = 0; 768 } 769 770 if ((amdgpu_bad_page_threshold != -1) && 771 (amdgpu_bad_page_threshold != -2)) 772 ras->is_rma = true; 773 774 /* ignore the -ENOTSUPP return value */ 775 amdgpu_dpm_send_rma_reason(adev); 776 } 777 778 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 779 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + 780 RAS_TABLE_V2_1_INFO_SIZE + 781 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 782 else 783 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + 784 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 785 control->tbl_hdr.checksum = 0; 786 787 buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 788 buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 789 if (!buf) { 790 DRM_ERROR("allocating memory for table of size %d bytes failed\n", 791 control->tbl_hdr.tbl_size); 792 res = -ENOMEM; 793 goto Out; 794 } 795 796 down_read(&adev->reset_domain->sem); 797 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 798 control->i2c_address + 799 control->ras_record_offset, 800 buf, buf_size); 801 up_read(&adev->reset_domain->sem); 802 if (res < 0) { 803 DRM_ERROR("EEPROM failed reading records:%d\n", 804 res); 805 goto Out; 806 } else if (res < buf_size) { 807 DRM_ERROR("EEPROM read %d out of %d bytes\n", 808 res, buf_size); 809 res = -EIO; 810 goto Out; 811 } 812 813 /** 814 * bad page records have been stored in eeprom, 815 * now calculate gpu health percent 816 */ 817 if (amdgpu_bad_page_threshold != 0 && 818 control->tbl_hdr.version >= RAS_TABLE_VER_V2_1 && 819 control->ras_num_bad_pages <= ras->bad_page_cnt_threshold) 820 control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold - 821 control->ras_num_bad_pages) * 100) / 822 ras->bad_page_cnt_threshold; 823 824 /* Recalc the checksum. 825 */ 826 csum = 0; 827 for (pp = buf; pp < buf + buf_size; pp++) 828 csum += *pp; 829 830 csum += __calc_hdr_byte_sum(control); 831 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 832 csum += __calc_ras_info_byte_sum(control); 833 /* avoid sign extension when assigning to "checksum" */ 834 csum = -csum; 835 control->tbl_hdr.checksum = csum; 836 res = __write_table_header(control); 837 if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1) 838 res = __write_table_ras_info(control); 839 Out: 840 kfree(buf); 841 return res; 842 } 843 844 /** 845 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table 846 * @control: pointer to control structure 847 * @record: array of records to append 848 * @num: number of records in @record array 849 * 850 * Append @num records to the table, calculate the checksum and write 851 * the table back to EEPROM. The maximum number of records that 852 * can be appended is between 1 and control->ras_max_record_count, 853 * regardless of how many records are already stored in the table. 854 * 855 * Return 0 on success or if EEPROM is not supported, -errno on error. 856 */ 857 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, 858 struct eeprom_table_record *record, 859 const u32 num) 860 { 861 struct amdgpu_device *adev = to_amdgpu_device(control); 862 int res, i; 863 uint64_t nps = AMDGPU_NPS1_PARTITION_MODE; 864 865 if (!__is_ras_eeprom_supported(adev)) 866 return 0; 867 868 if (num == 0) { 869 DRM_ERROR("will not append 0 records\n"); 870 return -EINVAL; 871 } else if (num > control->ras_max_record_count) { 872 DRM_ERROR("cannot append %d records than the size of table %d\n", 873 num, control->ras_max_record_count); 874 return -EINVAL; 875 } 876 877 if (adev->gmc.gmc_funcs->query_mem_partition_mode) 878 nps = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 879 880 /* set the new channel index flag */ 881 for (i = 0; i < num; i++) 882 record[i].retired_page |= (nps << UMC_NPS_SHIFT); 883 884 mutex_lock(&control->ras_tbl_mutex); 885 886 res = amdgpu_ras_eeprom_append_table(control, record, num); 887 if (!res) 888 res = amdgpu_ras_eeprom_update_header(control); 889 if (!res) 890 amdgpu_ras_debugfs_set_ret_size(control); 891 892 mutex_unlock(&control->ras_tbl_mutex); 893 894 /* clear channel index flag, the flag is only saved on eeprom */ 895 for (i = 0; i < num; i++) 896 record[i].retired_page &= ~(nps << UMC_NPS_SHIFT); 897 898 return res; 899 } 900 901 /** 902 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer 903 * @control: pointer to control structure 904 * @buf: pointer to buffer to read into 905 * @fri: first record index, start reading at this index, absolute index 906 * @num: number of records to read 907 * 908 * The caller must hold the table mutex in @control. 909 * Return 0 on success, -errno otherwise. 910 */ 911 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 912 u8 *buf, const u32 fri, const u32 num) 913 { 914 struct amdgpu_device *adev = to_amdgpu_device(control); 915 u32 buf_size; 916 int res; 917 918 /* i2c may be unstable in gpu reset */ 919 down_read(&adev->reset_domain->sem); 920 buf_size = num * RAS_TABLE_RECORD_SIZE; 921 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 922 control->i2c_address + 923 RAS_INDEX_TO_OFFSET(control, fri), 924 buf, buf_size); 925 up_read(&adev->reset_domain->sem); 926 if (res < 0) { 927 DRM_ERROR("Reading %d EEPROM table records error:%d", 928 num, res); 929 } else if (res < buf_size) { 930 /* Short read, return error. 931 */ 932 DRM_ERROR("Read %d records out of %d", 933 res / RAS_TABLE_RECORD_SIZE, num); 934 res = -EIO; 935 } else { 936 res = 0; 937 } 938 939 return res; 940 } 941 942 /** 943 * amdgpu_ras_eeprom_read -- read EEPROM 944 * @control: pointer to control structure 945 * @record: array of records to read into 946 * @num: number of records in @record 947 * 948 * Reads num records from the RAS table in EEPROM and 949 * writes the data into @record array. 950 * 951 * Returns 0 on success, -errno on error. 952 */ 953 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 954 struct eeprom_table_record *record, 955 const u32 num) 956 { 957 struct amdgpu_device *adev = to_amdgpu_device(control); 958 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 959 int i, res; 960 u8 *buf, *pp; 961 u32 g0, g1; 962 963 if (!__is_ras_eeprom_supported(adev)) 964 return 0; 965 966 if (num == 0) { 967 DRM_ERROR("will not read 0 records\n"); 968 return -EINVAL; 969 } else if (num > control->ras_num_recs) { 970 DRM_ERROR("too many records to read:%d available:%d\n", 971 num, control->ras_num_recs); 972 return -EINVAL; 973 } 974 975 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 976 if (!buf) 977 return -ENOMEM; 978 979 /* Determine how many records to read, from the first record 980 * index, fri, to the end of the table, and from the beginning 981 * of the table, such that the total number of records is 982 * @num, and we handle wrap around when fri > 0 and 983 * fri + num > RAS_MAX_RECORD_COUNT. 984 * 985 * First we compute the index of the last element 986 * which would be fetched from each region, 987 * g0 is in [fri, fri + num - 1], and 988 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. 989 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of 990 * the last element to fetch, we set g0 to _the number_ 991 * of elements to fetch, @num, since we know that the last 992 * indexed to be fetched does not exceed the table. 993 * 994 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then 995 * we set g0 to the number of elements to read 996 * until the end of the table, and g1 to the number of 997 * elements to read from the beginning of the table. 998 */ 999 g0 = control->ras_fri + num - 1; 1000 g1 = g0 % control->ras_max_record_count; 1001 if (g0 < control->ras_max_record_count) { 1002 g0 = num; 1003 g1 = 0; 1004 } else { 1005 g0 = control->ras_max_record_count - control->ras_fri; 1006 g1 += 1; 1007 } 1008 1009 mutex_lock(&control->ras_tbl_mutex); 1010 res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); 1011 if (res) 1012 goto Out; 1013 if (g1) { 1014 res = __amdgpu_ras_eeprom_read(control, 1015 buf + g0 * RAS_TABLE_RECORD_SIZE, 1016 0, g1); 1017 if (res) 1018 goto Out; 1019 } 1020 1021 res = 0; 1022 1023 /* Read up everything? Then transform. 1024 */ 1025 pp = buf; 1026 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 1027 __decode_table_record_from_buf(control, &record[i], pp); 1028 1029 /* update bad channel bitmap */ 1030 if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && 1031 !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 1032 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 1033 con->update_channel_flag = true; 1034 } 1035 } 1036 Out: 1037 kfree(buf); 1038 mutex_unlock(&control->ras_tbl_mutex); 1039 1040 return res; 1041 } 1042 1043 uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control) 1044 { 1045 /* get available eeprom table version first before eeprom table init */ 1046 amdgpu_ras_set_eeprom_table_version(control); 1047 1048 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 1049 return RAS_MAX_RECORD_COUNT_V2_1; 1050 else 1051 return RAS_MAX_RECORD_COUNT; 1052 } 1053 1054 static ssize_t 1055 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, 1056 size_t size, loff_t *pos) 1057 { 1058 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1059 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1060 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 1061 u8 data[50]; 1062 int res; 1063 1064 if (!size) 1065 return size; 1066 1067 if (!ras || !control) { 1068 res = snprintf(data, sizeof(data), "Not supported\n"); 1069 } else { 1070 res = snprintf(data, sizeof(data), "%d bytes or %d records\n", 1071 RAS_TBL_SIZE_BYTES, control->ras_max_record_count); 1072 } 1073 1074 if (*pos >= res) 1075 return 0; 1076 1077 res -= *pos; 1078 res = min_t(size_t, res, size); 1079 1080 if (copy_to_user(buf, &data[*pos], res)) 1081 return -EFAULT; 1082 1083 *pos += res; 1084 1085 return res; 1086 } 1087 1088 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { 1089 .owner = THIS_MODULE, 1090 .read = amdgpu_ras_debugfs_eeprom_size_read, 1091 .write = NULL, 1092 .llseek = default_llseek, 1093 }; 1094 1095 static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; 1096 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; 1097 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) 1098 static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; 1099 static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; 1100 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) 1101 1102 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { 1103 "ignore", 1104 "re", 1105 "ue", 1106 }; 1107 1108 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) 1109 { 1110 return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + 1111 strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; 1112 } 1113 1114 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) 1115 { 1116 struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, 1117 eeprom_control); 1118 struct dentry *de = ras->de_ras_eeprom_table; 1119 1120 if (de) 1121 d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); 1122 } 1123 1124 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, 1125 size_t size, loff_t *pos) 1126 { 1127 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1128 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1129 struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; 1130 const size_t orig_size = size; 1131 int res = -EFAULT; 1132 size_t data_len; 1133 1134 mutex_lock(&control->ras_tbl_mutex); 1135 1136 /* We want *pos - data_len > 0, which means there's 1137 * bytes to be printed from data. 1138 */ 1139 data_len = strlen(tbl_hdr_str); 1140 if (*pos < data_len) { 1141 data_len -= *pos; 1142 data_len = min_t(size_t, data_len, size); 1143 if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) 1144 goto Out; 1145 buf += data_len; 1146 size -= data_len; 1147 *pos += data_len; 1148 } 1149 1150 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; 1151 if (*pos < data_len && size > 0) { 1152 u8 data[tbl_hdr_fmt_size + 1]; 1153 loff_t lpos; 1154 1155 snprintf(data, sizeof(data), tbl_hdr_fmt, 1156 control->tbl_hdr.header, 1157 control->tbl_hdr.version, 1158 control->tbl_hdr.first_rec_offset, 1159 control->tbl_hdr.tbl_size, 1160 control->tbl_hdr.checksum); 1161 1162 data_len -= *pos; 1163 data_len = min_t(size_t, data_len, size); 1164 lpos = *pos - strlen(tbl_hdr_str); 1165 if (copy_to_user(buf, &data[lpos], data_len)) 1166 goto Out; 1167 buf += data_len; 1168 size -= data_len; 1169 *pos += data_len; 1170 } 1171 1172 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); 1173 if (*pos < data_len && size > 0) { 1174 loff_t lpos; 1175 1176 data_len -= *pos; 1177 data_len = min_t(size_t, data_len, size); 1178 lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; 1179 if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) 1180 goto Out; 1181 buf += data_len; 1182 size -= data_len; 1183 *pos += data_len; 1184 } 1185 1186 data_len = amdgpu_ras_debugfs_table_size(control); 1187 if (*pos < data_len && size > 0) { 1188 u8 dare[RAS_TABLE_RECORD_SIZE]; 1189 u8 data[rec_hdr_fmt_size + 1]; 1190 struct eeprom_table_record record; 1191 int s, r; 1192 1193 /* Find the starting record index 1194 */ 1195 s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 1196 strlen(rec_hdr_str); 1197 s = s / rec_hdr_fmt_size; 1198 r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 1199 strlen(rec_hdr_str); 1200 r = r % rec_hdr_fmt_size; 1201 1202 for ( ; size > 0 && s < control->ras_num_recs; s++) { 1203 u32 ai = RAS_RI_TO_AI(control, s); 1204 /* Read a single record 1205 */ 1206 res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); 1207 if (res) 1208 goto Out; 1209 __decode_table_record_from_buf(control, &record, dare); 1210 snprintf(data, sizeof(data), rec_hdr_fmt, 1211 s, 1212 RAS_INDEX_TO_OFFSET(control, ai), 1213 record_err_type_str[record.err_type], 1214 record.bank, 1215 record.ts, 1216 record.offset, 1217 record.mem_channel, 1218 record.mcumc_id, 1219 record.retired_page); 1220 1221 data_len = min_t(size_t, rec_hdr_fmt_size - r, size); 1222 if (copy_to_user(buf, &data[r], data_len)) { 1223 res = -EFAULT; 1224 goto Out; 1225 } 1226 buf += data_len; 1227 size -= data_len; 1228 *pos += data_len; 1229 r = 0; 1230 } 1231 } 1232 res = 0; 1233 Out: 1234 mutex_unlock(&control->ras_tbl_mutex); 1235 return res < 0 ? res : orig_size - size; 1236 } 1237 1238 static ssize_t 1239 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, 1240 size_t size, loff_t *pos) 1241 { 1242 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1243 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1244 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 1245 u8 data[81]; 1246 int res; 1247 1248 if (!size) 1249 return size; 1250 1251 if (!ras || !control) { 1252 res = snprintf(data, sizeof(data), "Not supported\n"); 1253 if (*pos >= res) 1254 return 0; 1255 1256 res -= *pos; 1257 res = min_t(size_t, res, size); 1258 1259 if (copy_to_user(buf, &data[*pos], res)) 1260 return -EFAULT; 1261 1262 *pos += res; 1263 1264 return res; 1265 } else { 1266 return amdgpu_ras_debugfs_table_read(f, buf, size, pos); 1267 } 1268 } 1269 1270 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { 1271 .owner = THIS_MODULE, 1272 .read = amdgpu_ras_debugfs_eeprom_table_read, 1273 .write = NULL, 1274 .llseek = default_llseek, 1275 }; 1276 1277 /** 1278 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum 1279 * @control: pointer to control structure 1280 * 1281 * Check the checksum of the stored in EEPROM RAS table. 1282 * 1283 * Return 0 if the checksum is correct, 1284 * positive if it is not correct, and 1285 * -errno on I/O error. 1286 */ 1287 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) 1288 { 1289 struct amdgpu_device *adev = to_amdgpu_device(control); 1290 int buf_size, res; 1291 u8 csum, *buf, *pp; 1292 1293 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 1294 buf_size = RAS_TABLE_HEADER_SIZE + 1295 RAS_TABLE_V2_1_INFO_SIZE + 1296 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1297 else 1298 buf_size = RAS_TABLE_HEADER_SIZE + 1299 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1300 1301 buf = kzalloc(buf_size, GFP_KERNEL); 1302 if (!buf) { 1303 DRM_ERROR("Out of memory checking RAS table checksum.\n"); 1304 return -ENOMEM; 1305 } 1306 1307 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1308 control->i2c_address + 1309 control->ras_header_offset, 1310 buf, buf_size); 1311 if (res < buf_size) { 1312 DRM_ERROR("Partial read for checksum, res:%d\n", res); 1313 /* On partial reads, return -EIO. 1314 */ 1315 if (res >= 0) 1316 res = -EIO; 1317 goto Out; 1318 } 1319 1320 csum = 0; 1321 for (pp = buf; pp < buf + buf_size; pp++) 1322 csum += *pp; 1323 Out: 1324 kfree(buf); 1325 return res < 0 ? res : csum; 1326 } 1327 1328 static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control) 1329 { 1330 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; 1331 struct amdgpu_device *adev = to_amdgpu_device(control); 1332 unsigned char *buf; 1333 int res; 1334 1335 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); 1336 if (!buf) { 1337 DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n"); 1338 return -ENOMEM; 1339 } 1340 1341 /** 1342 * EEPROM table V2_1 supports ras info, 1343 * read EEPROM table ras info 1344 */ 1345 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1346 control->i2c_address + control->ras_info_offset, 1347 buf, RAS_TABLE_V2_1_INFO_SIZE); 1348 if (res < RAS_TABLE_V2_1_INFO_SIZE) { 1349 DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res); 1350 res = res >= 0 ? -EIO : res; 1351 goto Out; 1352 } 1353 1354 __decode_table_ras_info_from_buf(rai, buf); 1355 1356 Out: 1357 kfree(buf); 1358 return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res; 1359 } 1360 1361 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control) 1362 { 1363 struct amdgpu_device *adev = to_amdgpu_device(control); 1364 unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; 1365 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1366 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1367 int res; 1368 1369 ras->is_rma = false; 1370 1371 if (!__is_ras_eeprom_supported(adev)) 1372 return 0; 1373 1374 /* Verify i2c adapter is initialized */ 1375 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1376 return -ENOENT; 1377 1378 if (!__get_eeprom_i2c_addr(adev, control)) 1379 return -EINVAL; 1380 1381 control->ras_header_offset = RAS_HDR_START; 1382 control->ras_info_offset = RAS_TABLE_V2_1_INFO_START; 1383 mutex_init(&control->ras_tbl_mutex); 1384 1385 /* Read the table header from EEPROM address */ 1386 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1387 control->i2c_address + control->ras_header_offset, 1388 buf, RAS_TABLE_HEADER_SIZE); 1389 if (res < RAS_TABLE_HEADER_SIZE) { 1390 DRM_ERROR("Failed to read EEPROM table header, res:%d", res); 1391 return res >= 0 ? -EIO : res; 1392 } 1393 1394 __decode_table_header_from_buf(hdr, buf); 1395 1396 if (hdr->header != RAS_TABLE_HDR_VAL && 1397 hdr->header != RAS_TABLE_HDR_BAD) { 1398 dev_info(adev->dev, "Creating a new EEPROM table"); 1399 return amdgpu_ras_eeprom_reset_table(control); 1400 } 1401 1402 switch (hdr->version) { 1403 case RAS_TABLE_VER_V2_1: 1404 case RAS_TABLE_VER_V3: 1405 control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr); 1406 control->ras_record_offset = RAS_RECORD_START_V2_1; 1407 control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1; 1408 break; 1409 case RAS_TABLE_VER_V1: 1410 control->ras_num_recs = RAS_NUM_RECS(hdr); 1411 control->ras_record_offset = RAS_RECORD_START; 1412 control->ras_max_record_count = RAS_MAX_RECORD_COUNT; 1413 break; 1414 default: 1415 dev_err(adev->dev, 1416 "RAS header invalid, unsupported version: %u", 1417 hdr->version); 1418 return -EINVAL; 1419 } 1420 1421 if (control->ras_num_recs > control->ras_max_record_count) { 1422 dev_err(adev->dev, 1423 "RAS header invalid, records in header: %u max allowed :%u", 1424 control->ras_num_recs, control->ras_max_record_count); 1425 return -EINVAL; 1426 } 1427 1428 control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); 1429 control->ras_num_mca_recs = 0; 1430 control->ras_num_pa_recs = 0; 1431 return 0; 1432 } 1433 1434 int amdgpu_ras_eeprom_check(struct amdgpu_ras_eeprom_control *control) 1435 { 1436 struct amdgpu_device *adev = to_amdgpu_device(control); 1437 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1438 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1439 int res = 0; 1440 1441 if (!__is_ras_eeprom_supported(adev)) 1442 return 0; 1443 1444 /* Verify i2c adapter is initialized */ 1445 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1446 return -ENOENT; 1447 1448 if (!__get_eeprom_i2c_addr(adev, control)) 1449 return -EINVAL; 1450 1451 control->ras_num_bad_pages = control->ras_num_pa_recs + 1452 control->ras_num_mca_recs * adev->umc.retire_unit; 1453 1454 if (hdr->header == RAS_TABLE_HDR_VAL) { 1455 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", 1456 control->ras_num_bad_pages); 1457 1458 if (hdr->version >= RAS_TABLE_VER_V2_1) { 1459 res = __read_table_ras_info(control); 1460 if (res) 1461 return res; 1462 } 1463 1464 res = __verify_ras_table_checksum(control); 1465 if (res) 1466 dev_err(adev->dev, 1467 "RAS table incorrect checksum or error:%d\n", 1468 res); 1469 1470 /* Warn if we are at 90% of the threshold or above 1471 */ 1472 if (10 * control->ras_num_bad_pages >= 9 * ras->bad_page_cnt_threshold) 1473 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", 1474 control->ras_num_bad_pages, 1475 ras->bad_page_cnt_threshold); 1476 } else if (hdr->header == RAS_TABLE_HDR_BAD && 1477 amdgpu_bad_page_threshold != 0) { 1478 if (hdr->version >= RAS_TABLE_VER_V2_1) { 1479 res = __read_table_ras_info(control); 1480 if (res) 1481 return res; 1482 } 1483 1484 res = __verify_ras_table_checksum(control); 1485 if (res) { 1486 dev_err(adev->dev, 1487 "RAS Table incorrect checksum or error:%d\n", 1488 res); 1489 return -EINVAL; 1490 } 1491 if (ras->bad_page_cnt_threshold >= control->ras_num_bad_pages) { 1492 /* This means that, the threshold was increased since 1493 * the last time the system was booted, and now, 1494 * ras->bad_page_cnt_threshold - control->num_recs > 0, 1495 * so that at least one more record can be saved, 1496 * before the page count threshold is reached. 1497 */ 1498 dev_info(adev->dev, 1499 "records:%d threshold:%d, resetting " 1500 "RAS table header signature", 1501 control->ras_num_bad_pages, 1502 ras->bad_page_cnt_threshold); 1503 res = amdgpu_ras_eeprom_correct_header_tag(control, 1504 RAS_TABLE_HDR_VAL); 1505 } else { 1506 dev_warn(adev->dev, 1507 "RAS records:%d exceed threshold:%d\n", 1508 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 1509 if ((amdgpu_bad_page_threshold == -1) || 1510 (amdgpu_bad_page_threshold == -2)) { 1511 res = 0; 1512 dev_warn(adev->dev, 1513 "Please consult AMD Service Action Guide (SAG) for appropriate service procedures\n"); 1514 } else { 1515 ras->is_rma = true; 1516 dev_warn(adev->dev, 1517 "User defined threshold is set, runtime service will be halt when threshold is reached\n"); 1518 } 1519 } 1520 } 1521 1522 return res < 0 ? res : 0; 1523 } 1524