1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include "amdgpu_ras_eeprom.h" 25 #include "amdgpu.h" 26 #include "amdgpu_ras.h" 27 #include <linux/bits.h> 28 #include "atom.h" 29 #include "amdgpu_eeprom.h" 30 #include "amdgpu_atomfirmware.h" 31 #include <linux/debugfs.h> 32 #include <linux/uaccess.h> 33 34 #include "amdgpu_reset.h" 35 #include "amdgpu_ras_mgr.h" 36 37 /* These are memory addresses as would be seen by one or more EEPROM 38 * chips strung on the I2C bus, usually by manipulating pins 1-3 of a 39 * set of EEPROM devices. They form a continuous memory space. 40 * 41 * The I2C device address includes the device type identifier, 1010b, 42 * which is a reserved value and indicates that this is an I2C EEPROM 43 * device. It also includes the top 3 bits of the 19 bit EEPROM memory 44 * address, namely bits 18, 17, and 16. This makes up the 7 bit 45 * address sent on the I2C bus with bit 0 being the direction bit, 46 * which is not represented here, and sent by the hardware directly. 47 * 48 * For instance, 49 * 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0. 50 * 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h. 51 * 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h. 52 * Depending on the size of the I2C EEPROM device(s), bits 18:16 may 53 * address memory in a device or a device on the I2C bus, depending on 54 * the status of pins 1-3. See top of amdgpu_eeprom.c. 55 * 56 * The RAS table lives either at address 0 or address 40000h of EEPROM. 57 */ 58 #define EEPROM_I2C_MADDR_0 0x0 59 #define EEPROM_I2C_MADDR_4 0x40000 60 61 /* 62 * The 2 macros below represent the actual size in bytes that 63 * those entities occupy in the EEPROM memory. 64 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which 65 * uses uint64 to store 6b fields such as retired_page. 66 */ 67 #define RAS_TABLE_HEADER_SIZE 20 68 #define RAS_TABLE_RECORD_SIZE 24 69 70 /* Table hdr is 'AMDR' */ 71 #define RAS_TABLE_HDR_VAL 0x414d4452 72 73 /* Bad GPU tag ‘BADG’ */ 74 #define RAS_TABLE_HDR_BAD 0x42414447 75 76 /* 77 * EEPROM Table structure v1 78 * --------------------------------- 79 * | | 80 * | EEPROM TABLE HEADER | 81 * | ( size 20 Bytes ) | 82 * | | 83 * --------------------------------- 84 * | | 85 * | BAD PAGE RECORD AREA | 86 * | | 87 * --------------------------------- 88 */ 89 90 /* Assume 2-Mbit size EEPROM and take up the whole space. */ 91 #define RAS_TBL_SIZE_BYTES (256 * 1024) 92 #define RAS_TABLE_START 0 93 #define RAS_HDR_START RAS_TABLE_START 94 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) 95 #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ 96 / RAS_TABLE_RECORD_SIZE) 97 98 /* 99 * EEPROM Table structrue v2.1 100 * --------------------------------- 101 * | | 102 * | EEPROM TABLE HEADER | 103 * | ( size 20 Bytes ) | 104 * | | 105 * --------------------------------- 106 * | | 107 * | EEPROM TABLE RAS INFO | 108 * | (available info size 4 Bytes) | 109 * | ( reserved size 252 Bytes ) | 110 * | | 111 * --------------------------------- 112 * | | 113 * | BAD PAGE RECORD AREA | 114 * | | 115 * --------------------------------- 116 */ 117 118 /* EEPROM Table V2_1 */ 119 #define RAS_TABLE_V2_1_INFO_SIZE 256 120 #define RAS_TABLE_V2_1_INFO_START RAS_TABLE_HEADER_SIZE 121 #define RAS_RECORD_START_V2_1 (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \ 122 RAS_TABLE_V2_1_INFO_SIZE) 123 #define RAS_MAX_RECORD_COUNT_V2_1 ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \ 124 RAS_TABLE_V2_1_INFO_SIZE) \ 125 / RAS_TABLE_RECORD_SIZE) 126 127 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM 128 * offset off of RAS_TABLE_START. That is, this is something you can 129 * add to control->i2c_address, and then tell I2C layer to read 130 * from/write to there. _N is the so called absolute index, 131 * because it starts right after the table header. 132 */ 133 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ 134 (_N) * RAS_TABLE_RECORD_SIZE) 135 136 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ 137 (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) 138 139 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off 140 * of "fri", return the absolute record index off of the end of 141 * the table header. 142 */ 143 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ 144 (_C)->ras_max_record_count) 145 146 #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 147 RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) 148 149 #define RAS_NUM_RECS_V2_1(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 150 RAS_TABLE_HEADER_SIZE - \ 151 RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE) 152 153 #define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev) 154 155 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) 156 { 157 switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { 158 case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */ 159 case IP_VERSION(11, 0, 7): /* Sienna cichlid */ 160 case IP_VERSION(13, 0, 0): 161 case IP_VERSION(13, 0, 2): /* Aldebaran */ 162 case IP_VERSION(13, 0, 10): 163 return true; 164 case IP_VERSION(13, 0, 6): 165 case IP_VERSION(13, 0, 12): 166 case IP_VERSION(13, 0, 14): 167 return (adev->gmc.is_app_apu) ? false : true; 168 default: 169 return false; 170 } 171 } 172 173 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, 174 struct amdgpu_ras_eeprom_control *control) 175 { 176 struct atom_context *atom_ctx = adev->mode_info.atom_context; 177 u8 i2c_addr; 178 179 if (!control) 180 return false; 181 182 if (adev->bios && amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { 183 /* The address given by VBIOS is an 8-bit, wire-format 184 * address, i.e. the most significant byte. 185 * 186 * Normalize it to a 19-bit EEPROM address. Remove the 187 * device type identifier and make it a 7-bit address; 188 * then make it a 19-bit EEPROM address. See top of 189 * amdgpu_eeprom.c. 190 */ 191 i2c_addr = (i2c_addr & 0x0F) >> 1; 192 control->i2c_address = ((u32) i2c_addr) << 16; 193 194 return true; 195 } 196 197 switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { 198 case IP_VERSION(11, 0, 2): 199 /* VEGA20 and ARCTURUS */ 200 if (adev->asic_type == CHIP_VEGA20) 201 control->i2c_address = EEPROM_I2C_MADDR_0; 202 else if (strnstr(atom_ctx->vbios_pn, 203 "D342", 204 sizeof(atom_ctx->vbios_pn))) 205 control->i2c_address = EEPROM_I2C_MADDR_0; 206 else 207 control->i2c_address = EEPROM_I2C_MADDR_4; 208 return true; 209 case IP_VERSION(11, 0, 7): 210 control->i2c_address = EEPROM_I2C_MADDR_0; 211 return true; 212 case IP_VERSION(13, 0, 2): 213 if (strnstr(atom_ctx->vbios_pn, "D673", 214 sizeof(atom_ctx->vbios_pn))) 215 control->i2c_address = EEPROM_I2C_MADDR_4; 216 else 217 control->i2c_address = EEPROM_I2C_MADDR_0; 218 return true; 219 case IP_VERSION(13, 0, 0): 220 if (strnstr(atom_ctx->vbios_pn, "D707", 221 sizeof(atom_ctx->vbios_pn))) 222 control->i2c_address = EEPROM_I2C_MADDR_0; 223 else 224 control->i2c_address = EEPROM_I2C_MADDR_4; 225 return true; 226 case IP_VERSION(13, 0, 6): 227 case IP_VERSION(13, 0, 10): 228 case IP_VERSION(13, 0, 12): 229 case IP_VERSION(13, 0, 14): 230 control->i2c_address = EEPROM_I2C_MADDR_4; 231 return true; 232 default: 233 return false; 234 } 235 } 236 237 static void 238 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, 239 unsigned char *buf) 240 { 241 u32 *pp = (uint32_t *)buf; 242 243 pp[0] = cpu_to_le32(hdr->header); 244 pp[1] = cpu_to_le32(hdr->version); 245 pp[2] = cpu_to_le32(hdr->first_rec_offset); 246 pp[3] = cpu_to_le32(hdr->tbl_size); 247 pp[4] = cpu_to_le32(hdr->checksum); 248 } 249 250 static void 251 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, 252 unsigned char *buf) 253 { 254 u32 *pp = (uint32_t *)buf; 255 256 hdr->header = le32_to_cpu(pp[0]); 257 hdr->version = le32_to_cpu(pp[1]); 258 hdr->first_rec_offset = le32_to_cpu(pp[2]); 259 hdr->tbl_size = le32_to_cpu(pp[3]); 260 hdr->checksum = le32_to_cpu(pp[4]); 261 } 262 263 static int __write_table_header(struct amdgpu_ras_eeprom_control *control) 264 { 265 u8 buf[RAS_TABLE_HEADER_SIZE]; 266 struct amdgpu_device *adev = to_amdgpu_device(control); 267 int res; 268 269 memset(buf, 0, sizeof(buf)); 270 __encode_table_header_to_buf(&control->tbl_hdr, buf); 271 272 /* i2c may be unstable in gpu reset */ 273 down_read(&adev->reset_domain->sem); 274 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 275 control->i2c_address + 276 control->ras_header_offset, 277 buf, RAS_TABLE_HEADER_SIZE); 278 up_read(&adev->reset_domain->sem); 279 280 if (res < 0) { 281 dev_err(adev->dev, "Failed to write EEPROM table header:%d", 282 res); 283 } else if (res < RAS_TABLE_HEADER_SIZE) { 284 dev_err(adev->dev, "Short write:%d out of %d\n", res, 285 RAS_TABLE_HEADER_SIZE); 286 res = -EIO; 287 } else { 288 res = 0; 289 } 290 291 return res; 292 } 293 294 static void 295 __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, 296 unsigned char *buf) 297 { 298 u32 *pp = (uint32_t *)buf; 299 u32 tmp; 300 301 tmp = ((uint32_t)(rai->rma_status) & 0xFF) | 302 (((uint32_t)(rai->health_percent) << 8) & 0xFF00) | 303 (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000); 304 pp[0] = cpu_to_le32(tmp); 305 } 306 307 static void 308 __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, 309 unsigned char *buf) 310 { 311 u32 *pp = (uint32_t *)buf; 312 u32 tmp; 313 314 tmp = le32_to_cpu(pp[0]); 315 rai->rma_status = tmp & 0xFF; 316 rai->health_percent = (tmp >> 8) & 0xFF; 317 rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF; 318 } 319 320 static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control) 321 { 322 struct amdgpu_device *adev = to_amdgpu_device(control); 323 u8 *buf; 324 int res; 325 326 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); 327 if (!buf) { 328 dev_err(adev->dev, 329 "Failed to alloc buf to write table ras info\n"); 330 return -ENOMEM; 331 } 332 333 __encode_table_ras_info_to_buf(&control->tbl_rai, buf); 334 335 /* i2c may be unstable in gpu reset */ 336 down_read(&adev->reset_domain->sem); 337 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 338 control->i2c_address + 339 control->ras_info_offset, 340 buf, RAS_TABLE_V2_1_INFO_SIZE); 341 up_read(&adev->reset_domain->sem); 342 343 if (res < 0) { 344 dev_err(adev->dev, "Failed to write EEPROM table ras info:%d", 345 res); 346 } else if (res < RAS_TABLE_V2_1_INFO_SIZE) { 347 dev_err(adev->dev, "Short write:%d out of %d\n", res, 348 RAS_TABLE_V2_1_INFO_SIZE); 349 res = -EIO; 350 } else { 351 res = 0; 352 } 353 354 kfree(buf); 355 356 return res; 357 } 358 359 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) 360 { 361 int ii; 362 u8 *pp, csum; 363 size_t sz; 364 365 /* Header checksum, skip checksum field in the calculation */ 366 sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); 367 pp = (u8 *) &control->tbl_hdr; 368 csum = 0; 369 for (ii = 0; ii < sz; ii++, pp++) 370 csum += *pp; 371 372 return csum; 373 } 374 375 static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control) 376 { 377 int ii; 378 u8 *pp, csum; 379 size_t sz; 380 381 sz = sizeof(control->tbl_rai); 382 pp = (u8 *) &control->tbl_rai; 383 csum = 0; 384 for (ii = 0; ii < sz; ii++, pp++) 385 csum += *pp; 386 387 return csum; 388 } 389 390 static int amdgpu_ras_eeprom_correct_header_tag( 391 struct amdgpu_ras_eeprom_control *control, 392 uint32_t header) 393 { 394 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 395 u8 *hh; 396 int res; 397 u8 csum; 398 399 csum = -hdr->checksum; 400 401 hh = (void *) &hdr->header; 402 csum -= (hh[0] + hh[1] + hh[2] + hh[3]); 403 hh = (void *) &header; 404 csum += hh[0] + hh[1] + hh[2] + hh[3]; 405 csum = -csum; 406 mutex_lock(&control->ras_tbl_mutex); 407 hdr->header = header; 408 hdr->checksum = csum; 409 res = __write_table_header(control); 410 mutex_unlock(&control->ras_tbl_mutex); 411 412 return res; 413 } 414 415 static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control) 416 { 417 struct amdgpu_device *adev = to_amdgpu_device(control); 418 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 419 420 switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) { 421 case IP_VERSION(8, 10, 0): 422 hdr->version = RAS_TABLE_VER_V2_1; 423 return; 424 case IP_VERSION(12, 0, 0): 425 case IP_VERSION(12, 5, 0): 426 hdr->version = RAS_TABLE_VER_V3; 427 return; 428 default: 429 hdr->version = RAS_TABLE_VER_V1; 430 return; 431 } 432 } 433 434 /** 435 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table 436 * @control: pointer to control structure 437 * 438 * Reset the contents of the header of the RAS EEPROM table. 439 * Return 0 on success, -errno on error. 440 */ 441 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) 442 { 443 struct amdgpu_device *adev = to_amdgpu_device(control); 444 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 445 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; 446 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 447 u32 erase_res = 0; 448 u8 csum; 449 int res; 450 451 mutex_lock(&control->ras_tbl_mutex); 452 453 if (!amdgpu_ras_smu_eeprom_supported(adev)) { 454 hdr->header = RAS_TABLE_HDR_VAL; 455 amdgpu_ras_set_eeprom_table_version(control); 456 457 if (hdr->version >= RAS_TABLE_VER_V2_1) { 458 hdr->first_rec_offset = RAS_RECORD_START_V2_1; 459 hdr->tbl_size = RAS_TABLE_HEADER_SIZE + 460 RAS_TABLE_V2_1_INFO_SIZE; 461 rai->rma_status = GPU_HEALTH_USABLE; 462 463 control->ras_record_offset = RAS_RECORD_START_V2_1; 464 control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1; 465 /** 466 * GPU health represented as a percentage. 467 * 0 means worst health, 100 means fully health. 468 */ 469 rai->health_percent = 100; 470 /* ecc_page_threshold = 0 means disable bad page retirement */ 471 rai->ecc_page_threshold = con->bad_page_cnt_threshold; 472 } else { 473 hdr->first_rec_offset = RAS_RECORD_START; 474 hdr->tbl_size = RAS_TABLE_HEADER_SIZE; 475 476 control->ras_record_offset = RAS_RECORD_START; 477 control->ras_max_record_count = RAS_MAX_RECORD_COUNT; 478 } 479 480 csum = __calc_hdr_byte_sum(control); 481 if (hdr->version >= RAS_TABLE_VER_V2_1) 482 csum += __calc_ras_info_byte_sum(control); 483 csum = -csum; 484 hdr->checksum = csum; 485 res = __write_table_header(control); 486 if (!res && hdr->version > RAS_TABLE_VER_V1) 487 res = __write_table_ras_info(control); 488 } else { 489 res = amdgpu_ras_smu_erase_ras_table(adev, &erase_res); 490 if (res || erase_res) { 491 dev_warn(adev->dev, "RAS EEPROM reset failed, res:%d result:%d", 492 res, erase_res); 493 if (!res) 494 res = -EIO; 495 } 496 } 497 498 control->ras_num_recs = 0; 499 control->ras_num_bad_pages = 0; 500 control->ras_num_mca_recs = 0; 501 control->ras_num_pa_recs = 0; 502 control->ras_fri = 0; 503 504 amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_bad_pages); 505 506 control->bad_channel_bitmap = 0; 507 amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap); 508 con->update_channel_flag = false; 509 510 amdgpu_ras_debugfs_set_ret_size(control); 511 512 mutex_unlock(&control->ras_tbl_mutex); 513 514 return res; 515 } 516 517 static void 518 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, 519 struct eeprom_table_record *record, 520 unsigned char *buf) 521 { 522 __le64 tmp = 0; 523 int i = 0; 524 525 /* Next are all record fields according to EEPROM page spec in LE foramt */ 526 buf[i++] = record->err_type; 527 528 buf[i++] = record->bank; 529 530 tmp = cpu_to_le64(record->ts); 531 memcpy(buf + i, &tmp, 8); 532 i += 8; 533 534 tmp = cpu_to_le64((record->offset & 0xffffffffffff)); 535 memcpy(buf + i, &tmp, 6); 536 i += 6; 537 538 buf[i++] = record->mem_channel; 539 buf[i++] = record->mcumc_id; 540 541 tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); 542 memcpy(buf + i, &tmp, 6); 543 } 544 545 static void 546 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, 547 struct eeprom_table_record *record, 548 unsigned char *buf) 549 { 550 __le64 tmp = 0; 551 int i = 0; 552 553 /* Next are all record fields according to EEPROM page spec in LE foramt */ 554 record->err_type = buf[i++]; 555 556 record->bank = buf[i++]; 557 558 memcpy(&tmp, buf + i, 8); 559 record->ts = le64_to_cpu(tmp); 560 i += 8; 561 562 memcpy(&tmp, buf + i, 6); 563 record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); 564 i += 6; 565 566 record->mem_channel = buf[i++]; 567 record->mcumc_id = buf[i++]; 568 569 memcpy(&tmp, buf + i, 6); 570 record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); 571 } 572 573 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) 574 { 575 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 576 577 if (amdgpu_uniras_enabled(adev)) 578 return amdgpu_ras_mgr_check_eeprom_safety_watermark(adev); 579 580 if (!__is_ras_eeprom_supported(adev) || 581 !amdgpu_bad_page_threshold) 582 return false; 583 584 /* skip check eeprom table for VEGA20 Gaming */ 585 if (!con) 586 return false; 587 else 588 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) 589 return false; 590 591 if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { 592 if (con->eeprom_control.ras_num_bad_pages > con->bad_page_cnt_threshold) 593 dev_warn(adev->dev, "RAS records:%d exceed threshold:%d", 594 con->eeprom_control.ras_num_bad_pages, con->bad_page_cnt_threshold); 595 if ((amdgpu_bad_page_threshold == -1) || 596 (amdgpu_bad_page_threshold == -2)) { 597 dev_warn(adev->dev, 598 "Please consult AMD Service Action Guide (SAG) for appropriate service procedures.\n"); 599 return false; 600 } else { 601 dev_warn(adev->dev, 602 "Please consider adjusting the customized threshold.\n"); 603 return true; 604 } 605 } 606 607 return false; 608 } 609 610 /** 611 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM 612 * @control: pointer to control structure 613 * @buf: pointer to buffer containing data to write 614 * @fri: start writing at this index 615 * @num: number of records to write 616 * 617 * The caller must hold the table mutex in @control. 618 * Return 0 on success, -errno otherwise. 619 */ 620 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, 621 u8 *buf, const u32 fri, const u32 num) 622 { 623 struct amdgpu_device *adev = to_amdgpu_device(control); 624 u32 buf_size; 625 int res; 626 627 /* i2c may be unstable in gpu reset */ 628 down_read(&adev->reset_domain->sem); 629 buf_size = num * RAS_TABLE_RECORD_SIZE; 630 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 631 control->i2c_address + 632 RAS_INDEX_TO_OFFSET(control, fri), 633 buf, buf_size); 634 up_read(&adev->reset_domain->sem); 635 if (res < 0) { 636 dev_err(adev->dev, "Writing %d EEPROM table records error:%d", 637 num, res); 638 } else if (res < buf_size) { 639 /* Short write, return error. 640 */ 641 dev_err(adev->dev, "Wrote %d records out of %d", 642 res / RAS_TABLE_RECORD_SIZE, num); 643 res = -EIO; 644 } else { 645 res = 0; 646 } 647 648 return res; 649 } 650 651 static int 652 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, 653 struct eeprom_table_record *record, 654 const u32 num) 655 { 656 struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control)); 657 struct amdgpu_device *adev = to_amdgpu_device(control); 658 u32 a, b, i; 659 u8 *buf, *pp; 660 int res; 661 662 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 663 if (!buf) 664 return -ENOMEM; 665 666 /* Encode all of them in one go. 667 */ 668 pp = buf; 669 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 670 __encode_table_record_to_buf(control, &record[i], pp); 671 672 /* update bad channel bitmap */ 673 if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && 674 !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 675 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 676 con->update_channel_flag = true; 677 } 678 } 679 680 /* a, first record index to write into. 681 * b, last record index to write into. 682 * a = first index to read (fri) + number of records in the table, 683 * b = a + @num - 1. 684 * Let N = control->ras_max_num_record_count, then we have, 685 * case 0: 0 <= a <= b < N, 686 * just append @num records starting at a; 687 * case 1: 0 <= a < N <= b, 688 * append (N - a) records starting at a, and 689 * append the remainder, b % N + 1, starting at 0. 690 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, 691 * case 2a: 0 <= a <= b < N 692 * append num records starting at a; and fix fri if b overwrote it, 693 * and since a <= b, if b overwrote it then a must've also, 694 * and if b didn't overwrite it, then a didn't also. 695 * case 2b: 0 <= b < a < N 696 * write num records starting at a, which wraps around 0=N 697 * and overwrite fri unconditionally. Now from case 2a, 698 * this means that b eclipsed fri to overwrite it and wrap 699 * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally 700 * set fri = b + 1 (mod N). 701 * Now, since fri is updated in every case, except the trivial case 0, 702 * the number of records present in the table after writing, is, 703 * num_recs - 1 = b - fri (mod N), and we take the positive value, 704 * by adding an arbitrary multiple of N before taking the modulo N 705 * as shown below. 706 */ 707 a = control->ras_fri + control->ras_num_recs; 708 b = a + num - 1; 709 if (b < control->ras_max_record_count) { 710 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 711 } else if (a < control->ras_max_record_count) { 712 u32 g0, g1; 713 714 g0 = control->ras_max_record_count - a; 715 g1 = b % control->ras_max_record_count + 1; 716 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 717 if (res) 718 goto Out; 719 res = __amdgpu_ras_eeprom_write(control, 720 buf + g0 * RAS_TABLE_RECORD_SIZE, 721 0, g1); 722 if (res) 723 goto Out; 724 if (g1 > control->ras_fri) 725 control->ras_fri = g1 % control->ras_max_record_count; 726 } else { 727 a %= control->ras_max_record_count; 728 b %= control->ras_max_record_count; 729 730 if (a <= b) { 731 /* Note that, b - a + 1 = num. */ 732 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 733 if (res) 734 goto Out; 735 if (b >= control->ras_fri) 736 control->ras_fri = (b + 1) % control->ras_max_record_count; 737 } else { 738 u32 g0, g1; 739 740 /* b < a, which means, we write from 741 * a to the end of the table, and from 742 * the start of the table to b. 743 */ 744 g0 = control->ras_max_record_count - a; 745 g1 = b + 1; 746 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 747 if (res) 748 goto Out; 749 res = __amdgpu_ras_eeprom_write(control, 750 buf + g0 * RAS_TABLE_RECORD_SIZE, 751 0, g1); 752 if (res) 753 goto Out; 754 control->ras_fri = g1 % control->ras_max_record_count; 755 } 756 } 757 control->ras_num_recs = 1 + (control->ras_max_record_count + b 758 - control->ras_fri) 759 % control->ras_max_record_count; 760 761 /*old asics only save pa to eeprom like before*/ 762 if (IP_VERSION_MAJ(amdgpu_ip_version(adev, UMC_HWIP, 0)) < 12) 763 control->ras_num_pa_recs += num; 764 else 765 control->ras_num_mca_recs += num; 766 767 control->ras_num_bad_pages = con->bad_page_num; 768 Out: 769 kfree(buf); 770 return res; 771 } 772 773 static int 774 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) 775 { 776 struct amdgpu_device *adev = to_amdgpu_device(control); 777 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 778 u8 *buf, *pp, csum; 779 u32 buf_size; 780 int res; 781 782 /* Modify the header if it exceeds. 783 */ 784 if (amdgpu_bad_page_threshold != 0 && 785 control->ras_num_bad_pages > ras->bad_page_cnt_threshold) { 786 dev_warn(adev->dev, 787 "Saved bad pages %d reaches threshold value %d\n", 788 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 789 790 if (adev->cper.enabled && !amdgpu_uniras_enabled(adev) && 791 amdgpu_cper_generate_bp_threshold_record(adev)) 792 dev_warn(adev->dev, "fail to generate bad page threshold cper records\n"); 793 794 if ((amdgpu_bad_page_threshold != -1) && 795 (amdgpu_bad_page_threshold != -2)) { 796 control->tbl_hdr.header = RAS_TABLE_HDR_BAD; 797 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) { 798 control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD; 799 control->tbl_rai.health_percent = 0; 800 } 801 ras->is_rma = true; 802 } 803 804 /* ignore the -ENOTSUPP return value */ 805 amdgpu_dpm_send_rma_reason(adev); 806 } 807 808 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 809 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + 810 RAS_TABLE_V2_1_INFO_SIZE + 811 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 812 else 813 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + 814 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 815 control->tbl_hdr.checksum = 0; 816 817 buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 818 buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 819 if (!buf) { 820 dev_err(adev->dev, 821 "allocating memory for table of size %d bytes failed\n", 822 control->tbl_hdr.tbl_size); 823 res = -ENOMEM; 824 goto Out; 825 } 826 827 down_read(&adev->reset_domain->sem); 828 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 829 control->i2c_address + 830 control->ras_record_offset, 831 buf, buf_size); 832 up_read(&adev->reset_domain->sem); 833 if (res < 0) { 834 dev_err(adev->dev, "EEPROM failed reading records:%d\n", res); 835 goto Out; 836 } else if (res < buf_size) { 837 dev_err(adev->dev, "EEPROM read %d out of %d bytes\n", res, 838 buf_size); 839 res = -EIO; 840 goto Out; 841 } 842 843 /** 844 * bad page records have been stored in eeprom, 845 * now calculate gpu health percent 846 */ 847 if (amdgpu_bad_page_threshold != 0 && 848 control->tbl_hdr.version >= RAS_TABLE_VER_V2_1 && 849 control->ras_num_bad_pages <= ras->bad_page_cnt_threshold) 850 control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold - 851 control->ras_num_bad_pages) * 100) / 852 ras->bad_page_cnt_threshold; 853 854 /* Recalc the checksum. 855 */ 856 csum = 0; 857 for (pp = buf; pp < buf + buf_size; pp++) 858 csum += *pp; 859 860 csum += __calc_hdr_byte_sum(control); 861 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 862 csum += __calc_ras_info_byte_sum(control); 863 /* avoid sign extension when assigning to "checksum" */ 864 csum = -csum; 865 control->tbl_hdr.checksum = csum; 866 res = __write_table_header(control); 867 if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1) 868 res = __write_table_ras_info(control); 869 Out: 870 kfree(buf); 871 return res; 872 } 873 874 /** 875 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table 876 * @control: pointer to control structure 877 * @record: array of records to append 878 * @num: number of records in @record array 879 * 880 * Append @num records to the table, calculate the checksum and write 881 * the table back to EEPROM. The maximum number of records that 882 * can be appended is between 1 and control->ras_max_record_count, 883 * regardless of how many records are already stored in the table. 884 * 885 * Return 0 on success or if EEPROM is not supported, -errno on error. 886 */ 887 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, 888 struct eeprom_table_record *record, 889 const u32 num) 890 { 891 struct amdgpu_device *adev = to_amdgpu_device(control); 892 int res, i; 893 uint64_t nps = AMDGPU_NPS1_PARTITION_MODE; 894 895 if (!__is_ras_eeprom_supported(adev)) 896 return 0; 897 898 if (num == 0) { 899 dev_err(adev->dev, "will not append 0 records\n"); 900 return -EINVAL; 901 } else if (num > control->ras_max_record_count) { 902 dev_err(adev->dev, 903 "cannot append %d records than the size of table %d\n", 904 num, control->ras_max_record_count); 905 return -EINVAL; 906 } 907 908 if (adev->gmc.gmc_funcs->query_mem_partition_mode) 909 nps = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 910 911 /* set the new channel index flag */ 912 for (i = 0; i < num; i++) 913 record[i].retired_page |= (nps << UMC_NPS_SHIFT); 914 915 mutex_lock(&control->ras_tbl_mutex); 916 917 res = amdgpu_ras_eeprom_append_table(control, record, num); 918 if (!res) 919 res = amdgpu_ras_eeprom_update_header(control); 920 if (!res) 921 amdgpu_ras_debugfs_set_ret_size(control); 922 923 mutex_unlock(&control->ras_tbl_mutex); 924 925 /* clear channel index flag, the flag is only saved on eeprom */ 926 for (i = 0; i < num; i++) 927 record[i].retired_page &= ~(nps << UMC_NPS_SHIFT); 928 929 return res; 930 } 931 932 /** 933 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer 934 * @control: pointer to control structure 935 * @buf: pointer to buffer to read into 936 * @fri: first record index, start reading at this index, absolute index 937 * @num: number of records to read 938 * 939 * The caller must hold the table mutex in @control. 940 * Return 0 on success, -errno otherwise. 941 */ 942 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 943 u8 *buf, const u32 fri, const u32 num) 944 { 945 struct amdgpu_device *adev = to_amdgpu_device(control); 946 u32 buf_size; 947 int res; 948 949 /* i2c may be unstable in gpu reset */ 950 down_read(&adev->reset_domain->sem); 951 buf_size = num * RAS_TABLE_RECORD_SIZE; 952 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 953 control->i2c_address + 954 RAS_INDEX_TO_OFFSET(control, fri), 955 buf, buf_size); 956 up_read(&adev->reset_domain->sem); 957 if (res < 0) { 958 dev_err(adev->dev, "Reading %d EEPROM table records error:%d", 959 num, res); 960 } else if (res < buf_size) { 961 /* Short read, return error. 962 */ 963 dev_err(adev->dev, "Read %d records out of %d", 964 res / RAS_TABLE_RECORD_SIZE, num); 965 res = -EIO; 966 } else { 967 res = 0; 968 } 969 970 return res; 971 } 972 973 /** 974 * amdgpu_ras_eeprom_read -- read EEPROM 975 * @control: pointer to control structure 976 * @record: array of records to read into 977 * @num: number of records in @record 978 * 979 * Reads num records from the RAS table in EEPROM and 980 * writes the data into @record array. 981 * 982 * Returns 0 on success, -errno on error. 983 */ 984 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 985 struct eeprom_table_record *record, 986 const u32 num) 987 { 988 struct amdgpu_device *adev = to_amdgpu_device(control); 989 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 990 int i, res; 991 u8 *buf, *pp; 992 u32 g0, g1; 993 994 if (!__is_ras_eeprom_supported(adev)) 995 return 0; 996 997 if (num == 0) { 998 dev_err(adev->dev, "will not read 0 records\n"); 999 return -EINVAL; 1000 } else if (num > control->ras_num_recs) { 1001 dev_err(adev->dev, "too many records to read:%d available:%d\n", 1002 num, control->ras_num_recs); 1003 return -EINVAL; 1004 } 1005 1006 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 1007 if (!buf) 1008 return -ENOMEM; 1009 1010 /* Determine how many records to read, from the first record 1011 * index, fri, to the end of the table, and from the beginning 1012 * of the table, such that the total number of records is 1013 * @num, and we handle wrap around when fri > 0 and 1014 * fri + num > RAS_MAX_RECORD_COUNT. 1015 * 1016 * First we compute the index of the last element 1017 * which would be fetched from each region, 1018 * g0 is in [fri, fri + num - 1], and 1019 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. 1020 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of 1021 * the last element to fetch, we set g0 to _the number_ 1022 * of elements to fetch, @num, since we know that the last 1023 * indexed to be fetched does not exceed the table. 1024 * 1025 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then 1026 * we set g0 to the number of elements to read 1027 * until the end of the table, and g1 to the number of 1028 * elements to read from the beginning of the table. 1029 */ 1030 g0 = control->ras_fri + num - 1; 1031 g1 = g0 % control->ras_max_record_count; 1032 if (g0 < control->ras_max_record_count) { 1033 g0 = num; 1034 g1 = 0; 1035 } else { 1036 g0 = control->ras_max_record_count - control->ras_fri; 1037 g1 += 1; 1038 } 1039 1040 mutex_lock(&control->ras_tbl_mutex); 1041 res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); 1042 if (res) 1043 goto Out; 1044 if (g1) { 1045 res = __amdgpu_ras_eeprom_read(control, 1046 buf + g0 * RAS_TABLE_RECORD_SIZE, 1047 0, g1); 1048 if (res) 1049 goto Out; 1050 } 1051 1052 res = 0; 1053 1054 /* Read up everything? Then transform. 1055 */ 1056 pp = buf; 1057 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 1058 __decode_table_record_from_buf(control, &record[i], pp); 1059 1060 /* update bad channel bitmap */ 1061 if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && 1062 !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 1063 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 1064 con->update_channel_flag = true; 1065 } 1066 } 1067 Out: 1068 kfree(buf); 1069 mutex_unlock(&control->ras_tbl_mutex); 1070 1071 return res; 1072 } 1073 1074 uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control) 1075 { 1076 /* get available eeprom table version first before eeprom table init */ 1077 amdgpu_ras_set_eeprom_table_version(control); 1078 1079 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 1080 return RAS_MAX_RECORD_COUNT_V2_1; 1081 else 1082 return RAS_MAX_RECORD_COUNT; 1083 } 1084 1085 static ssize_t 1086 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, 1087 size_t size, loff_t *pos) 1088 { 1089 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1090 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1091 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 1092 u8 data[50]; 1093 int res; 1094 1095 if (!size) 1096 return size; 1097 1098 if (!ras || !control) { 1099 res = snprintf(data, sizeof(data), "Not supported\n"); 1100 } else { 1101 res = snprintf(data, sizeof(data), "%d bytes or %d records\n", 1102 RAS_TBL_SIZE_BYTES, control->ras_max_record_count); 1103 } 1104 1105 if (*pos >= res) 1106 return 0; 1107 1108 res -= *pos; 1109 res = min_t(size_t, res, size); 1110 1111 if (copy_to_user(buf, &data[*pos], res)) 1112 return -EFAULT; 1113 1114 *pos += res; 1115 1116 return res; 1117 } 1118 1119 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { 1120 .owner = THIS_MODULE, 1121 .read = amdgpu_ras_debugfs_eeprom_size_read, 1122 .write = NULL, 1123 .llseek = default_llseek, 1124 }; 1125 1126 static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; 1127 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; 1128 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) 1129 static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; 1130 static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; 1131 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) 1132 1133 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { 1134 "ignore", 1135 "re", 1136 "ue", 1137 }; 1138 1139 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) 1140 { 1141 return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + 1142 strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; 1143 } 1144 1145 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) 1146 { 1147 struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, 1148 eeprom_control); 1149 struct dentry *de = ras->de_ras_eeprom_table; 1150 1151 if (de) 1152 d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); 1153 } 1154 1155 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, 1156 size_t size, loff_t *pos) 1157 { 1158 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1159 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1160 struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; 1161 const size_t orig_size = size; 1162 int res = -EFAULT; 1163 size_t data_len; 1164 1165 mutex_lock(&control->ras_tbl_mutex); 1166 1167 /* We want *pos - data_len > 0, which means there's 1168 * bytes to be printed from data. 1169 */ 1170 data_len = strlen(tbl_hdr_str); 1171 if (*pos < data_len) { 1172 data_len -= *pos; 1173 data_len = min_t(size_t, data_len, size); 1174 if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) 1175 goto Out; 1176 buf += data_len; 1177 size -= data_len; 1178 *pos += data_len; 1179 } 1180 1181 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; 1182 if (*pos < data_len && size > 0) { 1183 u8 data[tbl_hdr_fmt_size + 1]; 1184 loff_t lpos; 1185 1186 snprintf(data, sizeof(data), tbl_hdr_fmt, 1187 control->tbl_hdr.header, 1188 control->tbl_hdr.version, 1189 control->tbl_hdr.first_rec_offset, 1190 control->tbl_hdr.tbl_size, 1191 control->tbl_hdr.checksum); 1192 1193 data_len -= *pos; 1194 data_len = min_t(size_t, data_len, size); 1195 lpos = *pos - strlen(tbl_hdr_str); 1196 if (copy_to_user(buf, &data[lpos], data_len)) 1197 goto Out; 1198 buf += data_len; 1199 size -= data_len; 1200 *pos += data_len; 1201 } 1202 1203 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); 1204 if (*pos < data_len && size > 0) { 1205 loff_t lpos; 1206 1207 data_len -= *pos; 1208 data_len = min_t(size_t, data_len, size); 1209 lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; 1210 if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) 1211 goto Out; 1212 buf += data_len; 1213 size -= data_len; 1214 *pos += data_len; 1215 } 1216 1217 data_len = amdgpu_ras_debugfs_table_size(control); 1218 if (*pos < data_len && size > 0) { 1219 u8 dare[RAS_TABLE_RECORD_SIZE]; 1220 u8 data[rec_hdr_fmt_size + 1]; 1221 struct eeprom_table_record record; 1222 int s, r; 1223 1224 /* Find the starting record index 1225 */ 1226 s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 1227 strlen(rec_hdr_str); 1228 s = s / rec_hdr_fmt_size; 1229 r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 1230 strlen(rec_hdr_str); 1231 r = r % rec_hdr_fmt_size; 1232 1233 for ( ; size > 0 && s < control->ras_num_recs; s++) { 1234 u32 ai = RAS_RI_TO_AI(control, s); 1235 /* Read a single record 1236 */ 1237 res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); 1238 if (res) 1239 goto Out; 1240 __decode_table_record_from_buf(control, &record, dare); 1241 snprintf(data, sizeof(data), rec_hdr_fmt, 1242 s, 1243 RAS_INDEX_TO_OFFSET(control, ai), 1244 record_err_type_str[record.err_type], 1245 record.bank, 1246 record.ts, 1247 record.offset, 1248 record.mem_channel, 1249 record.mcumc_id, 1250 record.retired_page); 1251 1252 data_len = min_t(size_t, rec_hdr_fmt_size - r, size); 1253 if (copy_to_user(buf, &data[r], data_len)) { 1254 res = -EFAULT; 1255 goto Out; 1256 } 1257 buf += data_len; 1258 size -= data_len; 1259 *pos += data_len; 1260 r = 0; 1261 } 1262 } 1263 res = 0; 1264 Out: 1265 mutex_unlock(&control->ras_tbl_mutex); 1266 return res < 0 ? res : orig_size - size; 1267 } 1268 1269 static ssize_t 1270 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, 1271 size_t size, loff_t *pos) 1272 { 1273 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1274 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1275 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 1276 u8 data[81]; 1277 int res; 1278 1279 if (!size) 1280 return size; 1281 1282 if (!ras || !control) { 1283 res = snprintf(data, sizeof(data), "Not supported\n"); 1284 if (*pos >= res) 1285 return 0; 1286 1287 res -= *pos; 1288 res = min_t(size_t, res, size); 1289 1290 if (copy_to_user(buf, &data[*pos], res)) 1291 return -EFAULT; 1292 1293 *pos += res; 1294 1295 return res; 1296 } else { 1297 return amdgpu_ras_debugfs_table_read(f, buf, size, pos); 1298 } 1299 } 1300 1301 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { 1302 .owner = THIS_MODULE, 1303 .read = amdgpu_ras_debugfs_eeprom_table_read, 1304 .write = NULL, 1305 .llseek = default_llseek, 1306 }; 1307 1308 /** 1309 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum 1310 * @control: pointer to control structure 1311 * 1312 * Check the checksum of the stored in EEPROM RAS table. 1313 * 1314 * Return 0 if the checksum is correct, 1315 * positive if it is not correct, and 1316 * -errno on I/O error. 1317 */ 1318 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) 1319 { 1320 struct amdgpu_device *adev = to_amdgpu_device(control); 1321 int buf_size, res; 1322 u8 csum, *buf, *pp; 1323 1324 if (control->tbl_hdr.version >= RAS_TABLE_VER_V2_1) 1325 buf_size = RAS_TABLE_HEADER_SIZE + 1326 RAS_TABLE_V2_1_INFO_SIZE + 1327 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1328 else 1329 buf_size = RAS_TABLE_HEADER_SIZE + 1330 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1331 1332 buf = kzalloc(buf_size, GFP_KERNEL); 1333 if (!buf) { 1334 dev_err(adev->dev, 1335 "Out of memory checking RAS table checksum.\n"); 1336 return -ENOMEM; 1337 } 1338 1339 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1340 control->i2c_address + 1341 control->ras_header_offset, 1342 buf, buf_size); 1343 if (res < buf_size) { 1344 dev_err(adev->dev, "Partial read for checksum, res:%d\n", res); 1345 /* On partial reads, return -EIO. 1346 */ 1347 if (res >= 0) 1348 res = -EIO; 1349 goto Out; 1350 } 1351 1352 csum = 0; 1353 for (pp = buf; pp < buf + buf_size; pp++) 1354 csum += *pp; 1355 Out: 1356 kfree(buf); 1357 return res < 0 ? res : csum; 1358 } 1359 1360 static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control) 1361 { 1362 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; 1363 struct amdgpu_device *adev = to_amdgpu_device(control); 1364 unsigned char *buf; 1365 int res; 1366 1367 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); 1368 if (!buf) { 1369 dev_err(adev->dev, 1370 "Failed to alloc buf to read EEPROM table ras info\n"); 1371 return -ENOMEM; 1372 } 1373 1374 /** 1375 * EEPROM table V2_1 supports ras info, 1376 * read EEPROM table ras info 1377 */ 1378 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1379 control->i2c_address + control->ras_info_offset, 1380 buf, RAS_TABLE_V2_1_INFO_SIZE); 1381 if (res < RAS_TABLE_V2_1_INFO_SIZE) { 1382 dev_err(adev->dev, 1383 "Failed to read EEPROM table ras info, res:%d", res); 1384 res = res >= 0 ? -EIO : res; 1385 goto Out; 1386 } 1387 1388 __decode_table_ras_info_from_buf(rai, buf); 1389 1390 Out: 1391 kfree(buf); 1392 return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res; 1393 } 1394 1395 static int amdgpu_ras_smu_eeprom_init(struct amdgpu_ras_eeprom_control *control) 1396 { 1397 struct amdgpu_device *adev = to_amdgpu_device(control); 1398 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1399 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1400 uint64_t local_time; 1401 int res; 1402 1403 ras->is_rma = false; 1404 1405 if (!__is_ras_eeprom_supported(adev)) 1406 return 0; 1407 mutex_init(&control->ras_tbl_mutex); 1408 1409 res = amdgpu_ras_smu_get_table_version(adev, &(hdr->version)); 1410 if (res) 1411 return res; 1412 1413 res = amdgpu_ras_smu_get_badpage_count(adev, 1414 &(control->ras_num_recs), 100); 1415 if (res) 1416 return res; 1417 1418 local_time = (uint64_t)ktime_get_real_seconds(); 1419 res = amdgpu_ras_smu_set_timestamp(adev, local_time); 1420 if (res) 1421 return res; 1422 1423 control->ras_max_record_count = 4000; 1424 1425 control->ras_num_mca_recs = 0; 1426 control->ras_num_pa_recs = 0; 1427 1428 return 0; 1429 } 1430 1431 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control) 1432 { 1433 struct amdgpu_device *adev = to_amdgpu_device(control); 1434 unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; 1435 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1436 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1437 int res; 1438 1439 if (amdgpu_ras_smu_eeprom_supported(adev)) 1440 return amdgpu_ras_smu_eeprom_init(control); 1441 1442 ras->is_rma = false; 1443 1444 if (!__is_ras_eeprom_supported(adev)) 1445 return 0; 1446 1447 /* Verify i2c adapter is initialized */ 1448 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1449 return -ENOENT; 1450 1451 if (!__get_eeprom_i2c_addr(adev, control)) 1452 return -EINVAL; 1453 1454 control->ras_header_offset = RAS_HDR_START; 1455 control->ras_info_offset = RAS_TABLE_V2_1_INFO_START; 1456 mutex_init(&control->ras_tbl_mutex); 1457 1458 /* Read the table header from EEPROM address */ 1459 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1460 control->i2c_address + control->ras_header_offset, 1461 buf, RAS_TABLE_HEADER_SIZE); 1462 if (res < RAS_TABLE_HEADER_SIZE) { 1463 dev_err(adev->dev, "Failed to read EEPROM table header, res:%d", 1464 res); 1465 return res >= 0 ? -EIO : res; 1466 } 1467 1468 __decode_table_header_from_buf(hdr, buf); 1469 1470 if (hdr->header != RAS_TABLE_HDR_VAL && 1471 hdr->header != RAS_TABLE_HDR_BAD) { 1472 dev_info(adev->dev, "Creating a new EEPROM table"); 1473 return amdgpu_ras_eeprom_reset_table(control); 1474 } 1475 1476 switch (hdr->version) { 1477 case RAS_TABLE_VER_V2_1: 1478 case RAS_TABLE_VER_V3: 1479 control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr); 1480 control->ras_record_offset = RAS_RECORD_START_V2_1; 1481 control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1; 1482 break; 1483 case RAS_TABLE_VER_V1: 1484 control->ras_num_recs = RAS_NUM_RECS(hdr); 1485 control->ras_record_offset = RAS_RECORD_START; 1486 control->ras_max_record_count = RAS_MAX_RECORD_COUNT; 1487 break; 1488 default: 1489 dev_err(adev->dev, 1490 "RAS header invalid, unsupported version: %u", 1491 hdr->version); 1492 return -EINVAL; 1493 } 1494 1495 if (control->ras_num_recs > control->ras_max_record_count) { 1496 dev_err(adev->dev, 1497 "RAS header invalid, records in header: %u max allowed :%u", 1498 control->ras_num_recs, control->ras_max_record_count); 1499 return -EINVAL; 1500 } 1501 1502 control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); 1503 control->ras_num_mca_recs = 0; 1504 control->ras_num_pa_recs = 0; 1505 return 0; 1506 } 1507 1508 static int amdgpu_ras_smu_eeprom_check(struct amdgpu_ras_eeprom_control *control) 1509 { 1510 struct amdgpu_device *adev = to_amdgpu_device(control); 1511 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1512 1513 if (!__is_ras_eeprom_supported(adev)) 1514 return 0; 1515 1516 control->ras_num_bad_pages = ras->bad_page_num; 1517 1518 if ((ras->bad_page_cnt_threshold < control->ras_num_bad_pages) && 1519 amdgpu_bad_page_threshold != 0) { 1520 dev_warn(adev->dev, 1521 "RAS records:%d exceed threshold:%d\n", 1522 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 1523 if ((amdgpu_bad_page_threshold == -1) || 1524 (amdgpu_bad_page_threshold == -2)) { 1525 dev_warn(adev->dev, 1526 "Please consult AMD Service Action Guide (SAG) for appropriate service procedures\n"); 1527 } else { 1528 ras->is_rma = true; 1529 dev_warn(adev->dev, 1530 "User defined threshold is set, runtime service will be halt when threshold is reached\n"); 1531 } 1532 1533 return 0; 1534 } 1535 1536 dev_dbg(adev->dev, 1537 "Found existing EEPROM table with %d records", 1538 control->ras_num_bad_pages); 1539 1540 /* Warn if we are at 90% of the threshold or above 1541 */ 1542 if (10 * control->ras_num_bad_pages >= 9 * ras->bad_page_cnt_threshold) 1543 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", 1544 control->ras_num_bad_pages, 1545 ras->bad_page_cnt_threshold); 1546 return 0; 1547 } 1548 1549 int amdgpu_ras_eeprom_check(struct amdgpu_ras_eeprom_control *control) 1550 { 1551 struct amdgpu_device *adev = to_amdgpu_device(control); 1552 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1553 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1554 int res = 0; 1555 1556 if (amdgpu_ras_smu_eeprom_supported(adev)) 1557 return amdgpu_ras_smu_eeprom_check(control); 1558 1559 if (!__is_ras_eeprom_supported(adev)) 1560 return 0; 1561 1562 /* Verify i2c adapter is initialized */ 1563 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1564 return -ENOENT; 1565 1566 if (!__get_eeprom_i2c_addr(adev, control)) 1567 return -EINVAL; 1568 1569 control->ras_num_bad_pages = ras->bad_page_num; 1570 1571 if (hdr->header == RAS_TABLE_HDR_VAL) { 1572 dev_dbg(adev->dev, 1573 "Found existing EEPROM table with %d records", 1574 control->ras_num_bad_pages); 1575 1576 if (hdr->version >= RAS_TABLE_VER_V2_1) { 1577 res = __read_table_ras_info(control); 1578 if (res) 1579 return res; 1580 } 1581 1582 res = __verify_ras_table_checksum(control); 1583 if (res) 1584 dev_err(adev->dev, 1585 "RAS table incorrect checksum or error:%d\n", 1586 res); 1587 1588 /* Warn if we are at 90% of the threshold or above 1589 */ 1590 if (10 * control->ras_num_bad_pages >= 9 * ras->bad_page_cnt_threshold) 1591 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", 1592 control->ras_num_bad_pages, 1593 ras->bad_page_cnt_threshold); 1594 } else if (hdr->header == RAS_TABLE_HDR_BAD && 1595 amdgpu_bad_page_threshold != 0) { 1596 if (hdr->version >= RAS_TABLE_VER_V2_1) { 1597 res = __read_table_ras_info(control); 1598 if (res) 1599 return res; 1600 } 1601 1602 res = __verify_ras_table_checksum(control); 1603 if (res) { 1604 dev_err(adev->dev, 1605 "RAS Table incorrect checksum or error:%d\n", 1606 res); 1607 return -EINVAL; 1608 } 1609 if (ras->bad_page_cnt_threshold >= control->ras_num_bad_pages) { 1610 /* This means that, the threshold was increased since 1611 * the last time the system was booted, and now, 1612 * ras->bad_page_cnt_threshold - control->num_recs > 0, 1613 * so that at least one more record can be saved, 1614 * before the page count threshold is reached. 1615 */ 1616 dev_info(adev->dev, 1617 "records:%d threshold:%d, resetting " 1618 "RAS table header signature", 1619 control->ras_num_bad_pages, 1620 ras->bad_page_cnt_threshold); 1621 res = amdgpu_ras_eeprom_correct_header_tag(control, 1622 RAS_TABLE_HDR_VAL); 1623 } else { 1624 dev_warn(adev->dev, 1625 "RAS records:%d exceed threshold:%d\n", 1626 control->ras_num_bad_pages, ras->bad_page_cnt_threshold); 1627 if ((amdgpu_bad_page_threshold == -1) || 1628 (amdgpu_bad_page_threshold == -2)) { 1629 res = 0; 1630 dev_warn(adev->dev, 1631 "Please consult AMD Service Action Guide (SAG) for appropriate service procedures\n"); 1632 } else { 1633 ras->is_rma = true; 1634 dev_warn(adev->dev, 1635 "User defined threshold is set, runtime service will be halt when threshold is reached\n"); 1636 } 1637 } 1638 } 1639 1640 return res < 0 ? res : 0; 1641 } 1642 1643 void amdgpu_ras_eeprom_check_and_recover(struct amdgpu_device *adev) 1644 { 1645 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1646 struct amdgpu_ras_eeprom_control *control; 1647 int res; 1648 1649 if (!__is_ras_eeprom_supported(adev) || !ras || 1650 amdgpu_ras_smu_eeprom_supported(adev)) 1651 return; 1652 control = &ras->eeprom_control; 1653 if (!control->is_eeprom_valid) 1654 return; 1655 res = __verify_ras_table_checksum(control); 1656 if (res) { 1657 dev_warn(adev->dev, 1658 "RAS table incorrect checksum or error:%d, try to recover\n", 1659 res); 1660 if (!amdgpu_ras_eeprom_reset_table(control)) 1661 if (!amdgpu_ras_save_bad_pages(adev, NULL)) 1662 if (!__verify_ras_table_checksum(control)) { 1663 dev_info(adev->dev, "RAS table recovery succeed\n"); 1664 return; 1665 } 1666 dev_err(adev->dev, "RAS table recovery failed\n"); 1667 control->is_eeprom_valid = false; 1668 } 1669 return; 1670 } 1671 1672 static const struct ras_smu_drv *amdgpu_ras_get_smu_ras_drv(struct amdgpu_device *adev) 1673 { 1674 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1675 1676 if (!ras) 1677 return NULL; 1678 1679 return ras->ras_smu_drv; 1680 } 1681 1682 static uint64_t amdgpu_ras_smu_get_feature_flags(struct amdgpu_device *adev) 1683 { 1684 const struct ras_smu_drv *ras_smu_drv = amdgpu_ras_get_smu_ras_drv(adev); 1685 uint64_t flags = 0ULL; 1686 1687 if (!ras_smu_drv) 1688 goto out; 1689 1690 if (ras_smu_drv->ras_smu_feature_flags) 1691 ras_smu_drv->ras_smu_feature_flags(adev, &flags); 1692 1693 out: 1694 return flags; 1695 } 1696 1697 bool amdgpu_ras_smu_eeprom_supported(struct amdgpu_device *adev) 1698 { 1699 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1700 uint64_t flags = 0ULL; 1701 1702 if (!__is_ras_eeprom_supported(adev) || !smu_ras_drv) 1703 return false; 1704 1705 if (!smu_ras_drv->smu_eeprom_funcs) 1706 return false; 1707 1708 flags = amdgpu_ras_smu_get_feature_flags(adev); 1709 1710 return !!(flags & RAS_SMU_FEATURE_BIT__RAS_EEPROM); 1711 } 1712 1713 int amdgpu_ras_smu_get_table_version(struct amdgpu_device *adev, 1714 uint32_t *table_version) 1715 { 1716 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1717 1718 if (!amdgpu_ras_smu_eeprom_supported(adev)) 1719 return -EOPNOTSUPP; 1720 1721 if (smu_ras_drv->smu_eeprom_funcs->get_ras_table_version) 1722 return smu_ras_drv->smu_eeprom_funcs->get_ras_table_version(adev, 1723 table_version); 1724 return -EOPNOTSUPP; 1725 } 1726 1727 int amdgpu_ras_smu_get_badpage_count(struct amdgpu_device *adev, 1728 uint32_t *count, uint32_t timeout) 1729 { 1730 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1731 1732 if (!amdgpu_ras_smu_eeprom_supported(adev)) 1733 return -EOPNOTSUPP; 1734 1735 if (smu_ras_drv->smu_eeprom_funcs->get_badpage_count) 1736 return smu_ras_drv->smu_eeprom_funcs->get_badpage_count(adev, 1737 count, timeout); 1738 return -EOPNOTSUPP; 1739 } 1740 1741 int amdgpu_ras_smu_get_badpage_mca_addr(struct amdgpu_device *adev, 1742 uint16_t index, uint64_t *mca_addr) 1743 { 1744 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1745 1746 if (!amdgpu_ras_smu_eeprom_supported(adev)) 1747 return -EOPNOTSUPP; 1748 1749 if (smu_ras_drv->smu_eeprom_funcs->get_badpage_mca_addr) 1750 return smu_ras_drv->smu_eeprom_funcs->get_badpage_mca_addr(adev, 1751 index, mca_addr); 1752 return -EOPNOTSUPP; 1753 } 1754 1755 int amdgpu_ras_smu_set_timestamp(struct amdgpu_device *adev, 1756 uint64_t timestamp) 1757 { 1758 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1759 1760 if (!amdgpu_ras_smu_eeprom_supported(adev)) 1761 return -EOPNOTSUPP; 1762 1763 if (smu_ras_drv->smu_eeprom_funcs->set_timestamp) 1764 return smu_ras_drv->smu_eeprom_funcs->set_timestamp(adev, 1765 timestamp); 1766 return -EOPNOTSUPP; 1767 } 1768 1769 int amdgpu_ras_smu_get_timestamp(struct amdgpu_device *adev, 1770 uint16_t index, uint64_t *timestamp) 1771 { 1772 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1773 1774 if (!amdgpu_ras_smu_eeprom_supported(adev)) 1775 return -EOPNOTSUPP; 1776 1777 if (smu_ras_drv->smu_eeprom_funcs->get_timestamp) 1778 return smu_ras_drv->smu_eeprom_funcs->get_timestamp(adev, 1779 index, timestamp); 1780 return -EOPNOTSUPP; 1781 } 1782 1783 int amdgpu_ras_smu_get_badpage_ipid(struct amdgpu_device *adev, 1784 uint16_t index, uint64_t *ipid) 1785 { 1786 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1787 1788 if (!amdgpu_ras_smu_eeprom_supported(adev)) 1789 return -EOPNOTSUPP; 1790 1791 if (smu_ras_drv->smu_eeprom_funcs->get_badpage_ipid) 1792 return smu_ras_drv->smu_eeprom_funcs->get_badpage_ipid(adev, 1793 index, ipid); 1794 return -EOPNOTSUPP; 1795 } 1796 1797 int amdgpu_ras_smu_erase_ras_table(struct amdgpu_device *adev, 1798 uint32_t *result) 1799 { 1800 const struct ras_smu_drv *smu_ras_drv = amdgpu_ras_get_smu_ras_drv(adev); 1801 1802 if (!amdgpu_ras_smu_eeprom_supported(adev)) 1803 return -EOPNOTSUPP; 1804 1805 if (smu_ras_drv->smu_eeprom_funcs->erase_ras_table) 1806 return smu_ras_drv->smu_eeprom_funcs->erase_ras_table(adev, 1807 result); 1808 return -EOPNOTSUPP; 1809 } 1810