xref: /linux/drivers/firewire/ohci.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46 
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 #include <asm/system.h>
50 
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pmac_feature.h>
53 #endif
54 
55 #include "core.h"
56 #include "ohci.h"
57 
58 #define DESCRIPTOR_OUTPUT_MORE		0
59 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
60 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
61 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
62 #define DESCRIPTOR_STATUS		(1 << 11)
63 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
64 #define DESCRIPTOR_PING			(1 << 7)
65 #define DESCRIPTOR_YY			(1 << 6)
66 #define DESCRIPTOR_NO_IRQ		(0 << 4)
67 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
68 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
69 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
70 #define DESCRIPTOR_WAIT			(3 << 0)
71 
72 struct descriptor {
73 	__le16 req_count;
74 	__le16 control;
75 	__le32 data_address;
76 	__le32 branch_address;
77 	__le16 res_count;
78 	__le16 transfer_status;
79 } __attribute__((aligned(16)));
80 
81 #define CONTROL_SET(regs)	(regs)
82 #define CONTROL_CLEAR(regs)	((regs) + 4)
83 #define COMMAND_PTR(regs)	((regs) + 12)
84 #define CONTEXT_MATCH(regs)	((regs) + 16)
85 
86 #define AR_BUFFER_SIZE	(32*1024)
87 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 
91 #define MAX_ASYNC_PAYLOAD	4096
92 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 
95 struct ar_context {
96 	struct fw_ohci *ohci;
97 	struct page *pages[AR_BUFFERS];
98 	void *buffer;
99 	struct descriptor *descriptors;
100 	dma_addr_t descriptors_bus;
101 	void *pointer;
102 	unsigned int last_buffer_index;
103 	u32 regs;
104 	struct tasklet_struct tasklet;
105 };
106 
107 struct context;
108 
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 				     struct descriptor *d,
111 				     struct descriptor *last);
112 
113 /*
114  * A buffer that contains a block of DMA-able coherent memory used for
115  * storing a portion of a DMA descriptor program.
116  */
117 struct descriptor_buffer {
118 	struct list_head list;
119 	dma_addr_t buffer_bus;
120 	size_t buffer_size;
121 	size_t used;
122 	struct descriptor buffer[0];
123 };
124 
125 struct context {
126 	struct fw_ohci *ohci;
127 	u32 regs;
128 	int total_allocation;
129 	u32 current_bus;
130 	bool running;
131 	bool flushing;
132 
133 	/*
134 	 * List of page-sized buffers for storing DMA descriptors.
135 	 * Head of list contains buffers in use and tail of list contains
136 	 * free buffers.
137 	 */
138 	struct list_head buffer_list;
139 
140 	/*
141 	 * Pointer to a buffer inside buffer_list that contains the tail
142 	 * end of the current DMA program.
143 	 */
144 	struct descriptor_buffer *buffer_tail;
145 
146 	/*
147 	 * The descriptor containing the branch address of the first
148 	 * descriptor that has not yet been filled by the device.
149 	 */
150 	struct descriptor *last;
151 
152 	/*
153 	 * The last descriptor in the DMA program.  It contains the branch
154 	 * address that must be updated upon appending a new descriptor.
155 	 */
156 	struct descriptor *prev;
157 
158 	descriptor_callback_t callback;
159 
160 	struct tasklet_struct tasklet;
161 };
162 
163 #define IT_HEADER_SY(v)          ((v) <<  0)
164 #define IT_HEADER_TCODE(v)       ((v) <<  4)
165 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
166 #define IT_HEADER_TAG(v)         ((v) << 14)
167 #define IT_HEADER_SPEED(v)       ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 
170 struct iso_context {
171 	struct fw_iso_context base;
172 	struct context context;
173 	int excess_bytes;
174 	void *header;
175 	size_t header_length;
176 
177 	u8 sync;
178 	u8 tags;
179 };
180 
181 #define CONFIG_ROM_SIZE 1024
182 
183 struct fw_ohci {
184 	struct fw_card card;
185 
186 	__iomem char *registers;
187 	int node_id;
188 	int generation;
189 	int request_generation;	/* for timestamping incoming requests */
190 	unsigned quirks;
191 	unsigned int pri_req_max;
192 	u32 bus_time;
193 	bool is_root;
194 	bool csr_state_setclear_abdicate;
195 	int n_ir;
196 	int n_it;
197 	/*
198 	 * Spinlock for accessing fw_ohci data.  Never call out of
199 	 * this driver with this lock held.
200 	 */
201 	spinlock_t lock;
202 
203 	struct mutex phy_reg_mutex;
204 
205 	void *misc_buffer;
206 	dma_addr_t misc_buffer_bus;
207 
208 	struct ar_context ar_request_ctx;
209 	struct ar_context ar_response_ctx;
210 	struct context at_request_ctx;
211 	struct context at_response_ctx;
212 
213 	u32 it_context_support;
214 	u32 it_context_mask;     /* unoccupied IT contexts */
215 	struct iso_context *it_context_list;
216 	u64 ir_context_channels; /* unoccupied channels */
217 	u32 ir_context_support;
218 	u32 ir_context_mask;     /* unoccupied IR contexts */
219 	struct iso_context *ir_context_list;
220 	u64 mc_channels; /* channels in use by the multichannel IR context */
221 	bool mc_allocated;
222 
223 	__be32    *config_rom;
224 	dma_addr_t config_rom_bus;
225 	__be32    *next_config_rom;
226 	dma_addr_t next_config_rom_bus;
227 	__be32     next_header;
228 
229 	__le32    *self_id_cpu;
230 	dma_addr_t self_id_bus;
231 	struct work_struct bus_reset_work;
232 
233 	u32 self_id_buffer[512];
234 };
235 
236 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
237 {
238 	return container_of(card, struct fw_ohci, card);
239 }
240 
241 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
242 #define IR_CONTEXT_BUFFER_FILL		0x80000000
243 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
244 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
245 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
246 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
247 
248 #define CONTEXT_RUN	0x8000
249 #define CONTEXT_WAKE	0x1000
250 #define CONTEXT_DEAD	0x0800
251 #define CONTEXT_ACTIVE	0x0400
252 
253 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
254 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
255 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
256 
257 #define OHCI1394_REGISTER_SIZE		0x800
258 #define OHCI1394_PCI_HCI_Control	0x40
259 #define SELF_ID_BUF_SIZE		0x800
260 #define OHCI_TCODE_PHY_PACKET		0x0e
261 #define OHCI_VERSION_1_1		0x010010
262 
263 static char ohci_driver_name[] = KBUILD_MODNAME;
264 
265 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
270 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
271 
272 #define QUIRK_CYCLE_TIMER		1
273 #define QUIRK_RESET_PACKET		2
274 #define QUIRK_BE_HEADERS		4
275 #define QUIRK_NO_1394A			8
276 #define QUIRK_NO_MSI			16
277 #define QUIRK_TI_SLLZ059		32
278 
279 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
280 static const struct {
281 	unsigned short vendor, device, revision, flags;
282 } ohci_quirks[] = {
283 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
284 		QUIRK_CYCLE_TIMER},
285 
286 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
287 		QUIRK_BE_HEADERS},
288 
289 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
290 		QUIRK_NO_MSI},
291 
292 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
293 		QUIRK_NO_MSI},
294 
295 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
296 		QUIRK_CYCLE_TIMER},
297 
298 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
299 		QUIRK_NO_MSI},
300 
301 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
302 		QUIRK_CYCLE_TIMER},
303 
304 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
305 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
306 
307 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
308 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
309 
310 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
311 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
312 
313 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
314 		QUIRK_RESET_PACKET},
315 
316 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
317 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
318 };
319 
320 /* This overrides anything that was found in ohci_quirks[]. */
321 static int param_quirks;
322 module_param_named(quirks, param_quirks, int, 0644);
323 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
324 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
325 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
326 	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
327 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
328 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
329 	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
330 	")");
331 
332 #define OHCI_PARAM_DEBUG_AT_AR		1
333 #define OHCI_PARAM_DEBUG_SELFIDS	2
334 #define OHCI_PARAM_DEBUG_IRQS		4
335 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
336 
337 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
338 
339 static int param_debug;
340 module_param_named(debug, param_debug, int, 0644);
341 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
342 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
343 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
344 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
345 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
346 	", or a combination, or all = -1)");
347 
348 static void log_irqs(u32 evt)
349 {
350 	if (likely(!(param_debug &
351 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
352 		return;
353 
354 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
355 	    !(evt & OHCI1394_busReset))
356 		return;
357 
358 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
359 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
360 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
361 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
362 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
363 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
364 	    evt & OHCI1394_isochRx		? " IR"			: "",
365 	    evt & OHCI1394_isochTx		? " IT"			: "",
366 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
367 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
368 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
369 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
370 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
371 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
372 	    evt & OHCI1394_busReset		? " busReset"		: "",
373 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
374 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
375 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
376 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
377 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
378 		    OHCI1394_cycleInconsistent |
379 		    OHCI1394_regAccessFail | OHCI1394_busReset)
380 						? " ?"			: "");
381 }
382 
383 static const char *speed[] = {
384 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
385 };
386 static const char *power[] = {
387 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
388 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
389 };
390 static const char port[] = { '.', '-', 'p', 'c', };
391 
392 static char _p(u32 *s, int shift)
393 {
394 	return port[*s >> shift & 3];
395 }
396 
397 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
398 {
399 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
400 		return;
401 
402 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
403 		  self_id_count, generation, node_id);
404 
405 	for (; self_id_count--; ++s)
406 		if ((*s & 1 << 23) == 0)
407 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
408 			    "%s gc=%d %s %s%s%s\n",
409 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
410 			    speed[*s >> 14 & 3], *s >> 16 & 63,
411 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
412 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
413 		else
414 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
415 			    *s, *s >> 24 & 63,
416 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
417 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
418 }
419 
420 static const char *evts[] = {
421 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
422 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
423 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
424 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
425 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
426 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
427 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
428 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
429 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
430 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
431 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
432 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
433 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
434 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
435 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
436 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
437 	[0x20] = "pending/cancelled",
438 };
439 static const char *tcodes[] = {
440 	[0x0] = "QW req",		[0x1] = "BW req",
441 	[0x2] = "W resp",		[0x3] = "-reserved-",
442 	[0x4] = "QR req",		[0x5] = "BR req",
443 	[0x6] = "QR resp",		[0x7] = "BR resp",
444 	[0x8] = "cycle start",		[0x9] = "Lk req",
445 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
446 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
447 	[0xe] = "link internal",	[0xf] = "-reserved-",
448 };
449 
450 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
451 {
452 	int tcode = header[0] >> 4 & 0xf;
453 	char specific[12];
454 
455 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
456 		return;
457 
458 	if (unlikely(evt >= ARRAY_SIZE(evts)))
459 			evt = 0x1f;
460 
461 	if (evt == OHCI1394_evt_bus_reset) {
462 		fw_notify("A%c evt_bus_reset, generation %d\n",
463 		    dir, (header[2] >> 16) & 0xff);
464 		return;
465 	}
466 
467 	switch (tcode) {
468 	case 0x0: case 0x6: case 0x8:
469 		snprintf(specific, sizeof(specific), " = %08x",
470 			 be32_to_cpu((__force __be32)header[3]));
471 		break;
472 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
473 		snprintf(specific, sizeof(specific), " %x,%x",
474 			 header[3] >> 16, header[3] & 0xffff);
475 		break;
476 	default:
477 		specific[0] = '\0';
478 	}
479 
480 	switch (tcode) {
481 	case 0xa:
482 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
483 		break;
484 	case 0xe:
485 		fw_notify("A%c %s, PHY %08x %08x\n",
486 			  dir, evts[evt], header[1], header[2]);
487 		break;
488 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
489 		fw_notify("A%c spd %x tl %02x, "
490 		    "%04x -> %04x, %s, "
491 		    "%s, %04x%08x%s\n",
492 		    dir, speed, header[0] >> 10 & 0x3f,
493 		    header[1] >> 16, header[0] >> 16, evts[evt],
494 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
495 		break;
496 	default:
497 		fw_notify("A%c spd %x tl %02x, "
498 		    "%04x -> %04x, %s, "
499 		    "%s%s\n",
500 		    dir, speed, header[0] >> 10 & 0x3f,
501 		    header[1] >> 16, header[0] >> 16, evts[evt],
502 		    tcodes[tcode], specific);
503 	}
504 }
505 
506 #else
507 
508 #define param_debug 0
509 static inline void log_irqs(u32 evt) {}
510 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
511 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
512 
513 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
514 
515 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
516 {
517 	writel(data, ohci->registers + offset);
518 }
519 
520 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
521 {
522 	return readl(ohci->registers + offset);
523 }
524 
525 static inline void flush_writes(const struct fw_ohci *ohci)
526 {
527 	/* Do a dummy read to flush writes. */
528 	reg_read(ohci, OHCI1394_Version);
529 }
530 
531 /*
532  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
533  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
534  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
535  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
536  */
537 static int read_phy_reg(struct fw_ohci *ohci, int addr)
538 {
539 	u32 val;
540 	int i;
541 
542 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
543 	for (i = 0; i < 3 + 100; i++) {
544 		val = reg_read(ohci, OHCI1394_PhyControl);
545 		if (!~val)
546 			return -ENODEV; /* Card was ejected. */
547 
548 		if (val & OHCI1394_PhyControl_ReadDone)
549 			return OHCI1394_PhyControl_ReadData(val);
550 
551 		/*
552 		 * Try a few times without waiting.  Sleeping is necessary
553 		 * only when the link/PHY interface is busy.
554 		 */
555 		if (i >= 3)
556 			msleep(1);
557 	}
558 	fw_error("failed to read phy reg\n");
559 
560 	return -EBUSY;
561 }
562 
563 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
564 {
565 	int i;
566 
567 	reg_write(ohci, OHCI1394_PhyControl,
568 		  OHCI1394_PhyControl_Write(addr, val));
569 	for (i = 0; i < 3 + 100; i++) {
570 		val = reg_read(ohci, OHCI1394_PhyControl);
571 		if (!~val)
572 			return -ENODEV; /* Card was ejected. */
573 
574 		if (!(val & OHCI1394_PhyControl_WritePending))
575 			return 0;
576 
577 		if (i >= 3)
578 			msleep(1);
579 	}
580 	fw_error("failed to write phy reg\n");
581 
582 	return -EBUSY;
583 }
584 
585 static int update_phy_reg(struct fw_ohci *ohci, int addr,
586 			  int clear_bits, int set_bits)
587 {
588 	int ret = read_phy_reg(ohci, addr);
589 	if (ret < 0)
590 		return ret;
591 
592 	/*
593 	 * The interrupt status bits are cleared by writing a one bit.
594 	 * Avoid clearing them unless explicitly requested in set_bits.
595 	 */
596 	if (addr == 5)
597 		clear_bits |= PHY_INT_STATUS_BITS;
598 
599 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
600 }
601 
602 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
603 {
604 	int ret;
605 
606 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
607 	if (ret < 0)
608 		return ret;
609 
610 	return read_phy_reg(ohci, addr);
611 }
612 
613 static int ohci_read_phy_reg(struct fw_card *card, int addr)
614 {
615 	struct fw_ohci *ohci = fw_ohci(card);
616 	int ret;
617 
618 	mutex_lock(&ohci->phy_reg_mutex);
619 	ret = read_phy_reg(ohci, addr);
620 	mutex_unlock(&ohci->phy_reg_mutex);
621 
622 	return ret;
623 }
624 
625 static int ohci_update_phy_reg(struct fw_card *card, int addr,
626 			       int clear_bits, int set_bits)
627 {
628 	struct fw_ohci *ohci = fw_ohci(card);
629 	int ret;
630 
631 	mutex_lock(&ohci->phy_reg_mutex);
632 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
633 	mutex_unlock(&ohci->phy_reg_mutex);
634 
635 	return ret;
636 }
637 
638 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
639 {
640 	return page_private(ctx->pages[i]);
641 }
642 
643 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
644 {
645 	struct descriptor *d;
646 
647 	d = &ctx->descriptors[index];
648 	d->branch_address  &= cpu_to_le32(~0xf);
649 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
650 	d->transfer_status =  0;
651 
652 	wmb(); /* finish init of new descriptors before branch_address update */
653 	d = &ctx->descriptors[ctx->last_buffer_index];
654 	d->branch_address  |= cpu_to_le32(1);
655 
656 	ctx->last_buffer_index = index;
657 
658 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
659 }
660 
661 static void ar_context_release(struct ar_context *ctx)
662 {
663 	unsigned int i;
664 
665 	if (ctx->buffer)
666 		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
667 
668 	for (i = 0; i < AR_BUFFERS; i++)
669 		if (ctx->pages[i]) {
670 			dma_unmap_page(ctx->ohci->card.device,
671 				       ar_buffer_bus(ctx, i),
672 				       PAGE_SIZE, DMA_FROM_DEVICE);
673 			__free_page(ctx->pages[i]);
674 		}
675 }
676 
677 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
678 {
679 	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
680 		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
681 		flush_writes(ctx->ohci);
682 
683 		fw_error("AR error: %s; DMA stopped\n", error_msg);
684 	}
685 	/* FIXME: restart? */
686 }
687 
688 static inline unsigned int ar_next_buffer_index(unsigned int index)
689 {
690 	return (index + 1) % AR_BUFFERS;
691 }
692 
693 static inline unsigned int ar_prev_buffer_index(unsigned int index)
694 {
695 	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
696 }
697 
698 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
699 {
700 	return ar_next_buffer_index(ctx->last_buffer_index);
701 }
702 
703 /*
704  * We search for the buffer that contains the last AR packet DMA data written
705  * by the controller.
706  */
707 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
708 						 unsigned int *buffer_offset)
709 {
710 	unsigned int i, next_i, last = ctx->last_buffer_index;
711 	__le16 res_count, next_res_count;
712 
713 	i = ar_first_buffer_index(ctx);
714 	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
715 
716 	/* A buffer that is not yet completely filled must be the last one. */
717 	while (i != last && res_count == 0) {
718 
719 		/* Peek at the next descriptor. */
720 		next_i = ar_next_buffer_index(i);
721 		rmb(); /* read descriptors in order */
722 		next_res_count = ACCESS_ONCE(
723 				ctx->descriptors[next_i].res_count);
724 		/*
725 		 * If the next descriptor is still empty, we must stop at this
726 		 * descriptor.
727 		 */
728 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
729 			/*
730 			 * The exception is when the DMA data for one packet is
731 			 * split over three buffers; in this case, the middle
732 			 * buffer's descriptor might be never updated by the
733 			 * controller and look still empty, and we have to peek
734 			 * at the third one.
735 			 */
736 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
737 				next_i = ar_next_buffer_index(next_i);
738 				rmb();
739 				next_res_count = ACCESS_ONCE(
740 					ctx->descriptors[next_i].res_count);
741 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
742 					goto next_buffer_is_active;
743 			}
744 
745 			break;
746 		}
747 
748 next_buffer_is_active:
749 		i = next_i;
750 		res_count = next_res_count;
751 	}
752 
753 	rmb(); /* read res_count before the DMA data */
754 
755 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
756 	if (*buffer_offset > PAGE_SIZE) {
757 		*buffer_offset = 0;
758 		ar_context_abort(ctx, "corrupted descriptor");
759 	}
760 
761 	return i;
762 }
763 
764 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
765 				    unsigned int end_buffer_index,
766 				    unsigned int end_buffer_offset)
767 {
768 	unsigned int i;
769 
770 	i = ar_first_buffer_index(ctx);
771 	while (i != end_buffer_index) {
772 		dma_sync_single_for_cpu(ctx->ohci->card.device,
773 					ar_buffer_bus(ctx, i),
774 					PAGE_SIZE, DMA_FROM_DEVICE);
775 		i = ar_next_buffer_index(i);
776 	}
777 	if (end_buffer_offset > 0)
778 		dma_sync_single_for_cpu(ctx->ohci->card.device,
779 					ar_buffer_bus(ctx, i),
780 					end_buffer_offset, DMA_FROM_DEVICE);
781 }
782 
783 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
784 #define cond_le32_to_cpu(v) \
785 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
786 #else
787 #define cond_le32_to_cpu(v) le32_to_cpu(v)
788 #endif
789 
790 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
791 {
792 	struct fw_ohci *ohci = ctx->ohci;
793 	struct fw_packet p;
794 	u32 status, length, tcode;
795 	int evt;
796 
797 	p.header[0] = cond_le32_to_cpu(buffer[0]);
798 	p.header[1] = cond_le32_to_cpu(buffer[1]);
799 	p.header[2] = cond_le32_to_cpu(buffer[2]);
800 
801 	tcode = (p.header[0] >> 4) & 0x0f;
802 	switch (tcode) {
803 	case TCODE_WRITE_QUADLET_REQUEST:
804 	case TCODE_READ_QUADLET_RESPONSE:
805 		p.header[3] = (__force __u32) buffer[3];
806 		p.header_length = 16;
807 		p.payload_length = 0;
808 		break;
809 
810 	case TCODE_READ_BLOCK_REQUEST :
811 		p.header[3] = cond_le32_to_cpu(buffer[3]);
812 		p.header_length = 16;
813 		p.payload_length = 0;
814 		break;
815 
816 	case TCODE_WRITE_BLOCK_REQUEST:
817 	case TCODE_READ_BLOCK_RESPONSE:
818 	case TCODE_LOCK_REQUEST:
819 	case TCODE_LOCK_RESPONSE:
820 		p.header[3] = cond_le32_to_cpu(buffer[3]);
821 		p.header_length = 16;
822 		p.payload_length = p.header[3] >> 16;
823 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
824 			ar_context_abort(ctx, "invalid packet length");
825 			return NULL;
826 		}
827 		break;
828 
829 	case TCODE_WRITE_RESPONSE:
830 	case TCODE_READ_QUADLET_REQUEST:
831 	case OHCI_TCODE_PHY_PACKET:
832 		p.header_length = 12;
833 		p.payload_length = 0;
834 		break;
835 
836 	default:
837 		ar_context_abort(ctx, "invalid tcode");
838 		return NULL;
839 	}
840 
841 	p.payload = (void *) buffer + p.header_length;
842 
843 	/* FIXME: What to do about evt_* errors? */
844 	length = (p.header_length + p.payload_length + 3) / 4;
845 	status = cond_le32_to_cpu(buffer[length]);
846 	evt    = (status >> 16) & 0x1f;
847 
848 	p.ack        = evt - 16;
849 	p.speed      = (status >> 21) & 0x7;
850 	p.timestamp  = status & 0xffff;
851 	p.generation = ohci->request_generation;
852 
853 	log_ar_at_event('R', p.speed, p.header, evt);
854 
855 	/*
856 	 * Several controllers, notably from NEC and VIA, forget to
857 	 * write ack_complete status at PHY packet reception.
858 	 */
859 	if (evt == OHCI1394_evt_no_status &&
860 	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
861 		p.ack = ACK_COMPLETE;
862 
863 	/*
864 	 * The OHCI bus reset handler synthesizes a PHY packet with
865 	 * the new generation number when a bus reset happens (see
866 	 * section 8.4.2.3).  This helps us determine when a request
867 	 * was received and make sure we send the response in the same
868 	 * generation.  We only need this for requests; for responses
869 	 * we use the unique tlabel for finding the matching
870 	 * request.
871 	 *
872 	 * Alas some chips sometimes emit bus reset packets with a
873 	 * wrong generation.  We set the correct generation for these
874 	 * at a slightly incorrect time (in bus_reset_work).
875 	 */
876 	if (evt == OHCI1394_evt_bus_reset) {
877 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
878 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
879 	} else if (ctx == &ohci->ar_request_ctx) {
880 		fw_core_handle_request(&ohci->card, &p);
881 	} else {
882 		fw_core_handle_response(&ohci->card, &p);
883 	}
884 
885 	return buffer + length + 1;
886 }
887 
888 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
889 {
890 	void *next;
891 
892 	while (p < end) {
893 		next = handle_ar_packet(ctx, p);
894 		if (!next)
895 			return p;
896 		p = next;
897 	}
898 
899 	return p;
900 }
901 
902 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
903 {
904 	unsigned int i;
905 
906 	i = ar_first_buffer_index(ctx);
907 	while (i != end_buffer) {
908 		dma_sync_single_for_device(ctx->ohci->card.device,
909 					   ar_buffer_bus(ctx, i),
910 					   PAGE_SIZE, DMA_FROM_DEVICE);
911 		ar_context_link_page(ctx, i);
912 		i = ar_next_buffer_index(i);
913 	}
914 }
915 
916 static void ar_context_tasklet(unsigned long data)
917 {
918 	struct ar_context *ctx = (struct ar_context *)data;
919 	unsigned int end_buffer_index, end_buffer_offset;
920 	void *p, *end;
921 
922 	p = ctx->pointer;
923 	if (!p)
924 		return;
925 
926 	end_buffer_index = ar_search_last_active_buffer(ctx,
927 							&end_buffer_offset);
928 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
929 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
930 
931 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
932 		/*
933 		 * The filled part of the overall buffer wraps around; handle
934 		 * all packets up to the buffer end here.  If the last packet
935 		 * wraps around, its tail will be visible after the buffer end
936 		 * because the buffer start pages are mapped there again.
937 		 */
938 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
939 		p = handle_ar_packets(ctx, p, buffer_end);
940 		if (p < buffer_end)
941 			goto error;
942 		/* adjust p to point back into the actual buffer */
943 		p -= AR_BUFFERS * PAGE_SIZE;
944 	}
945 
946 	p = handle_ar_packets(ctx, p, end);
947 	if (p != end) {
948 		if (p > end)
949 			ar_context_abort(ctx, "inconsistent descriptor");
950 		goto error;
951 	}
952 
953 	ctx->pointer = p;
954 	ar_recycle_buffers(ctx, end_buffer_index);
955 
956 	return;
957 
958 error:
959 	ctx->pointer = NULL;
960 }
961 
962 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
963 			   unsigned int descriptors_offset, u32 regs)
964 {
965 	unsigned int i;
966 	dma_addr_t dma_addr;
967 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
968 	struct descriptor *d;
969 
970 	ctx->regs        = regs;
971 	ctx->ohci        = ohci;
972 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
973 
974 	for (i = 0; i < AR_BUFFERS; i++) {
975 		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
976 		if (!ctx->pages[i])
977 			goto out_of_memory;
978 		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
979 					0, PAGE_SIZE, DMA_FROM_DEVICE);
980 		if (dma_mapping_error(ohci->card.device, dma_addr)) {
981 			__free_page(ctx->pages[i]);
982 			ctx->pages[i] = NULL;
983 			goto out_of_memory;
984 		}
985 		set_page_private(ctx->pages[i], dma_addr);
986 	}
987 
988 	for (i = 0; i < AR_BUFFERS; i++)
989 		pages[i]              = ctx->pages[i];
990 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
991 		pages[AR_BUFFERS + i] = ctx->pages[i];
992 	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
993 				 -1, PAGE_KERNEL);
994 	if (!ctx->buffer)
995 		goto out_of_memory;
996 
997 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
998 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
999 
1000 	for (i = 0; i < AR_BUFFERS; i++) {
1001 		d = &ctx->descriptors[i];
1002 		d->req_count      = cpu_to_le16(PAGE_SIZE);
1003 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1004 						DESCRIPTOR_STATUS |
1005 						DESCRIPTOR_BRANCH_ALWAYS);
1006 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1007 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1008 			ar_next_buffer_index(i) * sizeof(struct descriptor));
1009 	}
1010 
1011 	return 0;
1012 
1013 out_of_memory:
1014 	ar_context_release(ctx);
1015 
1016 	return -ENOMEM;
1017 }
1018 
1019 static void ar_context_run(struct ar_context *ctx)
1020 {
1021 	unsigned int i;
1022 
1023 	for (i = 0; i < AR_BUFFERS; i++)
1024 		ar_context_link_page(ctx, i);
1025 
1026 	ctx->pointer = ctx->buffer;
1027 
1028 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1029 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1030 }
1031 
1032 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1033 {
1034 	__le16 branch;
1035 
1036 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1037 
1038 	/* figure out which descriptor the branch address goes in */
1039 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1040 		return d;
1041 	else
1042 		return d + z - 1;
1043 }
1044 
1045 static void context_tasklet(unsigned long data)
1046 {
1047 	struct context *ctx = (struct context *) data;
1048 	struct descriptor *d, *last;
1049 	u32 address;
1050 	int z;
1051 	struct descriptor_buffer *desc;
1052 
1053 	desc = list_entry(ctx->buffer_list.next,
1054 			struct descriptor_buffer, list);
1055 	last = ctx->last;
1056 	while (last->branch_address != 0) {
1057 		struct descriptor_buffer *old_desc = desc;
1058 		address = le32_to_cpu(last->branch_address);
1059 		z = address & 0xf;
1060 		address &= ~0xf;
1061 		ctx->current_bus = address;
1062 
1063 		/* If the branch address points to a buffer outside of the
1064 		 * current buffer, advance to the next buffer. */
1065 		if (address < desc->buffer_bus ||
1066 				address >= desc->buffer_bus + desc->used)
1067 			desc = list_entry(desc->list.next,
1068 					struct descriptor_buffer, list);
1069 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1070 		last = find_branch_descriptor(d, z);
1071 
1072 		if (!ctx->callback(ctx, d, last))
1073 			break;
1074 
1075 		if (old_desc != desc) {
1076 			/* If we've advanced to the next buffer, move the
1077 			 * previous buffer to the free list. */
1078 			unsigned long flags;
1079 			old_desc->used = 0;
1080 			spin_lock_irqsave(&ctx->ohci->lock, flags);
1081 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1082 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1083 		}
1084 		ctx->last = last;
1085 	}
1086 }
1087 
1088 /*
1089  * Allocate a new buffer and add it to the list of free buffers for this
1090  * context.  Must be called with ohci->lock held.
1091  */
1092 static int context_add_buffer(struct context *ctx)
1093 {
1094 	struct descriptor_buffer *desc;
1095 	dma_addr_t uninitialized_var(bus_addr);
1096 	int offset;
1097 
1098 	/*
1099 	 * 16MB of descriptors should be far more than enough for any DMA
1100 	 * program.  This will catch run-away userspace or DoS attacks.
1101 	 */
1102 	if (ctx->total_allocation >= 16*1024*1024)
1103 		return -ENOMEM;
1104 
1105 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1106 			&bus_addr, GFP_ATOMIC);
1107 	if (!desc)
1108 		return -ENOMEM;
1109 
1110 	offset = (void *)&desc->buffer - (void *)desc;
1111 	desc->buffer_size = PAGE_SIZE - offset;
1112 	desc->buffer_bus = bus_addr + offset;
1113 	desc->used = 0;
1114 
1115 	list_add_tail(&desc->list, &ctx->buffer_list);
1116 	ctx->total_allocation += PAGE_SIZE;
1117 
1118 	return 0;
1119 }
1120 
1121 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1122 			u32 regs, descriptor_callback_t callback)
1123 {
1124 	ctx->ohci = ohci;
1125 	ctx->regs = regs;
1126 	ctx->total_allocation = 0;
1127 
1128 	INIT_LIST_HEAD(&ctx->buffer_list);
1129 	if (context_add_buffer(ctx) < 0)
1130 		return -ENOMEM;
1131 
1132 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1133 			struct descriptor_buffer, list);
1134 
1135 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1136 	ctx->callback = callback;
1137 
1138 	/*
1139 	 * We put a dummy descriptor in the buffer that has a NULL
1140 	 * branch address and looks like it's been sent.  That way we
1141 	 * have a descriptor to append DMA programs to.
1142 	 */
1143 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1144 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1145 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1146 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1147 	ctx->last = ctx->buffer_tail->buffer;
1148 	ctx->prev = ctx->buffer_tail->buffer;
1149 
1150 	return 0;
1151 }
1152 
1153 static void context_release(struct context *ctx)
1154 {
1155 	struct fw_card *card = &ctx->ohci->card;
1156 	struct descriptor_buffer *desc, *tmp;
1157 
1158 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1159 		dma_free_coherent(card->device, PAGE_SIZE, desc,
1160 			desc->buffer_bus -
1161 			((void *)&desc->buffer - (void *)desc));
1162 }
1163 
1164 /* Must be called with ohci->lock held */
1165 static struct descriptor *context_get_descriptors(struct context *ctx,
1166 						  int z, dma_addr_t *d_bus)
1167 {
1168 	struct descriptor *d = NULL;
1169 	struct descriptor_buffer *desc = ctx->buffer_tail;
1170 
1171 	if (z * sizeof(*d) > desc->buffer_size)
1172 		return NULL;
1173 
1174 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1175 		/* No room for the descriptor in this buffer, so advance to the
1176 		 * next one. */
1177 
1178 		if (desc->list.next == &ctx->buffer_list) {
1179 			/* If there is no free buffer next in the list,
1180 			 * allocate one. */
1181 			if (context_add_buffer(ctx) < 0)
1182 				return NULL;
1183 		}
1184 		desc = list_entry(desc->list.next,
1185 				struct descriptor_buffer, list);
1186 		ctx->buffer_tail = desc;
1187 	}
1188 
1189 	d = desc->buffer + desc->used / sizeof(*d);
1190 	memset(d, 0, z * sizeof(*d));
1191 	*d_bus = desc->buffer_bus + desc->used;
1192 
1193 	return d;
1194 }
1195 
1196 static void context_run(struct context *ctx, u32 extra)
1197 {
1198 	struct fw_ohci *ohci = ctx->ohci;
1199 
1200 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1201 		  le32_to_cpu(ctx->last->branch_address));
1202 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1203 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1204 	ctx->running = true;
1205 	flush_writes(ohci);
1206 }
1207 
1208 static void context_append(struct context *ctx,
1209 			   struct descriptor *d, int z, int extra)
1210 {
1211 	dma_addr_t d_bus;
1212 	struct descriptor_buffer *desc = ctx->buffer_tail;
1213 
1214 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1215 
1216 	desc->used += (z + extra) * sizeof(*d);
1217 
1218 	wmb(); /* finish init of new descriptors before branch_address update */
1219 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1220 	ctx->prev = find_branch_descriptor(d, z);
1221 }
1222 
1223 static void context_stop(struct context *ctx)
1224 {
1225 	u32 reg;
1226 	int i;
1227 
1228 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1229 	ctx->running = false;
1230 
1231 	for (i = 0; i < 1000; i++) {
1232 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1233 		if ((reg & CONTEXT_ACTIVE) == 0)
1234 			return;
1235 
1236 		if (i)
1237 			udelay(10);
1238 	}
1239 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1240 }
1241 
1242 struct driver_data {
1243 	u8 inline_data[8];
1244 	struct fw_packet *packet;
1245 };
1246 
1247 /*
1248  * This function apppends a packet to the DMA queue for transmission.
1249  * Must always be called with the ochi->lock held to ensure proper
1250  * generation handling and locking around packet queue manipulation.
1251  */
1252 static int at_context_queue_packet(struct context *ctx,
1253 				   struct fw_packet *packet)
1254 {
1255 	struct fw_ohci *ohci = ctx->ohci;
1256 	dma_addr_t d_bus, uninitialized_var(payload_bus);
1257 	struct driver_data *driver_data;
1258 	struct descriptor *d, *last;
1259 	__le32 *header;
1260 	int z, tcode;
1261 
1262 	d = context_get_descriptors(ctx, 4, &d_bus);
1263 	if (d == NULL) {
1264 		packet->ack = RCODE_SEND_ERROR;
1265 		return -1;
1266 	}
1267 
1268 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1269 	d[0].res_count = cpu_to_le16(packet->timestamp);
1270 
1271 	/*
1272 	 * The DMA format for asyncronous link packets is different
1273 	 * from the IEEE1394 layout, so shift the fields around
1274 	 * accordingly.
1275 	 */
1276 
1277 	tcode = (packet->header[0] >> 4) & 0x0f;
1278 	header = (__le32 *) &d[1];
1279 	switch (tcode) {
1280 	case TCODE_WRITE_QUADLET_REQUEST:
1281 	case TCODE_WRITE_BLOCK_REQUEST:
1282 	case TCODE_WRITE_RESPONSE:
1283 	case TCODE_READ_QUADLET_REQUEST:
1284 	case TCODE_READ_BLOCK_REQUEST:
1285 	case TCODE_READ_QUADLET_RESPONSE:
1286 	case TCODE_READ_BLOCK_RESPONSE:
1287 	case TCODE_LOCK_REQUEST:
1288 	case TCODE_LOCK_RESPONSE:
1289 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1290 					(packet->speed << 16));
1291 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1292 					(packet->header[0] & 0xffff0000));
1293 		header[2] = cpu_to_le32(packet->header[2]);
1294 
1295 		if (TCODE_IS_BLOCK_PACKET(tcode))
1296 			header[3] = cpu_to_le32(packet->header[3]);
1297 		else
1298 			header[3] = (__force __le32) packet->header[3];
1299 
1300 		d[0].req_count = cpu_to_le16(packet->header_length);
1301 		break;
1302 
1303 	case TCODE_LINK_INTERNAL:
1304 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1305 					(packet->speed << 16));
1306 		header[1] = cpu_to_le32(packet->header[1]);
1307 		header[2] = cpu_to_le32(packet->header[2]);
1308 		d[0].req_count = cpu_to_le16(12);
1309 
1310 		if (is_ping_packet(&packet->header[1]))
1311 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1312 		break;
1313 
1314 	case TCODE_STREAM_DATA:
1315 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1316 					(packet->speed << 16));
1317 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1318 		d[0].req_count = cpu_to_le16(8);
1319 		break;
1320 
1321 	default:
1322 		/* BUG(); */
1323 		packet->ack = RCODE_SEND_ERROR;
1324 		return -1;
1325 	}
1326 
1327 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1328 	driver_data = (struct driver_data *) &d[3];
1329 	driver_data->packet = packet;
1330 	packet->driver_data = driver_data;
1331 
1332 	if (packet->payload_length > 0) {
1333 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1334 			payload_bus = dma_map_single(ohci->card.device,
1335 						     packet->payload,
1336 						     packet->payload_length,
1337 						     DMA_TO_DEVICE);
1338 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1339 				packet->ack = RCODE_SEND_ERROR;
1340 				return -1;
1341 			}
1342 			packet->payload_bus	= payload_bus;
1343 			packet->payload_mapped	= true;
1344 		} else {
1345 			memcpy(driver_data->inline_data, packet->payload,
1346 			       packet->payload_length);
1347 			payload_bus = d_bus + 3 * sizeof(*d);
1348 		}
1349 
1350 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1351 		d[2].data_address = cpu_to_le32(payload_bus);
1352 		last = &d[2];
1353 		z = 3;
1354 	} else {
1355 		last = &d[0];
1356 		z = 2;
1357 	}
1358 
1359 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1360 				     DESCRIPTOR_IRQ_ALWAYS |
1361 				     DESCRIPTOR_BRANCH_ALWAYS);
1362 
1363 	/* FIXME: Document how the locking works. */
1364 	if (ohci->generation != packet->generation) {
1365 		if (packet->payload_mapped)
1366 			dma_unmap_single(ohci->card.device, payload_bus,
1367 					 packet->payload_length, DMA_TO_DEVICE);
1368 		packet->ack = RCODE_GENERATION;
1369 		return -1;
1370 	}
1371 
1372 	context_append(ctx, d, z, 4 - z);
1373 
1374 	if (ctx->running)
1375 		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1376 	else
1377 		context_run(ctx, 0);
1378 
1379 	return 0;
1380 }
1381 
1382 static void at_context_flush(struct context *ctx)
1383 {
1384 	tasklet_disable(&ctx->tasklet);
1385 
1386 	ctx->flushing = true;
1387 	context_tasklet((unsigned long)ctx);
1388 	ctx->flushing = false;
1389 
1390 	tasklet_enable(&ctx->tasklet);
1391 }
1392 
1393 static int handle_at_packet(struct context *context,
1394 			    struct descriptor *d,
1395 			    struct descriptor *last)
1396 {
1397 	struct driver_data *driver_data;
1398 	struct fw_packet *packet;
1399 	struct fw_ohci *ohci = context->ohci;
1400 	int evt;
1401 
1402 	if (last->transfer_status == 0 && !context->flushing)
1403 		/* This descriptor isn't done yet, stop iteration. */
1404 		return 0;
1405 
1406 	driver_data = (struct driver_data *) &d[3];
1407 	packet = driver_data->packet;
1408 	if (packet == NULL)
1409 		/* This packet was cancelled, just continue. */
1410 		return 1;
1411 
1412 	if (packet->payload_mapped)
1413 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1414 				 packet->payload_length, DMA_TO_DEVICE);
1415 
1416 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1417 	packet->timestamp = le16_to_cpu(last->res_count);
1418 
1419 	log_ar_at_event('T', packet->speed, packet->header, evt);
1420 
1421 	switch (evt) {
1422 	case OHCI1394_evt_timeout:
1423 		/* Async response transmit timed out. */
1424 		packet->ack = RCODE_CANCELLED;
1425 		break;
1426 
1427 	case OHCI1394_evt_flushed:
1428 		/*
1429 		 * The packet was flushed should give same error as
1430 		 * when we try to use a stale generation count.
1431 		 */
1432 		packet->ack = RCODE_GENERATION;
1433 		break;
1434 
1435 	case OHCI1394_evt_missing_ack:
1436 		if (context->flushing)
1437 			packet->ack = RCODE_GENERATION;
1438 		else {
1439 			/*
1440 			 * Using a valid (current) generation count, but the
1441 			 * node is not on the bus or not sending acks.
1442 			 */
1443 			packet->ack = RCODE_NO_ACK;
1444 		}
1445 		break;
1446 
1447 	case ACK_COMPLETE + 0x10:
1448 	case ACK_PENDING + 0x10:
1449 	case ACK_BUSY_X + 0x10:
1450 	case ACK_BUSY_A + 0x10:
1451 	case ACK_BUSY_B + 0x10:
1452 	case ACK_DATA_ERROR + 0x10:
1453 	case ACK_TYPE_ERROR + 0x10:
1454 		packet->ack = evt - 0x10;
1455 		break;
1456 
1457 	case OHCI1394_evt_no_status:
1458 		if (context->flushing) {
1459 			packet->ack = RCODE_GENERATION;
1460 			break;
1461 		}
1462 		/* fall through */
1463 
1464 	default:
1465 		packet->ack = RCODE_SEND_ERROR;
1466 		break;
1467 	}
1468 
1469 	packet->callback(packet, &ohci->card, packet->ack);
1470 
1471 	return 1;
1472 }
1473 
1474 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1475 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1476 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1477 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1478 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1479 
1480 static void handle_local_rom(struct fw_ohci *ohci,
1481 			     struct fw_packet *packet, u32 csr)
1482 {
1483 	struct fw_packet response;
1484 	int tcode, length, i;
1485 
1486 	tcode = HEADER_GET_TCODE(packet->header[0]);
1487 	if (TCODE_IS_BLOCK_PACKET(tcode))
1488 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1489 	else
1490 		length = 4;
1491 
1492 	i = csr - CSR_CONFIG_ROM;
1493 	if (i + length > CONFIG_ROM_SIZE) {
1494 		fw_fill_response(&response, packet->header,
1495 				 RCODE_ADDRESS_ERROR, NULL, 0);
1496 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1497 		fw_fill_response(&response, packet->header,
1498 				 RCODE_TYPE_ERROR, NULL, 0);
1499 	} else {
1500 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1501 				 (void *) ohci->config_rom + i, length);
1502 	}
1503 
1504 	fw_core_handle_response(&ohci->card, &response);
1505 }
1506 
1507 static void handle_local_lock(struct fw_ohci *ohci,
1508 			      struct fw_packet *packet, u32 csr)
1509 {
1510 	struct fw_packet response;
1511 	int tcode, length, ext_tcode, sel, try;
1512 	__be32 *payload, lock_old;
1513 	u32 lock_arg, lock_data;
1514 
1515 	tcode = HEADER_GET_TCODE(packet->header[0]);
1516 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1517 	payload = packet->payload;
1518 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1519 
1520 	if (tcode == TCODE_LOCK_REQUEST &&
1521 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1522 		lock_arg = be32_to_cpu(payload[0]);
1523 		lock_data = be32_to_cpu(payload[1]);
1524 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1525 		lock_arg = 0;
1526 		lock_data = 0;
1527 	} else {
1528 		fw_fill_response(&response, packet->header,
1529 				 RCODE_TYPE_ERROR, NULL, 0);
1530 		goto out;
1531 	}
1532 
1533 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1534 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1535 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1536 	reg_write(ohci, OHCI1394_CSRControl, sel);
1537 
1538 	for (try = 0; try < 20; try++)
1539 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1540 			lock_old = cpu_to_be32(reg_read(ohci,
1541 							OHCI1394_CSRData));
1542 			fw_fill_response(&response, packet->header,
1543 					 RCODE_COMPLETE,
1544 					 &lock_old, sizeof(lock_old));
1545 			goto out;
1546 		}
1547 
1548 	fw_error("swap not done (CSR lock timeout)\n");
1549 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1550 
1551  out:
1552 	fw_core_handle_response(&ohci->card, &response);
1553 }
1554 
1555 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1556 {
1557 	u64 offset, csr;
1558 
1559 	if (ctx == &ctx->ohci->at_request_ctx) {
1560 		packet->ack = ACK_PENDING;
1561 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1562 	}
1563 
1564 	offset =
1565 		((unsigned long long)
1566 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1567 		packet->header[2];
1568 	csr = offset - CSR_REGISTER_BASE;
1569 
1570 	/* Handle config rom reads. */
1571 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1572 		handle_local_rom(ctx->ohci, packet, csr);
1573 	else switch (csr) {
1574 	case CSR_BUS_MANAGER_ID:
1575 	case CSR_BANDWIDTH_AVAILABLE:
1576 	case CSR_CHANNELS_AVAILABLE_HI:
1577 	case CSR_CHANNELS_AVAILABLE_LO:
1578 		handle_local_lock(ctx->ohci, packet, csr);
1579 		break;
1580 	default:
1581 		if (ctx == &ctx->ohci->at_request_ctx)
1582 			fw_core_handle_request(&ctx->ohci->card, packet);
1583 		else
1584 			fw_core_handle_response(&ctx->ohci->card, packet);
1585 		break;
1586 	}
1587 
1588 	if (ctx == &ctx->ohci->at_response_ctx) {
1589 		packet->ack = ACK_COMPLETE;
1590 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1591 	}
1592 }
1593 
1594 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1595 {
1596 	unsigned long flags;
1597 	int ret;
1598 
1599 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1600 
1601 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1602 	    ctx->ohci->generation == packet->generation) {
1603 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1604 		handle_local_request(ctx, packet);
1605 		return;
1606 	}
1607 
1608 	ret = at_context_queue_packet(ctx, packet);
1609 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1610 
1611 	if (ret < 0)
1612 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1613 
1614 }
1615 
1616 static void detect_dead_context(struct fw_ohci *ohci,
1617 				const char *name, unsigned int regs)
1618 {
1619 	u32 ctl;
1620 
1621 	ctl = reg_read(ohci, CONTROL_SET(regs));
1622 	if (ctl & CONTEXT_DEAD) {
1623 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1624 		fw_error("DMA context %s has stopped, error code: %s\n",
1625 			 name, evts[ctl & 0x1f]);
1626 #else
1627 		fw_error("DMA context %s has stopped, error code: %#x\n",
1628 			 name, ctl & 0x1f);
1629 #endif
1630 	}
1631 }
1632 
1633 static void handle_dead_contexts(struct fw_ohci *ohci)
1634 {
1635 	unsigned int i;
1636 	char name[8];
1637 
1638 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1639 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1640 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1641 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1642 	for (i = 0; i < 32; ++i) {
1643 		if (!(ohci->it_context_support & (1 << i)))
1644 			continue;
1645 		sprintf(name, "IT%u", i);
1646 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1647 	}
1648 	for (i = 0; i < 32; ++i) {
1649 		if (!(ohci->ir_context_support & (1 << i)))
1650 			continue;
1651 		sprintf(name, "IR%u", i);
1652 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1653 	}
1654 	/* TODO: maybe try to flush and restart the dead contexts */
1655 }
1656 
1657 static u32 cycle_timer_ticks(u32 cycle_timer)
1658 {
1659 	u32 ticks;
1660 
1661 	ticks = cycle_timer & 0xfff;
1662 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1663 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1664 
1665 	return ticks;
1666 }
1667 
1668 /*
1669  * Some controllers exhibit one or more of the following bugs when updating the
1670  * iso cycle timer register:
1671  *  - When the lowest six bits are wrapping around to zero, a read that happens
1672  *    at the same time will return garbage in the lowest ten bits.
1673  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1674  *    not incremented for about 60 ns.
1675  *  - Occasionally, the entire register reads zero.
1676  *
1677  * To catch these, we read the register three times and ensure that the
1678  * difference between each two consecutive reads is approximately the same, i.e.
1679  * less than twice the other.  Furthermore, any negative difference indicates an
1680  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1681  * execute, so we have enough precision to compute the ratio of the differences.)
1682  */
1683 static u32 get_cycle_time(struct fw_ohci *ohci)
1684 {
1685 	u32 c0, c1, c2;
1686 	u32 t0, t1, t2;
1687 	s32 diff01, diff12;
1688 	int i;
1689 
1690 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1691 
1692 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1693 		i = 0;
1694 		c1 = c2;
1695 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1696 		do {
1697 			c0 = c1;
1698 			c1 = c2;
1699 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1700 			t0 = cycle_timer_ticks(c0);
1701 			t1 = cycle_timer_ticks(c1);
1702 			t2 = cycle_timer_ticks(c2);
1703 			diff01 = t1 - t0;
1704 			diff12 = t2 - t1;
1705 		} while ((diff01 <= 0 || diff12 <= 0 ||
1706 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1707 			 && i++ < 20);
1708 	}
1709 
1710 	return c2;
1711 }
1712 
1713 /*
1714  * This function has to be called at least every 64 seconds.  The bus_time
1715  * field stores not only the upper 25 bits of the BUS_TIME register but also
1716  * the most significant bit of the cycle timer in bit 6 so that we can detect
1717  * changes in this bit.
1718  */
1719 static u32 update_bus_time(struct fw_ohci *ohci)
1720 {
1721 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1722 
1723 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1724 		ohci->bus_time += 0x40;
1725 
1726 	return ohci->bus_time | cycle_time_seconds;
1727 }
1728 
1729 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1730 {
1731 	int reg;
1732 
1733 	mutex_lock(&ohci->phy_reg_mutex);
1734 	reg = write_phy_reg(ohci, 7, port_index);
1735 	if (reg >= 0)
1736 		reg = read_phy_reg(ohci, 8);
1737 	mutex_unlock(&ohci->phy_reg_mutex);
1738 	if (reg < 0)
1739 		return reg;
1740 
1741 	switch (reg & 0x0f) {
1742 	case 0x06:
1743 		return 2;	/* is child node (connected to parent node) */
1744 	case 0x0e:
1745 		return 3;	/* is parent node (connected to child node) */
1746 	}
1747 	return 1;		/* not connected */
1748 }
1749 
1750 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1751 	int self_id_count)
1752 {
1753 	int i;
1754 	u32 entry;
1755 
1756 	for (i = 0; i < self_id_count; i++) {
1757 		entry = ohci->self_id_buffer[i];
1758 		if ((self_id & 0xff000000) == (entry & 0xff000000))
1759 			return -1;
1760 		if ((self_id & 0xff000000) < (entry & 0xff000000))
1761 			return i;
1762 	}
1763 	return i;
1764 }
1765 
1766 /*
1767  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1768  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1769  * Construct the selfID from phy register contents.
1770  * FIXME:  How to determine the selfID.i flag?
1771  */
1772 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1773 {
1774 	int reg, i, pos, status;
1775 	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1776 	u32 self_id = 0x8040c800;
1777 
1778 	reg = reg_read(ohci, OHCI1394_NodeID);
1779 	if (!(reg & OHCI1394_NodeID_idValid)) {
1780 		fw_notify("node ID not valid, new bus reset in progress\n");
1781 		return -EBUSY;
1782 	}
1783 	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1784 
1785 	reg = ohci_read_phy_reg(&ohci->card, 4);
1786 	if (reg < 0)
1787 		return reg;
1788 	self_id |= ((reg & 0x07) << 8); /* power class */
1789 
1790 	reg = ohci_read_phy_reg(&ohci->card, 1);
1791 	if (reg < 0)
1792 		return reg;
1793 	self_id |= ((reg & 0x3f) << 16); /* gap count */
1794 
1795 	for (i = 0; i < 3; i++) {
1796 		status = get_status_for_port(ohci, i);
1797 		if (status < 0)
1798 			return status;
1799 		self_id |= ((status & 0x3) << (6 - (i * 2)));
1800 	}
1801 
1802 	pos = get_self_id_pos(ohci, self_id, self_id_count);
1803 	if (pos >= 0) {
1804 		memmove(&(ohci->self_id_buffer[pos+1]),
1805 			&(ohci->self_id_buffer[pos]),
1806 			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1807 		ohci->self_id_buffer[pos] = self_id;
1808 		self_id_count++;
1809 	}
1810 	return self_id_count;
1811 }
1812 
1813 static void bus_reset_work(struct work_struct *work)
1814 {
1815 	struct fw_ohci *ohci =
1816 		container_of(work, struct fw_ohci, bus_reset_work);
1817 	int self_id_count, i, j, reg;
1818 	int generation, new_generation;
1819 	unsigned long flags;
1820 	void *free_rom = NULL;
1821 	dma_addr_t free_rom_bus = 0;
1822 	bool is_new_root;
1823 
1824 	reg = reg_read(ohci, OHCI1394_NodeID);
1825 	if (!(reg & OHCI1394_NodeID_idValid)) {
1826 		fw_notify("node ID not valid, new bus reset in progress\n");
1827 		return;
1828 	}
1829 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1830 		fw_notify("malconfigured bus\n");
1831 		return;
1832 	}
1833 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1834 			       OHCI1394_NodeID_nodeNumber);
1835 
1836 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1837 	if (!(ohci->is_root && is_new_root))
1838 		reg_write(ohci, OHCI1394_LinkControlSet,
1839 			  OHCI1394_LinkControl_cycleMaster);
1840 	ohci->is_root = is_new_root;
1841 
1842 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1843 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1844 		fw_notify("inconsistent self IDs\n");
1845 		return;
1846 	}
1847 	/*
1848 	 * The count in the SelfIDCount register is the number of
1849 	 * bytes in the self ID receive buffer.  Since we also receive
1850 	 * the inverted quadlets and a header quadlet, we shift one
1851 	 * bit extra to get the actual number of self IDs.
1852 	 */
1853 	self_id_count = (reg >> 3) & 0xff;
1854 
1855 	if (self_id_count > 252) {
1856 		fw_notify("inconsistent self IDs\n");
1857 		return;
1858 	}
1859 
1860 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1861 	rmb();
1862 
1863 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1864 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1865 			/*
1866 			 * If the invalid data looks like a cycle start packet,
1867 			 * it's likely to be the result of the cycle master
1868 			 * having a wrong gap count.  In this case, the self IDs
1869 			 * so far are valid and should be processed so that the
1870 			 * bus manager can then correct the gap count.
1871 			 */
1872 			if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1873 							== 0xffff008f) {
1874 				fw_notify("ignoring spurious self IDs\n");
1875 				self_id_count = j;
1876 				break;
1877 			} else {
1878 				fw_notify("inconsistent self IDs\n");
1879 				return;
1880 			}
1881 		}
1882 		ohci->self_id_buffer[j] =
1883 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1884 	}
1885 
1886 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1887 		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1888 		if (self_id_count < 0) {
1889 			fw_notify("could not construct local self ID\n");
1890 			return;
1891 		}
1892 	}
1893 
1894 	if (self_id_count == 0) {
1895 		fw_notify("inconsistent self IDs\n");
1896 		return;
1897 	}
1898 	rmb();
1899 
1900 	/*
1901 	 * Check the consistency of the self IDs we just read.  The
1902 	 * problem we face is that a new bus reset can start while we
1903 	 * read out the self IDs from the DMA buffer. If this happens,
1904 	 * the DMA buffer will be overwritten with new self IDs and we
1905 	 * will read out inconsistent data.  The OHCI specification
1906 	 * (section 11.2) recommends a technique similar to
1907 	 * linux/seqlock.h, where we remember the generation of the
1908 	 * self IDs in the buffer before reading them out and compare
1909 	 * it to the current generation after reading them out.  If
1910 	 * the two generations match we know we have a consistent set
1911 	 * of self IDs.
1912 	 */
1913 
1914 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1915 	if (new_generation != generation) {
1916 		fw_notify("recursive bus reset detected, "
1917 			  "discarding self ids\n");
1918 		return;
1919 	}
1920 
1921 	/* FIXME: Document how the locking works. */
1922 	spin_lock_irqsave(&ohci->lock, flags);
1923 
1924 	ohci->generation = -1; /* prevent AT packet queueing */
1925 	context_stop(&ohci->at_request_ctx);
1926 	context_stop(&ohci->at_response_ctx);
1927 
1928 	spin_unlock_irqrestore(&ohci->lock, flags);
1929 
1930 	/*
1931 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1932 	 * packets in the AT queues and software needs to drain them.
1933 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1934 	 */
1935 	at_context_flush(&ohci->at_request_ctx);
1936 	at_context_flush(&ohci->at_response_ctx);
1937 
1938 	spin_lock_irqsave(&ohci->lock, flags);
1939 
1940 	ohci->generation = generation;
1941 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1942 
1943 	if (ohci->quirks & QUIRK_RESET_PACKET)
1944 		ohci->request_generation = generation;
1945 
1946 	/*
1947 	 * This next bit is unrelated to the AT context stuff but we
1948 	 * have to do it under the spinlock also.  If a new config rom
1949 	 * was set up before this reset, the old one is now no longer
1950 	 * in use and we can free it. Update the config rom pointers
1951 	 * to point to the current config rom and clear the
1952 	 * next_config_rom pointer so a new update can take place.
1953 	 */
1954 
1955 	if (ohci->next_config_rom != NULL) {
1956 		if (ohci->next_config_rom != ohci->config_rom) {
1957 			free_rom      = ohci->config_rom;
1958 			free_rom_bus  = ohci->config_rom_bus;
1959 		}
1960 		ohci->config_rom      = ohci->next_config_rom;
1961 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1962 		ohci->next_config_rom = NULL;
1963 
1964 		/*
1965 		 * Restore config_rom image and manually update
1966 		 * config_rom registers.  Writing the header quadlet
1967 		 * will indicate that the config rom is ready, so we
1968 		 * do that last.
1969 		 */
1970 		reg_write(ohci, OHCI1394_BusOptions,
1971 			  be32_to_cpu(ohci->config_rom[2]));
1972 		ohci->config_rom[0] = ohci->next_header;
1973 		reg_write(ohci, OHCI1394_ConfigROMhdr,
1974 			  be32_to_cpu(ohci->next_header));
1975 	}
1976 
1977 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1978 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1979 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1980 #endif
1981 
1982 	spin_unlock_irqrestore(&ohci->lock, flags);
1983 
1984 	if (free_rom)
1985 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1986 				  free_rom, free_rom_bus);
1987 
1988 	log_selfids(ohci->node_id, generation,
1989 		    self_id_count, ohci->self_id_buffer);
1990 
1991 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1992 				 self_id_count, ohci->self_id_buffer,
1993 				 ohci->csr_state_setclear_abdicate);
1994 	ohci->csr_state_setclear_abdicate = false;
1995 }
1996 
1997 static irqreturn_t irq_handler(int irq, void *data)
1998 {
1999 	struct fw_ohci *ohci = data;
2000 	u32 event, iso_event;
2001 	int i;
2002 
2003 	event = reg_read(ohci, OHCI1394_IntEventClear);
2004 
2005 	if (!event || !~event)
2006 		return IRQ_NONE;
2007 
2008 	/*
2009 	 * busReset and postedWriteErr must not be cleared yet
2010 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2011 	 */
2012 	reg_write(ohci, OHCI1394_IntEventClear,
2013 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2014 	log_irqs(event);
2015 
2016 	if (event & OHCI1394_selfIDComplete)
2017 		queue_work(fw_workqueue, &ohci->bus_reset_work);
2018 
2019 	if (event & OHCI1394_RQPkt)
2020 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2021 
2022 	if (event & OHCI1394_RSPkt)
2023 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2024 
2025 	if (event & OHCI1394_reqTxComplete)
2026 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2027 
2028 	if (event & OHCI1394_respTxComplete)
2029 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2030 
2031 	if (event & OHCI1394_isochRx) {
2032 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2033 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2034 
2035 		while (iso_event) {
2036 			i = ffs(iso_event) - 1;
2037 			tasklet_schedule(
2038 				&ohci->ir_context_list[i].context.tasklet);
2039 			iso_event &= ~(1 << i);
2040 		}
2041 	}
2042 
2043 	if (event & OHCI1394_isochTx) {
2044 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2045 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2046 
2047 		while (iso_event) {
2048 			i = ffs(iso_event) - 1;
2049 			tasklet_schedule(
2050 				&ohci->it_context_list[i].context.tasklet);
2051 			iso_event &= ~(1 << i);
2052 		}
2053 	}
2054 
2055 	if (unlikely(event & OHCI1394_regAccessFail))
2056 		fw_error("Register access failure - "
2057 			 "please notify linux1394-devel@lists.sf.net\n");
2058 
2059 	if (unlikely(event & OHCI1394_postedWriteErr)) {
2060 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2061 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2062 		reg_write(ohci, OHCI1394_IntEventClear,
2063 			  OHCI1394_postedWriteErr);
2064 		if (printk_ratelimit())
2065 			fw_error("PCI posted write error\n");
2066 	}
2067 
2068 	if (unlikely(event & OHCI1394_cycleTooLong)) {
2069 		if (printk_ratelimit())
2070 			fw_notify("isochronous cycle too long\n");
2071 		reg_write(ohci, OHCI1394_LinkControlSet,
2072 			  OHCI1394_LinkControl_cycleMaster);
2073 	}
2074 
2075 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2076 		/*
2077 		 * We need to clear this event bit in order to make
2078 		 * cycleMatch isochronous I/O work.  In theory we should
2079 		 * stop active cycleMatch iso contexts now and restart
2080 		 * them at least two cycles later.  (FIXME?)
2081 		 */
2082 		if (printk_ratelimit())
2083 			fw_notify("isochronous cycle inconsistent\n");
2084 	}
2085 
2086 	if (unlikely(event & OHCI1394_unrecoverableError))
2087 		handle_dead_contexts(ohci);
2088 
2089 	if (event & OHCI1394_cycle64Seconds) {
2090 		spin_lock(&ohci->lock);
2091 		update_bus_time(ohci);
2092 		spin_unlock(&ohci->lock);
2093 	} else
2094 		flush_writes(ohci);
2095 
2096 	return IRQ_HANDLED;
2097 }
2098 
2099 static int software_reset(struct fw_ohci *ohci)
2100 {
2101 	u32 val;
2102 	int i;
2103 
2104 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2105 	for (i = 0; i < 500; i++) {
2106 		val = reg_read(ohci, OHCI1394_HCControlSet);
2107 		if (!~val)
2108 			return -ENODEV; /* Card was ejected. */
2109 
2110 		if (!(val & OHCI1394_HCControl_softReset))
2111 			return 0;
2112 
2113 		msleep(1);
2114 	}
2115 
2116 	return -EBUSY;
2117 }
2118 
2119 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2120 {
2121 	size_t size = length * 4;
2122 
2123 	memcpy(dest, src, size);
2124 	if (size < CONFIG_ROM_SIZE)
2125 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2126 }
2127 
2128 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2129 {
2130 	bool enable_1394a;
2131 	int ret, clear, set, offset;
2132 
2133 	/* Check if the driver should configure link and PHY. */
2134 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2135 	      OHCI1394_HCControl_programPhyEnable))
2136 		return 0;
2137 
2138 	/* Paranoia: check whether the PHY supports 1394a, too. */
2139 	enable_1394a = false;
2140 	ret = read_phy_reg(ohci, 2);
2141 	if (ret < 0)
2142 		return ret;
2143 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2144 		ret = read_paged_phy_reg(ohci, 1, 8);
2145 		if (ret < 0)
2146 			return ret;
2147 		if (ret >= 1)
2148 			enable_1394a = true;
2149 	}
2150 
2151 	if (ohci->quirks & QUIRK_NO_1394A)
2152 		enable_1394a = false;
2153 
2154 	/* Configure PHY and link consistently. */
2155 	if (enable_1394a) {
2156 		clear = 0;
2157 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2158 	} else {
2159 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2160 		set = 0;
2161 	}
2162 	ret = update_phy_reg(ohci, 5, clear, set);
2163 	if (ret < 0)
2164 		return ret;
2165 
2166 	if (enable_1394a)
2167 		offset = OHCI1394_HCControlSet;
2168 	else
2169 		offset = OHCI1394_HCControlClear;
2170 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2171 
2172 	/* Clean up: configuration has been taken care of. */
2173 	reg_write(ohci, OHCI1394_HCControlClear,
2174 		  OHCI1394_HCControl_programPhyEnable);
2175 
2176 	return 0;
2177 }
2178 
2179 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2180 {
2181 	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2182 	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2183 	int reg, i;
2184 
2185 	reg = read_phy_reg(ohci, 2);
2186 	if (reg < 0)
2187 		return reg;
2188 	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2189 		return 0;
2190 
2191 	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2192 		reg = read_paged_phy_reg(ohci, 1, i + 10);
2193 		if (reg < 0)
2194 			return reg;
2195 		if (reg != id[i])
2196 			return 0;
2197 	}
2198 	return 1;
2199 }
2200 
2201 static int ohci_enable(struct fw_card *card,
2202 		       const __be32 *config_rom, size_t length)
2203 {
2204 	struct fw_ohci *ohci = fw_ohci(card);
2205 	struct pci_dev *dev = to_pci_dev(card->device);
2206 	u32 lps, seconds, version, irqs;
2207 	int i, ret;
2208 
2209 	if (software_reset(ohci)) {
2210 		fw_error("Failed to reset ohci card.\n");
2211 		return -EBUSY;
2212 	}
2213 
2214 	/*
2215 	 * Now enable LPS, which we need in order to start accessing
2216 	 * most of the registers.  In fact, on some cards (ALI M5251),
2217 	 * accessing registers in the SClk domain without LPS enabled
2218 	 * will lock up the machine.  Wait 50msec to make sure we have
2219 	 * full link enabled.  However, with some cards (well, at least
2220 	 * a JMicron PCIe card), we have to try again sometimes.
2221 	 */
2222 	reg_write(ohci, OHCI1394_HCControlSet,
2223 		  OHCI1394_HCControl_LPS |
2224 		  OHCI1394_HCControl_postedWriteEnable);
2225 	flush_writes(ohci);
2226 
2227 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2228 		msleep(50);
2229 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2230 		      OHCI1394_HCControl_LPS;
2231 	}
2232 
2233 	if (!lps) {
2234 		fw_error("Failed to set Link Power Status\n");
2235 		return -EIO;
2236 	}
2237 
2238 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2239 		ret = probe_tsb41ba3d(ohci);
2240 		if (ret < 0)
2241 			return ret;
2242 		if (ret)
2243 			fw_notify("local TSB41BA3D phy\n");
2244 		else
2245 			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2246 	}
2247 
2248 	reg_write(ohci, OHCI1394_HCControlClear,
2249 		  OHCI1394_HCControl_noByteSwapData);
2250 
2251 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2252 	reg_write(ohci, OHCI1394_LinkControlSet,
2253 		  OHCI1394_LinkControl_cycleTimerEnable |
2254 		  OHCI1394_LinkControl_cycleMaster);
2255 
2256 	reg_write(ohci, OHCI1394_ATRetries,
2257 		  OHCI1394_MAX_AT_REQ_RETRIES |
2258 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2259 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2260 		  (200 << 16));
2261 
2262 	seconds = lower_32_bits(get_seconds());
2263 	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2264 	ohci->bus_time = seconds & ~0x3f;
2265 
2266 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2267 	if (version >= OHCI_VERSION_1_1) {
2268 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2269 			  0xfffffffe);
2270 		card->broadcast_channel_auto_allocated = true;
2271 	}
2272 
2273 	/* Get implemented bits of the priority arbitration request counter. */
2274 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2275 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2276 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2277 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2278 
2279 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2280 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2281 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2282 
2283 	ret = configure_1394a_enhancements(ohci);
2284 	if (ret < 0)
2285 		return ret;
2286 
2287 	/* Activate link_on bit and contender bit in our self ID packets.*/
2288 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2289 	if (ret < 0)
2290 		return ret;
2291 
2292 	/*
2293 	 * When the link is not yet enabled, the atomic config rom
2294 	 * update mechanism described below in ohci_set_config_rom()
2295 	 * is not active.  We have to update ConfigRomHeader and
2296 	 * BusOptions manually, and the write to ConfigROMmap takes
2297 	 * effect immediately.  We tie this to the enabling of the
2298 	 * link, so we have a valid config rom before enabling - the
2299 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2300 	 * values before enabling.
2301 	 *
2302 	 * However, when the ConfigROMmap is written, some controllers
2303 	 * always read back quadlets 0 and 2 from the config rom to
2304 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2305 	 * They shouldn't do that in this initial case where the link
2306 	 * isn't enabled.  This means we have to use the same
2307 	 * workaround here, setting the bus header to 0 and then write
2308 	 * the right values in the bus reset tasklet.
2309 	 */
2310 
2311 	if (config_rom) {
2312 		ohci->next_config_rom =
2313 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2314 					   &ohci->next_config_rom_bus,
2315 					   GFP_KERNEL);
2316 		if (ohci->next_config_rom == NULL)
2317 			return -ENOMEM;
2318 
2319 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2320 	} else {
2321 		/*
2322 		 * In the suspend case, config_rom is NULL, which
2323 		 * means that we just reuse the old config rom.
2324 		 */
2325 		ohci->next_config_rom = ohci->config_rom;
2326 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2327 	}
2328 
2329 	ohci->next_header = ohci->next_config_rom[0];
2330 	ohci->next_config_rom[0] = 0;
2331 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2332 	reg_write(ohci, OHCI1394_BusOptions,
2333 		  be32_to_cpu(ohci->next_config_rom[2]));
2334 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2335 
2336 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2337 
2338 	if (!(ohci->quirks & QUIRK_NO_MSI))
2339 		pci_enable_msi(dev);
2340 	if (request_irq(dev->irq, irq_handler,
2341 			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2342 			ohci_driver_name, ohci)) {
2343 		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2344 		pci_disable_msi(dev);
2345 
2346 		if (config_rom) {
2347 			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2348 					  ohci->next_config_rom,
2349 					  ohci->next_config_rom_bus);
2350 			ohci->next_config_rom = NULL;
2351 		}
2352 		return -EIO;
2353 	}
2354 
2355 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2356 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2357 		OHCI1394_isochTx | OHCI1394_isochRx |
2358 		OHCI1394_postedWriteErr |
2359 		OHCI1394_selfIDComplete |
2360 		OHCI1394_regAccessFail |
2361 		OHCI1394_cycle64Seconds |
2362 		OHCI1394_cycleInconsistent |
2363 		OHCI1394_unrecoverableError |
2364 		OHCI1394_cycleTooLong |
2365 		OHCI1394_masterIntEnable;
2366 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2367 		irqs |= OHCI1394_busReset;
2368 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2369 
2370 	reg_write(ohci, OHCI1394_HCControlSet,
2371 		  OHCI1394_HCControl_linkEnable |
2372 		  OHCI1394_HCControl_BIBimageValid);
2373 
2374 	reg_write(ohci, OHCI1394_LinkControlSet,
2375 		  OHCI1394_LinkControl_rcvSelfID |
2376 		  OHCI1394_LinkControl_rcvPhyPkt);
2377 
2378 	ar_context_run(&ohci->ar_request_ctx);
2379 	ar_context_run(&ohci->ar_response_ctx);
2380 
2381 	flush_writes(ohci);
2382 
2383 	/* We are ready to go, reset bus to finish initialization. */
2384 	fw_schedule_bus_reset(&ohci->card, false, true);
2385 
2386 	return 0;
2387 }
2388 
2389 static int ohci_set_config_rom(struct fw_card *card,
2390 			       const __be32 *config_rom, size_t length)
2391 {
2392 	struct fw_ohci *ohci;
2393 	unsigned long flags;
2394 	__be32 *next_config_rom;
2395 	dma_addr_t uninitialized_var(next_config_rom_bus);
2396 
2397 	ohci = fw_ohci(card);
2398 
2399 	/*
2400 	 * When the OHCI controller is enabled, the config rom update
2401 	 * mechanism is a bit tricky, but easy enough to use.  See
2402 	 * section 5.5.6 in the OHCI specification.
2403 	 *
2404 	 * The OHCI controller caches the new config rom address in a
2405 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2406 	 * for the changes to take place.  When the bus reset is
2407 	 * detected, the controller loads the new values for the
2408 	 * ConfigRomHeader and BusOptions registers from the specified
2409 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2410 	 * shadow register. All automatically and atomically.
2411 	 *
2412 	 * Now, there's a twist to this story.  The automatic load of
2413 	 * ConfigRomHeader and BusOptions doesn't honor the
2414 	 * noByteSwapData bit, so with a be32 config rom, the
2415 	 * controller will load be32 values in to these registers
2416 	 * during the atomic update, even on litte endian
2417 	 * architectures.  The workaround we use is to put a 0 in the
2418 	 * header quadlet; 0 is endian agnostic and means that the
2419 	 * config rom isn't ready yet.  In the bus reset tasklet we
2420 	 * then set up the real values for the two registers.
2421 	 *
2422 	 * We use ohci->lock to avoid racing with the code that sets
2423 	 * ohci->next_config_rom to NULL (see bus_reset_work).
2424 	 */
2425 
2426 	next_config_rom =
2427 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2428 				   &next_config_rom_bus, GFP_KERNEL);
2429 	if (next_config_rom == NULL)
2430 		return -ENOMEM;
2431 
2432 	spin_lock_irqsave(&ohci->lock, flags);
2433 
2434 	/*
2435 	 * If there is not an already pending config_rom update,
2436 	 * push our new allocation into the ohci->next_config_rom
2437 	 * and then mark the local variable as null so that we
2438 	 * won't deallocate the new buffer.
2439 	 *
2440 	 * OTOH, if there is a pending config_rom update, just
2441 	 * use that buffer with the new config_rom data, and
2442 	 * let this routine free the unused DMA allocation.
2443 	 */
2444 
2445 	if (ohci->next_config_rom == NULL) {
2446 		ohci->next_config_rom = next_config_rom;
2447 		ohci->next_config_rom_bus = next_config_rom_bus;
2448 		next_config_rom = NULL;
2449 	}
2450 
2451 	copy_config_rom(ohci->next_config_rom, config_rom, length);
2452 
2453 	ohci->next_header = config_rom[0];
2454 	ohci->next_config_rom[0] = 0;
2455 
2456 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2457 
2458 	spin_unlock_irqrestore(&ohci->lock, flags);
2459 
2460 	/* If we didn't use the DMA allocation, delete it. */
2461 	if (next_config_rom != NULL)
2462 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2463 				  next_config_rom, next_config_rom_bus);
2464 
2465 	/*
2466 	 * Now initiate a bus reset to have the changes take
2467 	 * effect. We clean up the old config rom memory and DMA
2468 	 * mappings in the bus reset tasklet, since the OHCI
2469 	 * controller could need to access it before the bus reset
2470 	 * takes effect.
2471 	 */
2472 
2473 	fw_schedule_bus_reset(&ohci->card, true, true);
2474 
2475 	return 0;
2476 }
2477 
2478 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2479 {
2480 	struct fw_ohci *ohci = fw_ohci(card);
2481 
2482 	at_context_transmit(&ohci->at_request_ctx, packet);
2483 }
2484 
2485 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2486 {
2487 	struct fw_ohci *ohci = fw_ohci(card);
2488 
2489 	at_context_transmit(&ohci->at_response_ctx, packet);
2490 }
2491 
2492 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2493 {
2494 	struct fw_ohci *ohci = fw_ohci(card);
2495 	struct context *ctx = &ohci->at_request_ctx;
2496 	struct driver_data *driver_data = packet->driver_data;
2497 	int ret = -ENOENT;
2498 
2499 	tasklet_disable(&ctx->tasklet);
2500 
2501 	if (packet->ack != 0)
2502 		goto out;
2503 
2504 	if (packet->payload_mapped)
2505 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2506 				 packet->payload_length, DMA_TO_DEVICE);
2507 
2508 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2509 	driver_data->packet = NULL;
2510 	packet->ack = RCODE_CANCELLED;
2511 	packet->callback(packet, &ohci->card, packet->ack);
2512 	ret = 0;
2513  out:
2514 	tasklet_enable(&ctx->tasklet);
2515 
2516 	return ret;
2517 }
2518 
2519 static int ohci_enable_phys_dma(struct fw_card *card,
2520 				int node_id, int generation)
2521 {
2522 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2523 	return 0;
2524 #else
2525 	struct fw_ohci *ohci = fw_ohci(card);
2526 	unsigned long flags;
2527 	int n, ret = 0;
2528 
2529 	/*
2530 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2531 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2532 	 */
2533 
2534 	spin_lock_irqsave(&ohci->lock, flags);
2535 
2536 	if (ohci->generation != generation) {
2537 		ret = -ESTALE;
2538 		goto out;
2539 	}
2540 
2541 	/*
2542 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2543 	 * enabled for _all_ nodes on remote buses.
2544 	 */
2545 
2546 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2547 	if (n < 32)
2548 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2549 	else
2550 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2551 
2552 	flush_writes(ohci);
2553  out:
2554 	spin_unlock_irqrestore(&ohci->lock, flags);
2555 
2556 	return ret;
2557 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2558 }
2559 
2560 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2561 {
2562 	struct fw_ohci *ohci = fw_ohci(card);
2563 	unsigned long flags;
2564 	u32 value;
2565 
2566 	switch (csr_offset) {
2567 	case CSR_STATE_CLEAR:
2568 	case CSR_STATE_SET:
2569 		if (ohci->is_root &&
2570 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2571 		     OHCI1394_LinkControl_cycleMaster))
2572 			value = CSR_STATE_BIT_CMSTR;
2573 		else
2574 			value = 0;
2575 		if (ohci->csr_state_setclear_abdicate)
2576 			value |= CSR_STATE_BIT_ABDICATE;
2577 
2578 		return value;
2579 
2580 	case CSR_NODE_IDS:
2581 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2582 
2583 	case CSR_CYCLE_TIME:
2584 		return get_cycle_time(ohci);
2585 
2586 	case CSR_BUS_TIME:
2587 		/*
2588 		 * We might be called just after the cycle timer has wrapped
2589 		 * around but just before the cycle64Seconds handler, so we
2590 		 * better check here, too, if the bus time needs to be updated.
2591 		 */
2592 		spin_lock_irqsave(&ohci->lock, flags);
2593 		value = update_bus_time(ohci);
2594 		spin_unlock_irqrestore(&ohci->lock, flags);
2595 		return value;
2596 
2597 	case CSR_BUSY_TIMEOUT:
2598 		value = reg_read(ohci, OHCI1394_ATRetries);
2599 		return (value >> 4) & 0x0ffff00f;
2600 
2601 	case CSR_PRIORITY_BUDGET:
2602 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2603 			(ohci->pri_req_max << 8);
2604 
2605 	default:
2606 		WARN_ON(1);
2607 		return 0;
2608 	}
2609 }
2610 
2611 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2612 {
2613 	struct fw_ohci *ohci = fw_ohci(card);
2614 	unsigned long flags;
2615 
2616 	switch (csr_offset) {
2617 	case CSR_STATE_CLEAR:
2618 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2619 			reg_write(ohci, OHCI1394_LinkControlClear,
2620 				  OHCI1394_LinkControl_cycleMaster);
2621 			flush_writes(ohci);
2622 		}
2623 		if (value & CSR_STATE_BIT_ABDICATE)
2624 			ohci->csr_state_setclear_abdicate = false;
2625 		break;
2626 
2627 	case CSR_STATE_SET:
2628 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2629 			reg_write(ohci, OHCI1394_LinkControlSet,
2630 				  OHCI1394_LinkControl_cycleMaster);
2631 			flush_writes(ohci);
2632 		}
2633 		if (value & CSR_STATE_BIT_ABDICATE)
2634 			ohci->csr_state_setclear_abdicate = true;
2635 		break;
2636 
2637 	case CSR_NODE_IDS:
2638 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2639 		flush_writes(ohci);
2640 		break;
2641 
2642 	case CSR_CYCLE_TIME:
2643 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2644 		reg_write(ohci, OHCI1394_IntEventSet,
2645 			  OHCI1394_cycleInconsistent);
2646 		flush_writes(ohci);
2647 		break;
2648 
2649 	case CSR_BUS_TIME:
2650 		spin_lock_irqsave(&ohci->lock, flags);
2651 		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2652 		spin_unlock_irqrestore(&ohci->lock, flags);
2653 		break;
2654 
2655 	case CSR_BUSY_TIMEOUT:
2656 		value = (value & 0xf) | ((value & 0xf) << 4) |
2657 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2658 		reg_write(ohci, OHCI1394_ATRetries, value);
2659 		flush_writes(ohci);
2660 		break;
2661 
2662 	case CSR_PRIORITY_BUDGET:
2663 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2664 		flush_writes(ohci);
2665 		break;
2666 
2667 	default:
2668 		WARN_ON(1);
2669 		break;
2670 	}
2671 }
2672 
2673 static void copy_iso_headers(struct iso_context *ctx, void *p)
2674 {
2675 	int i = ctx->header_length;
2676 
2677 	if (i + ctx->base.header_size > PAGE_SIZE)
2678 		return;
2679 
2680 	/*
2681 	 * The iso header is byteswapped to little endian by
2682 	 * the controller, but the remaining header quadlets
2683 	 * are big endian.  We want to present all the headers
2684 	 * as big endian, so we have to swap the first quadlet.
2685 	 */
2686 	if (ctx->base.header_size > 0)
2687 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2688 	if (ctx->base.header_size > 4)
2689 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2690 	if (ctx->base.header_size > 8)
2691 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2692 	ctx->header_length += ctx->base.header_size;
2693 }
2694 
2695 static int handle_ir_packet_per_buffer(struct context *context,
2696 				       struct descriptor *d,
2697 				       struct descriptor *last)
2698 {
2699 	struct iso_context *ctx =
2700 		container_of(context, struct iso_context, context);
2701 	struct descriptor *pd;
2702 	u32 buffer_dma;
2703 	__le32 *ir_header;
2704 	void *p;
2705 
2706 	for (pd = d; pd <= last; pd++)
2707 		if (pd->transfer_status)
2708 			break;
2709 	if (pd > last)
2710 		/* Descriptor(s) not done yet, stop iteration */
2711 		return 0;
2712 
2713 	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2714 		d++;
2715 		buffer_dma = le32_to_cpu(d->data_address);
2716 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2717 					      buffer_dma & PAGE_MASK,
2718 					      buffer_dma & ~PAGE_MASK,
2719 					      le16_to_cpu(d->req_count),
2720 					      DMA_FROM_DEVICE);
2721 	}
2722 
2723 	p = last + 1;
2724 	copy_iso_headers(ctx, p);
2725 
2726 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2727 		ir_header = (__le32 *) p;
2728 		ctx->base.callback.sc(&ctx->base,
2729 				      le32_to_cpu(ir_header[0]) & 0xffff,
2730 				      ctx->header_length, ctx->header,
2731 				      ctx->base.callback_data);
2732 		ctx->header_length = 0;
2733 	}
2734 
2735 	return 1;
2736 }
2737 
2738 /* d == last because each descriptor block is only a single descriptor. */
2739 static int handle_ir_buffer_fill(struct context *context,
2740 				 struct descriptor *d,
2741 				 struct descriptor *last)
2742 {
2743 	struct iso_context *ctx =
2744 		container_of(context, struct iso_context, context);
2745 	u32 buffer_dma;
2746 
2747 	if (!last->transfer_status)
2748 		/* Descriptor(s) not done yet, stop iteration */
2749 		return 0;
2750 
2751 	buffer_dma = le32_to_cpu(last->data_address);
2752 	dma_sync_single_range_for_cpu(context->ohci->card.device,
2753 				      buffer_dma & PAGE_MASK,
2754 				      buffer_dma & ~PAGE_MASK,
2755 				      le16_to_cpu(last->req_count),
2756 				      DMA_FROM_DEVICE);
2757 
2758 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2759 		ctx->base.callback.mc(&ctx->base,
2760 				      le32_to_cpu(last->data_address) +
2761 				      le16_to_cpu(last->req_count) -
2762 				      le16_to_cpu(last->res_count),
2763 				      ctx->base.callback_data);
2764 
2765 	return 1;
2766 }
2767 
2768 static inline void sync_it_packet_for_cpu(struct context *context,
2769 					  struct descriptor *pd)
2770 {
2771 	__le16 control;
2772 	u32 buffer_dma;
2773 
2774 	/* only packets beginning with OUTPUT_MORE* have data buffers */
2775 	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2776 		return;
2777 
2778 	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2779 	pd += 2;
2780 
2781 	/*
2782 	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2783 	 * data buffer is in the context program's coherent page and must not
2784 	 * be synced.
2785 	 */
2786 	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2787 	    (context->current_bus          & PAGE_MASK)) {
2788 		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2789 			return;
2790 		pd++;
2791 	}
2792 
2793 	do {
2794 		buffer_dma = le32_to_cpu(pd->data_address);
2795 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2796 					      buffer_dma & PAGE_MASK,
2797 					      buffer_dma & ~PAGE_MASK,
2798 					      le16_to_cpu(pd->req_count),
2799 					      DMA_TO_DEVICE);
2800 		control = pd->control;
2801 		pd++;
2802 	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2803 }
2804 
2805 static int handle_it_packet(struct context *context,
2806 			    struct descriptor *d,
2807 			    struct descriptor *last)
2808 {
2809 	struct iso_context *ctx =
2810 		container_of(context, struct iso_context, context);
2811 	int i;
2812 	struct descriptor *pd;
2813 
2814 	for (pd = d; pd <= last; pd++)
2815 		if (pd->transfer_status)
2816 			break;
2817 	if (pd > last)
2818 		/* Descriptor(s) not done yet, stop iteration */
2819 		return 0;
2820 
2821 	sync_it_packet_for_cpu(context, d);
2822 
2823 	i = ctx->header_length;
2824 	if (i + 4 < PAGE_SIZE) {
2825 		/* Present this value as big-endian to match the receive code */
2826 		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2827 				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2828 				le16_to_cpu(pd->res_count));
2829 		ctx->header_length += 4;
2830 	}
2831 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2832 		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2833 				      ctx->header_length, ctx->header,
2834 				      ctx->base.callback_data);
2835 		ctx->header_length = 0;
2836 	}
2837 	return 1;
2838 }
2839 
2840 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2841 {
2842 	u32 hi = channels >> 32, lo = channels;
2843 
2844 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2845 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2846 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2847 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2848 	mmiowb();
2849 	ohci->mc_channels = channels;
2850 }
2851 
2852 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2853 				int type, int channel, size_t header_size)
2854 {
2855 	struct fw_ohci *ohci = fw_ohci(card);
2856 	struct iso_context *uninitialized_var(ctx);
2857 	descriptor_callback_t uninitialized_var(callback);
2858 	u64 *uninitialized_var(channels);
2859 	u32 *uninitialized_var(mask), uninitialized_var(regs);
2860 	unsigned long flags;
2861 	int index, ret = -EBUSY;
2862 
2863 	spin_lock_irqsave(&ohci->lock, flags);
2864 
2865 	switch (type) {
2866 	case FW_ISO_CONTEXT_TRANSMIT:
2867 		mask     = &ohci->it_context_mask;
2868 		callback = handle_it_packet;
2869 		index    = ffs(*mask) - 1;
2870 		if (index >= 0) {
2871 			*mask &= ~(1 << index);
2872 			regs = OHCI1394_IsoXmitContextBase(index);
2873 			ctx  = &ohci->it_context_list[index];
2874 		}
2875 		break;
2876 
2877 	case FW_ISO_CONTEXT_RECEIVE:
2878 		channels = &ohci->ir_context_channels;
2879 		mask     = &ohci->ir_context_mask;
2880 		callback = handle_ir_packet_per_buffer;
2881 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2882 		if (index >= 0) {
2883 			*channels &= ~(1ULL << channel);
2884 			*mask     &= ~(1 << index);
2885 			regs = OHCI1394_IsoRcvContextBase(index);
2886 			ctx  = &ohci->ir_context_list[index];
2887 		}
2888 		break;
2889 
2890 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2891 		mask     = &ohci->ir_context_mask;
2892 		callback = handle_ir_buffer_fill;
2893 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2894 		if (index >= 0) {
2895 			ohci->mc_allocated = true;
2896 			*mask &= ~(1 << index);
2897 			regs = OHCI1394_IsoRcvContextBase(index);
2898 			ctx  = &ohci->ir_context_list[index];
2899 		}
2900 		break;
2901 
2902 	default:
2903 		index = -1;
2904 		ret = -ENOSYS;
2905 	}
2906 
2907 	spin_unlock_irqrestore(&ohci->lock, flags);
2908 
2909 	if (index < 0)
2910 		return ERR_PTR(ret);
2911 
2912 	memset(ctx, 0, sizeof(*ctx));
2913 	ctx->header_length = 0;
2914 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2915 	if (ctx->header == NULL) {
2916 		ret = -ENOMEM;
2917 		goto out;
2918 	}
2919 	ret = context_init(&ctx->context, ohci, regs, callback);
2920 	if (ret < 0)
2921 		goto out_with_header;
2922 
2923 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2924 		set_multichannel_mask(ohci, 0);
2925 
2926 	return &ctx->base;
2927 
2928  out_with_header:
2929 	free_page((unsigned long)ctx->header);
2930  out:
2931 	spin_lock_irqsave(&ohci->lock, flags);
2932 
2933 	switch (type) {
2934 	case FW_ISO_CONTEXT_RECEIVE:
2935 		*channels |= 1ULL << channel;
2936 		break;
2937 
2938 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2939 		ohci->mc_allocated = false;
2940 		break;
2941 	}
2942 	*mask |= 1 << index;
2943 
2944 	spin_unlock_irqrestore(&ohci->lock, flags);
2945 
2946 	return ERR_PTR(ret);
2947 }
2948 
2949 static int ohci_start_iso(struct fw_iso_context *base,
2950 			  s32 cycle, u32 sync, u32 tags)
2951 {
2952 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2953 	struct fw_ohci *ohci = ctx->context.ohci;
2954 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2955 	int index;
2956 
2957 	/* the controller cannot start without any queued packets */
2958 	if (ctx->context.last->branch_address == 0)
2959 		return -ENODATA;
2960 
2961 	switch (ctx->base.type) {
2962 	case FW_ISO_CONTEXT_TRANSMIT:
2963 		index = ctx - ohci->it_context_list;
2964 		match = 0;
2965 		if (cycle >= 0)
2966 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2967 				(cycle & 0x7fff) << 16;
2968 
2969 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2970 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2971 		context_run(&ctx->context, match);
2972 		break;
2973 
2974 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2975 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2976 		/* fall through */
2977 	case FW_ISO_CONTEXT_RECEIVE:
2978 		index = ctx - ohci->ir_context_list;
2979 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2980 		if (cycle >= 0) {
2981 			match |= (cycle & 0x07fff) << 12;
2982 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2983 		}
2984 
2985 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2986 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2987 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2988 		context_run(&ctx->context, control);
2989 
2990 		ctx->sync = sync;
2991 		ctx->tags = tags;
2992 
2993 		break;
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 static int ohci_stop_iso(struct fw_iso_context *base)
3000 {
3001 	struct fw_ohci *ohci = fw_ohci(base->card);
3002 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3003 	int index;
3004 
3005 	switch (ctx->base.type) {
3006 	case FW_ISO_CONTEXT_TRANSMIT:
3007 		index = ctx - ohci->it_context_list;
3008 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3009 		break;
3010 
3011 	case FW_ISO_CONTEXT_RECEIVE:
3012 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3013 		index = ctx - ohci->ir_context_list;
3014 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3015 		break;
3016 	}
3017 	flush_writes(ohci);
3018 	context_stop(&ctx->context);
3019 	tasklet_kill(&ctx->context.tasklet);
3020 
3021 	return 0;
3022 }
3023 
3024 static void ohci_free_iso_context(struct fw_iso_context *base)
3025 {
3026 	struct fw_ohci *ohci = fw_ohci(base->card);
3027 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3028 	unsigned long flags;
3029 	int index;
3030 
3031 	ohci_stop_iso(base);
3032 	context_release(&ctx->context);
3033 	free_page((unsigned long)ctx->header);
3034 
3035 	spin_lock_irqsave(&ohci->lock, flags);
3036 
3037 	switch (base->type) {
3038 	case FW_ISO_CONTEXT_TRANSMIT:
3039 		index = ctx - ohci->it_context_list;
3040 		ohci->it_context_mask |= 1 << index;
3041 		break;
3042 
3043 	case FW_ISO_CONTEXT_RECEIVE:
3044 		index = ctx - ohci->ir_context_list;
3045 		ohci->ir_context_mask |= 1 << index;
3046 		ohci->ir_context_channels |= 1ULL << base->channel;
3047 		break;
3048 
3049 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3050 		index = ctx - ohci->ir_context_list;
3051 		ohci->ir_context_mask |= 1 << index;
3052 		ohci->ir_context_channels |= ohci->mc_channels;
3053 		ohci->mc_channels = 0;
3054 		ohci->mc_allocated = false;
3055 		break;
3056 	}
3057 
3058 	spin_unlock_irqrestore(&ohci->lock, flags);
3059 }
3060 
3061 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3062 {
3063 	struct fw_ohci *ohci = fw_ohci(base->card);
3064 	unsigned long flags;
3065 	int ret;
3066 
3067 	switch (base->type) {
3068 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3069 
3070 		spin_lock_irqsave(&ohci->lock, flags);
3071 
3072 		/* Don't allow multichannel to grab other contexts' channels. */
3073 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3074 			*channels = ohci->ir_context_channels;
3075 			ret = -EBUSY;
3076 		} else {
3077 			set_multichannel_mask(ohci, *channels);
3078 			ret = 0;
3079 		}
3080 
3081 		spin_unlock_irqrestore(&ohci->lock, flags);
3082 
3083 		break;
3084 	default:
3085 		ret = -EINVAL;
3086 	}
3087 
3088 	return ret;
3089 }
3090 
3091 #ifdef CONFIG_PM
3092 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3093 {
3094 	int i;
3095 	struct iso_context *ctx;
3096 
3097 	for (i = 0 ; i < ohci->n_ir ; i++) {
3098 		ctx = &ohci->ir_context_list[i];
3099 		if (ctx->context.running)
3100 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3101 	}
3102 
3103 	for (i = 0 ; i < ohci->n_it ; i++) {
3104 		ctx = &ohci->it_context_list[i];
3105 		if (ctx->context.running)
3106 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3107 	}
3108 }
3109 #endif
3110 
3111 static int queue_iso_transmit(struct iso_context *ctx,
3112 			      struct fw_iso_packet *packet,
3113 			      struct fw_iso_buffer *buffer,
3114 			      unsigned long payload)
3115 {
3116 	struct descriptor *d, *last, *pd;
3117 	struct fw_iso_packet *p;
3118 	__le32 *header;
3119 	dma_addr_t d_bus, page_bus;
3120 	u32 z, header_z, payload_z, irq;
3121 	u32 payload_index, payload_end_index, next_page_index;
3122 	int page, end_page, i, length, offset;
3123 
3124 	p = packet;
3125 	payload_index = payload;
3126 
3127 	if (p->skip)
3128 		z = 1;
3129 	else
3130 		z = 2;
3131 	if (p->header_length > 0)
3132 		z++;
3133 
3134 	/* Determine the first page the payload isn't contained in. */
3135 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3136 	if (p->payload_length > 0)
3137 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3138 	else
3139 		payload_z = 0;
3140 
3141 	z += payload_z;
3142 
3143 	/* Get header size in number of descriptors. */
3144 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3145 
3146 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3147 	if (d == NULL)
3148 		return -ENOMEM;
3149 
3150 	if (!p->skip) {
3151 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3152 		d[0].req_count = cpu_to_le16(8);
3153 		/*
3154 		 * Link the skip address to this descriptor itself.  This causes
3155 		 * a context to skip a cycle whenever lost cycles or FIFO
3156 		 * overruns occur, without dropping the data.  The application
3157 		 * should then decide whether this is an error condition or not.
3158 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3159 		 */
3160 		d[0].branch_address = cpu_to_le32(d_bus | z);
3161 
3162 		header = (__le32 *) &d[1];
3163 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3164 					IT_HEADER_TAG(p->tag) |
3165 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3166 					IT_HEADER_CHANNEL(ctx->base.channel) |
3167 					IT_HEADER_SPEED(ctx->base.speed));
3168 		header[1] =
3169 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3170 							  p->payload_length));
3171 	}
3172 
3173 	if (p->header_length > 0) {
3174 		d[2].req_count    = cpu_to_le16(p->header_length);
3175 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3176 		memcpy(&d[z], p->header, p->header_length);
3177 	}
3178 
3179 	pd = d + z - payload_z;
3180 	payload_end_index = payload_index + p->payload_length;
3181 	for (i = 0; i < payload_z; i++) {
3182 		page               = payload_index >> PAGE_SHIFT;
3183 		offset             = payload_index & ~PAGE_MASK;
3184 		next_page_index    = (page + 1) << PAGE_SHIFT;
3185 		length             =
3186 			min(next_page_index, payload_end_index) - payload_index;
3187 		pd[i].req_count    = cpu_to_le16(length);
3188 
3189 		page_bus = page_private(buffer->pages[page]);
3190 		pd[i].data_address = cpu_to_le32(page_bus + offset);
3191 
3192 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3193 						 page_bus, offset, length,
3194 						 DMA_TO_DEVICE);
3195 
3196 		payload_index += length;
3197 	}
3198 
3199 	if (p->interrupt)
3200 		irq = DESCRIPTOR_IRQ_ALWAYS;
3201 	else
3202 		irq = DESCRIPTOR_NO_IRQ;
3203 
3204 	last = z == 2 ? d : d + z - 1;
3205 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3206 				     DESCRIPTOR_STATUS |
3207 				     DESCRIPTOR_BRANCH_ALWAYS |
3208 				     irq);
3209 
3210 	context_append(&ctx->context, d, z, header_z);
3211 
3212 	return 0;
3213 }
3214 
3215 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3216 				       struct fw_iso_packet *packet,
3217 				       struct fw_iso_buffer *buffer,
3218 				       unsigned long payload)
3219 {
3220 	struct device *device = ctx->context.ohci->card.device;
3221 	struct descriptor *d, *pd;
3222 	dma_addr_t d_bus, page_bus;
3223 	u32 z, header_z, rest;
3224 	int i, j, length;
3225 	int page, offset, packet_count, header_size, payload_per_buffer;
3226 
3227 	/*
3228 	 * The OHCI controller puts the isochronous header and trailer in the
3229 	 * buffer, so we need at least 8 bytes.
3230 	 */
3231 	packet_count = packet->header_length / ctx->base.header_size;
3232 	header_size  = max(ctx->base.header_size, (size_t)8);
3233 
3234 	/* Get header size in number of descriptors. */
3235 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3236 	page     = payload >> PAGE_SHIFT;
3237 	offset   = payload & ~PAGE_MASK;
3238 	payload_per_buffer = packet->payload_length / packet_count;
3239 
3240 	for (i = 0; i < packet_count; i++) {
3241 		/* d points to the header descriptor */
3242 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3243 		d = context_get_descriptors(&ctx->context,
3244 				z + header_z, &d_bus);
3245 		if (d == NULL)
3246 			return -ENOMEM;
3247 
3248 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3249 					      DESCRIPTOR_INPUT_MORE);
3250 		if (packet->skip && i == 0)
3251 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3252 		d->req_count    = cpu_to_le16(header_size);
3253 		d->res_count    = d->req_count;
3254 		d->transfer_status = 0;
3255 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3256 
3257 		rest = payload_per_buffer;
3258 		pd = d;
3259 		for (j = 1; j < z; j++) {
3260 			pd++;
3261 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3262 						  DESCRIPTOR_INPUT_MORE);
3263 
3264 			if (offset + rest < PAGE_SIZE)
3265 				length = rest;
3266 			else
3267 				length = PAGE_SIZE - offset;
3268 			pd->req_count = cpu_to_le16(length);
3269 			pd->res_count = pd->req_count;
3270 			pd->transfer_status = 0;
3271 
3272 			page_bus = page_private(buffer->pages[page]);
3273 			pd->data_address = cpu_to_le32(page_bus + offset);
3274 
3275 			dma_sync_single_range_for_device(device, page_bus,
3276 							 offset, length,
3277 							 DMA_FROM_DEVICE);
3278 
3279 			offset = (offset + length) & ~PAGE_MASK;
3280 			rest -= length;
3281 			if (offset == 0)
3282 				page++;
3283 		}
3284 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3285 					  DESCRIPTOR_INPUT_LAST |
3286 					  DESCRIPTOR_BRANCH_ALWAYS);
3287 		if (packet->interrupt && i == packet_count - 1)
3288 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3289 
3290 		context_append(&ctx->context, d, z, header_z);
3291 	}
3292 
3293 	return 0;
3294 }
3295 
3296 static int queue_iso_buffer_fill(struct iso_context *ctx,
3297 				 struct fw_iso_packet *packet,
3298 				 struct fw_iso_buffer *buffer,
3299 				 unsigned long payload)
3300 {
3301 	struct descriptor *d;
3302 	dma_addr_t d_bus, page_bus;
3303 	int page, offset, rest, z, i, length;
3304 
3305 	page   = payload >> PAGE_SHIFT;
3306 	offset = payload & ~PAGE_MASK;
3307 	rest   = packet->payload_length;
3308 
3309 	/* We need one descriptor for each page in the buffer. */
3310 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3311 
3312 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3313 		return -EFAULT;
3314 
3315 	for (i = 0; i < z; i++) {
3316 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3317 		if (d == NULL)
3318 			return -ENOMEM;
3319 
3320 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3321 					 DESCRIPTOR_BRANCH_ALWAYS);
3322 		if (packet->skip && i == 0)
3323 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3324 		if (packet->interrupt && i == z - 1)
3325 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3326 
3327 		if (offset + rest < PAGE_SIZE)
3328 			length = rest;
3329 		else
3330 			length = PAGE_SIZE - offset;
3331 		d->req_count = cpu_to_le16(length);
3332 		d->res_count = d->req_count;
3333 		d->transfer_status = 0;
3334 
3335 		page_bus = page_private(buffer->pages[page]);
3336 		d->data_address = cpu_to_le32(page_bus + offset);
3337 
3338 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3339 						 page_bus, offset, length,
3340 						 DMA_FROM_DEVICE);
3341 
3342 		rest -= length;
3343 		offset = 0;
3344 		page++;
3345 
3346 		context_append(&ctx->context, d, 1, 0);
3347 	}
3348 
3349 	return 0;
3350 }
3351 
3352 static int ohci_queue_iso(struct fw_iso_context *base,
3353 			  struct fw_iso_packet *packet,
3354 			  struct fw_iso_buffer *buffer,
3355 			  unsigned long payload)
3356 {
3357 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3358 	unsigned long flags;
3359 	int ret = -ENOSYS;
3360 
3361 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3362 	switch (base->type) {
3363 	case FW_ISO_CONTEXT_TRANSMIT:
3364 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3365 		break;
3366 	case FW_ISO_CONTEXT_RECEIVE:
3367 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3368 		break;
3369 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3370 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3371 		break;
3372 	}
3373 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3374 
3375 	return ret;
3376 }
3377 
3378 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3379 {
3380 	struct context *ctx =
3381 			&container_of(base, struct iso_context, base)->context;
3382 
3383 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3384 }
3385 
3386 static const struct fw_card_driver ohci_driver = {
3387 	.enable			= ohci_enable,
3388 	.read_phy_reg		= ohci_read_phy_reg,
3389 	.update_phy_reg		= ohci_update_phy_reg,
3390 	.set_config_rom		= ohci_set_config_rom,
3391 	.send_request		= ohci_send_request,
3392 	.send_response		= ohci_send_response,
3393 	.cancel_packet		= ohci_cancel_packet,
3394 	.enable_phys_dma	= ohci_enable_phys_dma,
3395 	.read_csr		= ohci_read_csr,
3396 	.write_csr		= ohci_write_csr,
3397 
3398 	.allocate_iso_context	= ohci_allocate_iso_context,
3399 	.free_iso_context	= ohci_free_iso_context,
3400 	.set_iso_channels	= ohci_set_iso_channels,
3401 	.queue_iso		= ohci_queue_iso,
3402 	.flush_queue_iso	= ohci_flush_queue_iso,
3403 	.start_iso		= ohci_start_iso,
3404 	.stop_iso		= ohci_stop_iso,
3405 };
3406 
3407 #ifdef CONFIG_PPC_PMAC
3408 static void pmac_ohci_on(struct pci_dev *dev)
3409 {
3410 	if (machine_is(powermac)) {
3411 		struct device_node *ofn = pci_device_to_OF_node(dev);
3412 
3413 		if (ofn) {
3414 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3415 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3416 		}
3417 	}
3418 }
3419 
3420 static void pmac_ohci_off(struct pci_dev *dev)
3421 {
3422 	if (machine_is(powermac)) {
3423 		struct device_node *ofn = pci_device_to_OF_node(dev);
3424 
3425 		if (ofn) {
3426 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3427 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3428 		}
3429 	}
3430 }
3431 #else
3432 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3433 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3434 #endif /* CONFIG_PPC_PMAC */
3435 
3436 static int __devinit pci_probe(struct pci_dev *dev,
3437 			       const struct pci_device_id *ent)
3438 {
3439 	struct fw_ohci *ohci;
3440 	u32 bus_options, max_receive, link_speed, version;
3441 	u64 guid;
3442 	int i, err;
3443 	size_t size;
3444 
3445 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3446 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3447 		return -ENOSYS;
3448 	}
3449 
3450 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3451 	if (ohci == NULL) {
3452 		err = -ENOMEM;
3453 		goto fail;
3454 	}
3455 
3456 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3457 
3458 	pmac_ohci_on(dev);
3459 
3460 	err = pci_enable_device(dev);
3461 	if (err) {
3462 		fw_error("Failed to enable OHCI hardware\n");
3463 		goto fail_free;
3464 	}
3465 
3466 	pci_set_master(dev);
3467 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3468 	pci_set_drvdata(dev, ohci);
3469 
3470 	spin_lock_init(&ohci->lock);
3471 	mutex_init(&ohci->phy_reg_mutex);
3472 
3473 	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3474 
3475 	err = pci_request_region(dev, 0, ohci_driver_name);
3476 	if (err) {
3477 		fw_error("MMIO resource unavailable\n");
3478 		goto fail_disable;
3479 	}
3480 
3481 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3482 	if (ohci->registers == NULL) {
3483 		fw_error("Failed to remap registers\n");
3484 		err = -ENXIO;
3485 		goto fail_iomem;
3486 	}
3487 
3488 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3489 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3490 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3491 		     ohci_quirks[i].device == dev->device) &&
3492 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3493 		     ohci_quirks[i].revision >= dev->revision)) {
3494 			ohci->quirks = ohci_quirks[i].flags;
3495 			break;
3496 		}
3497 	if (param_quirks)
3498 		ohci->quirks = param_quirks;
3499 
3500 	/*
3501 	 * Because dma_alloc_coherent() allocates at least one page,
3502 	 * we save space by using a common buffer for the AR request/
3503 	 * response descriptors and the self IDs buffer.
3504 	 */
3505 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3506 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3507 	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3508 					       PAGE_SIZE,
3509 					       &ohci->misc_buffer_bus,
3510 					       GFP_KERNEL);
3511 	if (!ohci->misc_buffer) {
3512 		err = -ENOMEM;
3513 		goto fail_iounmap;
3514 	}
3515 
3516 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3517 			      OHCI1394_AsReqRcvContextControlSet);
3518 	if (err < 0)
3519 		goto fail_misc_buf;
3520 
3521 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3522 			      OHCI1394_AsRspRcvContextControlSet);
3523 	if (err < 0)
3524 		goto fail_arreq_ctx;
3525 
3526 	err = context_init(&ohci->at_request_ctx, ohci,
3527 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3528 	if (err < 0)
3529 		goto fail_arrsp_ctx;
3530 
3531 	err = context_init(&ohci->at_response_ctx, ohci,
3532 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3533 	if (err < 0)
3534 		goto fail_atreq_ctx;
3535 
3536 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3537 	ohci->ir_context_channels = ~0ULL;
3538 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3539 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3540 	ohci->ir_context_mask = ohci->ir_context_support;
3541 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3542 	size = sizeof(struct iso_context) * ohci->n_ir;
3543 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3544 
3545 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3546 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3547 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3548 	ohci->it_context_mask = ohci->it_context_support;
3549 	ohci->n_it = hweight32(ohci->it_context_mask);
3550 	size = sizeof(struct iso_context) * ohci->n_it;
3551 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3552 
3553 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3554 		err = -ENOMEM;
3555 		goto fail_contexts;
3556 	}
3557 
3558 	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3559 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3560 
3561 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3562 	max_receive = (bus_options >> 12) & 0xf;
3563 	link_speed = bus_options & 0x7;
3564 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3565 		reg_read(ohci, OHCI1394_GUIDLo);
3566 
3567 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3568 	if (err)
3569 		goto fail_contexts;
3570 
3571 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3572 	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3573 		  "%d IR + %d IT contexts, quirks 0x%x\n",
3574 		  dev_name(&dev->dev), version >> 16, version & 0xff,
3575 		  ohci->n_ir, ohci->n_it, ohci->quirks);
3576 
3577 	return 0;
3578 
3579  fail_contexts:
3580 	kfree(ohci->ir_context_list);
3581 	kfree(ohci->it_context_list);
3582 	context_release(&ohci->at_response_ctx);
3583  fail_atreq_ctx:
3584 	context_release(&ohci->at_request_ctx);
3585  fail_arrsp_ctx:
3586 	ar_context_release(&ohci->ar_response_ctx);
3587  fail_arreq_ctx:
3588 	ar_context_release(&ohci->ar_request_ctx);
3589  fail_misc_buf:
3590 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3591 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3592  fail_iounmap:
3593 	pci_iounmap(dev, ohci->registers);
3594  fail_iomem:
3595 	pci_release_region(dev, 0);
3596  fail_disable:
3597 	pci_disable_device(dev);
3598  fail_free:
3599 	kfree(ohci);
3600 	pmac_ohci_off(dev);
3601  fail:
3602 	if (err == -ENOMEM)
3603 		fw_error("Out of memory\n");
3604 
3605 	return err;
3606 }
3607 
3608 static void pci_remove(struct pci_dev *dev)
3609 {
3610 	struct fw_ohci *ohci;
3611 
3612 	ohci = pci_get_drvdata(dev);
3613 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3614 	flush_writes(ohci);
3615 	cancel_work_sync(&ohci->bus_reset_work);
3616 	fw_core_remove_card(&ohci->card);
3617 
3618 	/*
3619 	 * FIXME: Fail all pending packets here, now that the upper
3620 	 * layers can't queue any more.
3621 	 */
3622 
3623 	software_reset(ohci);
3624 	free_irq(dev->irq, ohci);
3625 
3626 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3627 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3628 				  ohci->next_config_rom, ohci->next_config_rom_bus);
3629 	if (ohci->config_rom)
3630 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3631 				  ohci->config_rom, ohci->config_rom_bus);
3632 	ar_context_release(&ohci->ar_request_ctx);
3633 	ar_context_release(&ohci->ar_response_ctx);
3634 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3635 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3636 	context_release(&ohci->at_request_ctx);
3637 	context_release(&ohci->at_response_ctx);
3638 	kfree(ohci->it_context_list);
3639 	kfree(ohci->ir_context_list);
3640 	pci_disable_msi(dev);
3641 	pci_iounmap(dev, ohci->registers);
3642 	pci_release_region(dev, 0);
3643 	pci_disable_device(dev);
3644 	kfree(ohci);
3645 	pmac_ohci_off(dev);
3646 
3647 	fw_notify("Removed fw-ohci device.\n");
3648 }
3649 
3650 #ifdef CONFIG_PM
3651 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3652 {
3653 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3654 	int err;
3655 
3656 	software_reset(ohci);
3657 	free_irq(dev->irq, ohci);
3658 	pci_disable_msi(dev);
3659 	err = pci_save_state(dev);
3660 	if (err) {
3661 		fw_error("pci_save_state failed\n");
3662 		return err;
3663 	}
3664 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3665 	if (err)
3666 		fw_error("pci_set_power_state failed with %d\n", err);
3667 	pmac_ohci_off(dev);
3668 
3669 	return 0;
3670 }
3671 
3672 static int pci_resume(struct pci_dev *dev)
3673 {
3674 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3675 	int err;
3676 
3677 	pmac_ohci_on(dev);
3678 	pci_set_power_state(dev, PCI_D0);
3679 	pci_restore_state(dev);
3680 	err = pci_enable_device(dev);
3681 	if (err) {
3682 		fw_error("pci_enable_device failed\n");
3683 		return err;
3684 	}
3685 
3686 	/* Some systems don't setup GUID register on resume from ram  */
3687 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3688 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3689 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3690 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3691 	}
3692 
3693 	err = ohci_enable(&ohci->card, NULL, 0);
3694 	if (err)
3695 		return err;
3696 
3697 	ohci_resume_iso_dma(ohci);
3698 
3699 	return 0;
3700 }
3701 #endif
3702 
3703 static const struct pci_device_id pci_table[] = {
3704 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3705 	{ }
3706 };
3707 
3708 MODULE_DEVICE_TABLE(pci, pci_table);
3709 
3710 static struct pci_driver fw_ohci_pci_driver = {
3711 	.name		= ohci_driver_name,
3712 	.id_table	= pci_table,
3713 	.probe		= pci_probe,
3714 	.remove		= pci_remove,
3715 #ifdef CONFIG_PM
3716 	.resume		= pci_resume,
3717 	.suspend	= pci_suspend,
3718 #endif
3719 };
3720 
3721 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3722 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3723 MODULE_LICENSE("GPL");
3724 
3725 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3726 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3727 MODULE_ALIAS("ohci1394");
3728 #endif
3729 
3730 static int __init fw_ohci_init(void)
3731 {
3732 	return pci_register_driver(&fw_ohci_pci_driver);
3733 }
3734 
3735 static void __exit fw_ohci_cleanup(void)
3736 {
3737 	pci_unregister_driver(&fw_ohci_pci_driver);
3738 }
3739 
3740 module_init(fw_ohci_init);
3741 module_exit(fw_ohci_cleanup);
3742