1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
45
46 #include <trace/events/firewire.h>
47
48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
52
53 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
55
56 #define DESCRIPTOR_OUTPUT_MORE 0
57 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58 #define DESCRIPTOR_INPUT_MORE (2 << 12)
59 #define DESCRIPTOR_INPUT_LAST (3 << 12)
60 #define DESCRIPTOR_STATUS (1 << 11)
61 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62 #define DESCRIPTOR_PING (1 << 7)
63 #define DESCRIPTOR_YY (1 << 6)
64 #define DESCRIPTOR_NO_IRQ (0 << 4)
65 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
66 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68 #define DESCRIPTOR_WAIT (3 << 0)
69
70 #define DESCRIPTOR_CMD (0xf << 12)
71
72 struct descriptor {
73 __le16 req_count;
74 __le16 control;
75 __le32 data_address;
76 __le32 branch_address;
77 __le16 res_count;
78 __le16 transfer_status;
79 } __aligned(16);
80
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
85
86 #define AR_BUFFER_SIZE (32*1024)
87 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91 #define MAX_ASYNC_PAYLOAD 4096
92 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95 struct ar_context {
96 struct fw_ohci *ohci;
97 struct page *pages[AR_BUFFERS];
98 void *buffer;
99 struct descriptor *descriptors;
100 dma_addr_t descriptors_bus;
101 void *pointer;
102 unsigned int last_buffer_index;
103 u32 regs;
104 struct tasklet_struct tasklet;
105 };
106
107 struct context;
108
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 struct descriptor *d,
111 struct descriptor *last);
112
113 /*
114 * A buffer that contains a block of DMA-able coherent memory used for
115 * storing a portion of a DMA descriptor program.
116 */
117 struct descriptor_buffer {
118 struct list_head list;
119 dma_addr_t buffer_bus;
120 size_t buffer_size;
121 size_t used;
122 struct descriptor buffer[];
123 };
124
125 struct context {
126 struct fw_ohci *ohci;
127 u32 regs;
128 int total_allocation;
129 u32 current_bus;
130 bool running;
131 bool flushing;
132
133 /*
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
136 * free buffers.
137 */
138 struct list_head buffer_list;
139
140 /*
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
143 */
144 struct descriptor_buffer *buffer_tail;
145
146 /*
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
149 */
150 struct descriptor *last;
151
152 /*
153 * The last descriptor block in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
155 */
156 struct descriptor *prev;
157 int prev_z;
158
159 descriptor_callback_t callback;
160
161 struct tasklet_struct tasklet;
162 };
163
164 struct iso_context {
165 struct fw_iso_context base;
166 struct context context;
167 void *header;
168 size_t header_length;
169 unsigned long flushing_completions;
170 u32 mc_buffer_bus;
171 u16 mc_completed;
172 u16 last_timestamp;
173 u8 sync;
174 u8 tags;
175 };
176
177 #define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
178
179 struct fw_ohci {
180 struct fw_card card;
181
182 __iomem char *registers;
183 int node_id;
184 int generation;
185 int request_generation; /* for timestamping incoming requests */
186 unsigned quirks;
187 unsigned int pri_req_max;
188 u32 bus_time;
189 bool bus_time_running;
190 bool is_root;
191 bool csr_state_setclear_abdicate;
192 int n_ir;
193 int n_it;
194 /*
195 * Spinlock for accessing fw_ohci data. Never call out of
196 * this driver with this lock held.
197 */
198 spinlock_t lock;
199
200 struct mutex phy_reg_mutex;
201
202 void *misc_buffer;
203 dma_addr_t misc_buffer_bus;
204
205 struct ar_context ar_request_ctx;
206 struct ar_context ar_response_ctx;
207 struct context at_request_ctx;
208 struct context at_response_ctx;
209
210 u32 it_context_support;
211 u32 it_context_mask; /* unoccupied IT contexts */
212 struct iso_context *it_context_list;
213 u64 ir_context_channels; /* unoccupied channels */
214 u32 ir_context_support;
215 u32 ir_context_mask; /* unoccupied IR contexts */
216 struct iso_context *ir_context_list;
217 u64 mc_channels; /* channels in use by the multichannel IR context */
218 bool mc_allocated;
219
220 __be32 *config_rom;
221 dma_addr_t config_rom_bus;
222 __be32 *next_config_rom;
223 dma_addr_t next_config_rom_bus;
224 __be32 next_header;
225
226 __le32 *self_id;
227 dma_addr_t self_id_bus;
228 struct work_struct bus_reset_work;
229
230 u32 self_id_buffer[512];
231 };
232
233 static struct workqueue_struct *selfid_workqueue;
234
fw_ohci(struct fw_card * card)235 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 {
237 return container_of(card, struct fw_ohci, card);
238 }
239
240 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
241 #define IR_CONTEXT_BUFFER_FILL 0x80000000
242 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
243 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
244 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
245 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246
247 #define CONTEXT_RUN 0x8000
248 #define CONTEXT_WAKE 0x1000
249 #define CONTEXT_DEAD 0x0800
250 #define CONTEXT_ACTIVE 0x0400
251
252 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
253 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
254 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255
256 #define OHCI1394_REGISTER_SIZE 0x800
257 #define OHCI1394_PCI_HCI_Control 0x40
258 #define SELF_ID_BUF_SIZE 0x800
259 #define OHCI_VERSION_1_1 0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
271 #define PCI_REV_ID_VIA_VT6306 0x46
272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274 #define QUIRK_CYCLE_TIMER 0x1
275 #define QUIRK_RESET_PACKET 0x2
276 #define QUIRK_BE_HEADERS 0x4
277 #define QUIRK_NO_1394A 0x8
278 #define QUIRK_NO_MSI 0x10
279 #define QUIRK_TI_SLLZ059 0x20
280 #define QUIRK_IR_WAKE 0x40
281
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
288
289 #if IS_ENABLED(CONFIG_X86)
290
has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci * ohci)291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292 {
293 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294 }
295
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
297
detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev * pdev)298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299 {
300 const struct pci_dev *pcie_to_pci_bridge;
301
302 // Detect any type of AMD Ryzen machine.
303 if (!static_cpu_has(X86_FEATURE_ZEN))
304 return false;
305
306 // Detect VIA VT6306/6307/6308.
307 if (pdev->vendor != PCI_VENDOR_ID_VIA)
308 return false;
309 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310 return false;
311
312 // Detect Asmedia ASM1083/1085.
313 pcie_to_pci_bridge = pdev->bus->self;
314 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315 return false;
316 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317 return false;
318
319 return true;
320 }
321
322 #else
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
325 #endif
326
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329 unsigned short vendor, device, revision, flags;
330 } ohci_quirks[] = {
331 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332 QUIRK_CYCLE_TIMER},
333
334 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335 QUIRK_BE_HEADERS},
336
337 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338 QUIRK_NO_MSI},
339
340 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341 QUIRK_RESET_PACKET},
342
343 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344 QUIRK_NO_MSI},
345
346 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347 QUIRK_CYCLE_TIMER},
348
349 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350 QUIRK_NO_MSI},
351
352 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365 QUIRK_RESET_PACKET},
366
367 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374 QUIRK_NO_MSI},
375
376 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378 };
379
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks;
382 module_param_named(quirks, param_quirks, int, 0644);
383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
385 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
386 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
387 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
388 ", disable MSI = " __stringify(QUIRK_NO_MSI)
389 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
390 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
391 ")");
392
393 #define OHCI_PARAM_DEBUG_AT_AR 1
394 #define OHCI_PARAM_DEBUG_SELFIDS 2
395 #define OHCI_PARAM_DEBUG_IRQS 4
396
397 static int param_debug;
398 module_param_named(debug, param_debug, int, 0644);
399 MODULE_PARM_DESC(debug, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
400 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
401 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
402 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
403 ", or a combination, or all = -1)");
404
405 static bool param_remote_dma;
406 module_param_named(remote_dma, param_remote_dma, bool, 0444);
407 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
408
log_irqs(struct fw_ohci * ohci,u32 evt)409 static void log_irqs(struct fw_ohci *ohci, u32 evt)
410 {
411 if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
412 return;
413
414 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
415 evt & OHCI1394_selfIDComplete ? " selfID" : "",
416 evt & OHCI1394_RQPkt ? " AR_req" : "",
417 evt & OHCI1394_RSPkt ? " AR_resp" : "",
418 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
419 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
420 evt & OHCI1394_isochRx ? " IR" : "",
421 evt & OHCI1394_isochTx ? " IT" : "",
422 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
423 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
424 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
425 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
426 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
427 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
428 evt & OHCI1394_busReset ? " busReset" : "",
429 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
430 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
431 OHCI1394_respTxComplete | OHCI1394_isochRx |
432 OHCI1394_isochTx | OHCI1394_postedWriteErr |
433 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
434 OHCI1394_cycleInconsistent |
435 OHCI1394_regAccessFail | OHCI1394_busReset)
436 ? " ?" : "");
437 }
438
log_selfids(struct fw_ohci * ohci,int generation,int self_id_count)439 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
440 {
441 static const char *const speed[] = {
442 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
443 };
444 static const char *const power[] = {
445 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
446 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
447 };
448 static const char port[] = {
449 [PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
450 [PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
451 [PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
452 [PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
453 };
454 struct self_id_sequence_enumerator enumerator = {
455 .cursor = ohci->self_id_buffer,
456 .quadlet_count = self_id_count,
457 };
458
459 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
460 return;
461
462 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
463 self_id_count, generation, ohci->node_id);
464
465 while (enumerator.quadlet_count > 0) {
466 unsigned int quadlet_count;
467 unsigned int port_index;
468 const u32 *s;
469 int i;
470
471 s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
472 if (IS_ERR(s))
473 break;
474
475 ohci_notice(ohci,
476 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
477 *s,
478 phy_packet_self_id_get_phy_id(*s),
479 port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
480 port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
481 port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
482 speed[*s >> 14 & 3], *s >> 16 & 63,
483 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
484 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
485
486 port_index = 3;
487 for (i = 1; i < quadlet_count; ++i) {
488 ohci_notice(ohci,
489 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
490 s[i],
491 phy_packet_self_id_get_phy_id(s[i]),
492 port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
493 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
494 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
495 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
496 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
497 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
498 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
499 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
500 );
501
502 port_index += 8;
503 }
504 }
505 }
506
507 static const char *evts[] = {
508 [0x00] = "evt_no_status", [0x01] = "-reserved-",
509 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
510 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
511 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
512 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
513 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
514 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
515 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
516 [0x10] = "-reserved-", [0x11] = "ack_complete",
517 [0x12] = "ack_pending ", [0x13] = "-reserved-",
518 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
519 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
520 [0x18] = "-reserved-", [0x19] = "-reserved-",
521 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
522 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
523 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
524 [0x20] = "pending/cancelled",
525 };
526
log_ar_at_event(struct fw_ohci * ohci,char dir,int speed,u32 * header,int evt)527 static void log_ar_at_event(struct fw_ohci *ohci,
528 char dir, int speed, u32 *header, int evt)
529 {
530 static const char *const tcodes[] = {
531 [TCODE_WRITE_QUADLET_REQUEST] = "QW req",
532 [TCODE_WRITE_BLOCK_REQUEST] = "BW req",
533 [TCODE_WRITE_RESPONSE] = "W resp",
534 [0x3] = "-reserved-",
535 [TCODE_READ_QUADLET_REQUEST] = "QR req",
536 [TCODE_READ_BLOCK_REQUEST] = "BR req",
537 [TCODE_READ_QUADLET_RESPONSE] = "QR resp",
538 [TCODE_READ_BLOCK_RESPONSE] = "BR resp",
539 [TCODE_CYCLE_START] = "cycle start",
540 [TCODE_LOCK_REQUEST] = "Lk req",
541 [TCODE_STREAM_DATA] = "async stream packet",
542 [TCODE_LOCK_RESPONSE] = "Lk resp",
543 [0xc] = "-reserved-",
544 [0xd] = "-reserved-",
545 [TCODE_LINK_INTERNAL] = "link internal",
546 [0xf] = "-reserved-",
547 };
548 int tcode = async_header_get_tcode(header);
549 char specific[12];
550
551 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
552 return;
553
554 if (unlikely(evt >= ARRAY_SIZE(evts)))
555 evt = 0x1f;
556
557 if (evt == OHCI1394_evt_bus_reset) {
558 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
559 dir, (header[2] >> 16) & 0xff);
560 return;
561 }
562
563 switch (tcode) {
564 case TCODE_WRITE_QUADLET_REQUEST:
565 case TCODE_READ_QUADLET_RESPONSE:
566 case TCODE_CYCLE_START:
567 snprintf(specific, sizeof(specific), " = %08x",
568 be32_to_cpu((__force __be32)header[3]));
569 break;
570 case TCODE_WRITE_BLOCK_REQUEST:
571 case TCODE_READ_BLOCK_REQUEST:
572 case TCODE_READ_BLOCK_RESPONSE:
573 case TCODE_LOCK_REQUEST:
574 case TCODE_LOCK_RESPONSE:
575 snprintf(specific, sizeof(specific), " %x,%x",
576 async_header_get_data_length(header),
577 async_header_get_extended_tcode(header));
578 break;
579 default:
580 specific[0] = '\0';
581 }
582
583 switch (tcode) {
584 case TCODE_STREAM_DATA:
585 ohci_notice(ohci, "A%c %s, %s\n",
586 dir, evts[evt], tcodes[tcode]);
587 break;
588 case TCODE_LINK_INTERNAL:
589 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
590 dir, evts[evt], header[1], header[2]);
591 break;
592 case TCODE_WRITE_QUADLET_REQUEST:
593 case TCODE_WRITE_BLOCK_REQUEST:
594 case TCODE_READ_QUADLET_REQUEST:
595 case TCODE_READ_BLOCK_REQUEST:
596 case TCODE_LOCK_REQUEST:
597 ohci_notice(ohci,
598 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
599 dir, speed, async_header_get_tlabel(header),
600 async_header_get_source(header), async_header_get_destination(header),
601 evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
602 break;
603 default:
604 ohci_notice(ohci,
605 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
606 dir, speed, async_header_get_tlabel(header),
607 async_header_get_source(header), async_header_get_destination(header),
608 evts[evt], tcodes[tcode], specific);
609 }
610 }
611
reg_write(const struct fw_ohci * ohci,int offset,u32 data)612 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
613 {
614 writel(data, ohci->registers + offset);
615 }
616
reg_read(const struct fw_ohci * ohci,int offset)617 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
618 {
619 return readl(ohci->registers + offset);
620 }
621
flush_writes(const struct fw_ohci * ohci)622 static inline void flush_writes(const struct fw_ohci *ohci)
623 {
624 /* Do a dummy read to flush writes. */
625 reg_read(ohci, OHCI1394_Version);
626 }
627
628 /*
629 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
630 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
631 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
632 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
633 */
read_phy_reg(struct fw_ohci * ohci,int addr)634 static int read_phy_reg(struct fw_ohci *ohci, int addr)
635 {
636 u32 val;
637 int i;
638
639 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
640 for (i = 0; i < 3 + 100; i++) {
641 val = reg_read(ohci, OHCI1394_PhyControl);
642 if (!~val)
643 return -ENODEV; /* Card was ejected. */
644
645 if (val & OHCI1394_PhyControl_ReadDone)
646 return OHCI1394_PhyControl_ReadData(val);
647
648 /*
649 * Try a few times without waiting. Sleeping is necessary
650 * only when the link/PHY interface is busy.
651 */
652 if (i >= 3)
653 msleep(1);
654 }
655 ohci_err(ohci, "failed to read phy reg %d\n", addr);
656 dump_stack();
657
658 return -EBUSY;
659 }
660
write_phy_reg(const struct fw_ohci * ohci,int addr,u32 val)661 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
662 {
663 int i;
664
665 reg_write(ohci, OHCI1394_PhyControl,
666 OHCI1394_PhyControl_Write(addr, val));
667 for (i = 0; i < 3 + 100; i++) {
668 val = reg_read(ohci, OHCI1394_PhyControl);
669 if (!~val)
670 return -ENODEV; /* Card was ejected. */
671
672 if (!(val & OHCI1394_PhyControl_WritePending))
673 return 0;
674
675 if (i >= 3)
676 msleep(1);
677 }
678 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
679 dump_stack();
680
681 return -EBUSY;
682 }
683
update_phy_reg(struct fw_ohci * ohci,int addr,int clear_bits,int set_bits)684 static int update_phy_reg(struct fw_ohci *ohci, int addr,
685 int clear_bits, int set_bits)
686 {
687 int ret = read_phy_reg(ohci, addr);
688 if (ret < 0)
689 return ret;
690
691 /*
692 * The interrupt status bits are cleared by writing a one bit.
693 * Avoid clearing them unless explicitly requested in set_bits.
694 */
695 if (addr == 5)
696 clear_bits |= PHY_INT_STATUS_BITS;
697
698 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
699 }
700
read_paged_phy_reg(struct fw_ohci * ohci,int page,int addr)701 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
702 {
703 int ret;
704
705 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
706 if (ret < 0)
707 return ret;
708
709 return read_phy_reg(ohci, addr);
710 }
711
ohci_read_phy_reg(struct fw_card * card,int addr)712 static int ohci_read_phy_reg(struct fw_card *card, int addr)
713 {
714 struct fw_ohci *ohci = fw_ohci(card);
715
716 guard(mutex)(&ohci->phy_reg_mutex);
717
718 return read_phy_reg(ohci, addr);
719 }
720
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)721 static int ohci_update_phy_reg(struct fw_card *card, int addr,
722 int clear_bits, int set_bits)
723 {
724 struct fw_ohci *ohci = fw_ohci(card);
725
726 guard(mutex)(&ohci->phy_reg_mutex);
727
728 return update_phy_reg(ohci, addr, clear_bits, set_bits);
729 }
730
ar_buffer_bus(struct ar_context * ctx,unsigned int i)731 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
732 {
733 return page_private(ctx->pages[i]);
734 }
735
ar_context_link_page(struct ar_context * ctx,unsigned int index)736 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
737 {
738 struct descriptor *d;
739
740 d = &ctx->descriptors[index];
741 d->branch_address &= cpu_to_le32(~0xf);
742 d->res_count = cpu_to_le16(PAGE_SIZE);
743 d->transfer_status = 0;
744
745 wmb(); /* finish init of new descriptors before branch_address update */
746 d = &ctx->descriptors[ctx->last_buffer_index];
747 d->branch_address |= cpu_to_le32(1);
748
749 ctx->last_buffer_index = index;
750
751 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
752 }
753
ar_context_release(struct ar_context * ctx)754 static void ar_context_release(struct ar_context *ctx)
755 {
756 struct device *dev = ctx->ohci->card.device;
757 unsigned int i;
758
759 if (!ctx->buffer)
760 return;
761
762 vunmap(ctx->buffer);
763
764 for (i = 0; i < AR_BUFFERS; i++) {
765 if (ctx->pages[i])
766 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
767 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
768 }
769 }
770
ar_context_abort(struct ar_context * ctx,const char * error_msg)771 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
772 {
773 struct fw_ohci *ohci = ctx->ohci;
774
775 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
776 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
777 flush_writes(ohci);
778
779 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
780 }
781 /* FIXME: restart? */
782 }
783
ar_next_buffer_index(unsigned int index)784 static inline unsigned int ar_next_buffer_index(unsigned int index)
785 {
786 return (index + 1) % AR_BUFFERS;
787 }
788
ar_first_buffer_index(struct ar_context * ctx)789 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
790 {
791 return ar_next_buffer_index(ctx->last_buffer_index);
792 }
793
794 /*
795 * We search for the buffer that contains the last AR packet DMA data written
796 * by the controller.
797 */
ar_search_last_active_buffer(struct ar_context * ctx,unsigned int * buffer_offset)798 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
799 unsigned int *buffer_offset)
800 {
801 unsigned int i, next_i, last = ctx->last_buffer_index;
802 __le16 res_count, next_res_count;
803
804 i = ar_first_buffer_index(ctx);
805 res_count = READ_ONCE(ctx->descriptors[i].res_count);
806
807 /* A buffer that is not yet completely filled must be the last one. */
808 while (i != last && res_count == 0) {
809
810 /* Peek at the next descriptor. */
811 next_i = ar_next_buffer_index(i);
812 rmb(); /* read descriptors in order */
813 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
814 /*
815 * If the next descriptor is still empty, we must stop at this
816 * descriptor.
817 */
818 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
819 /*
820 * The exception is when the DMA data for one packet is
821 * split over three buffers; in this case, the middle
822 * buffer's descriptor might be never updated by the
823 * controller and look still empty, and we have to peek
824 * at the third one.
825 */
826 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
827 next_i = ar_next_buffer_index(next_i);
828 rmb();
829 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
830 if (next_res_count != cpu_to_le16(PAGE_SIZE))
831 goto next_buffer_is_active;
832 }
833
834 break;
835 }
836
837 next_buffer_is_active:
838 i = next_i;
839 res_count = next_res_count;
840 }
841
842 rmb(); /* read res_count before the DMA data */
843
844 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
845 if (*buffer_offset > PAGE_SIZE) {
846 *buffer_offset = 0;
847 ar_context_abort(ctx, "corrupted descriptor");
848 }
849
850 return i;
851 }
852
ar_sync_buffers_for_cpu(struct ar_context * ctx,unsigned int end_buffer_index,unsigned int end_buffer_offset)853 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
854 unsigned int end_buffer_index,
855 unsigned int end_buffer_offset)
856 {
857 unsigned int i;
858
859 i = ar_first_buffer_index(ctx);
860 while (i != end_buffer_index) {
861 dma_sync_single_for_cpu(ctx->ohci->card.device,
862 ar_buffer_bus(ctx, i),
863 PAGE_SIZE, DMA_FROM_DEVICE);
864 i = ar_next_buffer_index(i);
865 }
866 if (end_buffer_offset > 0)
867 dma_sync_single_for_cpu(ctx->ohci->card.device,
868 ar_buffer_bus(ctx, i),
869 end_buffer_offset, DMA_FROM_DEVICE);
870 }
871
872 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
cond_le32_to_cpu(__le32 value,bool has_be_header_quirk)873 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
874 {
875 return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
876 }
877
has_be_header_quirk(const struct fw_ohci * ohci)878 static bool has_be_header_quirk(const struct fw_ohci *ohci)
879 {
880 return !!(ohci->quirks & QUIRK_BE_HEADERS);
881 }
882 #else
cond_le32_to_cpu(__le32 value,bool has_be_header_quirk __maybe_unused)883 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
884 {
885 return le32_to_cpu(value);
886 }
887
has_be_header_quirk(const struct fw_ohci * ohci)888 static bool has_be_header_quirk(const struct fw_ohci *ohci)
889 {
890 return false;
891 }
892 #endif
893
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)894 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
895 {
896 struct fw_ohci *ohci = ctx->ohci;
897 struct fw_packet p;
898 u32 status, length, tcode;
899 int evt;
900
901 p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
902 p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
903 p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
904
905 tcode = async_header_get_tcode(p.header);
906 switch (tcode) {
907 case TCODE_WRITE_QUADLET_REQUEST:
908 case TCODE_READ_QUADLET_RESPONSE:
909 p.header[3] = (__force __u32) buffer[3];
910 p.header_length = 16;
911 p.payload_length = 0;
912 break;
913
914 case TCODE_READ_BLOCK_REQUEST :
915 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
916 p.header_length = 16;
917 p.payload_length = 0;
918 break;
919
920 case TCODE_WRITE_BLOCK_REQUEST:
921 case TCODE_READ_BLOCK_RESPONSE:
922 case TCODE_LOCK_REQUEST:
923 case TCODE_LOCK_RESPONSE:
924 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
925 p.header_length = 16;
926 p.payload_length = async_header_get_data_length(p.header);
927 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
928 ar_context_abort(ctx, "invalid packet length");
929 return NULL;
930 }
931 break;
932
933 case TCODE_WRITE_RESPONSE:
934 case TCODE_READ_QUADLET_REQUEST:
935 case TCODE_LINK_INTERNAL:
936 p.header_length = 12;
937 p.payload_length = 0;
938 break;
939
940 default:
941 ar_context_abort(ctx, "invalid tcode");
942 return NULL;
943 }
944
945 p.payload = (void *) buffer + p.header_length;
946
947 /* FIXME: What to do about evt_* errors? */
948 length = (p.header_length + p.payload_length + 3) / 4;
949 status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
950 evt = (status >> 16) & 0x1f;
951
952 p.ack = evt - 16;
953 p.speed = (status >> 21) & 0x7;
954 p.timestamp = status & 0xffff;
955 p.generation = ohci->request_generation;
956
957 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
958
959 /*
960 * Several controllers, notably from NEC and VIA, forget to
961 * write ack_complete status at PHY packet reception.
962 */
963 if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
964 p.ack = ACK_COMPLETE;
965
966 /*
967 * The OHCI bus reset handler synthesizes a PHY packet with
968 * the new generation number when a bus reset happens (see
969 * section 8.4.2.3). This helps us determine when a request
970 * was received and make sure we send the response in the same
971 * generation. We only need this for requests; for responses
972 * we use the unique tlabel for finding the matching
973 * request.
974 *
975 * Alas some chips sometimes emit bus reset packets with a
976 * wrong generation. We set the correct generation for these
977 * at a slightly incorrect time (in bus_reset_work).
978 */
979 if (evt == OHCI1394_evt_bus_reset) {
980 if (!(ohci->quirks & QUIRK_RESET_PACKET))
981 ohci->request_generation = (p.header[2] >> 16) & 0xff;
982 } else if (ctx == &ohci->ar_request_ctx) {
983 fw_core_handle_request(&ohci->card, &p);
984 } else {
985 fw_core_handle_response(&ohci->card, &p);
986 }
987
988 return buffer + length + 1;
989 }
990
handle_ar_packets(struct ar_context * ctx,void * p,void * end)991 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
992 {
993 void *next;
994
995 while (p < end) {
996 next = handle_ar_packet(ctx, p);
997 if (!next)
998 return p;
999 p = next;
1000 }
1001
1002 return p;
1003 }
1004
ar_recycle_buffers(struct ar_context * ctx,unsigned int end_buffer)1005 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1006 {
1007 unsigned int i;
1008
1009 i = ar_first_buffer_index(ctx);
1010 while (i != end_buffer) {
1011 dma_sync_single_for_device(ctx->ohci->card.device,
1012 ar_buffer_bus(ctx, i),
1013 PAGE_SIZE, DMA_FROM_DEVICE);
1014 ar_context_link_page(ctx, i);
1015 i = ar_next_buffer_index(i);
1016 }
1017 }
1018
ar_context_tasklet(unsigned long data)1019 static void ar_context_tasklet(unsigned long data)
1020 {
1021 struct ar_context *ctx = (struct ar_context *)data;
1022 unsigned int end_buffer_index, end_buffer_offset;
1023 void *p, *end;
1024
1025 p = ctx->pointer;
1026 if (!p)
1027 return;
1028
1029 end_buffer_index = ar_search_last_active_buffer(ctx,
1030 &end_buffer_offset);
1031 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1032 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1033
1034 if (end_buffer_index < ar_first_buffer_index(ctx)) {
1035 /*
1036 * The filled part of the overall buffer wraps around; handle
1037 * all packets up to the buffer end here. If the last packet
1038 * wraps around, its tail will be visible after the buffer end
1039 * because the buffer start pages are mapped there again.
1040 */
1041 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1042 p = handle_ar_packets(ctx, p, buffer_end);
1043 if (p < buffer_end)
1044 goto error;
1045 /* adjust p to point back into the actual buffer */
1046 p -= AR_BUFFERS * PAGE_SIZE;
1047 }
1048
1049 p = handle_ar_packets(ctx, p, end);
1050 if (p != end) {
1051 if (p > end)
1052 ar_context_abort(ctx, "inconsistent descriptor");
1053 goto error;
1054 }
1055
1056 ctx->pointer = p;
1057 ar_recycle_buffers(ctx, end_buffer_index);
1058
1059 return;
1060
1061 error:
1062 ctx->pointer = NULL;
1063 }
1064
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,unsigned int descriptors_offset,u32 regs)1065 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1066 unsigned int descriptors_offset, u32 regs)
1067 {
1068 struct device *dev = ohci->card.device;
1069 unsigned int i;
1070 dma_addr_t dma_addr;
1071 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1072 struct descriptor *d;
1073
1074 ctx->regs = regs;
1075 ctx->ohci = ohci;
1076 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1077
1078 for (i = 0; i < AR_BUFFERS; i++) {
1079 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1080 DMA_FROM_DEVICE, GFP_KERNEL);
1081 if (!ctx->pages[i])
1082 goto out_of_memory;
1083 set_page_private(ctx->pages[i], dma_addr);
1084 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1085 DMA_FROM_DEVICE);
1086 }
1087
1088 for (i = 0; i < AR_BUFFERS; i++)
1089 pages[i] = ctx->pages[i];
1090 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1091 pages[AR_BUFFERS + i] = ctx->pages[i];
1092 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1093 if (!ctx->buffer)
1094 goto out_of_memory;
1095
1096 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1097 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1098
1099 for (i = 0; i < AR_BUFFERS; i++) {
1100 d = &ctx->descriptors[i];
1101 d->req_count = cpu_to_le16(PAGE_SIZE);
1102 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1103 DESCRIPTOR_STATUS |
1104 DESCRIPTOR_BRANCH_ALWAYS);
1105 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1106 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1107 ar_next_buffer_index(i) * sizeof(struct descriptor));
1108 }
1109
1110 return 0;
1111
1112 out_of_memory:
1113 ar_context_release(ctx);
1114
1115 return -ENOMEM;
1116 }
1117
ar_context_run(struct ar_context * ctx)1118 static void ar_context_run(struct ar_context *ctx)
1119 {
1120 unsigned int i;
1121
1122 for (i = 0; i < AR_BUFFERS; i++)
1123 ar_context_link_page(ctx, i);
1124
1125 ctx->pointer = ctx->buffer;
1126
1127 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1128 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1129 }
1130
find_branch_descriptor(struct descriptor * d,int z)1131 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1132 {
1133 __le16 branch;
1134
1135 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1136
1137 /* figure out which descriptor the branch address goes in */
1138 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1139 return d;
1140 else
1141 return d + z - 1;
1142 }
1143
context_retire_descriptors(struct context * ctx)1144 static void context_retire_descriptors(struct context *ctx)
1145 {
1146 struct descriptor *d, *last;
1147 u32 address;
1148 int z;
1149 struct descriptor_buffer *desc;
1150
1151 desc = list_entry(ctx->buffer_list.next,
1152 struct descriptor_buffer, list);
1153 last = ctx->last;
1154 while (last->branch_address != 0) {
1155 struct descriptor_buffer *old_desc = desc;
1156 address = le32_to_cpu(last->branch_address);
1157 z = address & 0xf;
1158 address &= ~0xf;
1159 ctx->current_bus = address;
1160
1161 /* If the branch address points to a buffer outside of the
1162 * current buffer, advance to the next buffer. */
1163 if (address < desc->buffer_bus ||
1164 address >= desc->buffer_bus + desc->used)
1165 desc = list_entry(desc->list.next,
1166 struct descriptor_buffer, list);
1167 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1168 last = find_branch_descriptor(d, z);
1169
1170 if (!ctx->callback(ctx, d, last))
1171 break;
1172
1173 if (old_desc != desc) {
1174 // If we've advanced to the next buffer, move the previous buffer to the
1175 // free list.
1176 old_desc->used = 0;
1177 guard(spinlock_irqsave)(&ctx->ohci->lock);
1178 list_move_tail(&old_desc->list, &ctx->buffer_list);
1179 }
1180 ctx->last = last;
1181 }
1182 }
1183
context_tasklet(unsigned long data)1184 static void context_tasklet(unsigned long data)
1185 {
1186 struct context *ctx = (struct context *) data;
1187
1188 context_retire_descriptors(ctx);
1189 }
1190
ohci_isoc_context_work(struct work_struct * work)1191 static void ohci_isoc_context_work(struct work_struct *work)
1192 {
1193 struct fw_iso_context *base = container_of(work, struct fw_iso_context, work);
1194 struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
1195
1196 context_retire_descriptors(&isoc_ctx->context);
1197 }
1198
1199 /*
1200 * Allocate a new buffer and add it to the list of free buffers for this
1201 * context. Must be called with ohci->lock held.
1202 */
context_add_buffer(struct context * ctx)1203 static int context_add_buffer(struct context *ctx)
1204 {
1205 struct descriptor_buffer *desc;
1206 dma_addr_t bus_addr;
1207 int offset;
1208
1209 /*
1210 * 16MB of descriptors should be far more than enough for any DMA
1211 * program. This will catch run-away userspace or DoS attacks.
1212 */
1213 if (ctx->total_allocation >= 16*1024*1024)
1214 return -ENOMEM;
1215
1216 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1217 if (!desc)
1218 return -ENOMEM;
1219
1220 offset = (void *)&desc->buffer - (void *)desc;
1221 /*
1222 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1223 * for descriptors, even 0x10-byte ones. This can cause page faults when
1224 * an IOMMU is in use and the oversized read crosses a page boundary.
1225 * Work around this by always leaving at least 0x10 bytes of padding.
1226 */
1227 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1228 desc->buffer_bus = bus_addr + offset;
1229 desc->used = 0;
1230
1231 list_add_tail(&desc->list, &ctx->buffer_list);
1232 ctx->total_allocation += PAGE_SIZE;
1233
1234 return 0;
1235 }
1236
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)1237 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1238 u32 regs, descriptor_callback_t callback)
1239 {
1240 ctx->ohci = ohci;
1241 ctx->regs = regs;
1242 ctx->total_allocation = 0;
1243
1244 INIT_LIST_HEAD(&ctx->buffer_list);
1245 if (context_add_buffer(ctx) < 0)
1246 return -ENOMEM;
1247
1248 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1249 struct descriptor_buffer, list);
1250
1251 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1252 ctx->callback = callback;
1253
1254 /*
1255 * We put a dummy descriptor in the buffer that has a NULL
1256 * branch address and looks like it's been sent. That way we
1257 * have a descriptor to append DMA programs to.
1258 */
1259 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1260 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1261 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1262 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1263 ctx->last = ctx->buffer_tail->buffer;
1264 ctx->prev = ctx->buffer_tail->buffer;
1265 ctx->prev_z = 1;
1266
1267 return 0;
1268 }
1269
context_release(struct context * ctx)1270 static void context_release(struct context *ctx)
1271 {
1272 struct fw_card *card = &ctx->ohci->card;
1273 struct descriptor_buffer *desc, *tmp;
1274
1275 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1276 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1277 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1278 }
1279 }
1280
1281 /* Must be called with ohci->lock held */
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)1282 static struct descriptor *context_get_descriptors(struct context *ctx,
1283 int z, dma_addr_t *d_bus)
1284 {
1285 struct descriptor *d = NULL;
1286 struct descriptor_buffer *desc = ctx->buffer_tail;
1287
1288 if (z * sizeof(*d) > desc->buffer_size)
1289 return NULL;
1290
1291 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1292 /* No room for the descriptor in this buffer, so advance to the
1293 * next one. */
1294
1295 if (desc->list.next == &ctx->buffer_list) {
1296 /* If there is no free buffer next in the list,
1297 * allocate one. */
1298 if (context_add_buffer(ctx) < 0)
1299 return NULL;
1300 }
1301 desc = list_entry(desc->list.next,
1302 struct descriptor_buffer, list);
1303 ctx->buffer_tail = desc;
1304 }
1305
1306 d = desc->buffer + desc->used / sizeof(*d);
1307 memset(d, 0, z * sizeof(*d));
1308 *d_bus = desc->buffer_bus + desc->used;
1309
1310 return d;
1311 }
1312
context_run(struct context * ctx,u32 extra)1313 static void context_run(struct context *ctx, u32 extra)
1314 {
1315 struct fw_ohci *ohci = ctx->ohci;
1316
1317 reg_write(ohci, COMMAND_PTR(ctx->regs),
1318 le32_to_cpu(ctx->last->branch_address));
1319 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1320 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1321 ctx->running = true;
1322 flush_writes(ohci);
1323 }
1324
context_append(struct context * ctx,struct descriptor * d,int z,int extra)1325 static void context_append(struct context *ctx,
1326 struct descriptor *d, int z, int extra)
1327 {
1328 dma_addr_t d_bus;
1329 struct descriptor_buffer *desc = ctx->buffer_tail;
1330 struct descriptor *d_branch;
1331
1332 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1333
1334 desc->used += (z + extra) * sizeof(*d);
1335
1336 wmb(); /* finish init of new descriptors before branch_address update */
1337
1338 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1339 d_branch->branch_address = cpu_to_le32(d_bus | z);
1340
1341 /*
1342 * VT6306 incorrectly checks only the single descriptor at the
1343 * CommandPtr when the wake bit is written, so if it's a
1344 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1345 * the branch address in the first descriptor.
1346 *
1347 * Not doing this for transmit contexts since not sure how it interacts
1348 * with skip addresses.
1349 */
1350 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1351 d_branch != ctx->prev &&
1352 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1353 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1354 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1355 }
1356
1357 ctx->prev = d;
1358 ctx->prev_z = z;
1359 }
1360
context_stop(struct context * ctx)1361 static void context_stop(struct context *ctx)
1362 {
1363 struct fw_ohci *ohci = ctx->ohci;
1364 u32 reg;
1365 int i;
1366
1367 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1368 ctx->running = false;
1369
1370 for (i = 0; i < 1000; i++) {
1371 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1372 if ((reg & CONTEXT_ACTIVE) == 0)
1373 return;
1374
1375 if (i)
1376 udelay(10);
1377 }
1378 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1379 }
1380
1381 struct driver_data {
1382 u8 inline_data[8];
1383 struct fw_packet *packet;
1384 };
1385
1386 /*
1387 * This function apppends a packet to the DMA queue for transmission.
1388 * Must always be called with the ochi->lock held to ensure proper
1389 * generation handling and locking around packet queue manipulation.
1390 */
at_context_queue_packet(struct context * ctx,struct fw_packet * packet)1391 static int at_context_queue_packet(struct context *ctx,
1392 struct fw_packet *packet)
1393 {
1394 struct fw_ohci *ohci = ctx->ohci;
1395 dma_addr_t d_bus, payload_bus;
1396 struct driver_data *driver_data;
1397 struct descriptor *d, *last;
1398 __le32 *header;
1399 int z, tcode;
1400
1401 d = context_get_descriptors(ctx, 4, &d_bus);
1402 if (d == NULL) {
1403 packet->ack = RCODE_SEND_ERROR;
1404 return -1;
1405 }
1406
1407 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1408 d[0].res_count = cpu_to_le16(packet->timestamp);
1409
1410 tcode = async_header_get_tcode(packet->header);
1411 header = (__le32 *) &d[1];
1412 switch (tcode) {
1413 case TCODE_WRITE_QUADLET_REQUEST:
1414 case TCODE_WRITE_BLOCK_REQUEST:
1415 case TCODE_WRITE_RESPONSE:
1416 case TCODE_READ_QUADLET_REQUEST:
1417 case TCODE_READ_BLOCK_REQUEST:
1418 case TCODE_READ_QUADLET_RESPONSE:
1419 case TCODE_READ_BLOCK_RESPONSE:
1420 case TCODE_LOCK_REQUEST:
1421 case TCODE_LOCK_RESPONSE:
1422 ohci1394_at_data_set_src_bus_id(header, false);
1423 ohci1394_at_data_set_speed(header, packet->speed);
1424 ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1425 ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1426 ohci1394_at_data_set_tcode(header, tcode);
1427
1428 ohci1394_at_data_set_destination_id(header,
1429 async_header_get_destination(packet->header));
1430
1431 if (ctx == &ctx->ohci->at_response_ctx) {
1432 ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1433 } else {
1434 ohci1394_at_data_set_destination_offset(header,
1435 async_header_get_offset(packet->header));
1436 }
1437
1438 if (tcode_is_block_packet(tcode))
1439 header[3] = cpu_to_le32(packet->header[3]);
1440 else
1441 header[3] = (__force __le32) packet->header[3];
1442
1443 d[0].req_count = cpu_to_le16(packet->header_length);
1444 break;
1445 case TCODE_LINK_INTERNAL:
1446 ohci1394_at_data_set_speed(header, packet->speed);
1447 ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1448
1449 header[1] = cpu_to_le32(packet->header[1]);
1450 header[2] = cpu_to_le32(packet->header[2]);
1451 d[0].req_count = cpu_to_le16(12);
1452
1453 if (is_ping_packet(&packet->header[1]))
1454 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1455 break;
1456
1457 case TCODE_STREAM_DATA:
1458 ohci1394_it_data_set_speed(header, packet->speed);
1459 ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1460 ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1461 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1462 ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1463
1464 ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1465
1466 d[0].req_count = cpu_to_le16(8);
1467 break;
1468
1469 default:
1470 /* BUG(); */
1471 packet->ack = RCODE_SEND_ERROR;
1472 return -1;
1473 }
1474
1475 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1476 driver_data = (struct driver_data *) &d[3];
1477 driver_data->packet = packet;
1478 packet->driver_data = driver_data;
1479
1480 if (packet->payload_length > 0) {
1481 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1482 payload_bus = dma_map_single(ohci->card.device,
1483 packet->payload,
1484 packet->payload_length,
1485 DMA_TO_DEVICE);
1486 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1487 packet->ack = RCODE_SEND_ERROR;
1488 return -1;
1489 }
1490 packet->payload_bus = payload_bus;
1491 packet->payload_mapped = true;
1492 } else {
1493 memcpy(driver_data->inline_data, packet->payload,
1494 packet->payload_length);
1495 payload_bus = d_bus + 3 * sizeof(*d);
1496 }
1497
1498 d[2].req_count = cpu_to_le16(packet->payload_length);
1499 d[2].data_address = cpu_to_le32(payload_bus);
1500 last = &d[2];
1501 z = 3;
1502 } else {
1503 last = &d[0];
1504 z = 2;
1505 }
1506
1507 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1508 DESCRIPTOR_IRQ_ALWAYS |
1509 DESCRIPTOR_BRANCH_ALWAYS);
1510
1511 /* FIXME: Document how the locking works. */
1512 if (ohci->generation != packet->generation) {
1513 if (packet->payload_mapped)
1514 dma_unmap_single(ohci->card.device, payload_bus,
1515 packet->payload_length, DMA_TO_DEVICE);
1516 packet->ack = RCODE_GENERATION;
1517 return -1;
1518 }
1519
1520 context_append(ctx, d, z, 4 - z);
1521
1522 if (ctx->running)
1523 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1524 else
1525 context_run(ctx, 0);
1526
1527 return 0;
1528 }
1529
at_context_flush(struct context * ctx)1530 static void at_context_flush(struct context *ctx)
1531 {
1532 tasklet_disable(&ctx->tasklet);
1533
1534 ctx->flushing = true;
1535 context_tasklet((unsigned long)ctx);
1536 ctx->flushing = false;
1537
1538 tasklet_enable(&ctx->tasklet);
1539 }
1540
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1541 static int handle_at_packet(struct context *context,
1542 struct descriptor *d,
1543 struct descriptor *last)
1544 {
1545 struct driver_data *driver_data;
1546 struct fw_packet *packet;
1547 struct fw_ohci *ohci = context->ohci;
1548 int evt;
1549
1550 if (last->transfer_status == 0 && !context->flushing)
1551 /* This descriptor isn't done yet, stop iteration. */
1552 return 0;
1553
1554 driver_data = (struct driver_data *) &d[3];
1555 packet = driver_data->packet;
1556 if (packet == NULL)
1557 /* This packet was cancelled, just continue. */
1558 return 1;
1559
1560 if (packet->payload_mapped)
1561 dma_unmap_single(ohci->card.device, packet->payload_bus,
1562 packet->payload_length, DMA_TO_DEVICE);
1563
1564 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1565 packet->timestamp = le16_to_cpu(last->res_count);
1566
1567 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1568
1569 switch (evt) {
1570 case OHCI1394_evt_timeout:
1571 /* Async response transmit timed out. */
1572 packet->ack = RCODE_CANCELLED;
1573 break;
1574
1575 case OHCI1394_evt_flushed:
1576 /*
1577 * The packet was flushed should give same error as
1578 * when we try to use a stale generation count.
1579 */
1580 packet->ack = RCODE_GENERATION;
1581 break;
1582
1583 case OHCI1394_evt_missing_ack:
1584 if (context->flushing)
1585 packet->ack = RCODE_GENERATION;
1586 else {
1587 /*
1588 * Using a valid (current) generation count, but the
1589 * node is not on the bus or not sending acks.
1590 */
1591 packet->ack = RCODE_NO_ACK;
1592 }
1593 break;
1594
1595 case ACK_COMPLETE + 0x10:
1596 case ACK_PENDING + 0x10:
1597 case ACK_BUSY_X + 0x10:
1598 case ACK_BUSY_A + 0x10:
1599 case ACK_BUSY_B + 0x10:
1600 case ACK_DATA_ERROR + 0x10:
1601 case ACK_TYPE_ERROR + 0x10:
1602 packet->ack = evt - 0x10;
1603 break;
1604
1605 case OHCI1394_evt_no_status:
1606 if (context->flushing) {
1607 packet->ack = RCODE_GENERATION;
1608 break;
1609 }
1610 fallthrough;
1611
1612 default:
1613 packet->ack = RCODE_SEND_ERROR;
1614 break;
1615 }
1616
1617 packet->callback(packet, &ohci->card, packet->ack);
1618
1619 return 1;
1620 }
1621
1622 static u32 get_cycle_time(struct fw_ohci *ohci);
1623
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1624 static void handle_local_rom(struct fw_ohci *ohci,
1625 struct fw_packet *packet, u32 csr)
1626 {
1627 struct fw_packet response;
1628 int tcode, length, i;
1629
1630 tcode = async_header_get_tcode(packet->header);
1631 if (tcode_is_block_packet(tcode))
1632 length = async_header_get_data_length(packet->header);
1633 else
1634 length = 4;
1635
1636 i = csr - CSR_CONFIG_ROM;
1637 if (i + length > CONFIG_ROM_SIZE) {
1638 fw_fill_response(&response, packet->header,
1639 RCODE_ADDRESS_ERROR, NULL, 0);
1640 } else if (!tcode_is_read_request(tcode)) {
1641 fw_fill_response(&response, packet->header,
1642 RCODE_TYPE_ERROR, NULL, 0);
1643 } else {
1644 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1645 (void *) ohci->config_rom + i, length);
1646 }
1647
1648 // Timestamping on behalf of the hardware.
1649 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1650 fw_core_handle_response(&ohci->card, &response);
1651 }
1652
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1653 static void handle_local_lock(struct fw_ohci *ohci,
1654 struct fw_packet *packet, u32 csr)
1655 {
1656 struct fw_packet response;
1657 int tcode, length, ext_tcode, sel, try;
1658 __be32 *payload, lock_old;
1659 u32 lock_arg, lock_data;
1660
1661 tcode = async_header_get_tcode(packet->header);
1662 length = async_header_get_data_length(packet->header);
1663 payload = packet->payload;
1664 ext_tcode = async_header_get_extended_tcode(packet->header);
1665
1666 if (tcode == TCODE_LOCK_REQUEST &&
1667 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1668 lock_arg = be32_to_cpu(payload[0]);
1669 lock_data = be32_to_cpu(payload[1]);
1670 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1671 lock_arg = 0;
1672 lock_data = 0;
1673 } else {
1674 fw_fill_response(&response, packet->header,
1675 RCODE_TYPE_ERROR, NULL, 0);
1676 goto out;
1677 }
1678
1679 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1680 reg_write(ohci, OHCI1394_CSRData, lock_data);
1681 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1682 reg_write(ohci, OHCI1394_CSRControl, sel);
1683
1684 for (try = 0; try < 20; try++)
1685 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1686 lock_old = cpu_to_be32(reg_read(ohci,
1687 OHCI1394_CSRData));
1688 fw_fill_response(&response, packet->header,
1689 RCODE_COMPLETE,
1690 &lock_old, sizeof(lock_old));
1691 goto out;
1692 }
1693
1694 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1695 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1696
1697 out:
1698 // Timestamping on behalf of the hardware.
1699 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1700 fw_core_handle_response(&ohci->card, &response);
1701 }
1702
handle_local_request(struct context * ctx,struct fw_packet * packet)1703 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1704 {
1705 u64 offset, csr;
1706
1707 if (ctx == &ctx->ohci->at_request_ctx) {
1708 packet->ack = ACK_PENDING;
1709 packet->callback(packet, &ctx->ohci->card, packet->ack);
1710 }
1711
1712 offset = async_header_get_offset(packet->header);
1713 csr = offset - CSR_REGISTER_BASE;
1714
1715 /* Handle config rom reads. */
1716 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1717 handle_local_rom(ctx->ohci, packet, csr);
1718 else switch (csr) {
1719 case CSR_BUS_MANAGER_ID:
1720 case CSR_BANDWIDTH_AVAILABLE:
1721 case CSR_CHANNELS_AVAILABLE_HI:
1722 case CSR_CHANNELS_AVAILABLE_LO:
1723 handle_local_lock(ctx->ohci, packet, csr);
1724 break;
1725 default:
1726 if (ctx == &ctx->ohci->at_request_ctx)
1727 fw_core_handle_request(&ctx->ohci->card, packet);
1728 else
1729 fw_core_handle_response(&ctx->ohci->card, packet);
1730 break;
1731 }
1732
1733 if (ctx == &ctx->ohci->at_response_ctx) {
1734 packet->ack = ACK_COMPLETE;
1735 packet->callback(packet, &ctx->ohci->card, packet->ack);
1736 }
1737 }
1738
at_context_transmit(struct context * ctx,struct fw_packet * packet)1739 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1740 {
1741 unsigned long flags;
1742 int ret;
1743
1744 spin_lock_irqsave(&ctx->ohci->lock, flags);
1745
1746 if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1747 ctx->ohci->generation == packet->generation) {
1748 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1749
1750 // Timestamping on behalf of the hardware.
1751 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1752
1753 handle_local_request(ctx, packet);
1754 return;
1755 }
1756
1757 ret = at_context_queue_packet(ctx, packet);
1758 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1759
1760 if (ret < 0) {
1761 // Timestamping on behalf of the hardware.
1762 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1763
1764 packet->callback(packet, &ctx->ohci->card, packet->ack);
1765 }
1766 }
1767
detect_dead_context(struct fw_ohci * ohci,const char * name,unsigned int regs)1768 static void detect_dead_context(struct fw_ohci *ohci,
1769 const char *name, unsigned int regs)
1770 {
1771 u32 ctl;
1772
1773 ctl = reg_read(ohci, CONTROL_SET(regs));
1774 if (ctl & CONTEXT_DEAD)
1775 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1776 name, evts[ctl & 0x1f]);
1777 }
1778
handle_dead_contexts(struct fw_ohci * ohci)1779 static void handle_dead_contexts(struct fw_ohci *ohci)
1780 {
1781 unsigned int i;
1782 char name[8];
1783
1784 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1785 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1786 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1787 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1788 for (i = 0; i < 32; ++i) {
1789 if (!(ohci->it_context_support & (1 << i)))
1790 continue;
1791 sprintf(name, "IT%u", i);
1792 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1793 }
1794 for (i = 0; i < 32; ++i) {
1795 if (!(ohci->ir_context_support & (1 << i)))
1796 continue;
1797 sprintf(name, "IR%u", i);
1798 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1799 }
1800 /* TODO: maybe try to flush and restart the dead contexts */
1801 }
1802
cycle_timer_ticks(u32 cycle_timer)1803 static u32 cycle_timer_ticks(u32 cycle_timer)
1804 {
1805 u32 ticks;
1806
1807 ticks = cycle_timer & 0xfff;
1808 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1809 ticks += (3072 * 8000) * (cycle_timer >> 25);
1810
1811 return ticks;
1812 }
1813
1814 /*
1815 * Some controllers exhibit one or more of the following bugs when updating the
1816 * iso cycle timer register:
1817 * - When the lowest six bits are wrapping around to zero, a read that happens
1818 * at the same time will return garbage in the lowest ten bits.
1819 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1820 * not incremented for about 60 ns.
1821 * - Occasionally, the entire register reads zero.
1822 *
1823 * To catch these, we read the register three times and ensure that the
1824 * difference between each two consecutive reads is approximately the same, i.e.
1825 * less than twice the other. Furthermore, any negative difference indicates an
1826 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1827 * execute, so we have enough precision to compute the ratio of the differences.)
1828 */
get_cycle_time(struct fw_ohci * ohci)1829 static u32 get_cycle_time(struct fw_ohci *ohci)
1830 {
1831 u32 c0, c1, c2;
1832 u32 t0, t1, t2;
1833 s32 diff01, diff12;
1834 int i;
1835
1836 if (has_reboot_by_cycle_timer_read_quirk(ohci))
1837 return 0;
1838
1839 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1840
1841 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1842 i = 0;
1843 c1 = c2;
1844 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1845 do {
1846 c0 = c1;
1847 c1 = c2;
1848 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1849 t0 = cycle_timer_ticks(c0);
1850 t1 = cycle_timer_ticks(c1);
1851 t2 = cycle_timer_ticks(c2);
1852 diff01 = t1 - t0;
1853 diff12 = t2 - t1;
1854 } while ((diff01 <= 0 || diff12 <= 0 ||
1855 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1856 && i++ < 20);
1857 }
1858
1859 return c2;
1860 }
1861
1862 /*
1863 * This function has to be called at least every 64 seconds. The bus_time
1864 * field stores not only the upper 25 bits of the BUS_TIME register but also
1865 * the most significant bit of the cycle timer in bit 6 so that we can detect
1866 * changes in this bit.
1867 */
update_bus_time(struct fw_ohci * ohci)1868 static u32 update_bus_time(struct fw_ohci *ohci)
1869 {
1870 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1871
1872 if (unlikely(!ohci->bus_time_running)) {
1873 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1874 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1875 (cycle_time_seconds & 0x40);
1876 ohci->bus_time_running = true;
1877 }
1878
1879 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1880 ohci->bus_time += 0x40;
1881
1882 return ohci->bus_time | cycle_time_seconds;
1883 }
1884
get_status_for_port(struct fw_ohci * ohci,int port_index,enum phy_packet_self_id_port_status * status)1885 static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1886 enum phy_packet_self_id_port_status *status)
1887 {
1888 int reg;
1889
1890 scoped_guard(mutex, &ohci->phy_reg_mutex) {
1891 reg = write_phy_reg(ohci, 7, port_index);
1892 if (reg < 0)
1893 return reg;
1894
1895 reg = read_phy_reg(ohci, 8);
1896 if (reg < 0)
1897 return reg;
1898 }
1899
1900 switch (reg & 0x0f) {
1901 case 0x06:
1902 // is child node (connected to parent node)
1903 *status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1904 break;
1905 case 0x0e:
1906 // is parent node (connected to child node)
1907 *status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1908 break;
1909 default:
1910 // not connected
1911 *status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1912 break;
1913 }
1914
1915 return 0;
1916 }
1917
get_self_id_pos(struct fw_ohci * ohci,u32 self_id,int self_id_count)1918 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1919 int self_id_count)
1920 {
1921 unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1922 int i;
1923
1924 for (i = 0; i < self_id_count; i++) {
1925 u32 entry = ohci->self_id_buffer[i];
1926 unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1927
1928 if (left_phy_id == right_phy_id)
1929 return -1;
1930 if (left_phy_id < right_phy_id)
1931 return i;
1932 }
1933 return i;
1934 }
1935
detect_initiated_reset(struct fw_ohci * ohci,bool * is_initiated_reset)1936 static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1937 {
1938 int reg;
1939
1940 guard(mutex)(&ohci->phy_reg_mutex);
1941
1942 // Select page 7
1943 reg = write_phy_reg(ohci, 7, 0xe0);
1944 if (reg < 0)
1945 return reg;
1946
1947 reg = read_phy_reg(ohci, 8);
1948 if (reg < 0)
1949 return reg;
1950
1951 // set PMODE bit
1952 reg |= 0x40;
1953 reg = write_phy_reg(ohci, 8, reg);
1954 if (reg < 0)
1955 return reg;
1956
1957 // read register 12
1958 reg = read_phy_reg(ohci, 12);
1959 if (reg < 0)
1960 return reg;
1961
1962 // bit 3 indicates "initiated reset"
1963 *is_initiated_reset = !!((reg & 0x08) == 0x08);
1964
1965 return 0;
1966 }
1967
1968 /*
1969 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1970 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1971 * Construct the selfID from phy register contents.
1972 */
find_and_insert_self_id(struct fw_ohci * ohci,int self_id_count)1973 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1974 {
1975 int reg, i, pos, err;
1976 bool is_initiated_reset;
1977 u32 self_id = 0;
1978
1979 // link active 1, speed 3, bridge 0, contender 1, more packets 0.
1980 phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1981 phy_packet_self_id_zero_set_link_active(&self_id, true);
1982 phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1983 phy_packet_self_id_zero_set_contender(&self_id, true);
1984
1985 reg = reg_read(ohci, OHCI1394_NodeID);
1986 if (!(reg & OHCI1394_NodeID_idValid)) {
1987 ohci_notice(ohci,
1988 "node ID not valid, new bus reset in progress\n");
1989 return -EBUSY;
1990 }
1991 phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1992
1993 reg = ohci_read_phy_reg(&ohci->card, 4);
1994 if (reg < 0)
1995 return reg;
1996 phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1997
1998 reg = ohci_read_phy_reg(&ohci->card, 1);
1999 if (reg < 0)
2000 return reg;
2001 phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
2002
2003 for (i = 0; i < 3; i++) {
2004 enum phy_packet_self_id_port_status status;
2005
2006 err = get_status_for_port(ohci, i, &status);
2007 if (err < 0)
2008 return err;
2009
2010 self_id_sequence_set_port_status(&self_id, 1, i, status);
2011 }
2012
2013 err = detect_initiated_reset(ohci, &is_initiated_reset);
2014 if (err < 0)
2015 return err;
2016 phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
2017
2018 pos = get_self_id_pos(ohci, self_id, self_id_count);
2019 if (pos >= 0) {
2020 memmove(&(ohci->self_id_buffer[pos+1]),
2021 &(ohci->self_id_buffer[pos]),
2022 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
2023 ohci->self_id_buffer[pos] = self_id;
2024 self_id_count++;
2025 }
2026 return self_id_count;
2027 }
2028
bus_reset_work(struct work_struct * work)2029 static void bus_reset_work(struct work_struct *work)
2030 {
2031 struct fw_ohci *ohci =
2032 container_of(work, struct fw_ohci, bus_reset_work);
2033 int self_id_count, generation, new_generation, i, j;
2034 u32 reg, quadlet;
2035 void *free_rom = NULL;
2036 dma_addr_t free_rom_bus = 0;
2037 bool is_new_root;
2038
2039 reg = reg_read(ohci, OHCI1394_NodeID);
2040 if (!(reg & OHCI1394_NodeID_idValid)) {
2041 ohci_notice(ohci,
2042 "node ID not valid, new bus reset in progress\n");
2043 return;
2044 }
2045 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2046 ohci_notice(ohci, "malconfigured bus\n");
2047 return;
2048 }
2049 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2050 OHCI1394_NodeID_nodeNumber);
2051
2052 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2053 if (!(ohci->is_root && is_new_root))
2054 reg_write(ohci, OHCI1394_LinkControlSet,
2055 OHCI1394_LinkControl_cycleMaster);
2056 ohci->is_root = is_new_root;
2057
2058 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2059 if (ohci1394_self_id_count_is_error(reg)) {
2060 ohci_notice(ohci, "self ID receive error\n");
2061 return;
2062 }
2063 /*
2064 * The count in the SelfIDCount register is the number of
2065 * bytes in the self ID receive buffer. Since we also receive
2066 * the inverted quadlets and a header quadlet, we shift one
2067 * bit extra to get the actual number of self IDs.
2068 */
2069 self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2070
2071 if (self_id_count > 252) {
2072 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2073 return;
2074 }
2075
2076 quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2077 generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2078 rmb();
2079
2080 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2081 u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2082 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2083
2084 if (id != ~id2) {
2085 /*
2086 * If the invalid data looks like a cycle start packet,
2087 * it's likely to be the result of the cycle master
2088 * having a wrong gap count. In this case, the self IDs
2089 * so far are valid and should be processed so that the
2090 * bus manager can then correct the gap count.
2091 */
2092 if (id == 0xffff008f) {
2093 ohci_notice(ohci, "ignoring spurious self IDs\n");
2094 self_id_count = j;
2095 break;
2096 }
2097
2098 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2099 j, self_id_count, id, id2);
2100 return;
2101 }
2102 ohci->self_id_buffer[j] = id;
2103 }
2104
2105 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2106 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2107 if (self_id_count < 0) {
2108 ohci_notice(ohci,
2109 "could not construct local self ID\n");
2110 return;
2111 }
2112 }
2113
2114 if (self_id_count == 0) {
2115 ohci_notice(ohci, "no self IDs\n");
2116 return;
2117 }
2118 rmb();
2119
2120 /*
2121 * Check the consistency of the self IDs we just read. The
2122 * problem we face is that a new bus reset can start while we
2123 * read out the self IDs from the DMA buffer. If this happens,
2124 * the DMA buffer will be overwritten with new self IDs and we
2125 * will read out inconsistent data. The OHCI specification
2126 * (section 11.2) recommends a technique similar to
2127 * linux/seqlock.h, where we remember the generation of the
2128 * self IDs in the buffer before reading them out and compare
2129 * it to the current generation after reading them out. If
2130 * the two generations match we know we have a consistent set
2131 * of self IDs.
2132 */
2133
2134 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2135 new_generation = ohci1394_self_id_count_get_generation(reg);
2136 if (new_generation != generation) {
2137 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2138 return;
2139 }
2140
2141 // FIXME: Document how the locking works.
2142 scoped_guard(spinlock_irq, &ohci->lock) {
2143 ohci->generation = -1; // prevent AT packet queueing
2144 context_stop(&ohci->at_request_ctx);
2145 context_stop(&ohci->at_response_ctx);
2146 }
2147
2148 /*
2149 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2150 * packets in the AT queues and software needs to drain them.
2151 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2152 */
2153 at_context_flush(&ohci->at_request_ctx);
2154 at_context_flush(&ohci->at_response_ctx);
2155
2156 scoped_guard(spinlock_irq, &ohci->lock) {
2157 ohci->generation = generation;
2158 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2159 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2160
2161 if (ohci->quirks & QUIRK_RESET_PACKET)
2162 ohci->request_generation = generation;
2163
2164 // This next bit is unrelated to the AT context stuff but we have to do it under the
2165 // spinlock also. If a new config rom was set up before this reset, the old one is
2166 // now no longer in use and we can free it. Update the config rom pointers to point
2167 // to the current config rom and clear the next_config_rom pointer so a new update
2168 // can take place.
2169 if (ohci->next_config_rom != NULL) {
2170 if (ohci->next_config_rom != ohci->config_rom) {
2171 free_rom = ohci->config_rom;
2172 free_rom_bus = ohci->config_rom_bus;
2173 }
2174 ohci->config_rom = ohci->next_config_rom;
2175 ohci->config_rom_bus = ohci->next_config_rom_bus;
2176 ohci->next_config_rom = NULL;
2177
2178 // Restore config_rom image and manually update config_rom registers.
2179 // Writing the header quadlet will indicate that the config rom is ready,
2180 // so we do that last.
2181 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2182 ohci->config_rom[0] = ohci->next_header;
2183 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2184 }
2185
2186 if (param_remote_dma) {
2187 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2188 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2189 }
2190 }
2191
2192 if (free_rom)
2193 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2194
2195 log_selfids(ohci, generation, self_id_count);
2196
2197 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2198 self_id_count, ohci->self_id_buffer,
2199 ohci->csr_state_setclear_abdicate);
2200 ohci->csr_state_setclear_abdicate = false;
2201 }
2202
irq_handler(int irq,void * data)2203 static irqreturn_t irq_handler(int irq, void *data)
2204 {
2205 struct fw_ohci *ohci = data;
2206 u32 event, iso_event;
2207 int i;
2208
2209 event = reg_read(ohci, OHCI1394_IntEventClear);
2210
2211 if (!event || !~event)
2212 return IRQ_NONE;
2213
2214 if (unlikely(param_debug > 0)) {
2215 dev_notice_ratelimited(ohci->card.device,
2216 "The debug parameter is superceded by tracepoints events, and deprecated.");
2217 }
2218
2219 /*
2220 * busReset and postedWriteErr events must not be cleared yet
2221 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2222 */
2223 reg_write(ohci, OHCI1394_IntEventClear,
2224 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2225 trace_irqs(ohci->card.index, event);
2226 log_irqs(ohci, event);
2227 // The flag is masked again at bus_reset_work() scheduled by selfID event.
2228 if (event & OHCI1394_busReset)
2229 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2230
2231 if (event & OHCI1394_selfIDComplete) {
2232 if (trace_self_id_complete_enabled()) {
2233 u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2234
2235 trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2236 has_be_header_quirk(ohci));
2237 }
2238 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2239 }
2240
2241 if (event & OHCI1394_RQPkt)
2242 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2243
2244 if (event & OHCI1394_RSPkt)
2245 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2246
2247 if (event & OHCI1394_reqTxComplete)
2248 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2249
2250 if (event & OHCI1394_respTxComplete)
2251 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2252
2253 if (event & OHCI1394_isochRx) {
2254 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2255 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2256
2257 while (iso_event) {
2258 i = ffs(iso_event) - 1;
2259 fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2260 iso_event &= ~(1 << i);
2261 }
2262 }
2263
2264 if (event & OHCI1394_isochTx) {
2265 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2266 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2267
2268 while (iso_event) {
2269 i = ffs(iso_event) - 1;
2270 fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2271 iso_event &= ~(1 << i);
2272 }
2273 }
2274
2275 if (unlikely(event & OHCI1394_regAccessFail))
2276 ohci_err(ohci, "register access failure\n");
2277
2278 if (unlikely(event & OHCI1394_postedWriteErr)) {
2279 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2280 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2281 reg_write(ohci, OHCI1394_IntEventClear,
2282 OHCI1394_postedWriteErr);
2283 dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2284 }
2285
2286 if (unlikely(event & OHCI1394_cycleTooLong)) {
2287 dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2288 reg_write(ohci, OHCI1394_LinkControlSet,
2289 OHCI1394_LinkControl_cycleMaster);
2290 }
2291
2292 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2293 /*
2294 * We need to clear this event bit in order to make
2295 * cycleMatch isochronous I/O work. In theory we should
2296 * stop active cycleMatch iso contexts now and restart
2297 * them at least two cycles later. (FIXME?)
2298 */
2299 dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2300 }
2301
2302 if (unlikely(event & OHCI1394_unrecoverableError))
2303 handle_dead_contexts(ohci);
2304
2305 if (event & OHCI1394_cycle64Seconds) {
2306 guard(spinlock)(&ohci->lock);
2307 update_bus_time(ohci);
2308 } else
2309 flush_writes(ohci);
2310
2311 return IRQ_HANDLED;
2312 }
2313
software_reset(struct fw_ohci * ohci)2314 static int software_reset(struct fw_ohci *ohci)
2315 {
2316 u32 val;
2317 int i;
2318
2319 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2320 for (i = 0; i < 500; i++) {
2321 val = reg_read(ohci, OHCI1394_HCControlSet);
2322 if (!~val)
2323 return -ENODEV; /* Card was ejected. */
2324
2325 if (!(val & OHCI1394_HCControl_softReset))
2326 return 0;
2327
2328 msleep(1);
2329 }
2330
2331 return -EBUSY;
2332 }
2333
copy_config_rom(__be32 * dest,const __be32 * src,size_t length)2334 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2335 {
2336 size_t size = length * 4;
2337
2338 memcpy(dest, src, size);
2339 if (size < CONFIG_ROM_SIZE)
2340 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2341 }
2342
configure_1394a_enhancements(struct fw_ohci * ohci)2343 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2344 {
2345 bool enable_1394a;
2346 int ret, clear, set, offset;
2347
2348 /* Check if the driver should configure link and PHY. */
2349 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2350 OHCI1394_HCControl_programPhyEnable))
2351 return 0;
2352
2353 /* Paranoia: check whether the PHY supports 1394a, too. */
2354 enable_1394a = false;
2355 ret = read_phy_reg(ohci, 2);
2356 if (ret < 0)
2357 return ret;
2358 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2359 ret = read_paged_phy_reg(ohci, 1, 8);
2360 if (ret < 0)
2361 return ret;
2362 if (ret >= 1)
2363 enable_1394a = true;
2364 }
2365
2366 if (ohci->quirks & QUIRK_NO_1394A)
2367 enable_1394a = false;
2368
2369 /* Configure PHY and link consistently. */
2370 if (enable_1394a) {
2371 clear = 0;
2372 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2373 } else {
2374 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2375 set = 0;
2376 }
2377 ret = update_phy_reg(ohci, 5, clear, set);
2378 if (ret < 0)
2379 return ret;
2380
2381 if (enable_1394a)
2382 offset = OHCI1394_HCControlSet;
2383 else
2384 offset = OHCI1394_HCControlClear;
2385 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2386
2387 /* Clean up: configuration has been taken care of. */
2388 reg_write(ohci, OHCI1394_HCControlClear,
2389 OHCI1394_HCControl_programPhyEnable);
2390
2391 return 0;
2392 }
2393
probe_tsb41ba3d(struct fw_ohci * ohci)2394 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2395 {
2396 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2397 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2398 int reg, i;
2399
2400 reg = read_phy_reg(ohci, 2);
2401 if (reg < 0)
2402 return reg;
2403 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2404 return 0;
2405
2406 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2407 reg = read_paged_phy_reg(ohci, 1, i + 10);
2408 if (reg < 0)
2409 return reg;
2410 if (reg != id[i])
2411 return 0;
2412 }
2413 return 1;
2414 }
2415
ohci_enable(struct fw_card * card,const __be32 * config_rom,size_t length)2416 static int ohci_enable(struct fw_card *card,
2417 const __be32 *config_rom, size_t length)
2418 {
2419 struct fw_ohci *ohci = fw_ohci(card);
2420 u32 lps, version, irqs;
2421 int i, ret;
2422
2423 ret = software_reset(ohci);
2424 if (ret < 0) {
2425 ohci_err(ohci, "failed to reset ohci card\n");
2426 return ret;
2427 }
2428
2429 /*
2430 * Now enable LPS, which we need in order to start accessing
2431 * most of the registers. In fact, on some cards (ALI M5251),
2432 * accessing registers in the SClk domain without LPS enabled
2433 * will lock up the machine. Wait 50msec to make sure we have
2434 * full link enabled. However, with some cards (well, at least
2435 * a JMicron PCIe card), we have to try again sometimes.
2436 *
2437 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2438 * cannot actually use the phy at that time. These need tens of
2439 * millisecods pause between LPS write and first phy access too.
2440 */
2441
2442 reg_write(ohci, OHCI1394_HCControlSet,
2443 OHCI1394_HCControl_LPS |
2444 OHCI1394_HCControl_postedWriteEnable);
2445 flush_writes(ohci);
2446
2447 for (lps = 0, i = 0; !lps && i < 3; i++) {
2448 msleep(50);
2449 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2450 OHCI1394_HCControl_LPS;
2451 }
2452
2453 if (!lps) {
2454 ohci_err(ohci, "failed to set Link Power Status\n");
2455 return -EIO;
2456 }
2457
2458 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2459 ret = probe_tsb41ba3d(ohci);
2460 if (ret < 0)
2461 return ret;
2462 if (ret)
2463 ohci_notice(ohci, "local TSB41BA3D phy\n");
2464 else
2465 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2466 }
2467
2468 reg_write(ohci, OHCI1394_HCControlClear,
2469 OHCI1394_HCControl_noByteSwapData);
2470
2471 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2472 reg_write(ohci, OHCI1394_LinkControlSet,
2473 OHCI1394_LinkControl_cycleTimerEnable |
2474 OHCI1394_LinkControl_cycleMaster);
2475
2476 reg_write(ohci, OHCI1394_ATRetries,
2477 OHCI1394_MAX_AT_REQ_RETRIES |
2478 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2479 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2480 (200 << 16));
2481
2482 ohci->bus_time_running = false;
2483
2484 for (i = 0; i < 32; i++)
2485 if (ohci->ir_context_support & (1 << i))
2486 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2487 IR_CONTEXT_MULTI_CHANNEL_MODE);
2488
2489 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2490 if (version >= OHCI_VERSION_1_1) {
2491 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2492 0xfffffffe);
2493 card->broadcast_channel_auto_allocated = true;
2494 }
2495
2496 /* Get implemented bits of the priority arbitration request counter. */
2497 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2498 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2499 reg_write(ohci, OHCI1394_FairnessControl, 0);
2500 card->priority_budget_implemented = ohci->pri_req_max != 0;
2501
2502 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2503 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2504 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2505
2506 ret = configure_1394a_enhancements(ohci);
2507 if (ret < 0)
2508 return ret;
2509
2510 /* Activate link_on bit and contender bit in our self ID packets.*/
2511 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2512 if (ret < 0)
2513 return ret;
2514
2515 /*
2516 * When the link is not yet enabled, the atomic config rom
2517 * update mechanism described below in ohci_set_config_rom()
2518 * is not active. We have to update ConfigRomHeader and
2519 * BusOptions manually, and the write to ConfigROMmap takes
2520 * effect immediately. We tie this to the enabling of the
2521 * link, so we have a valid config rom before enabling - the
2522 * OHCI requires that ConfigROMhdr and BusOptions have valid
2523 * values before enabling.
2524 *
2525 * However, when the ConfigROMmap is written, some controllers
2526 * always read back quadlets 0 and 2 from the config rom to
2527 * the ConfigRomHeader and BusOptions registers on bus reset.
2528 * They shouldn't do that in this initial case where the link
2529 * isn't enabled. This means we have to use the same
2530 * workaround here, setting the bus header to 0 and then write
2531 * the right values in the bus reset tasklet.
2532 */
2533
2534 if (config_rom) {
2535 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2536 &ohci->next_config_rom_bus, GFP_KERNEL);
2537 if (ohci->next_config_rom == NULL)
2538 return -ENOMEM;
2539
2540 copy_config_rom(ohci->next_config_rom, config_rom, length);
2541 } else {
2542 /*
2543 * In the suspend case, config_rom is NULL, which
2544 * means that we just reuse the old config rom.
2545 */
2546 ohci->next_config_rom = ohci->config_rom;
2547 ohci->next_config_rom_bus = ohci->config_rom_bus;
2548 }
2549
2550 ohci->next_header = ohci->next_config_rom[0];
2551 ohci->next_config_rom[0] = 0;
2552 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2553 reg_write(ohci, OHCI1394_BusOptions,
2554 be32_to_cpu(ohci->next_config_rom[2]));
2555 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2556
2557 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2558
2559 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2560 OHCI1394_RQPkt | OHCI1394_RSPkt |
2561 OHCI1394_isochTx | OHCI1394_isochRx |
2562 OHCI1394_postedWriteErr |
2563 OHCI1394_selfIDComplete |
2564 OHCI1394_regAccessFail |
2565 OHCI1394_cycleInconsistent |
2566 OHCI1394_unrecoverableError |
2567 OHCI1394_cycleTooLong |
2568 OHCI1394_masterIntEnable |
2569 OHCI1394_busReset;
2570 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2571
2572 reg_write(ohci, OHCI1394_HCControlSet,
2573 OHCI1394_HCControl_linkEnable |
2574 OHCI1394_HCControl_BIBimageValid);
2575
2576 reg_write(ohci, OHCI1394_LinkControlSet,
2577 OHCI1394_LinkControl_rcvSelfID |
2578 OHCI1394_LinkControl_rcvPhyPkt);
2579
2580 ar_context_run(&ohci->ar_request_ctx);
2581 ar_context_run(&ohci->ar_response_ctx);
2582
2583 flush_writes(ohci);
2584
2585 /* We are ready to go, reset bus to finish initialization. */
2586 fw_schedule_bus_reset(&ohci->card, false, true);
2587
2588 return 0;
2589 }
2590
ohci_set_config_rom(struct fw_card * card,const __be32 * config_rom,size_t length)2591 static int ohci_set_config_rom(struct fw_card *card,
2592 const __be32 *config_rom, size_t length)
2593 {
2594 struct fw_ohci *ohci;
2595 __be32 *next_config_rom;
2596 dma_addr_t next_config_rom_bus;
2597
2598 ohci = fw_ohci(card);
2599
2600 /*
2601 * When the OHCI controller is enabled, the config rom update
2602 * mechanism is a bit tricky, but easy enough to use. See
2603 * section 5.5.6 in the OHCI specification.
2604 *
2605 * The OHCI controller caches the new config rom address in a
2606 * shadow register (ConfigROMmapNext) and needs a bus reset
2607 * for the changes to take place. When the bus reset is
2608 * detected, the controller loads the new values for the
2609 * ConfigRomHeader and BusOptions registers from the specified
2610 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2611 * shadow register. All automatically and atomically.
2612 *
2613 * Now, there's a twist to this story. The automatic load of
2614 * ConfigRomHeader and BusOptions doesn't honor the
2615 * noByteSwapData bit, so with a be32 config rom, the
2616 * controller will load be32 values in to these registers
2617 * during the atomic update, even on litte endian
2618 * architectures. The workaround we use is to put a 0 in the
2619 * header quadlet; 0 is endian agnostic and means that the
2620 * config rom isn't ready yet. In the bus reset tasklet we
2621 * then set up the real values for the two registers.
2622 *
2623 * We use ohci->lock to avoid racing with the code that sets
2624 * ohci->next_config_rom to NULL (see bus_reset_work).
2625 */
2626
2627 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2628 &next_config_rom_bus, GFP_KERNEL);
2629 if (next_config_rom == NULL)
2630 return -ENOMEM;
2631
2632 scoped_guard(spinlock_irq, &ohci->lock) {
2633 // If there is not an already pending config_rom update, push our new allocation
2634 // into the ohci->next_config_rom and then mark the local variable as null so that
2635 // we won't deallocate the new buffer.
2636 //
2637 // OTOH, if there is a pending config_rom update, just use that buffer with the new
2638 // config_rom data, and let this routine free the unused DMA allocation.
2639 if (ohci->next_config_rom == NULL) {
2640 ohci->next_config_rom = next_config_rom;
2641 ohci->next_config_rom_bus = next_config_rom_bus;
2642 next_config_rom = NULL;
2643 }
2644
2645 copy_config_rom(ohci->next_config_rom, config_rom, length);
2646
2647 ohci->next_header = config_rom[0];
2648 ohci->next_config_rom[0] = 0;
2649
2650 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2651 }
2652
2653 /* If we didn't use the DMA allocation, delete it. */
2654 if (next_config_rom != NULL) {
2655 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2656 next_config_rom_bus);
2657 }
2658
2659 /*
2660 * Now initiate a bus reset to have the changes take
2661 * effect. We clean up the old config rom memory and DMA
2662 * mappings in the bus reset tasklet, since the OHCI
2663 * controller could need to access it before the bus reset
2664 * takes effect.
2665 */
2666
2667 fw_schedule_bus_reset(&ohci->card, true, true);
2668
2669 return 0;
2670 }
2671
ohci_send_request(struct fw_card * card,struct fw_packet * packet)2672 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2673 {
2674 struct fw_ohci *ohci = fw_ohci(card);
2675
2676 at_context_transmit(&ohci->at_request_ctx, packet);
2677 }
2678
ohci_send_response(struct fw_card * card,struct fw_packet * packet)2679 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2680 {
2681 struct fw_ohci *ohci = fw_ohci(card);
2682
2683 at_context_transmit(&ohci->at_response_ctx, packet);
2684 }
2685
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)2686 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2687 {
2688 struct fw_ohci *ohci = fw_ohci(card);
2689 struct context *ctx = &ohci->at_request_ctx;
2690 struct driver_data *driver_data = packet->driver_data;
2691 int ret = -ENOENT;
2692
2693 tasklet_disable_in_atomic(&ctx->tasklet);
2694
2695 if (packet->ack != 0)
2696 goto out;
2697
2698 if (packet->payload_mapped)
2699 dma_unmap_single(ohci->card.device, packet->payload_bus,
2700 packet->payload_length, DMA_TO_DEVICE);
2701
2702 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2703 driver_data->packet = NULL;
2704 packet->ack = RCODE_CANCELLED;
2705
2706 // Timestamping on behalf of the hardware.
2707 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2708
2709 packet->callback(packet, &ohci->card, packet->ack);
2710 ret = 0;
2711 out:
2712 tasklet_enable(&ctx->tasklet);
2713
2714 return ret;
2715 }
2716
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)2717 static int ohci_enable_phys_dma(struct fw_card *card,
2718 int node_id, int generation)
2719 {
2720 struct fw_ohci *ohci = fw_ohci(card);
2721 int n, ret = 0;
2722
2723 if (param_remote_dma)
2724 return 0;
2725
2726 /*
2727 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2728 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2729 */
2730
2731 guard(spinlock_irqsave)(&ohci->lock);
2732
2733 if (ohci->generation != generation)
2734 return -ESTALE;
2735
2736 /*
2737 * Note, if the node ID contains a non-local bus ID, physical DMA is
2738 * enabled for _all_ nodes on remote buses.
2739 */
2740
2741 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2742 if (n < 32)
2743 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2744 else
2745 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2746
2747 flush_writes(ohci);
2748
2749 return ret;
2750 }
2751
ohci_read_csr(struct fw_card * card,int csr_offset)2752 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2753 {
2754 struct fw_ohci *ohci = fw_ohci(card);
2755 u32 value;
2756
2757 switch (csr_offset) {
2758 case CSR_STATE_CLEAR:
2759 case CSR_STATE_SET:
2760 if (ohci->is_root &&
2761 (reg_read(ohci, OHCI1394_LinkControlSet) &
2762 OHCI1394_LinkControl_cycleMaster))
2763 value = CSR_STATE_BIT_CMSTR;
2764 else
2765 value = 0;
2766 if (ohci->csr_state_setclear_abdicate)
2767 value |= CSR_STATE_BIT_ABDICATE;
2768
2769 return value;
2770
2771 case CSR_NODE_IDS:
2772 return reg_read(ohci, OHCI1394_NodeID) << 16;
2773
2774 case CSR_CYCLE_TIME:
2775 return get_cycle_time(ohci);
2776
2777 case CSR_BUS_TIME:
2778 {
2779 // We might be called just after the cycle timer has wrapped around but just before
2780 // the cycle64Seconds handler, so we better check here, too, if the bus time needs
2781 // to be updated.
2782
2783 guard(spinlock_irqsave)(&ohci->lock);
2784 return update_bus_time(ohci);
2785 }
2786 case CSR_BUSY_TIMEOUT:
2787 value = reg_read(ohci, OHCI1394_ATRetries);
2788 return (value >> 4) & 0x0ffff00f;
2789
2790 case CSR_PRIORITY_BUDGET:
2791 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2792 (ohci->pri_req_max << 8);
2793
2794 default:
2795 WARN_ON(1);
2796 return 0;
2797 }
2798 }
2799
ohci_write_csr(struct fw_card * card,int csr_offset,u32 value)2800 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2801 {
2802 struct fw_ohci *ohci = fw_ohci(card);
2803
2804 switch (csr_offset) {
2805 case CSR_STATE_CLEAR:
2806 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2807 reg_write(ohci, OHCI1394_LinkControlClear,
2808 OHCI1394_LinkControl_cycleMaster);
2809 flush_writes(ohci);
2810 }
2811 if (value & CSR_STATE_BIT_ABDICATE)
2812 ohci->csr_state_setclear_abdicate = false;
2813 break;
2814
2815 case CSR_STATE_SET:
2816 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2817 reg_write(ohci, OHCI1394_LinkControlSet,
2818 OHCI1394_LinkControl_cycleMaster);
2819 flush_writes(ohci);
2820 }
2821 if (value & CSR_STATE_BIT_ABDICATE)
2822 ohci->csr_state_setclear_abdicate = true;
2823 break;
2824
2825 case CSR_NODE_IDS:
2826 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2827 flush_writes(ohci);
2828 break;
2829
2830 case CSR_CYCLE_TIME:
2831 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2832 reg_write(ohci, OHCI1394_IntEventSet,
2833 OHCI1394_cycleInconsistent);
2834 flush_writes(ohci);
2835 break;
2836
2837 case CSR_BUS_TIME:
2838 {
2839 guard(spinlock_irqsave)(&ohci->lock);
2840 ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2841 break;
2842 }
2843 case CSR_BUSY_TIMEOUT:
2844 value = (value & 0xf) | ((value & 0xf) << 4) |
2845 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2846 reg_write(ohci, OHCI1394_ATRetries, value);
2847 flush_writes(ohci);
2848 break;
2849
2850 case CSR_PRIORITY_BUDGET:
2851 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2852 flush_writes(ohci);
2853 break;
2854
2855 default:
2856 WARN_ON(1);
2857 break;
2858 }
2859 }
2860
flush_iso_completions(struct iso_context * ctx,enum fw_iso_context_completions_cause cause)2861 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2862 {
2863 trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2864 ctx->header_length);
2865 trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2866 ctx->header_length);
2867
2868 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2869 ctx->header_length, ctx->header,
2870 ctx->base.callback_data);
2871 ctx->header_length = 0;
2872 }
2873
copy_iso_headers(struct iso_context * ctx,const u32 * dma_hdr)2874 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2875 {
2876 u32 *ctx_hdr;
2877
2878 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2879 if (ctx->base.drop_overflow_headers)
2880 return;
2881 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2882 }
2883
2884 ctx_hdr = ctx->header + ctx->header_length;
2885 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2886
2887 /*
2888 * The two iso header quadlets are byteswapped to little
2889 * endian by the controller, but we want to present them
2890 * as big endian for consistency with the bus endianness.
2891 */
2892 if (ctx->base.header_size > 0)
2893 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2894 if (ctx->base.header_size > 4)
2895 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2896 if (ctx->base.header_size > 8)
2897 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2898 ctx->header_length += ctx->base.header_size;
2899 }
2900
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)2901 static int handle_ir_packet_per_buffer(struct context *context,
2902 struct descriptor *d,
2903 struct descriptor *last)
2904 {
2905 struct iso_context *ctx =
2906 container_of(context, struct iso_context, context);
2907 struct descriptor *pd;
2908 u32 buffer_dma;
2909
2910 for (pd = d; pd <= last; pd++)
2911 if (pd->transfer_status)
2912 break;
2913 if (pd > last)
2914 /* Descriptor(s) not done yet, stop iteration */
2915 return 0;
2916
2917 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2918 d++;
2919 buffer_dma = le32_to_cpu(d->data_address);
2920 dma_sync_single_range_for_cpu(context->ohci->card.device,
2921 buffer_dma & PAGE_MASK,
2922 buffer_dma & ~PAGE_MASK,
2923 le16_to_cpu(d->req_count),
2924 DMA_FROM_DEVICE);
2925 }
2926
2927 copy_iso_headers(ctx, (u32 *) (last + 1));
2928
2929 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2930 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2931
2932 return 1;
2933 }
2934
2935 /* d == last because each descriptor block is only a single descriptor. */
handle_ir_buffer_fill(struct context * context,struct descriptor * d,struct descriptor * last)2936 static int handle_ir_buffer_fill(struct context *context,
2937 struct descriptor *d,
2938 struct descriptor *last)
2939 {
2940 struct iso_context *ctx =
2941 container_of(context, struct iso_context, context);
2942 unsigned int req_count, res_count, completed;
2943 u32 buffer_dma;
2944
2945 req_count = le16_to_cpu(last->req_count);
2946 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2947 completed = req_count - res_count;
2948 buffer_dma = le32_to_cpu(last->data_address);
2949
2950 if (completed > 0) {
2951 ctx->mc_buffer_bus = buffer_dma;
2952 ctx->mc_completed = completed;
2953 }
2954
2955 if (res_count != 0)
2956 /* Descriptor(s) not done yet, stop iteration */
2957 return 0;
2958
2959 dma_sync_single_range_for_cpu(context->ohci->card.device,
2960 buffer_dma & PAGE_MASK,
2961 buffer_dma & ~PAGE_MASK,
2962 completed, DMA_FROM_DEVICE);
2963
2964 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2965 trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2966 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2967
2968 ctx->base.callback.mc(&ctx->base,
2969 buffer_dma + completed,
2970 ctx->base.callback_data);
2971 ctx->mc_completed = 0;
2972 }
2973
2974 return 1;
2975 }
2976
flush_ir_buffer_fill(struct iso_context * ctx)2977 static void flush_ir_buffer_fill(struct iso_context *ctx)
2978 {
2979 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2980 ctx->mc_buffer_bus & PAGE_MASK,
2981 ctx->mc_buffer_bus & ~PAGE_MASK,
2982 ctx->mc_completed, DMA_FROM_DEVICE);
2983
2984 trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2985 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2986
2987 ctx->base.callback.mc(&ctx->base,
2988 ctx->mc_buffer_bus + ctx->mc_completed,
2989 ctx->base.callback_data);
2990 ctx->mc_completed = 0;
2991 }
2992
sync_it_packet_for_cpu(struct context * context,struct descriptor * pd)2993 static inline void sync_it_packet_for_cpu(struct context *context,
2994 struct descriptor *pd)
2995 {
2996 __le16 control;
2997 u32 buffer_dma;
2998
2999 /* only packets beginning with OUTPUT_MORE* have data buffers */
3000 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3001 return;
3002
3003 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3004 pd += 2;
3005
3006 /*
3007 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3008 * data buffer is in the context program's coherent page and must not
3009 * be synced.
3010 */
3011 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3012 (context->current_bus & PAGE_MASK)) {
3013 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3014 return;
3015 pd++;
3016 }
3017
3018 do {
3019 buffer_dma = le32_to_cpu(pd->data_address);
3020 dma_sync_single_range_for_cpu(context->ohci->card.device,
3021 buffer_dma & PAGE_MASK,
3022 buffer_dma & ~PAGE_MASK,
3023 le16_to_cpu(pd->req_count),
3024 DMA_TO_DEVICE);
3025 control = pd->control;
3026 pd++;
3027 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3028 }
3029
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)3030 static int handle_it_packet(struct context *context,
3031 struct descriptor *d,
3032 struct descriptor *last)
3033 {
3034 struct iso_context *ctx =
3035 container_of(context, struct iso_context, context);
3036 struct descriptor *pd;
3037 __be32 *ctx_hdr;
3038
3039 for (pd = d; pd <= last; pd++)
3040 if (pd->transfer_status)
3041 break;
3042 if (pd > last)
3043 /* Descriptor(s) not done yet, stop iteration */
3044 return 0;
3045
3046 sync_it_packet_for_cpu(context, d);
3047
3048 if (ctx->header_length + 4 > PAGE_SIZE) {
3049 if (ctx->base.drop_overflow_headers)
3050 return 1;
3051 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3052 }
3053
3054 ctx_hdr = ctx->header + ctx->header_length;
3055 ctx->last_timestamp = le16_to_cpu(last->res_count);
3056 /* Present this value as big-endian to match the receive code */
3057 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3058 le16_to_cpu(pd->res_count));
3059 ctx->header_length += 4;
3060
3061 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3062 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
3063
3064 return 1;
3065 }
3066
set_multichannel_mask(struct fw_ohci * ohci,u64 channels)3067 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3068 {
3069 u32 hi = channels >> 32, lo = channels;
3070
3071 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3072 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3073 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3074 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3075 ohci->mc_channels = channels;
3076 }
3077
ohci_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)3078 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3079 int type, int channel, size_t header_size)
3080 {
3081 struct fw_ohci *ohci = fw_ohci(card);
3082 struct iso_context *ctx;
3083 descriptor_callback_t callback;
3084 u64 *channels;
3085 u32 *mask, regs;
3086 int index, ret = -EBUSY;
3087
3088 scoped_guard(spinlock_irq, &ohci->lock) {
3089 switch (type) {
3090 case FW_ISO_CONTEXT_TRANSMIT:
3091 mask = &ohci->it_context_mask;
3092 callback = handle_it_packet;
3093 index = ffs(*mask) - 1;
3094 if (index >= 0) {
3095 *mask &= ~(1 << index);
3096 regs = OHCI1394_IsoXmitContextBase(index);
3097 ctx = &ohci->it_context_list[index];
3098 }
3099 break;
3100
3101 case FW_ISO_CONTEXT_RECEIVE:
3102 channels = &ohci->ir_context_channels;
3103 mask = &ohci->ir_context_mask;
3104 callback = handle_ir_packet_per_buffer;
3105 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3106 if (index >= 0) {
3107 *channels &= ~(1ULL << channel);
3108 *mask &= ~(1 << index);
3109 regs = OHCI1394_IsoRcvContextBase(index);
3110 ctx = &ohci->ir_context_list[index];
3111 }
3112 break;
3113
3114 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3115 mask = &ohci->ir_context_mask;
3116 callback = handle_ir_buffer_fill;
3117 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3118 if (index >= 0) {
3119 ohci->mc_allocated = true;
3120 *mask &= ~(1 << index);
3121 regs = OHCI1394_IsoRcvContextBase(index);
3122 ctx = &ohci->ir_context_list[index];
3123 }
3124 break;
3125
3126 default:
3127 index = -1;
3128 ret = -ENOSYS;
3129 }
3130
3131 if (index < 0)
3132 return ERR_PTR(ret);
3133 }
3134
3135 memset(ctx, 0, sizeof(*ctx));
3136 ctx->header_length = 0;
3137 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3138 if (ctx->header == NULL) {
3139 ret = -ENOMEM;
3140 goto out;
3141 }
3142 ret = context_init(&ctx->context, ohci, regs, callback);
3143 if (ret < 0)
3144 goto out_with_header;
3145 fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3146
3147 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3148 set_multichannel_mask(ohci, 0);
3149 ctx->mc_completed = 0;
3150 }
3151
3152 return &ctx->base;
3153
3154 out_with_header:
3155 free_page((unsigned long)ctx->header);
3156 out:
3157 scoped_guard(spinlock_irq, &ohci->lock) {
3158 switch (type) {
3159 case FW_ISO_CONTEXT_RECEIVE:
3160 *channels |= 1ULL << channel;
3161 break;
3162
3163 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3164 ohci->mc_allocated = false;
3165 break;
3166 }
3167 *mask |= 1 << index;
3168 }
3169
3170 return ERR_PTR(ret);
3171 }
3172
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)3173 static int ohci_start_iso(struct fw_iso_context *base,
3174 s32 cycle, u32 sync, u32 tags)
3175 {
3176 struct iso_context *ctx = container_of(base, struct iso_context, base);
3177 struct fw_ohci *ohci = ctx->context.ohci;
3178 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3179 int index;
3180
3181 /* the controller cannot start without any queued packets */
3182 if (ctx->context.last->branch_address == 0)
3183 return -ENODATA;
3184
3185 switch (ctx->base.type) {
3186 case FW_ISO_CONTEXT_TRANSMIT:
3187 index = ctx - ohci->it_context_list;
3188 match = 0;
3189 if (cycle >= 0)
3190 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3191 (cycle & 0x7fff) << 16;
3192
3193 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3194 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3195 context_run(&ctx->context, match);
3196 break;
3197
3198 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3199 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3200 fallthrough;
3201 case FW_ISO_CONTEXT_RECEIVE:
3202 index = ctx - ohci->ir_context_list;
3203 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3204 if (cycle >= 0) {
3205 match |= (cycle & 0x07fff) << 12;
3206 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3207 }
3208
3209 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3210 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3211 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3212 context_run(&ctx->context, control);
3213
3214 ctx->sync = sync;
3215 ctx->tags = tags;
3216
3217 break;
3218 }
3219
3220 return 0;
3221 }
3222
ohci_stop_iso(struct fw_iso_context * base)3223 static int ohci_stop_iso(struct fw_iso_context *base)
3224 {
3225 struct fw_ohci *ohci = fw_ohci(base->card);
3226 struct iso_context *ctx = container_of(base, struct iso_context, base);
3227 int index;
3228
3229 switch (ctx->base.type) {
3230 case FW_ISO_CONTEXT_TRANSMIT:
3231 index = ctx - ohci->it_context_list;
3232 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3233 break;
3234
3235 case FW_ISO_CONTEXT_RECEIVE:
3236 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3237 index = ctx - ohci->ir_context_list;
3238 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3239 break;
3240 }
3241 flush_writes(ohci);
3242 context_stop(&ctx->context);
3243
3244 return 0;
3245 }
3246
ohci_free_iso_context(struct fw_iso_context * base)3247 static void ohci_free_iso_context(struct fw_iso_context *base)
3248 {
3249 struct fw_ohci *ohci = fw_ohci(base->card);
3250 struct iso_context *ctx = container_of(base, struct iso_context, base);
3251 int index;
3252
3253 ohci_stop_iso(base);
3254 context_release(&ctx->context);
3255 free_page((unsigned long)ctx->header);
3256
3257 guard(spinlock_irqsave)(&ohci->lock);
3258
3259 switch (base->type) {
3260 case FW_ISO_CONTEXT_TRANSMIT:
3261 index = ctx - ohci->it_context_list;
3262 ohci->it_context_mask |= 1 << index;
3263 break;
3264
3265 case FW_ISO_CONTEXT_RECEIVE:
3266 index = ctx - ohci->ir_context_list;
3267 ohci->ir_context_mask |= 1 << index;
3268 ohci->ir_context_channels |= 1ULL << base->channel;
3269 break;
3270
3271 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3272 index = ctx - ohci->ir_context_list;
3273 ohci->ir_context_mask |= 1 << index;
3274 ohci->ir_context_channels |= ohci->mc_channels;
3275 ohci->mc_channels = 0;
3276 ohci->mc_allocated = false;
3277 break;
3278 }
3279 }
3280
ohci_set_iso_channels(struct fw_iso_context * base,u64 * channels)3281 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3282 {
3283 struct fw_ohci *ohci = fw_ohci(base->card);
3284
3285 switch (base->type) {
3286 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3287 {
3288 guard(spinlock_irqsave)(&ohci->lock);
3289
3290 // Don't allow multichannel to grab other contexts' channels.
3291 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3292 *channels = ohci->ir_context_channels;
3293 return -EBUSY;
3294 } else {
3295 set_multichannel_mask(ohci, *channels);
3296 return 0;
3297 }
3298 }
3299 default:
3300 return -EINVAL;
3301 }
3302 }
3303
3304 #ifdef CONFIG_PM
ohci_resume_iso_dma(struct fw_ohci * ohci)3305 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3306 {
3307 int i;
3308 struct iso_context *ctx;
3309
3310 for (i = 0 ; i < ohci->n_ir ; i++) {
3311 ctx = &ohci->ir_context_list[i];
3312 if (ctx->context.running)
3313 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3314 }
3315
3316 for (i = 0 ; i < ohci->n_it ; i++) {
3317 ctx = &ohci->it_context_list[i];
3318 if (ctx->context.running)
3319 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3320 }
3321 }
3322 #endif
3323
queue_iso_transmit(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3324 static int queue_iso_transmit(struct iso_context *ctx,
3325 struct fw_iso_packet *packet,
3326 struct fw_iso_buffer *buffer,
3327 unsigned long payload)
3328 {
3329 struct descriptor *d, *last, *pd;
3330 struct fw_iso_packet *p;
3331 __le32 *header;
3332 dma_addr_t d_bus, page_bus;
3333 u32 z, header_z, payload_z, irq;
3334 u32 payload_index, payload_end_index, next_page_index;
3335 int page, end_page, i, length, offset;
3336
3337 p = packet;
3338 payload_index = payload;
3339
3340 if (p->skip)
3341 z = 1;
3342 else
3343 z = 2;
3344 if (p->header_length > 0)
3345 z++;
3346
3347 /* Determine the first page the payload isn't contained in. */
3348 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3349 if (p->payload_length > 0)
3350 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3351 else
3352 payload_z = 0;
3353
3354 z += payload_z;
3355
3356 /* Get header size in number of descriptors. */
3357 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3358
3359 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3360 if (d == NULL)
3361 return -ENOMEM;
3362
3363 if (!p->skip) {
3364 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3365 d[0].req_count = cpu_to_le16(8);
3366 /*
3367 * Link the skip address to this descriptor itself. This causes
3368 * a context to skip a cycle whenever lost cycles or FIFO
3369 * overruns occur, without dropping the data. The application
3370 * should then decide whether this is an error condition or not.
3371 * FIXME: Make the context's cycle-lost behaviour configurable?
3372 */
3373 d[0].branch_address = cpu_to_le32(d_bus | z);
3374
3375 header = (__le32 *) &d[1];
3376
3377 ohci1394_it_data_set_speed(header, ctx->base.speed);
3378 ohci1394_it_data_set_tag(header, p->tag);
3379 ohci1394_it_data_set_channel(header, ctx->base.channel);
3380 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3381 ohci1394_it_data_set_sync(header, p->sy);
3382
3383 ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3384 }
3385
3386 if (p->header_length > 0) {
3387 d[2].req_count = cpu_to_le16(p->header_length);
3388 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3389 memcpy(&d[z], p->header, p->header_length);
3390 }
3391
3392 pd = d + z - payload_z;
3393 payload_end_index = payload_index + p->payload_length;
3394 for (i = 0; i < payload_z; i++) {
3395 page = payload_index >> PAGE_SHIFT;
3396 offset = payload_index & ~PAGE_MASK;
3397 next_page_index = (page + 1) << PAGE_SHIFT;
3398 length =
3399 min(next_page_index, payload_end_index) - payload_index;
3400 pd[i].req_count = cpu_to_le16(length);
3401
3402 page_bus = page_private(buffer->pages[page]);
3403 pd[i].data_address = cpu_to_le32(page_bus + offset);
3404
3405 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3406 page_bus, offset, length,
3407 DMA_TO_DEVICE);
3408
3409 payload_index += length;
3410 }
3411
3412 if (p->interrupt)
3413 irq = DESCRIPTOR_IRQ_ALWAYS;
3414 else
3415 irq = DESCRIPTOR_NO_IRQ;
3416
3417 last = z == 2 ? d : d + z - 1;
3418 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3419 DESCRIPTOR_STATUS |
3420 DESCRIPTOR_BRANCH_ALWAYS |
3421 irq);
3422
3423 context_append(&ctx->context, d, z, header_z);
3424
3425 return 0;
3426 }
3427
queue_iso_packet_per_buffer(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3428 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3429 struct fw_iso_packet *packet,
3430 struct fw_iso_buffer *buffer,
3431 unsigned long payload)
3432 {
3433 struct device *device = ctx->context.ohci->card.device;
3434 struct descriptor *d, *pd;
3435 dma_addr_t d_bus, page_bus;
3436 u32 z, header_z, rest;
3437 int i, j, length;
3438 int page, offset, packet_count, header_size, payload_per_buffer;
3439
3440 /*
3441 * The OHCI controller puts the isochronous header and trailer in the
3442 * buffer, so we need at least 8 bytes.
3443 */
3444 packet_count = packet->header_length / ctx->base.header_size;
3445 header_size = max(ctx->base.header_size, (size_t)8);
3446
3447 /* Get header size in number of descriptors. */
3448 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3449 page = payload >> PAGE_SHIFT;
3450 offset = payload & ~PAGE_MASK;
3451 payload_per_buffer = packet->payload_length / packet_count;
3452
3453 for (i = 0; i < packet_count; i++) {
3454 /* d points to the header descriptor */
3455 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3456 d = context_get_descriptors(&ctx->context,
3457 z + header_z, &d_bus);
3458 if (d == NULL)
3459 return -ENOMEM;
3460
3461 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3462 DESCRIPTOR_INPUT_MORE);
3463 if (packet->skip && i == 0)
3464 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3465 d->req_count = cpu_to_le16(header_size);
3466 d->res_count = d->req_count;
3467 d->transfer_status = 0;
3468 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3469
3470 rest = payload_per_buffer;
3471 pd = d;
3472 for (j = 1; j < z; j++) {
3473 pd++;
3474 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3475 DESCRIPTOR_INPUT_MORE);
3476
3477 if (offset + rest < PAGE_SIZE)
3478 length = rest;
3479 else
3480 length = PAGE_SIZE - offset;
3481 pd->req_count = cpu_to_le16(length);
3482 pd->res_count = pd->req_count;
3483 pd->transfer_status = 0;
3484
3485 page_bus = page_private(buffer->pages[page]);
3486 pd->data_address = cpu_to_le32(page_bus + offset);
3487
3488 dma_sync_single_range_for_device(device, page_bus,
3489 offset, length,
3490 DMA_FROM_DEVICE);
3491
3492 offset = (offset + length) & ~PAGE_MASK;
3493 rest -= length;
3494 if (offset == 0)
3495 page++;
3496 }
3497 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3498 DESCRIPTOR_INPUT_LAST |
3499 DESCRIPTOR_BRANCH_ALWAYS);
3500 if (packet->interrupt && i == packet_count - 1)
3501 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3502
3503 context_append(&ctx->context, d, z, header_z);
3504 }
3505
3506 return 0;
3507 }
3508
queue_iso_buffer_fill(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3509 static int queue_iso_buffer_fill(struct iso_context *ctx,
3510 struct fw_iso_packet *packet,
3511 struct fw_iso_buffer *buffer,
3512 unsigned long payload)
3513 {
3514 struct descriptor *d;
3515 dma_addr_t d_bus, page_bus;
3516 int page, offset, rest, z, i, length;
3517
3518 page = payload >> PAGE_SHIFT;
3519 offset = payload & ~PAGE_MASK;
3520 rest = packet->payload_length;
3521
3522 /* We need one descriptor for each page in the buffer. */
3523 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3524
3525 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3526 return -EFAULT;
3527
3528 for (i = 0; i < z; i++) {
3529 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3530 if (d == NULL)
3531 return -ENOMEM;
3532
3533 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3534 DESCRIPTOR_BRANCH_ALWAYS);
3535 if (packet->skip && i == 0)
3536 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3537 if (packet->interrupt && i == z - 1)
3538 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3539
3540 if (offset + rest < PAGE_SIZE)
3541 length = rest;
3542 else
3543 length = PAGE_SIZE - offset;
3544 d->req_count = cpu_to_le16(length);
3545 d->res_count = d->req_count;
3546 d->transfer_status = 0;
3547
3548 page_bus = page_private(buffer->pages[page]);
3549 d->data_address = cpu_to_le32(page_bus + offset);
3550
3551 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3552 page_bus, offset, length,
3553 DMA_FROM_DEVICE);
3554
3555 rest -= length;
3556 offset = 0;
3557 page++;
3558
3559 context_append(&ctx->context, d, 1, 0);
3560 }
3561
3562 return 0;
3563 }
3564
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3565 static int ohci_queue_iso(struct fw_iso_context *base,
3566 struct fw_iso_packet *packet,
3567 struct fw_iso_buffer *buffer,
3568 unsigned long payload)
3569 {
3570 struct iso_context *ctx = container_of(base, struct iso_context, base);
3571
3572 guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3573
3574 switch (base->type) {
3575 case FW_ISO_CONTEXT_TRANSMIT:
3576 return queue_iso_transmit(ctx, packet, buffer, payload);
3577 case FW_ISO_CONTEXT_RECEIVE:
3578 return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3579 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3580 return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3581 default:
3582 return -ENOSYS;
3583 }
3584 }
3585
ohci_flush_queue_iso(struct fw_iso_context * base)3586 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3587 {
3588 struct context *ctx =
3589 &container_of(base, struct iso_context, base)->context;
3590
3591 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3592 }
3593
ohci_flush_iso_completions(struct fw_iso_context * base)3594 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3595 {
3596 struct iso_context *ctx = container_of(base, struct iso_context, base);
3597 int ret = 0;
3598
3599 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3600 ohci_isoc_context_work(&base->work);
3601
3602 switch (base->type) {
3603 case FW_ISO_CONTEXT_TRANSMIT:
3604 case FW_ISO_CONTEXT_RECEIVE:
3605 if (ctx->header_length != 0)
3606 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3607 break;
3608 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3609 if (ctx->mc_completed != 0)
3610 flush_ir_buffer_fill(ctx);
3611 break;
3612 default:
3613 ret = -ENOSYS;
3614 }
3615
3616 clear_bit_unlock(0, &ctx->flushing_completions);
3617 smp_mb__after_atomic();
3618 }
3619
3620 return ret;
3621 }
3622
3623 static const struct fw_card_driver ohci_driver = {
3624 .enable = ohci_enable,
3625 .read_phy_reg = ohci_read_phy_reg,
3626 .update_phy_reg = ohci_update_phy_reg,
3627 .set_config_rom = ohci_set_config_rom,
3628 .send_request = ohci_send_request,
3629 .send_response = ohci_send_response,
3630 .cancel_packet = ohci_cancel_packet,
3631 .enable_phys_dma = ohci_enable_phys_dma,
3632 .read_csr = ohci_read_csr,
3633 .write_csr = ohci_write_csr,
3634
3635 .allocate_iso_context = ohci_allocate_iso_context,
3636 .free_iso_context = ohci_free_iso_context,
3637 .set_iso_channels = ohci_set_iso_channels,
3638 .queue_iso = ohci_queue_iso,
3639 .flush_queue_iso = ohci_flush_queue_iso,
3640 .flush_iso_completions = ohci_flush_iso_completions,
3641 .start_iso = ohci_start_iso,
3642 .stop_iso = ohci_stop_iso,
3643 };
3644
3645 #ifdef CONFIG_PPC_PMAC
pmac_ohci_on(struct pci_dev * dev)3646 static void pmac_ohci_on(struct pci_dev *dev)
3647 {
3648 if (machine_is(powermac)) {
3649 struct device_node *ofn = pci_device_to_OF_node(dev);
3650
3651 if (ofn) {
3652 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3653 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3654 }
3655 }
3656 }
3657
pmac_ohci_off(struct pci_dev * dev)3658 static void pmac_ohci_off(struct pci_dev *dev)
3659 {
3660 if (machine_is(powermac)) {
3661 struct device_node *ofn = pci_device_to_OF_node(dev);
3662
3663 if (ofn) {
3664 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3665 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3666 }
3667 }
3668 }
3669 #else
pmac_ohci_on(struct pci_dev * dev)3670 static inline void pmac_ohci_on(struct pci_dev *dev) {}
pmac_ohci_off(struct pci_dev * dev)3671 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3672 #endif /* CONFIG_PPC_PMAC */
3673
release_ohci(struct device * dev,void * data)3674 static void release_ohci(struct device *dev, void *data)
3675 {
3676 struct pci_dev *pdev = to_pci_dev(dev);
3677 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3678
3679 pmac_ohci_off(pdev);
3680
3681 ar_context_release(&ohci->ar_response_ctx);
3682 ar_context_release(&ohci->ar_request_ctx);
3683
3684 dev_notice(dev, "removed fw-ohci device\n");
3685 }
3686
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)3687 static int pci_probe(struct pci_dev *dev,
3688 const struct pci_device_id *ent)
3689 {
3690 struct fw_ohci *ohci;
3691 u32 bus_options, max_receive, link_speed, version;
3692 u64 guid;
3693 int i, flags, irq, err;
3694 size_t size;
3695
3696 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3697 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3698 return -ENOSYS;
3699 }
3700
3701 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3702 if (ohci == NULL)
3703 return -ENOMEM;
3704 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3705 pci_set_drvdata(dev, ohci);
3706 pmac_ohci_on(dev);
3707 devres_add(&dev->dev, ohci);
3708
3709 err = pcim_enable_device(dev);
3710 if (err) {
3711 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3712 return err;
3713 }
3714
3715 pci_set_master(dev);
3716 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3717
3718 spin_lock_init(&ohci->lock);
3719 mutex_init(&ohci->phy_reg_mutex);
3720
3721 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3722
3723 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3724 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3725 ohci_err(ohci, "invalid MMIO resource\n");
3726 return -ENXIO;
3727 }
3728
3729 err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3730 if (err) {
3731 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3732 return -ENXIO;
3733 }
3734 ohci->registers = pcim_iomap_table(dev)[0];
3735
3736 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3737 if ((ohci_quirks[i].vendor == dev->vendor) &&
3738 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3739 ohci_quirks[i].device == dev->device) &&
3740 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3741 ohci_quirks[i].revision >= dev->revision)) {
3742 ohci->quirks = ohci_quirks[i].flags;
3743 break;
3744 }
3745 if (param_quirks)
3746 ohci->quirks = param_quirks;
3747
3748 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3749 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3750
3751 /*
3752 * Because dma_alloc_coherent() allocates at least one page,
3753 * we save space by using a common buffer for the AR request/
3754 * response descriptors and the self IDs buffer.
3755 */
3756 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3757 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3758 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3759 GFP_KERNEL);
3760 if (!ohci->misc_buffer)
3761 return -ENOMEM;
3762
3763 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3764 OHCI1394_AsReqRcvContextControlSet);
3765 if (err < 0)
3766 return err;
3767
3768 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3769 OHCI1394_AsRspRcvContextControlSet);
3770 if (err < 0)
3771 return err;
3772
3773 err = context_init(&ohci->at_request_ctx, ohci,
3774 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3775 if (err < 0)
3776 return err;
3777
3778 err = context_init(&ohci->at_response_ctx, ohci,
3779 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3780 if (err < 0)
3781 return err;
3782
3783 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3784 ohci->ir_context_channels = ~0ULL;
3785 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3786 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3787 ohci->ir_context_mask = ohci->ir_context_support;
3788 ohci->n_ir = hweight32(ohci->ir_context_mask);
3789 size = sizeof(struct iso_context) * ohci->n_ir;
3790 ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3791 if (!ohci->ir_context_list)
3792 return -ENOMEM;
3793
3794 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3795 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3796 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3797 if (!ohci->it_context_support) {
3798 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3799 ohci->it_context_support = 0xf;
3800 }
3801 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3802 ohci->it_context_mask = ohci->it_context_support;
3803 ohci->n_it = hweight32(ohci->it_context_mask);
3804 size = sizeof(struct iso_context) * ohci->n_it;
3805 ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3806 if (!ohci->it_context_list)
3807 return -ENOMEM;
3808
3809 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3810 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3811
3812 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3813 max_receive = (bus_options >> 12) & 0xf;
3814 link_speed = bus_options & 0x7;
3815 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3816 reg_read(ohci, OHCI1394_GUIDLo);
3817
3818 flags = PCI_IRQ_INTX;
3819 if (!(ohci->quirks & QUIRK_NO_MSI))
3820 flags |= PCI_IRQ_MSI;
3821 err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3822 if (err < 0)
3823 return err;
3824 irq = pci_irq_vector(dev, 0);
3825 if (irq < 0) {
3826 err = irq;
3827 goto fail_msi;
3828 }
3829
3830 err = request_threaded_irq(irq, irq_handler, NULL,
3831 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3832 ohci);
3833 if (err < 0) {
3834 ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3835 goto fail_msi;
3836 }
3837
3838 err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3839 if (err)
3840 goto fail_irq;
3841
3842 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3843 ohci_notice(ohci,
3844 "added OHCI v%x.%x device as card %d, "
3845 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3846 version >> 16, version & 0xff, ohci->card.index,
3847 ohci->n_ir, ohci->n_it, ohci->quirks,
3848 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3849 ", physUB" : "");
3850
3851 return 0;
3852
3853 fail_irq:
3854 free_irq(irq, ohci);
3855 fail_msi:
3856 pci_free_irq_vectors(dev);
3857
3858 return err;
3859 }
3860
pci_remove(struct pci_dev * dev)3861 static void pci_remove(struct pci_dev *dev)
3862 {
3863 struct fw_ohci *ohci = pci_get_drvdata(dev);
3864 int irq;
3865
3866 /*
3867 * If the removal is happening from the suspend state, LPS won't be
3868 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3869 */
3870 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3871 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3872 flush_writes(ohci);
3873 }
3874 cancel_work_sync(&ohci->bus_reset_work);
3875 fw_core_remove_card(&ohci->card);
3876
3877 /*
3878 * FIXME: Fail all pending packets here, now that the upper
3879 * layers can't queue any more.
3880 */
3881
3882 software_reset(ohci);
3883
3884 irq = pci_irq_vector(dev, 0);
3885 if (irq >= 0)
3886 free_irq(irq, ohci);
3887 pci_free_irq_vectors(dev);
3888
3889 dev_notice(&dev->dev, "removing fw-ohci device\n");
3890 }
3891
3892 #ifdef CONFIG_PM
pci_suspend(struct pci_dev * dev,pm_message_t state)3893 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3894 {
3895 struct fw_ohci *ohci = pci_get_drvdata(dev);
3896 int err;
3897
3898 software_reset(ohci);
3899 err = pci_save_state(dev);
3900 if (err) {
3901 ohci_err(ohci, "pci_save_state failed\n");
3902 return err;
3903 }
3904 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3905 if (err)
3906 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3907 pmac_ohci_off(dev);
3908
3909 return 0;
3910 }
3911
pci_resume(struct pci_dev * dev)3912 static int pci_resume(struct pci_dev *dev)
3913 {
3914 struct fw_ohci *ohci = pci_get_drvdata(dev);
3915 int err;
3916
3917 pmac_ohci_on(dev);
3918 pci_set_power_state(dev, PCI_D0);
3919 pci_restore_state(dev);
3920 err = pci_enable_device(dev);
3921 if (err) {
3922 ohci_err(ohci, "pci_enable_device failed\n");
3923 return err;
3924 }
3925
3926 /* Some systems don't setup GUID register on resume from ram */
3927 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3928 !reg_read(ohci, OHCI1394_GUIDHi)) {
3929 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3930 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3931 }
3932
3933 err = ohci_enable(&ohci->card, NULL, 0);
3934 if (err)
3935 return err;
3936
3937 ohci_resume_iso_dma(ohci);
3938
3939 return 0;
3940 }
3941 #endif
3942
3943 static const struct pci_device_id pci_table[] = {
3944 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3945 { }
3946 };
3947
3948 MODULE_DEVICE_TABLE(pci, pci_table);
3949
3950 static struct pci_driver fw_ohci_pci_driver = {
3951 .name = ohci_driver_name,
3952 .id_table = pci_table,
3953 .probe = pci_probe,
3954 .remove = pci_remove,
3955 #ifdef CONFIG_PM
3956 .resume = pci_resume,
3957 .suspend = pci_suspend,
3958 #endif
3959 };
3960
fw_ohci_init(void)3961 static int __init fw_ohci_init(void)
3962 {
3963 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3964 if (!selfid_workqueue)
3965 return -ENOMEM;
3966
3967 return pci_register_driver(&fw_ohci_pci_driver);
3968 }
3969
fw_ohci_cleanup(void)3970 static void __exit fw_ohci_cleanup(void)
3971 {
3972 pci_unregister_driver(&fw_ohci_pci_driver);
3973 destroy_workqueue(selfid_workqueue);
3974 }
3975
3976 module_init(fw_ohci_init);
3977 module_exit(fw_ohci_cleanup);
3978
3979 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3980 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3981 MODULE_LICENSE("GPL");
3982
3983 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3984 MODULE_ALIAS("ohci1394");
3985