xref: /linux/drivers/firewire/ohci.c (revision b61104e7a6349bd2c2b3e2fb3260d87f15eda8f4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40 
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
45 
46 #include <trace/events/firewire.h>
47 
48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
52 
53 #define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
54 #define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
55 
56 #define DESCRIPTOR_OUTPUT_MORE		0
57 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
58 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
59 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
60 #define DESCRIPTOR_STATUS		(1 << 11)
61 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
62 #define DESCRIPTOR_PING			(1 << 7)
63 #define DESCRIPTOR_YY			(1 << 6)
64 #define DESCRIPTOR_NO_IRQ		(0 << 4)
65 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
66 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
67 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
68 #define DESCRIPTOR_WAIT			(3 << 0)
69 
70 #define DESCRIPTOR_CMD			(0xf << 12)
71 
72 struct descriptor {
73 	__le16 req_count;
74 	__le16 control;
75 	__le32 data_address;
76 	__le32 branch_address;
77 	__le16 res_count;
78 	__le16 transfer_status;
79 } __aligned(16);
80 
81 #define CONTROL_SET(regs)	(regs)
82 #define CONTROL_CLEAR(regs)	((regs) + 4)
83 #define COMMAND_PTR(regs)	((regs) + 12)
84 #define CONTEXT_MATCH(regs)	((regs) + 16)
85 
86 #define AR_BUFFER_SIZE	(32*1024)
87 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 
91 #define MAX_ASYNC_PAYLOAD	4096
92 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 
95 struct ar_context {
96 	struct fw_ohci *ohci;
97 	struct page *pages[AR_BUFFERS];
98 	void *buffer;
99 	struct descriptor *descriptors;
100 	dma_addr_t descriptors_bus;
101 	void *pointer;
102 	unsigned int last_buffer_index;
103 	u32 regs;
104 	struct work_struct work;
105 };
106 
107 struct context;
108 
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 				     struct descriptor *d,
111 				     struct descriptor *last);
112 
113 /*
114  * A buffer that contains a block of DMA-able coherent memory used for
115  * storing a portion of a DMA descriptor program.
116  */
117 struct descriptor_buffer {
118 	struct list_head list;
119 	dma_addr_t buffer_bus;
120 	size_t buffer_size;
121 	size_t used;
122 	struct descriptor buffer[];
123 };
124 
125 struct context {
126 	struct fw_ohci *ohci;
127 	u32 regs;
128 	int total_allocation;
129 	u32 current_bus;
130 	bool running;
131 
132 	/*
133 	 * List of page-sized buffers for storing DMA descriptors.
134 	 * Head of list contains buffers in use and tail of list contains
135 	 * free buffers.
136 	 */
137 	struct list_head buffer_list;
138 
139 	/*
140 	 * Pointer to a buffer inside buffer_list that contains the tail
141 	 * end of the current DMA program.
142 	 */
143 	struct descriptor_buffer *buffer_tail;
144 
145 	/*
146 	 * The descriptor containing the branch address of the first
147 	 * descriptor that has not yet been filled by the device.
148 	 */
149 	struct descriptor *last;
150 
151 	/*
152 	 * The last descriptor block in the DMA program. It contains the branch
153 	 * address that must be updated upon appending a new descriptor.
154 	 */
155 	struct descriptor *prev;
156 	int prev_z;
157 
158 	descriptor_callback_t callback;
159 };
160 
161 struct at_context {
162 	struct context context;
163 	struct work_struct work;
164 	bool flushing;
165 };
166 
167 struct iso_context {
168 	struct fw_iso_context base;
169 	struct context context;
170 	void *header;
171 	size_t header_length;
172 	unsigned long flushing_completions;
173 	u32 mc_buffer_bus;
174 	u16 mc_completed;
175 	u16 last_timestamp;
176 	u8 sync;
177 	u8 tags;
178 };
179 
180 #define CONFIG_ROM_SIZE		(CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
181 
182 struct fw_ohci {
183 	struct fw_card card;
184 
185 	__iomem char *registers;
186 	int node_id;
187 	int generation;
188 	int request_generation;	/* for timestamping incoming requests */
189 	unsigned quirks;
190 	unsigned int pri_req_max;
191 	u32 bus_time;
192 	bool bus_time_running;
193 	bool is_root;
194 	bool csr_state_setclear_abdicate;
195 	int n_ir;
196 	int n_it;
197 	/*
198 	 * Spinlock for accessing fw_ohci data.  Never call out of
199 	 * this driver with this lock held.
200 	 */
201 	spinlock_t lock;
202 
203 	struct mutex phy_reg_mutex;
204 
205 	void *misc_buffer;
206 	dma_addr_t misc_buffer_bus;
207 
208 	struct ar_context ar_request_ctx;
209 	struct ar_context ar_response_ctx;
210 	struct at_context at_request_ctx;
211 	struct at_context at_response_ctx;
212 
213 	u32 it_context_support;
214 	u32 it_context_mask;     /* unoccupied IT contexts */
215 	struct iso_context *it_context_list;
216 	u64 ir_context_channels; /* unoccupied channels */
217 	u32 ir_context_support;
218 	u32 ir_context_mask;     /* unoccupied IR contexts */
219 	struct iso_context *ir_context_list;
220 	u64 mc_channels; /* channels in use by the multichannel IR context */
221 	bool mc_allocated;
222 
223 	__be32    *config_rom;
224 	dma_addr_t config_rom_bus;
225 	__be32    *next_config_rom;
226 	dma_addr_t next_config_rom_bus;
227 	__be32     next_header;
228 
229 	__le32    *self_id;
230 	dma_addr_t self_id_bus;
231 
232 	u32 self_id_buffer[512];
233 };
234 
235 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 {
237 	return container_of(card, struct fw_ohci, card);
238 }
239 
240 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
241 #define IR_CONTEXT_BUFFER_FILL		0x80000000
242 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
243 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
244 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
245 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
246 
247 #define CONTEXT_RUN	0x8000
248 #define CONTEXT_WAKE	0x1000
249 #define CONTEXT_DEAD	0x0800
250 #define CONTEXT_ACTIVE	0x0400
251 
252 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
253 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
254 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
255 
256 #define OHCI1394_REGISTER_SIZE		0x800
257 #define OHCI1394_PCI_HCI_Control	0x40
258 #define SELF_ID_BUF_SIZE		0x800
259 #define OHCI_VERSION_1_1		0x010010
260 
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262 
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X	0x3044
271 #define PCI_REV_ID_VIA_VT6306		0x46
272 #define PCI_DEVICE_ID_VIA_VT6315	0x3403
273 
274 #define QUIRK_CYCLE_TIMER		0x1
275 #define QUIRK_RESET_PACKET		0x2
276 #define QUIRK_BE_HEADERS		0x4
277 #define QUIRK_NO_1394A			0x8
278 #define QUIRK_NO_MSI			0x10
279 #define QUIRK_TI_SLLZ059		0x20
280 #define QUIRK_IR_WAKE			0x40
281 
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
288 
289 #if IS_ENABLED(CONFIG_X86)
290 
291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292 {
293 	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294 }
295 
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
297 
298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299 {
300 	const struct pci_dev *pcie_to_pci_bridge;
301 
302 	// Detect any type of AMD Ryzen machine.
303 	if (!static_cpu_has(X86_FEATURE_ZEN))
304 		return false;
305 
306 	// Detect VIA VT6306/6307/6308.
307 	if (pdev->vendor != PCI_VENDOR_ID_VIA)
308 		return false;
309 	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310 		return false;
311 
312 	// Detect Asmedia ASM1083/1085.
313 	pcie_to_pci_bridge = pdev->bus->self;
314 	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315 		return false;
316 	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317 		return false;
318 
319 	return true;
320 }
321 
322 #else
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
325 #endif
326 
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329 	unsigned short vendor, device, revision, flags;
330 } ohci_quirks[] = {
331 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332 		QUIRK_CYCLE_TIMER},
333 
334 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335 		QUIRK_BE_HEADERS},
336 
337 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338 		QUIRK_NO_MSI},
339 
340 	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341 		QUIRK_RESET_PACKET},
342 
343 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344 		QUIRK_NO_MSI},
345 
346 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347 		QUIRK_CYCLE_TIMER},
348 
349 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350 		QUIRK_NO_MSI},
351 
352 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354 
355 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357 
358 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360 
361 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363 
364 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365 		QUIRK_RESET_PACKET},
366 
367 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368 		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369 
370 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371 		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372 
373 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374 		QUIRK_NO_MSI},
375 
376 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378 };
379 
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks;
382 module_param_named(quirks, param_quirks, int, 0644);
383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
385 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
386 	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
387 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
388 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
389 	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
390 	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
391 	")");
392 
393 static bool param_remote_dma;
394 module_param_named(remote_dma, param_remote_dma, bool, 0444);
395 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
396 
397 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
398 {
399 	writel(data, ohci->registers + offset);
400 }
401 
402 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
403 {
404 	return readl(ohci->registers + offset);
405 }
406 
407 static inline void flush_writes(const struct fw_ohci *ohci)
408 {
409 	/* Do a dummy read to flush writes. */
410 	reg_read(ohci, OHCI1394_Version);
411 }
412 
413 /*
414  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
415  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
416  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
417  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
418  */
419 static int read_phy_reg(struct fw_ohci *ohci, int addr)
420 {
421 	u32 val;
422 	int i;
423 
424 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
425 	for (i = 0; i < 3 + 100; i++) {
426 		val = reg_read(ohci, OHCI1394_PhyControl);
427 		if (!~val)
428 			return -ENODEV; /* Card was ejected. */
429 
430 		if (val & OHCI1394_PhyControl_ReadDone)
431 			return OHCI1394_PhyControl_ReadData(val);
432 
433 		/*
434 		 * Try a few times without waiting.  Sleeping is necessary
435 		 * only when the link/PHY interface is busy.
436 		 */
437 		if (i >= 3)
438 			msleep(1);
439 	}
440 	ohci_err(ohci, "failed to read phy reg %d\n", addr);
441 	dump_stack();
442 
443 	return -EBUSY;
444 }
445 
446 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
447 {
448 	int i;
449 
450 	reg_write(ohci, OHCI1394_PhyControl,
451 		  OHCI1394_PhyControl_Write(addr, val));
452 	for (i = 0; i < 3 + 100; i++) {
453 		val = reg_read(ohci, OHCI1394_PhyControl);
454 		if (!~val)
455 			return -ENODEV; /* Card was ejected. */
456 
457 		if (!(val & OHCI1394_PhyControl_WritePending))
458 			return 0;
459 
460 		if (i >= 3)
461 			msleep(1);
462 	}
463 	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
464 	dump_stack();
465 
466 	return -EBUSY;
467 }
468 
469 static int update_phy_reg(struct fw_ohci *ohci, int addr,
470 			  int clear_bits, int set_bits)
471 {
472 	int ret = read_phy_reg(ohci, addr);
473 	if (ret < 0)
474 		return ret;
475 
476 	/*
477 	 * The interrupt status bits are cleared by writing a one bit.
478 	 * Avoid clearing them unless explicitly requested in set_bits.
479 	 */
480 	if (addr == 5)
481 		clear_bits |= PHY_INT_STATUS_BITS;
482 
483 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
484 }
485 
486 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
487 {
488 	int ret;
489 
490 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
491 	if (ret < 0)
492 		return ret;
493 
494 	return read_phy_reg(ohci, addr);
495 }
496 
497 static int ohci_read_phy_reg(struct fw_card *card, int addr)
498 {
499 	struct fw_ohci *ohci = fw_ohci(card);
500 
501 	guard(mutex)(&ohci->phy_reg_mutex);
502 
503 	return read_phy_reg(ohci, addr);
504 }
505 
506 static int ohci_update_phy_reg(struct fw_card *card, int addr,
507 			       int clear_bits, int set_bits)
508 {
509 	struct fw_ohci *ohci = fw_ohci(card);
510 
511 	guard(mutex)(&ohci->phy_reg_mutex);
512 
513 	return update_phy_reg(ohci, addr, clear_bits, set_bits);
514 }
515 
516 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
517 {
518 	return page_private(ctx->pages[i]);
519 }
520 
521 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
522 {
523 	struct descriptor *d;
524 
525 	d = &ctx->descriptors[index];
526 	d->branch_address  &= cpu_to_le32(~0xf);
527 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
528 	d->transfer_status =  0;
529 
530 	wmb(); /* finish init of new descriptors before branch_address update */
531 	d = &ctx->descriptors[ctx->last_buffer_index];
532 	d->branch_address  |= cpu_to_le32(1);
533 
534 	ctx->last_buffer_index = index;
535 
536 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
537 }
538 
539 static void ar_context_release(struct ar_context *ctx)
540 {
541 	struct device *dev = ctx->ohci->card.device;
542 	unsigned int i;
543 
544 	if (!ctx->buffer)
545 		return;
546 
547 	vunmap(ctx->buffer);
548 
549 	for (i = 0; i < AR_BUFFERS; i++) {
550 		if (ctx->pages[i])
551 			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
552 				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
553 	}
554 }
555 
556 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
557 {
558 	struct fw_ohci *ohci = ctx->ohci;
559 
560 	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
561 		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
562 		flush_writes(ohci);
563 
564 		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
565 	}
566 	/* FIXME: restart? */
567 }
568 
569 static inline unsigned int ar_next_buffer_index(unsigned int index)
570 {
571 	return (index + 1) % AR_BUFFERS;
572 }
573 
574 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
575 {
576 	return ar_next_buffer_index(ctx->last_buffer_index);
577 }
578 
579 /*
580  * We search for the buffer that contains the last AR packet DMA data written
581  * by the controller.
582  */
583 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
584 						 unsigned int *buffer_offset)
585 {
586 	unsigned int i, next_i, last = ctx->last_buffer_index;
587 	__le16 res_count, next_res_count;
588 
589 	i = ar_first_buffer_index(ctx);
590 	res_count = READ_ONCE(ctx->descriptors[i].res_count);
591 
592 	/* A buffer that is not yet completely filled must be the last one. */
593 	while (i != last && res_count == 0) {
594 
595 		/* Peek at the next descriptor. */
596 		next_i = ar_next_buffer_index(i);
597 		rmb(); /* read descriptors in order */
598 		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
599 		/*
600 		 * If the next descriptor is still empty, we must stop at this
601 		 * descriptor.
602 		 */
603 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
604 			/*
605 			 * The exception is when the DMA data for one packet is
606 			 * split over three buffers; in this case, the middle
607 			 * buffer's descriptor might be never updated by the
608 			 * controller and look still empty, and we have to peek
609 			 * at the third one.
610 			 */
611 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
612 				next_i = ar_next_buffer_index(next_i);
613 				rmb();
614 				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
615 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
616 					goto next_buffer_is_active;
617 			}
618 
619 			break;
620 		}
621 
622 next_buffer_is_active:
623 		i = next_i;
624 		res_count = next_res_count;
625 	}
626 
627 	rmb(); /* read res_count before the DMA data */
628 
629 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
630 	if (*buffer_offset > PAGE_SIZE) {
631 		*buffer_offset = 0;
632 		ar_context_abort(ctx, "corrupted descriptor");
633 	}
634 
635 	return i;
636 }
637 
638 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
639 				    unsigned int end_buffer_index,
640 				    unsigned int end_buffer_offset)
641 {
642 	unsigned int i;
643 
644 	i = ar_first_buffer_index(ctx);
645 	while (i != end_buffer_index) {
646 		dma_sync_single_for_cpu(ctx->ohci->card.device,
647 					ar_buffer_bus(ctx, i),
648 					PAGE_SIZE, DMA_FROM_DEVICE);
649 		i = ar_next_buffer_index(i);
650 	}
651 	if (end_buffer_offset > 0)
652 		dma_sync_single_for_cpu(ctx->ohci->card.device,
653 					ar_buffer_bus(ctx, i),
654 					end_buffer_offset, DMA_FROM_DEVICE);
655 }
656 
657 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
658 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
659 {
660 	return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
661 }
662 
663 static bool has_be_header_quirk(const struct fw_ohci *ohci)
664 {
665 	return !!(ohci->quirks & QUIRK_BE_HEADERS);
666 }
667 #else
668 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
669 {
670 	return le32_to_cpu(value);
671 }
672 
673 static bool has_be_header_quirk(const struct fw_ohci *ohci)
674 {
675 	return false;
676 }
677 #endif
678 
679 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
680 {
681 	struct fw_ohci *ohci = ctx->ohci;
682 	struct fw_packet p;
683 	u32 status, length, tcode;
684 	int evt;
685 
686 	p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
687 	p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
688 	p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
689 
690 	tcode = async_header_get_tcode(p.header);
691 	switch (tcode) {
692 	case TCODE_WRITE_QUADLET_REQUEST:
693 	case TCODE_READ_QUADLET_RESPONSE:
694 		p.header[3] = (__force __u32) buffer[3];
695 		p.header_length = 16;
696 		p.payload_length = 0;
697 		break;
698 
699 	case TCODE_READ_BLOCK_REQUEST :
700 		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
701 		p.header_length = 16;
702 		p.payload_length = 0;
703 		break;
704 
705 	case TCODE_WRITE_BLOCK_REQUEST:
706 	case TCODE_READ_BLOCK_RESPONSE:
707 	case TCODE_LOCK_REQUEST:
708 	case TCODE_LOCK_RESPONSE:
709 		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
710 		p.header_length = 16;
711 		p.payload_length = async_header_get_data_length(p.header);
712 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
713 			ar_context_abort(ctx, "invalid packet length");
714 			return NULL;
715 		}
716 		break;
717 
718 	case TCODE_WRITE_RESPONSE:
719 	case TCODE_READ_QUADLET_REQUEST:
720 	case TCODE_LINK_INTERNAL:
721 		p.header_length = 12;
722 		p.payload_length = 0;
723 		break;
724 
725 	default:
726 		ar_context_abort(ctx, "invalid tcode");
727 		return NULL;
728 	}
729 
730 	p.payload = (void *) buffer + p.header_length;
731 
732 	/* FIXME: What to do about evt_* errors? */
733 	length = (p.header_length + p.payload_length + 3) / 4;
734 	status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
735 	evt    = (status >> 16) & 0x1f;
736 
737 	p.ack        = evt - 16;
738 	p.speed      = (status >> 21) & 0x7;
739 	p.timestamp  = status & 0xffff;
740 	p.generation = ohci->request_generation;
741 
742 	/*
743 	 * Several controllers, notably from NEC and VIA, forget to
744 	 * write ack_complete status at PHY packet reception.
745 	 */
746 	if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
747 		p.ack = ACK_COMPLETE;
748 
749 	/*
750 	 * The OHCI bus reset handler synthesizes a PHY packet with
751 	 * the new generation number when a bus reset happens (see
752 	 * section 8.4.2.3).  This helps us determine when a request
753 	 * was received and make sure we send the response in the same
754 	 * generation.  We only need this for requests; for responses
755 	 * we use the unique tlabel for finding the matching
756 	 * request.
757 	 *
758 	 * Alas some chips sometimes emit bus reset packets with a
759 	 * wrong generation.  We set the correct generation for these
760 	 * at a slightly incorrect time (in handle_selfid_complete_event).
761 	 */
762 	if (evt == OHCI1394_evt_bus_reset) {
763 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
764 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
765 	} else if (ctx == &ohci->ar_request_ctx) {
766 		fw_core_handle_request(&ohci->card, &p);
767 	} else {
768 		fw_core_handle_response(&ohci->card, &p);
769 	}
770 
771 	return buffer + length + 1;
772 }
773 
774 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
775 {
776 	void *next;
777 
778 	while (p < end) {
779 		next = handle_ar_packet(ctx, p);
780 		if (!next)
781 			return p;
782 		p = next;
783 	}
784 
785 	return p;
786 }
787 
788 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
789 {
790 	unsigned int i;
791 
792 	i = ar_first_buffer_index(ctx);
793 	while (i != end_buffer) {
794 		dma_sync_single_for_device(ctx->ohci->card.device,
795 					   ar_buffer_bus(ctx, i),
796 					   PAGE_SIZE, DMA_FROM_DEVICE);
797 		ar_context_link_page(ctx, i);
798 		i = ar_next_buffer_index(i);
799 	}
800 }
801 
802 static void ohci_ar_context_work(struct work_struct *work)
803 {
804 	struct ar_context *ctx = from_work(ctx, work, work);
805 	unsigned int end_buffer_index, end_buffer_offset;
806 	void *p, *end;
807 
808 	p = ctx->pointer;
809 	if (!p)
810 		return;
811 
812 	end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
813 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
814 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
815 
816 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
817 		// The filled part of the overall buffer wraps around; handle all packets up to the
818 		// buffer end here.  If the last packet wraps around, its tail will be visible after
819 		// the buffer end because the buffer start pages are mapped there again.
820 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
821 		p = handle_ar_packets(ctx, p, buffer_end);
822 		if (p < buffer_end)
823 			goto error;
824 		// adjust p to point back into the actual buffer
825 		p -= AR_BUFFERS * PAGE_SIZE;
826 	}
827 
828 	p = handle_ar_packets(ctx, p, end);
829 	if (p != end) {
830 		if (p > end)
831 			ar_context_abort(ctx, "inconsistent descriptor");
832 		goto error;
833 	}
834 
835 	ctx->pointer = p;
836 	ar_recycle_buffers(ctx, end_buffer_index);
837 
838 	return;
839 error:
840 	ctx->pointer = NULL;
841 }
842 
843 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
844 			   unsigned int descriptors_offset, u32 regs)
845 {
846 	struct device *dev = ohci->card.device;
847 	unsigned int i;
848 	dma_addr_t dma_addr;
849 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
850 	struct descriptor *d;
851 
852 	ctx->regs        = regs;
853 	ctx->ohci        = ohci;
854 	INIT_WORK(&ctx->work, ohci_ar_context_work);
855 
856 	for (i = 0; i < AR_BUFFERS; i++) {
857 		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
858 						DMA_FROM_DEVICE, GFP_KERNEL);
859 		if (!ctx->pages[i])
860 			goto out_of_memory;
861 		set_page_private(ctx->pages[i], dma_addr);
862 		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
863 					   DMA_FROM_DEVICE);
864 	}
865 
866 	for (i = 0; i < AR_BUFFERS; i++)
867 		pages[i]              = ctx->pages[i];
868 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
869 		pages[AR_BUFFERS + i] = ctx->pages[i];
870 	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
871 	if (!ctx->buffer)
872 		goto out_of_memory;
873 
874 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
875 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
876 
877 	for (i = 0; i < AR_BUFFERS; i++) {
878 		d = &ctx->descriptors[i];
879 		d->req_count      = cpu_to_le16(PAGE_SIZE);
880 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
881 						DESCRIPTOR_STATUS |
882 						DESCRIPTOR_BRANCH_ALWAYS);
883 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
884 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
885 			ar_next_buffer_index(i) * sizeof(struct descriptor));
886 	}
887 
888 	return 0;
889 
890 out_of_memory:
891 	ar_context_release(ctx);
892 
893 	return -ENOMEM;
894 }
895 
896 static void ar_context_run(struct ar_context *ctx)
897 {
898 	unsigned int i;
899 
900 	for (i = 0; i < AR_BUFFERS; i++)
901 		ar_context_link_page(ctx, i);
902 
903 	ctx->pointer = ctx->buffer;
904 
905 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
906 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
907 }
908 
909 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
910 {
911 	__le16 branch;
912 
913 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
914 
915 	/* figure out which descriptor the branch address goes in */
916 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
917 		return d;
918 	else
919 		return d + z - 1;
920 }
921 
922 static void context_retire_descriptors(struct context *ctx)
923 {
924 	struct descriptor *d, *last;
925 	u32 address;
926 	int z;
927 	struct descriptor_buffer *desc;
928 
929 	desc = list_entry(ctx->buffer_list.next,
930 			struct descriptor_buffer, list);
931 	last = ctx->last;
932 	while (last->branch_address != 0) {
933 		struct descriptor_buffer *old_desc = desc;
934 		address = le32_to_cpu(last->branch_address);
935 		z = address & 0xf;
936 		address &= ~0xf;
937 		ctx->current_bus = address;
938 
939 		/* If the branch address points to a buffer outside of the
940 		 * current buffer, advance to the next buffer. */
941 		if (address < desc->buffer_bus ||
942 				address >= desc->buffer_bus + desc->used)
943 			desc = list_entry(desc->list.next,
944 					struct descriptor_buffer, list);
945 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
946 		last = find_branch_descriptor(d, z);
947 
948 		if (!ctx->callback(ctx, d, last))
949 			break;
950 
951 		if (old_desc != desc) {
952 			// If we've advanced to the next buffer, move the previous buffer to the
953 			// free list.
954 			old_desc->used = 0;
955 			guard(spinlock_irqsave)(&ctx->ohci->lock);
956 			list_move_tail(&old_desc->list, &ctx->buffer_list);
957 		}
958 		ctx->last = last;
959 	}
960 }
961 
962 static void ohci_at_context_work(struct work_struct *work)
963 {
964 	struct at_context *ctx = from_work(ctx, work, work);
965 
966 	context_retire_descriptors(&ctx->context);
967 }
968 
969 static void ohci_isoc_context_work(struct work_struct *work)
970 {
971 	struct fw_iso_context *base = from_work(base, work, work);
972 	struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
973 
974 	context_retire_descriptors(&isoc_ctx->context);
975 }
976 
977 /*
978  * Allocate a new buffer and add it to the list of free buffers for this
979  * context.  Must be called with ohci->lock held.
980  */
981 static int context_add_buffer(struct context *ctx)
982 {
983 	struct descriptor_buffer *desc;
984 	dma_addr_t bus_addr;
985 	int offset;
986 
987 	/*
988 	 * 16MB of descriptors should be far more than enough for any DMA
989 	 * program.  This will catch run-away userspace or DoS attacks.
990 	 */
991 	if (ctx->total_allocation >= 16*1024*1024)
992 		return -ENOMEM;
993 
994 	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
995 	if (!desc)
996 		return -ENOMEM;
997 
998 	offset = (void *)&desc->buffer - (void *)desc;
999 	/*
1000 	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1001 	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1002 	 * an IOMMU is in use and the oversized read crosses a page boundary.
1003 	 * Work around this by always leaving at least 0x10 bytes of padding.
1004 	 */
1005 	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1006 	desc->buffer_bus = bus_addr + offset;
1007 	desc->used = 0;
1008 
1009 	list_add_tail(&desc->list, &ctx->buffer_list);
1010 	ctx->total_allocation += PAGE_SIZE;
1011 
1012 	return 0;
1013 }
1014 
1015 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1016 			u32 regs, descriptor_callback_t callback)
1017 {
1018 	ctx->ohci = ohci;
1019 	ctx->regs = regs;
1020 	ctx->total_allocation = 0;
1021 
1022 	INIT_LIST_HEAD(&ctx->buffer_list);
1023 	if (context_add_buffer(ctx) < 0)
1024 		return -ENOMEM;
1025 
1026 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1027 			struct descriptor_buffer, list);
1028 
1029 	ctx->callback = callback;
1030 
1031 	/*
1032 	 * We put a dummy descriptor in the buffer that has a NULL
1033 	 * branch address and looks like it's been sent.  That way we
1034 	 * have a descriptor to append DMA programs to.
1035 	 */
1036 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1037 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1038 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1039 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1040 	ctx->last = ctx->buffer_tail->buffer;
1041 	ctx->prev = ctx->buffer_tail->buffer;
1042 	ctx->prev_z = 1;
1043 
1044 	return 0;
1045 }
1046 
1047 static void context_release(struct context *ctx)
1048 {
1049 	struct fw_card *card = &ctx->ohci->card;
1050 	struct descriptor_buffer *desc, *tmp;
1051 
1052 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1053 		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1054 				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1055 	}
1056 }
1057 
1058 /* Must be called with ohci->lock held */
1059 static struct descriptor *context_get_descriptors(struct context *ctx,
1060 						  int z, dma_addr_t *d_bus)
1061 {
1062 	struct descriptor *d = NULL;
1063 	struct descriptor_buffer *desc = ctx->buffer_tail;
1064 
1065 	if (z * sizeof(*d) > desc->buffer_size)
1066 		return NULL;
1067 
1068 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1069 		/* No room for the descriptor in this buffer, so advance to the
1070 		 * next one. */
1071 
1072 		if (desc->list.next == &ctx->buffer_list) {
1073 			/* If there is no free buffer next in the list,
1074 			 * allocate one. */
1075 			if (context_add_buffer(ctx) < 0)
1076 				return NULL;
1077 		}
1078 		desc = list_entry(desc->list.next,
1079 				struct descriptor_buffer, list);
1080 		ctx->buffer_tail = desc;
1081 	}
1082 
1083 	d = desc->buffer + desc->used / sizeof(*d);
1084 	memset(d, 0, z * sizeof(*d));
1085 	*d_bus = desc->buffer_bus + desc->used;
1086 
1087 	return d;
1088 }
1089 
1090 static void context_run(struct context *ctx, u32 extra)
1091 {
1092 	struct fw_ohci *ohci = ctx->ohci;
1093 
1094 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1095 		  le32_to_cpu(ctx->last->branch_address));
1096 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1097 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1098 	ctx->running = true;
1099 	flush_writes(ohci);
1100 }
1101 
1102 static void context_append(struct context *ctx,
1103 			   struct descriptor *d, int z, int extra)
1104 {
1105 	dma_addr_t d_bus;
1106 	struct descriptor_buffer *desc = ctx->buffer_tail;
1107 	struct descriptor *d_branch;
1108 
1109 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1110 
1111 	desc->used += (z + extra) * sizeof(*d);
1112 
1113 	wmb(); /* finish init of new descriptors before branch_address update */
1114 
1115 	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1116 	d_branch->branch_address = cpu_to_le32(d_bus | z);
1117 
1118 	/*
1119 	 * VT6306 incorrectly checks only the single descriptor at the
1120 	 * CommandPtr when the wake bit is written, so if it's a
1121 	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1122 	 * the branch address in the first descriptor.
1123 	 *
1124 	 * Not doing this for transmit contexts since not sure how it interacts
1125 	 * with skip addresses.
1126 	 */
1127 	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1128 	    d_branch != ctx->prev &&
1129 	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1130 	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1131 		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1132 	}
1133 
1134 	ctx->prev = d;
1135 	ctx->prev_z = z;
1136 }
1137 
1138 static void context_stop(struct context *ctx)
1139 {
1140 	struct fw_ohci *ohci = ctx->ohci;
1141 	u32 reg;
1142 	int i;
1143 
1144 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1145 	ctx->running = false;
1146 
1147 	for (i = 0; i < 1000; i++) {
1148 		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1149 		if ((reg & CONTEXT_ACTIVE) == 0)
1150 			return;
1151 
1152 		if (i)
1153 			udelay(10);
1154 	}
1155 	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1156 }
1157 
1158 struct driver_data {
1159 	u8 inline_data[8];
1160 	struct fw_packet *packet;
1161 };
1162 
1163 /*
1164  * This function appends a packet to the DMA queue for transmission.
1165  * Must always be called with the ochi->lock held to ensure proper
1166  * generation handling and locking around packet queue manipulation.
1167  */
1168 static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1169 {
1170 	struct context *context = &ctx->context;
1171 	struct fw_ohci *ohci = context->ohci;
1172 	dma_addr_t d_bus, payload_bus;
1173 	struct driver_data *driver_data;
1174 	struct descriptor *d, *last;
1175 	__le32 *header;
1176 	int z, tcode;
1177 
1178 	d = context_get_descriptors(context, 4, &d_bus);
1179 	if (d == NULL) {
1180 		packet->ack = RCODE_SEND_ERROR;
1181 		return -1;
1182 	}
1183 
1184 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1185 	d[0].res_count = cpu_to_le16(packet->timestamp);
1186 
1187 	tcode = async_header_get_tcode(packet->header);
1188 	header = (__le32 *) &d[1];
1189 	switch (tcode) {
1190 	case TCODE_WRITE_QUADLET_REQUEST:
1191 	case TCODE_WRITE_BLOCK_REQUEST:
1192 	case TCODE_WRITE_RESPONSE:
1193 	case TCODE_READ_QUADLET_REQUEST:
1194 	case TCODE_READ_BLOCK_REQUEST:
1195 	case TCODE_READ_QUADLET_RESPONSE:
1196 	case TCODE_READ_BLOCK_RESPONSE:
1197 	case TCODE_LOCK_REQUEST:
1198 	case TCODE_LOCK_RESPONSE:
1199 		ohci1394_at_data_set_src_bus_id(header, false);
1200 		ohci1394_at_data_set_speed(header, packet->speed);
1201 		ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1202 		ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1203 		ohci1394_at_data_set_tcode(header, tcode);
1204 
1205 		ohci1394_at_data_set_destination_id(header,
1206 						    async_header_get_destination(packet->header));
1207 
1208 		if (ctx == &ohci->at_response_ctx) {
1209 			ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1210 		} else {
1211 			ohci1394_at_data_set_destination_offset(header,
1212 							async_header_get_offset(packet->header));
1213 		}
1214 
1215 		if (tcode_is_block_packet(tcode))
1216 			header[3] = cpu_to_le32(packet->header[3]);
1217 		else
1218 			header[3] = (__force __le32) packet->header[3];
1219 
1220 		d[0].req_count = cpu_to_le16(packet->header_length);
1221 		break;
1222 	case TCODE_LINK_INTERNAL:
1223 		ohci1394_at_data_set_speed(header, packet->speed);
1224 		ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1225 
1226 		header[1] = cpu_to_le32(packet->header[1]);
1227 		header[2] = cpu_to_le32(packet->header[2]);
1228 		d[0].req_count = cpu_to_le16(12);
1229 
1230 		if (is_ping_packet(&packet->header[1]))
1231 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1232 		break;
1233 
1234 	case TCODE_STREAM_DATA:
1235 		ohci1394_it_data_set_speed(header, packet->speed);
1236 		ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1237 		ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1238 		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1239 		ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1240 
1241 		ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1242 
1243 		d[0].req_count = cpu_to_le16(8);
1244 		break;
1245 
1246 	default:
1247 		/* BUG(); */
1248 		packet->ack = RCODE_SEND_ERROR;
1249 		return -1;
1250 	}
1251 
1252 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1253 	driver_data = (struct driver_data *) &d[3];
1254 	driver_data->packet = packet;
1255 	packet->driver_data = driver_data;
1256 
1257 	if (packet->payload_length > 0) {
1258 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1259 			payload_bus = dma_map_single(ohci->card.device,
1260 						     packet->payload,
1261 						     packet->payload_length,
1262 						     DMA_TO_DEVICE);
1263 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1264 				packet->ack = RCODE_SEND_ERROR;
1265 				return -1;
1266 			}
1267 			packet->payload_bus	= payload_bus;
1268 			packet->payload_mapped	= true;
1269 		} else {
1270 			memcpy(driver_data->inline_data, packet->payload,
1271 			       packet->payload_length);
1272 			payload_bus = d_bus + 3 * sizeof(*d);
1273 		}
1274 
1275 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1276 		d[2].data_address = cpu_to_le32(payload_bus);
1277 		last = &d[2];
1278 		z = 3;
1279 	} else {
1280 		last = &d[0];
1281 		z = 2;
1282 	}
1283 
1284 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1285 				     DESCRIPTOR_IRQ_ALWAYS |
1286 				     DESCRIPTOR_BRANCH_ALWAYS);
1287 
1288 	/* FIXME: Document how the locking works. */
1289 	if (ohci->generation != packet->generation) {
1290 		if (packet->payload_mapped)
1291 			dma_unmap_single(ohci->card.device, payload_bus,
1292 					 packet->payload_length, DMA_TO_DEVICE);
1293 		packet->ack = RCODE_GENERATION;
1294 		return -1;
1295 	}
1296 
1297 	context_append(context, d, z, 4 - z);
1298 
1299 	if (context->running)
1300 		reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1301 	else
1302 		context_run(context, 0);
1303 
1304 	return 0;
1305 }
1306 
1307 static void at_context_flush(struct at_context *ctx)
1308 {
1309 	// Avoid dead lock due to programming mistake.
1310 	if (WARN_ON_ONCE(current_work() == &ctx->work))
1311 		return;
1312 
1313 	disable_work_sync(&ctx->work);
1314 
1315 	WRITE_ONCE(ctx->flushing, true);
1316 	ohci_at_context_work(&ctx->work);
1317 	WRITE_ONCE(ctx->flushing, false);
1318 
1319 	enable_work(&ctx->work);
1320 }
1321 
1322 static int find_fw_device(struct device *dev, const void *data)
1323 {
1324 	struct fw_device *device = fw_device(dev);
1325 	const u32 *params = data;
1326 
1327 	return (device->generation == params[0]) && (device->node_id == params[1]);
1328 }
1329 
1330 static int handle_at_packet(struct context *context,
1331 			    struct descriptor *d,
1332 			    struct descriptor *last)
1333 {
1334 	struct at_context *ctx = container_of(context, struct at_context, context);
1335 	struct fw_ohci *ohci = ctx->context.ohci;
1336 	struct driver_data *driver_data;
1337 	struct fw_packet *packet;
1338 	int evt;
1339 
1340 	if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1341 		/* This descriptor isn't done yet, stop iteration. */
1342 		return 0;
1343 
1344 	driver_data = (struct driver_data *) &d[3];
1345 	packet = driver_data->packet;
1346 	if (packet == NULL)
1347 		/* This packet was cancelled, just continue. */
1348 		return 1;
1349 
1350 	if (packet->payload_mapped)
1351 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1352 				 packet->payload_length, DMA_TO_DEVICE);
1353 
1354 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1355 	packet->timestamp = le16_to_cpu(last->res_count);
1356 
1357 	switch (evt) {
1358 	case OHCI1394_evt_timeout:
1359 		/* Async response transmit timed out. */
1360 		packet->ack = RCODE_CANCELLED;
1361 		break;
1362 
1363 	case OHCI1394_evt_flushed:
1364 		/*
1365 		 * The packet was flushed should give same error as
1366 		 * when we try to use a stale generation count.
1367 		 */
1368 		packet->ack = RCODE_GENERATION;
1369 		break;
1370 
1371 	case OHCI1394_evt_missing_ack:
1372 		if (READ_ONCE(ctx->flushing))
1373 			packet->ack = RCODE_GENERATION;
1374 		else {
1375 			/*
1376 			 * Using a valid (current) generation count, but the
1377 			 * node is not on the bus or not sending acks.
1378 			 */
1379 			packet->ack = RCODE_NO_ACK;
1380 		}
1381 		break;
1382 
1383 	case ACK_COMPLETE + 0x10:
1384 	case ACK_PENDING + 0x10:
1385 	case ACK_BUSY_X + 0x10:
1386 	case ACK_BUSY_A + 0x10:
1387 	case ACK_BUSY_B + 0x10:
1388 	case ACK_DATA_ERROR + 0x10:
1389 	case ACK_TYPE_ERROR + 0x10:
1390 		packet->ack = evt - 0x10;
1391 		break;
1392 
1393 	case OHCI1394_evt_no_status:
1394 		if (READ_ONCE(ctx->flushing)) {
1395 			packet->ack = RCODE_GENERATION;
1396 			break;
1397 		}
1398 		fallthrough;
1399 
1400 	default:
1401 		if (unlikely(evt == 0x10)) {
1402 			u32 params[2] = {
1403 				packet->generation,
1404 				async_header_get_destination(packet->header),
1405 			};
1406 			struct device *dev;
1407 
1408 			fw_card_get(&ohci->card);
1409 			dev = device_find_child(ohci->card.device, (const void *)params, find_fw_device);
1410 			fw_card_put(&ohci->card);
1411 			if (dev) {
1412 				struct fw_device *device = fw_device(dev);
1413 				int quirks = READ_ONCE(device->quirks);
1414 
1415 				put_device(dev);
1416 				if (quirks & FW_DEVICE_QUIRK_ACK_PACKET_WITH_INVALID_PENDING_CODE) {
1417 					packet->ack = ACK_PENDING;
1418 					break;
1419 				}
1420 			}
1421 		}
1422 		packet->ack = RCODE_SEND_ERROR;
1423 		break;
1424 	}
1425 
1426 	packet->callback(packet, &ohci->card, packet->ack);
1427 
1428 	return 1;
1429 }
1430 
1431 static u32 get_cycle_time(struct fw_ohci *ohci);
1432 
1433 static void handle_local_rom(struct fw_ohci *ohci,
1434 			     struct fw_packet *packet, u32 csr)
1435 {
1436 	struct fw_packet response;
1437 	int tcode, length, i;
1438 
1439 	tcode = async_header_get_tcode(packet->header);
1440 	if (tcode_is_block_packet(tcode))
1441 		length = async_header_get_data_length(packet->header);
1442 	else
1443 		length = 4;
1444 
1445 	i = csr - CSR_CONFIG_ROM;
1446 	if (i + length > CONFIG_ROM_SIZE) {
1447 		fw_fill_response(&response, packet->header,
1448 				 RCODE_ADDRESS_ERROR, NULL, 0);
1449 	} else if (!tcode_is_read_request(tcode)) {
1450 		fw_fill_response(&response, packet->header,
1451 				 RCODE_TYPE_ERROR, NULL, 0);
1452 	} else {
1453 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1454 				 (void *) ohci->config_rom + i, length);
1455 	}
1456 
1457 	// Timestamping on behalf of the hardware.
1458 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1459 	fw_core_handle_response(&ohci->card, &response);
1460 }
1461 
1462 static void handle_local_lock(struct fw_ohci *ohci,
1463 			      struct fw_packet *packet, u32 csr)
1464 {
1465 	struct fw_packet response;
1466 	int tcode, length, ext_tcode, sel, try;
1467 	__be32 *payload, lock_old;
1468 	u32 lock_arg, lock_data;
1469 
1470 	tcode = async_header_get_tcode(packet->header);
1471 	length = async_header_get_data_length(packet->header);
1472 	payload = packet->payload;
1473 	ext_tcode = async_header_get_extended_tcode(packet->header);
1474 
1475 	if (tcode == TCODE_LOCK_REQUEST &&
1476 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1477 		lock_arg = be32_to_cpu(payload[0]);
1478 		lock_data = be32_to_cpu(payload[1]);
1479 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1480 		lock_arg = 0;
1481 		lock_data = 0;
1482 	} else {
1483 		fw_fill_response(&response, packet->header,
1484 				 RCODE_TYPE_ERROR, NULL, 0);
1485 		goto out;
1486 	}
1487 
1488 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1489 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1490 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1491 	reg_write(ohci, OHCI1394_CSRControl, sel);
1492 
1493 	for (try = 0; try < 20; try++)
1494 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1495 			lock_old = cpu_to_be32(reg_read(ohci,
1496 							OHCI1394_CSRData));
1497 			fw_fill_response(&response, packet->header,
1498 					 RCODE_COMPLETE,
1499 					 &lock_old, sizeof(lock_old));
1500 			goto out;
1501 		}
1502 
1503 	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1504 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1505 
1506  out:
1507 	// Timestamping on behalf of the hardware.
1508 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1509 	fw_core_handle_response(&ohci->card, &response);
1510 }
1511 
1512 static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1513 {
1514 	struct fw_ohci *ohci = ctx->context.ohci;
1515 	u64 offset, csr;
1516 
1517 	if (ctx == &ohci->at_request_ctx) {
1518 		packet->ack = ACK_PENDING;
1519 		packet->callback(packet, &ohci->card, packet->ack);
1520 	}
1521 
1522 	offset = async_header_get_offset(packet->header);
1523 	csr = offset - CSR_REGISTER_BASE;
1524 
1525 	/* Handle config rom reads. */
1526 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1527 		handle_local_rom(ohci, packet, csr);
1528 	else switch (csr) {
1529 	case CSR_BUS_MANAGER_ID:
1530 	case CSR_BANDWIDTH_AVAILABLE:
1531 	case CSR_CHANNELS_AVAILABLE_HI:
1532 	case CSR_CHANNELS_AVAILABLE_LO:
1533 		handle_local_lock(ohci, packet, csr);
1534 		break;
1535 	default:
1536 		if (ctx == &ohci->at_request_ctx)
1537 			fw_core_handle_request(&ohci->card, packet);
1538 		else
1539 			fw_core_handle_response(&ohci->card, packet);
1540 		break;
1541 	}
1542 
1543 	if (ctx == &ohci->at_response_ctx) {
1544 		packet->ack = ACK_COMPLETE;
1545 		packet->callback(packet, &ohci->card, packet->ack);
1546 	}
1547 }
1548 
1549 static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1550 {
1551 	struct fw_ohci *ohci = ctx->context.ohci;
1552 	unsigned long flags;
1553 	int ret;
1554 
1555 	spin_lock_irqsave(&ohci->lock, flags);
1556 
1557 	if (async_header_get_destination(packet->header) == ohci->node_id &&
1558 	    ohci->generation == packet->generation) {
1559 		spin_unlock_irqrestore(&ohci->lock, flags);
1560 
1561 		// Timestamping on behalf of the hardware.
1562 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1563 
1564 		handle_local_request(ctx, packet);
1565 		return;
1566 	}
1567 
1568 	ret = at_context_queue_packet(ctx, packet);
1569 	spin_unlock_irqrestore(&ohci->lock, flags);
1570 
1571 	if (ret < 0) {
1572 		// Timestamping on behalf of the hardware.
1573 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1574 
1575 		packet->callback(packet, &ohci->card, packet->ack);
1576 	}
1577 }
1578 
1579 static void detect_dead_context(struct fw_ohci *ohci,
1580 				const char *name, unsigned int regs)
1581 {
1582 	static const char *const evts[] = {
1583 		[0x00] = "evt_no_status",	[0x01] = "-reserved-",
1584 		[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
1585 		[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
1586 		[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
1587 		[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
1588 		[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
1589 		[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
1590 		[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
1591 		[0x10] = "-reserved-",		[0x11] = "ack_complete",
1592 		[0x12] = "ack_pending ",	[0x13] = "-reserved-",
1593 		[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
1594 		[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
1595 		[0x18] = "-reserved-",		[0x19] = "-reserved-",
1596 		[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
1597 		[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
1598 		[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
1599 		[0x20] = "pending/cancelled",
1600 	};
1601 	u32 ctl;
1602 
1603 	ctl = reg_read(ohci, CONTROL_SET(regs));
1604 	if (ctl & CONTEXT_DEAD)
1605 		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1606 			name, evts[ctl & 0x1f]);
1607 }
1608 
1609 static void handle_dead_contexts(struct fw_ohci *ohci)
1610 {
1611 	unsigned int i;
1612 	char name[8];
1613 
1614 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1615 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1616 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1617 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1618 	for (i = 0; i < 32; ++i) {
1619 		if (!(ohci->it_context_support & (1 << i)))
1620 			continue;
1621 		sprintf(name, "IT%u", i);
1622 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1623 	}
1624 	for (i = 0; i < 32; ++i) {
1625 		if (!(ohci->ir_context_support & (1 << i)))
1626 			continue;
1627 		sprintf(name, "IR%u", i);
1628 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1629 	}
1630 	/* TODO: maybe try to flush and restart the dead contexts */
1631 }
1632 
1633 static u32 cycle_timer_ticks(u32 cycle_timer)
1634 {
1635 	u32 ticks;
1636 
1637 	ticks = cycle_timer & 0xfff;
1638 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1639 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1640 
1641 	return ticks;
1642 }
1643 
1644 /*
1645  * Some controllers exhibit one or more of the following bugs when updating the
1646  * iso cycle timer register:
1647  *  - When the lowest six bits are wrapping around to zero, a read that happens
1648  *    at the same time will return garbage in the lowest ten bits.
1649  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1650  *    not incremented for about 60 ns.
1651  *  - Occasionally, the entire register reads zero.
1652  *
1653  * To catch these, we read the register three times and ensure that the
1654  * difference between each two consecutive reads is approximately the same, i.e.
1655  * less than twice the other.  Furthermore, any negative difference indicates an
1656  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1657  * execute, so we have enough precision to compute the ratio of the differences.)
1658  */
1659 static u32 get_cycle_time(struct fw_ohci *ohci)
1660 {
1661 	u32 c0, c1, c2;
1662 	u32 t0, t1, t2;
1663 	s32 diff01, diff12;
1664 	int i;
1665 
1666 	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1667 		return 0;
1668 
1669 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1670 
1671 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1672 		i = 0;
1673 		c1 = c2;
1674 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1675 		do {
1676 			c0 = c1;
1677 			c1 = c2;
1678 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1679 			t0 = cycle_timer_ticks(c0);
1680 			t1 = cycle_timer_ticks(c1);
1681 			t2 = cycle_timer_ticks(c2);
1682 			diff01 = t1 - t0;
1683 			diff12 = t2 - t1;
1684 		} while ((diff01 <= 0 || diff12 <= 0 ||
1685 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1686 			 && i++ < 20);
1687 	}
1688 
1689 	return c2;
1690 }
1691 
1692 /*
1693  * This function has to be called at least every 64 seconds.  The bus_time
1694  * field stores not only the upper 25 bits of the BUS_TIME register but also
1695  * the most significant bit of the cycle timer in bit 6 so that we can detect
1696  * changes in this bit.
1697  */
1698 static u32 update_bus_time(struct fw_ohci *ohci)
1699 {
1700 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1701 
1702 	if (unlikely(!ohci->bus_time_running)) {
1703 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1704 		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1705 		                 (cycle_time_seconds & 0x40);
1706 		ohci->bus_time_running = true;
1707 	}
1708 
1709 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1710 		ohci->bus_time += 0x40;
1711 
1712 	return ohci->bus_time | cycle_time_seconds;
1713 }
1714 
1715 static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1716 			       enum phy_packet_self_id_port_status *status)
1717 {
1718 	int reg;
1719 
1720 	scoped_guard(mutex, &ohci->phy_reg_mutex) {
1721 		reg = write_phy_reg(ohci, 7, port_index);
1722 		if (reg < 0)
1723 			return reg;
1724 
1725 		reg = read_phy_reg(ohci, 8);
1726 		if (reg < 0)
1727 			return reg;
1728 	}
1729 
1730 	switch (reg & 0x0f) {
1731 	case 0x06:
1732 		// is child node (connected to parent node)
1733 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1734 		break;
1735 	case 0x0e:
1736 		// is parent node (connected to child node)
1737 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1738 		break;
1739 	default:
1740 		// not connected
1741 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1742 		break;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1749 	int self_id_count)
1750 {
1751 	unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1752 	int i;
1753 
1754 	for (i = 0; i < self_id_count; i++) {
1755 		u32 entry = ohci->self_id_buffer[i];
1756 		unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1757 
1758 		if (left_phy_id == right_phy_id)
1759 			return -1;
1760 		if (left_phy_id < right_phy_id)
1761 			return i;
1762 	}
1763 	return i;
1764 }
1765 
1766 static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1767 {
1768 	int reg;
1769 
1770 	guard(mutex)(&ohci->phy_reg_mutex);
1771 
1772 	// Select page 7
1773 	reg = write_phy_reg(ohci, 7, 0xe0);
1774 	if (reg < 0)
1775 		return reg;
1776 
1777 	reg = read_phy_reg(ohci, 8);
1778 	if (reg < 0)
1779 		return reg;
1780 
1781 	// set PMODE bit
1782 	reg |= 0x40;
1783 	reg = write_phy_reg(ohci, 8, reg);
1784 	if (reg < 0)
1785 		return reg;
1786 
1787 	// read register 12
1788 	reg = read_phy_reg(ohci, 12);
1789 	if (reg < 0)
1790 		return reg;
1791 
1792 	// bit 3 indicates "initiated reset"
1793 	*is_initiated_reset = !!((reg & 0x08) == 0x08);
1794 
1795 	return 0;
1796 }
1797 
1798 /*
1799  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1800  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1801  * Construct the selfID from phy register contents.
1802  */
1803 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1804 {
1805 	int reg, i, pos, err;
1806 	bool is_initiated_reset;
1807 	u32 self_id = 0;
1808 
1809 	// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1810 	phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1811 	phy_packet_self_id_zero_set_link_active(&self_id, true);
1812 	phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1813 	phy_packet_self_id_zero_set_contender(&self_id, true);
1814 
1815 	reg = reg_read(ohci, OHCI1394_NodeID);
1816 	if (!(reg & OHCI1394_NodeID_idValid)) {
1817 		ohci_notice(ohci,
1818 			    "node ID not valid, new bus reset in progress\n");
1819 		return -EBUSY;
1820 	}
1821 	phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1822 
1823 	reg = ohci_read_phy_reg(&ohci->card, 4);
1824 	if (reg < 0)
1825 		return reg;
1826 	phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1827 
1828 	reg = ohci_read_phy_reg(&ohci->card, 1);
1829 	if (reg < 0)
1830 		return reg;
1831 	phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1832 
1833 	for (i = 0; i < 3; i++) {
1834 		enum phy_packet_self_id_port_status status;
1835 
1836 		err = get_status_for_port(ohci, i, &status);
1837 		if (err < 0)
1838 			return err;
1839 
1840 		self_id_sequence_set_port_status(&self_id, 1, i, status);
1841 	}
1842 
1843 	err = detect_initiated_reset(ohci, &is_initiated_reset);
1844 	if (err < 0)
1845 		return err;
1846 	phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
1847 
1848 	pos = get_self_id_pos(ohci, self_id, self_id_count);
1849 	if (pos >= 0) {
1850 		memmove(&(ohci->self_id_buffer[pos+1]),
1851 			&(ohci->self_id_buffer[pos]),
1852 			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1853 		ohci->self_id_buffer[pos] = self_id;
1854 		self_id_count++;
1855 	}
1856 	return self_id_count;
1857 }
1858 
1859 static irqreturn_t handle_selfid_complete_event(int irq, void *data)
1860 {
1861 	struct fw_ohci *ohci = data;
1862 	int self_id_count, generation, new_generation, i, j;
1863 	u32 reg, quadlet;
1864 	void *free_rom = NULL;
1865 	dma_addr_t free_rom_bus = 0;
1866 	bool is_new_root;
1867 
1868 	reg = reg_read(ohci, OHCI1394_NodeID);
1869 	if (!(reg & OHCI1394_NodeID_idValid)) {
1870 		ohci_notice(ohci,
1871 			    "node ID not valid, new bus reset in progress\n");
1872 		goto end;
1873 	}
1874 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1875 		ohci_notice(ohci, "malconfigured bus\n");
1876 		goto end;
1877 	}
1878 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1879 			       OHCI1394_NodeID_nodeNumber);
1880 
1881 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1882 	if (!(ohci->is_root && is_new_root))
1883 		reg_write(ohci, OHCI1394_LinkControlSet,
1884 			  OHCI1394_LinkControl_cycleMaster);
1885 	ohci->is_root = is_new_root;
1886 
1887 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1888 	if (ohci1394_self_id_count_is_error(reg)) {
1889 		ohci_notice(ohci, "self ID receive error\n");
1890 		goto end;
1891 	}
1892 
1893 	trace_self_id_complete(ohci->card.index, reg, ohci->self_id, has_be_header_quirk(ohci));
1894 
1895 	/*
1896 	 * The count in the SelfIDCount register is the number of
1897 	 * bytes in the self ID receive buffer.  Since we also receive
1898 	 * the inverted quadlets and a header quadlet, we shift one
1899 	 * bit extra to get the actual number of self IDs.
1900 	 */
1901 	self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
1902 
1903 	if (self_id_count > 252) {
1904 		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1905 		goto end;
1906 	}
1907 
1908 	quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
1909 	generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
1910 	rmb();
1911 
1912 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1913 		u32 id  = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
1914 		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
1915 
1916 		if (id != ~id2) {
1917 			/*
1918 			 * If the invalid data looks like a cycle start packet,
1919 			 * it's likely to be the result of the cycle master
1920 			 * having a wrong gap count.  In this case, the self IDs
1921 			 * so far are valid and should be processed so that the
1922 			 * bus manager can then correct the gap count.
1923 			 */
1924 			if (id == 0xffff008f) {
1925 				ohci_notice(ohci, "ignoring spurious self IDs\n");
1926 				self_id_count = j;
1927 				break;
1928 			}
1929 
1930 			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1931 				    j, self_id_count, id, id2);
1932 			goto end;
1933 		}
1934 		ohci->self_id_buffer[j] = id;
1935 	}
1936 
1937 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1938 		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1939 		if (self_id_count < 0) {
1940 			ohci_notice(ohci,
1941 				    "could not construct local self ID\n");
1942 			goto end;
1943 		}
1944 	}
1945 
1946 	if (self_id_count == 0) {
1947 		ohci_notice(ohci, "no self IDs\n");
1948 		goto end;
1949 	}
1950 	rmb();
1951 
1952 	/*
1953 	 * Check the consistency of the self IDs we just read.  The
1954 	 * problem we face is that a new bus reset can start while we
1955 	 * read out the self IDs from the DMA buffer. If this happens,
1956 	 * the DMA buffer will be overwritten with new self IDs and we
1957 	 * will read out inconsistent data.  The OHCI specification
1958 	 * (section 11.2) recommends a technique similar to
1959 	 * linux/seqlock.h, where we remember the generation of the
1960 	 * self IDs in the buffer before reading them out and compare
1961 	 * it to the current generation after reading them out.  If
1962 	 * the two generations match we know we have a consistent set
1963 	 * of self IDs.
1964 	 */
1965 
1966 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1967 	new_generation = ohci1394_self_id_count_get_generation(reg);
1968 	if (new_generation != generation) {
1969 		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1970 		goto end;
1971 	}
1972 
1973 	// FIXME: Document how the locking works.
1974 	scoped_guard(spinlock_irq, &ohci->lock) {
1975 		ohci->generation = -1; // prevent AT packet queueing
1976 		context_stop(&ohci->at_request_ctx.context);
1977 		context_stop(&ohci->at_response_ctx.context);
1978 	}
1979 
1980 	/*
1981 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1982 	 * packets in the AT queues and software needs to drain them.
1983 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1984 	 */
1985 	at_context_flush(&ohci->at_request_ctx);
1986 	at_context_flush(&ohci->at_response_ctx);
1987 
1988 	scoped_guard(spinlock_irq, &ohci->lock) {
1989 		ohci->generation = generation;
1990 		reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1991 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1992 
1993 		if (ohci->quirks & QUIRK_RESET_PACKET)
1994 			ohci->request_generation = generation;
1995 
1996 		// This next bit is unrelated to the AT context stuff but we have to do it under the
1997 		// spinlock also. If a new config rom was set up before this reset, the old one is
1998 		// now no longer in use and we can free it. Update the config rom pointers to point
1999 		// to the current config rom and clear the next_config_rom pointer so a new update
2000 		// can take place.
2001 		if (ohci->next_config_rom != NULL) {
2002 			if (ohci->next_config_rom != ohci->config_rom) {
2003 				free_rom      = ohci->config_rom;
2004 				free_rom_bus  = ohci->config_rom_bus;
2005 			}
2006 			ohci->config_rom      = ohci->next_config_rom;
2007 			ohci->config_rom_bus  = ohci->next_config_rom_bus;
2008 			ohci->next_config_rom = NULL;
2009 
2010 			// Restore config_rom image and manually update config_rom registers.
2011 			// Writing the header quadlet will indicate that the config rom is ready,
2012 			// so we do that last.
2013 			reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2014 			ohci->config_rom[0] = ohci->next_header;
2015 			reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2016 		}
2017 
2018 		if (param_remote_dma) {
2019 			reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2020 			reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2021 		}
2022 	}
2023 
2024 	if (free_rom)
2025 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2026 
2027 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2028 				 self_id_count, ohci->self_id_buffer,
2029 				 ohci->csr_state_setclear_abdicate);
2030 	ohci->csr_state_setclear_abdicate = false;
2031 end:
2032 	return IRQ_HANDLED;
2033 }
2034 
2035 static irqreturn_t irq_handler(int irq, void *data)
2036 {
2037 	struct fw_ohci *ohci = data;
2038 	u32 event, iso_event;
2039 	int i;
2040 
2041 	event = reg_read(ohci, OHCI1394_IntEventClear);
2042 
2043 	if (!event || !~event)
2044 		return IRQ_NONE;
2045 
2046 	/*
2047 	 * busReset and postedWriteErr events must not be cleared yet
2048 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2049 	 */
2050 	reg_write(ohci, OHCI1394_IntEventClear,
2051 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2052 	trace_irqs(ohci->card.index, event);
2053 
2054 	// The flag is masked again at handle_selfid_complete_event() scheduled by selfID event.
2055 	if (event & OHCI1394_busReset)
2056 		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2057 
2058 	if (event & OHCI1394_RQPkt)
2059 		queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2060 
2061 	if (event & OHCI1394_RSPkt)
2062 		queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2063 
2064 	if (event & OHCI1394_reqTxComplete)
2065 		queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2066 
2067 	if (event & OHCI1394_respTxComplete)
2068 		queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2069 
2070 	if (event & OHCI1394_isochRx) {
2071 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2072 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2073 
2074 		while (iso_event) {
2075 			i = ffs(iso_event) - 1;
2076 			fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2077 			iso_event &= ~(1 << i);
2078 		}
2079 	}
2080 
2081 	if (event & OHCI1394_isochTx) {
2082 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2083 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2084 
2085 		while (iso_event) {
2086 			i = ffs(iso_event) - 1;
2087 			fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2088 			iso_event &= ~(1 << i);
2089 		}
2090 	}
2091 
2092 	if (unlikely(event & OHCI1394_regAccessFail))
2093 		ohci_err(ohci, "register access failure\n");
2094 
2095 	if (unlikely(event & OHCI1394_postedWriteErr)) {
2096 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2097 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2098 		reg_write(ohci, OHCI1394_IntEventClear,
2099 			  OHCI1394_postedWriteErr);
2100 		dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2101 	}
2102 
2103 	if (unlikely(event & OHCI1394_cycleTooLong)) {
2104 		dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2105 		reg_write(ohci, OHCI1394_LinkControlSet,
2106 			  OHCI1394_LinkControl_cycleMaster);
2107 	}
2108 
2109 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2110 		/*
2111 		 * We need to clear this event bit in order to make
2112 		 * cycleMatch isochronous I/O work.  In theory we should
2113 		 * stop active cycleMatch iso contexts now and restart
2114 		 * them at least two cycles later.  (FIXME?)
2115 		 */
2116 		dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2117 	}
2118 
2119 	if (unlikely(event & OHCI1394_unrecoverableError))
2120 		handle_dead_contexts(ohci);
2121 
2122 	if (event & OHCI1394_cycle64Seconds) {
2123 		guard(spinlock)(&ohci->lock);
2124 		update_bus_time(ohci);
2125 	} else
2126 		flush_writes(ohci);
2127 
2128 	if (event & OHCI1394_selfIDComplete)
2129 		return IRQ_WAKE_THREAD;
2130 	else
2131 		return IRQ_HANDLED;
2132 }
2133 
2134 static int software_reset(struct fw_ohci *ohci)
2135 {
2136 	u32 val;
2137 	int i;
2138 
2139 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2140 	for (i = 0; i < 500; i++) {
2141 		val = reg_read(ohci, OHCI1394_HCControlSet);
2142 		if (!~val)
2143 			return -ENODEV; /* Card was ejected. */
2144 
2145 		if (!(val & OHCI1394_HCControl_softReset))
2146 			return 0;
2147 
2148 		msleep(1);
2149 	}
2150 
2151 	return -EBUSY;
2152 }
2153 
2154 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2155 {
2156 	size_t size = length * 4;
2157 
2158 	memcpy(dest, src, size);
2159 	if (size < CONFIG_ROM_SIZE)
2160 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2161 }
2162 
2163 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2164 {
2165 	bool enable_1394a;
2166 	int ret, clear, set, offset;
2167 
2168 	/* Check if the driver should configure link and PHY. */
2169 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2170 	      OHCI1394_HCControl_programPhyEnable))
2171 		return 0;
2172 
2173 	/* Paranoia: check whether the PHY supports 1394a, too. */
2174 	enable_1394a = false;
2175 	ret = read_phy_reg(ohci, 2);
2176 	if (ret < 0)
2177 		return ret;
2178 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2179 		ret = read_paged_phy_reg(ohci, 1, 8);
2180 		if (ret < 0)
2181 			return ret;
2182 		if (ret >= 1)
2183 			enable_1394a = true;
2184 	}
2185 
2186 	if (ohci->quirks & QUIRK_NO_1394A)
2187 		enable_1394a = false;
2188 
2189 	/* Configure PHY and link consistently. */
2190 	if (enable_1394a) {
2191 		clear = 0;
2192 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2193 	} else {
2194 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2195 		set = 0;
2196 	}
2197 	ret = update_phy_reg(ohci, 5, clear, set);
2198 	if (ret < 0)
2199 		return ret;
2200 
2201 	if (enable_1394a)
2202 		offset = OHCI1394_HCControlSet;
2203 	else
2204 		offset = OHCI1394_HCControlClear;
2205 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2206 
2207 	/* Clean up: configuration has been taken care of. */
2208 	reg_write(ohci, OHCI1394_HCControlClear,
2209 		  OHCI1394_HCControl_programPhyEnable);
2210 
2211 	return 0;
2212 }
2213 
2214 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2215 {
2216 	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2217 	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2218 	int reg, i;
2219 
2220 	reg = read_phy_reg(ohci, 2);
2221 	if (reg < 0)
2222 		return reg;
2223 	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2224 		return 0;
2225 
2226 	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2227 		reg = read_paged_phy_reg(ohci, 1, i + 10);
2228 		if (reg < 0)
2229 			return reg;
2230 		if (reg != id[i])
2231 			return 0;
2232 	}
2233 	return 1;
2234 }
2235 
2236 static int ohci_enable(struct fw_card *card,
2237 		       const __be32 *config_rom, size_t length)
2238 {
2239 	struct fw_ohci *ohci = fw_ohci(card);
2240 	u32 lps, version, irqs;
2241 	int i, ret;
2242 
2243 	ret = software_reset(ohci);
2244 	if (ret < 0) {
2245 		ohci_err(ohci, "failed to reset ohci card\n");
2246 		return ret;
2247 	}
2248 
2249 	/*
2250 	 * Now enable LPS, which we need in order to start accessing
2251 	 * most of the registers.  In fact, on some cards (ALI M5251),
2252 	 * accessing registers in the SClk domain without LPS enabled
2253 	 * will lock up the machine.  Wait 50msec to make sure we have
2254 	 * full link enabled.  However, with some cards (well, at least
2255 	 * a JMicron PCIe card), we have to try again sometimes.
2256 	 *
2257 	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2258 	 * cannot actually use the phy at that time.  These need tens of
2259 	 * millisecods pause between LPS write and first phy access too.
2260 	 */
2261 
2262 	reg_write(ohci, OHCI1394_HCControlSet,
2263 		  OHCI1394_HCControl_LPS |
2264 		  OHCI1394_HCControl_postedWriteEnable);
2265 	flush_writes(ohci);
2266 
2267 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2268 		msleep(50);
2269 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2270 		      OHCI1394_HCControl_LPS;
2271 	}
2272 
2273 	if (!lps) {
2274 		ohci_err(ohci, "failed to set Link Power Status\n");
2275 		return -EIO;
2276 	}
2277 
2278 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2279 		ret = probe_tsb41ba3d(ohci);
2280 		if (ret < 0)
2281 			return ret;
2282 		if (ret)
2283 			ohci_notice(ohci, "local TSB41BA3D phy\n");
2284 		else
2285 			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2286 	}
2287 
2288 	reg_write(ohci, OHCI1394_HCControlClear,
2289 		  OHCI1394_HCControl_noByteSwapData);
2290 
2291 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2292 	reg_write(ohci, OHCI1394_LinkControlSet,
2293 		  OHCI1394_LinkControl_cycleTimerEnable |
2294 		  OHCI1394_LinkControl_cycleMaster);
2295 
2296 	reg_write(ohci, OHCI1394_ATRetries,
2297 		  OHCI1394_MAX_AT_REQ_RETRIES |
2298 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2299 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2300 		  (200 << 16));
2301 
2302 	ohci->bus_time_running = false;
2303 
2304 	for (i = 0; i < 32; i++)
2305 		if (ohci->ir_context_support & (1 << i))
2306 			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2307 				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2308 
2309 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2310 	if (version >= OHCI_VERSION_1_1) {
2311 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2312 			  0xfffffffe);
2313 		card->broadcast_channel_auto_allocated = true;
2314 	}
2315 
2316 	/* Get implemented bits of the priority arbitration request counter. */
2317 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2318 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2319 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2320 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2321 
2322 	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2323 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2324 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2325 
2326 	ret = configure_1394a_enhancements(ohci);
2327 	if (ret < 0)
2328 		return ret;
2329 
2330 	/* Activate link_on bit and contender bit in our self ID packets.*/
2331 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2332 	if (ret < 0)
2333 		return ret;
2334 
2335 	/*
2336 	 * When the link is not yet enabled, the atomic config rom
2337 	 * update mechanism described below in ohci_set_config_rom()
2338 	 * is not active.  We have to update ConfigRomHeader and
2339 	 * BusOptions manually, and the write to ConfigROMmap takes
2340 	 * effect immediately.  We tie this to the enabling of the
2341 	 * link, so we have a valid config rom before enabling - the
2342 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2343 	 * values before enabling.
2344 	 *
2345 	 * However, when the ConfigROMmap is written, some controllers
2346 	 * always read back quadlets 0 and 2 from the config rom to
2347 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2348 	 * They shouldn't do that in this initial case where the link
2349 	 * isn't enabled.  This means we have to use the same
2350 	 * workaround here, setting the bus header to 0 and then write
2351 	 * the right values in the bus reset work item.
2352 	 */
2353 
2354 	if (config_rom) {
2355 		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2356 							    &ohci->next_config_rom_bus, GFP_KERNEL);
2357 		if (ohci->next_config_rom == NULL)
2358 			return -ENOMEM;
2359 
2360 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2361 	} else {
2362 		/*
2363 		 * In the suspend case, config_rom is NULL, which
2364 		 * means that we just reuse the old config rom.
2365 		 */
2366 		ohci->next_config_rom = ohci->config_rom;
2367 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2368 	}
2369 
2370 	ohci->next_header = ohci->next_config_rom[0];
2371 	ohci->next_config_rom[0] = 0;
2372 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2373 	reg_write(ohci, OHCI1394_BusOptions,
2374 		  be32_to_cpu(ohci->next_config_rom[2]));
2375 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2376 
2377 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2378 
2379 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2380 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2381 		OHCI1394_isochTx | OHCI1394_isochRx |
2382 		OHCI1394_postedWriteErr |
2383 		OHCI1394_selfIDComplete |
2384 		OHCI1394_regAccessFail |
2385 		OHCI1394_cycleInconsistent |
2386 		OHCI1394_unrecoverableError |
2387 		OHCI1394_cycleTooLong |
2388 		OHCI1394_masterIntEnable |
2389 		OHCI1394_busReset;
2390 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2391 
2392 	reg_write(ohci, OHCI1394_HCControlSet,
2393 		  OHCI1394_HCControl_linkEnable |
2394 		  OHCI1394_HCControl_BIBimageValid);
2395 
2396 	reg_write(ohci, OHCI1394_LinkControlSet,
2397 		  OHCI1394_LinkControl_rcvSelfID |
2398 		  OHCI1394_LinkControl_rcvPhyPkt);
2399 
2400 	ar_context_run(&ohci->ar_request_ctx);
2401 	ar_context_run(&ohci->ar_response_ctx);
2402 
2403 	flush_writes(ohci);
2404 
2405 	/* We are ready to go, reset bus to finish initialization. */
2406 	fw_schedule_bus_reset(&ohci->card, false, true);
2407 
2408 	return 0;
2409 }
2410 
2411 static void ohci_disable(struct fw_card *card)
2412 {
2413 	struct pci_dev *pdev = to_pci_dev(card->device);
2414 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
2415 	int i, irq = pci_irq_vector(pdev, 0);
2416 
2417 	// If the removal is happening from the suspend state, LPS won't be enabled and host
2418 	// registers (eg., IntMaskClear) won't be accessible.
2419 	if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS))
2420 		return;
2421 
2422 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2423 	flush_writes(ohci);
2424 
2425 	if (irq >= 0)
2426 		synchronize_irq(irq);
2427 
2428 	flush_work(&ohci->ar_request_ctx.work);
2429 	flush_work(&ohci->ar_response_ctx.work);
2430 	flush_work(&ohci->at_request_ctx.work);
2431 	flush_work(&ohci->at_response_ctx.work);
2432 
2433 	for (i = 0; i < ohci->n_ir; ++i) {
2434 		if (!(ohci->ir_context_mask & BIT(i)))
2435 			flush_work(&ohci->ir_context_list[i].base.work);
2436 	}
2437 	for (i = 0; i < ohci->n_it; ++i) {
2438 		if (!(ohci->it_context_mask & BIT(i)))
2439 			flush_work(&ohci->it_context_list[i].base.work);
2440 	}
2441 
2442 	at_context_flush(&ohci->at_request_ctx);
2443 	at_context_flush(&ohci->at_response_ctx);
2444 }
2445 
2446 static int ohci_set_config_rom(struct fw_card *card,
2447 			       const __be32 *config_rom, size_t length)
2448 {
2449 	struct fw_ohci *ohci;
2450 	__be32 *next_config_rom;
2451 	dma_addr_t next_config_rom_bus;
2452 
2453 	ohci = fw_ohci(card);
2454 
2455 	/*
2456 	 * When the OHCI controller is enabled, the config rom update
2457 	 * mechanism is a bit tricky, but easy enough to use.  See
2458 	 * section 5.5.6 in the OHCI specification.
2459 	 *
2460 	 * The OHCI controller caches the new config rom address in a
2461 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2462 	 * for the changes to take place.  When the bus reset is
2463 	 * detected, the controller loads the new values for the
2464 	 * ConfigRomHeader and BusOptions registers from the specified
2465 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2466 	 * shadow register. All automatically and atomically.
2467 	 *
2468 	 * Now, there's a twist to this story.  The automatic load of
2469 	 * ConfigRomHeader and BusOptions doesn't honor the
2470 	 * noByteSwapData bit, so with a be32 config rom, the
2471 	 * controller will load be32 values in to these registers
2472 	 * during the atomic update, even on little endian
2473 	 * architectures.  The workaround we use is to put a 0 in the
2474 	 * header quadlet; 0 is endian agnostic and means that the
2475 	 * config rom isn't ready yet.  In the bus reset work item we
2476 	 * then set up the real values for the two registers.
2477 	 *
2478 	 * We use ohci->lock to avoid racing with the code that sets
2479 	 * ohci->next_config_rom to NULL (see handle_selfid_complete_event).
2480 	 */
2481 
2482 	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2483 					      &next_config_rom_bus, GFP_KERNEL);
2484 	if (next_config_rom == NULL)
2485 		return -ENOMEM;
2486 
2487 	scoped_guard(spinlock_irq, &ohci->lock) {
2488 		// If there is not an already pending config_rom update, push our new allocation
2489 		// into the ohci->next_config_rom and then mark the local variable as null so that
2490 		// we won't deallocate the new buffer.
2491 		//
2492 		// OTOH, if there is a pending config_rom update, just use that buffer with the new
2493 		// config_rom data, and let this routine free the unused DMA allocation.
2494 		if (ohci->next_config_rom == NULL) {
2495 			ohci->next_config_rom = next_config_rom;
2496 			ohci->next_config_rom_bus = next_config_rom_bus;
2497 			next_config_rom = NULL;
2498 		}
2499 
2500 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2501 
2502 		ohci->next_header = config_rom[0];
2503 		ohci->next_config_rom[0] = 0;
2504 
2505 		reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2506 	}
2507 
2508 	/* If we didn't use the DMA allocation, delete it. */
2509 	if (next_config_rom != NULL) {
2510 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2511 				   next_config_rom_bus);
2512 	}
2513 
2514 	/*
2515 	 * Now initiate a bus reset to have the changes take
2516 	 * effect. We clean up the old config rom memory and DMA
2517 	 * mappings in the bus reset work item, since the OHCI
2518 	 * controller could need to access it before the bus reset
2519 	 * takes effect.
2520 	 */
2521 
2522 	fw_schedule_bus_reset(&ohci->card, true, true);
2523 
2524 	return 0;
2525 }
2526 
2527 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2528 {
2529 	struct fw_ohci *ohci = fw_ohci(card);
2530 
2531 	at_context_transmit(&ohci->at_request_ctx, packet);
2532 }
2533 
2534 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2535 {
2536 	struct fw_ohci *ohci = fw_ohci(card);
2537 
2538 	at_context_transmit(&ohci->at_response_ctx, packet);
2539 }
2540 
2541 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2542 {
2543 	struct fw_ohci *ohci = fw_ohci(card);
2544 	struct at_context *ctx = &ohci->at_request_ctx;
2545 	struct driver_data *driver_data = packet->driver_data;
2546 	int ret = -ENOENT;
2547 
2548 	// Avoid dead lock due to programming mistake.
2549 	if (WARN_ON_ONCE(current_work() == &ctx->work))
2550 		return 0;
2551 	disable_work_sync(&ctx->work);
2552 
2553 	if (packet->ack != 0)
2554 		goto out;
2555 
2556 	if (packet->payload_mapped)
2557 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2558 				 packet->payload_length, DMA_TO_DEVICE);
2559 
2560 	driver_data->packet = NULL;
2561 	packet->ack = RCODE_CANCELLED;
2562 
2563 	// Timestamping on behalf of the hardware.
2564 	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2565 
2566 	packet->callback(packet, &ohci->card, packet->ack);
2567 	ret = 0;
2568  out:
2569 	enable_work(&ctx->work);
2570 
2571 	return ret;
2572 }
2573 
2574 static int ohci_enable_phys_dma(struct fw_card *card,
2575 				int node_id, int generation)
2576 {
2577 	struct fw_ohci *ohci = fw_ohci(card);
2578 	int n, ret = 0;
2579 
2580 	if (param_remote_dma)
2581 		return 0;
2582 
2583 	/*
2584 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2585 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2586 	 */
2587 
2588 	guard(spinlock_irqsave)(&ohci->lock);
2589 
2590 	if (ohci->generation != generation)
2591 		return -ESTALE;
2592 
2593 	/*
2594 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2595 	 * enabled for _all_ nodes on remote buses.
2596 	 */
2597 
2598 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2599 	if (n < 32)
2600 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2601 	else
2602 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2603 
2604 	flush_writes(ohci);
2605 
2606 	return ret;
2607 }
2608 
2609 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2610 {
2611 	struct fw_ohci *ohci = fw_ohci(card);
2612 	u32 value;
2613 
2614 	switch (csr_offset) {
2615 	case CSR_STATE_CLEAR:
2616 	case CSR_STATE_SET:
2617 		if (ohci->is_root &&
2618 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2619 		     OHCI1394_LinkControl_cycleMaster))
2620 			value = CSR_STATE_BIT_CMSTR;
2621 		else
2622 			value = 0;
2623 		if (ohci->csr_state_setclear_abdicate)
2624 			value |= CSR_STATE_BIT_ABDICATE;
2625 
2626 		return value;
2627 
2628 	case CSR_NODE_IDS:
2629 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2630 
2631 	case CSR_CYCLE_TIME:
2632 		return get_cycle_time(ohci);
2633 
2634 	case CSR_BUS_TIME:
2635 	{
2636 		// We might be called just after the cycle timer has wrapped around but just before
2637 		// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2638 		// to be updated.
2639 
2640 		guard(spinlock_irqsave)(&ohci->lock);
2641 		return update_bus_time(ohci);
2642 	}
2643 	case CSR_BUSY_TIMEOUT:
2644 		value = reg_read(ohci, OHCI1394_ATRetries);
2645 		return (value >> 4) & 0x0ffff00f;
2646 
2647 	case CSR_PRIORITY_BUDGET:
2648 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2649 			(ohci->pri_req_max << 8);
2650 
2651 	default:
2652 		WARN_ON(1);
2653 		return 0;
2654 	}
2655 }
2656 
2657 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2658 {
2659 	struct fw_ohci *ohci = fw_ohci(card);
2660 
2661 	switch (csr_offset) {
2662 	case CSR_STATE_CLEAR:
2663 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2664 			reg_write(ohci, OHCI1394_LinkControlClear,
2665 				  OHCI1394_LinkControl_cycleMaster);
2666 			flush_writes(ohci);
2667 		}
2668 		if (value & CSR_STATE_BIT_ABDICATE)
2669 			ohci->csr_state_setclear_abdicate = false;
2670 		break;
2671 
2672 	case CSR_STATE_SET:
2673 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2674 			reg_write(ohci, OHCI1394_LinkControlSet,
2675 				  OHCI1394_LinkControl_cycleMaster);
2676 			flush_writes(ohci);
2677 		}
2678 		if (value & CSR_STATE_BIT_ABDICATE)
2679 			ohci->csr_state_setclear_abdicate = true;
2680 		break;
2681 
2682 	case CSR_NODE_IDS:
2683 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2684 		flush_writes(ohci);
2685 		break;
2686 
2687 	case CSR_CYCLE_TIME:
2688 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2689 		reg_write(ohci, OHCI1394_IntEventSet,
2690 			  OHCI1394_cycleInconsistent);
2691 		flush_writes(ohci);
2692 		break;
2693 
2694 	case CSR_BUS_TIME:
2695 	{
2696 		guard(spinlock_irqsave)(&ohci->lock);
2697 		ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2698 		break;
2699 	}
2700 	case CSR_BUSY_TIMEOUT:
2701 		value = (value & 0xf) | ((value & 0xf) << 4) |
2702 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2703 		reg_write(ohci, OHCI1394_ATRetries, value);
2704 		flush_writes(ohci);
2705 		break;
2706 
2707 	case CSR_PRIORITY_BUDGET:
2708 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2709 		flush_writes(ohci);
2710 		break;
2711 
2712 	default:
2713 		WARN_ON(1);
2714 		break;
2715 	}
2716 }
2717 
2718 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2719 {
2720 	trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2721 					      ctx->header_length);
2722 	trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2723 					ctx->header_length);
2724 
2725 	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2726 			      ctx->header_length, ctx->header,
2727 			      ctx->base.callback_data);
2728 	ctx->header_length = 0;
2729 }
2730 
2731 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2732 {
2733 	u32 *ctx_hdr;
2734 
2735 	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2736 		if (ctx->base.drop_overflow_headers)
2737 			return;
2738 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2739 	}
2740 
2741 	ctx_hdr = ctx->header + ctx->header_length;
2742 	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2743 
2744 	/*
2745 	 * The two iso header quadlets are byteswapped to little
2746 	 * endian by the controller, but we want to present them
2747 	 * as big endian for consistency with the bus endianness.
2748 	 */
2749 	if (ctx->base.header_size > 0)
2750 		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2751 	if (ctx->base.header_size > 4)
2752 		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2753 	if (ctx->base.header_size > 8)
2754 		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2755 	ctx->header_length += ctx->base.header_size;
2756 }
2757 
2758 static int handle_ir_packet_per_buffer(struct context *context,
2759 				       struct descriptor *d,
2760 				       struct descriptor *last)
2761 {
2762 	struct iso_context *ctx =
2763 		container_of(context, struct iso_context, context);
2764 	struct descriptor *pd;
2765 	u32 buffer_dma;
2766 
2767 	for (pd = d; pd <= last; pd++)
2768 		if (pd->transfer_status)
2769 			break;
2770 	if (pd > last)
2771 		/* Descriptor(s) not done yet, stop iteration */
2772 		return 0;
2773 
2774 	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2775 		d++;
2776 		buffer_dma = le32_to_cpu(d->data_address);
2777 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2778 					      buffer_dma & PAGE_MASK,
2779 					      buffer_dma & ~PAGE_MASK,
2780 					      le16_to_cpu(d->req_count),
2781 					      DMA_FROM_DEVICE);
2782 	}
2783 
2784 	copy_iso_headers(ctx, (u32 *) (last + 1));
2785 
2786 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2787 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2788 
2789 	return 1;
2790 }
2791 
2792 /* d == last because each descriptor block is only a single descriptor. */
2793 static int handle_ir_buffer_fill(struct context *context,
2794 				 struct descriptor *d,
2795 				 struct descriptor *last)
2796 {
2797 	struct iso_context *ctx =
2798 		container_of(context, struct iso_context, context);
2799 	unsigned int req_count, res_count, completed;
2800 	u32 buffer_dma;
2801 
2802 	req_count = le16_to_cpu(last->req_count);
2803 	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2804 	completed = req_count - res_count;
2805 	buffer_dma = le32_to_cpu(last->data_address);
2806 
2807 	if (completed > 0) {
2808 		ctx->mc_buffer_bus = buffer_dma;
2809 		ctx->mc_completed = completed;
2810 	}
2811 
2812 	if (res_count != 0)
2813 		/* Descriptor(s) not done yet, stop iteration */
2814 		return 0;
2815 
2816 	dma_sync_single_range_for_cpu(context->ohci->card.device,
2817 				      buffer_dma & PAGE_MASK,
2818 				      buffer_dma & ~PAGE_MASK,
2819 				      completed, DMA_FROM_DEVICE);
2820 
2821 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2822 		trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2823 							FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2824 
2825 		ctx->base.callback.mc(&ctx->base,
2826 				      buffer_dma + completed,
2827 				      ctx->base.callback_data);
2828 		ctx->mc_completed = 0;
2829 	}
2830 
2831 	return 1;
2832 }
2833 
2834 static void flush_ir_buffer_fill(struct iso_context *ctx)
2835 {
2836 	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2837 				      ctx->mc_buffer_bus & PAGE_MASK,
2838 				      ctx->mc_buffer_bus & ~PAGE_MASK,
2839 				      ctx->mc_completed, DMA_FROM_DEVICE);
2840 
2841 	trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2842 						FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2843 
2844 	ctx->base.callback.mc(&ctx->base,
2845 			      ctx->mc_buffer_bus + ctx->mc_completed,
2846 			      ctx->base.callback_data);
2847 	ctx->mc_completed = 0;
2848 }
2849 
2850 static inline void sync_it_packet_for_cpu(struct context *context,
2851 					  struct descriptor *pd)
2852 {
2853 	__le16 control;
2854 	u32 buffer_dma;
2855 
2856 	/* only packets beginning with OUTPUT_MORE* have data buffers */
2857 	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2858 		return;
2859 
2860 	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2861 	pd += 2;
2862 
2863 	/*
2864 	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2865 	 * data buffer is in the context program's coherent page and must not
2866 	 * be synced.
2867 	 */
2868 	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2869 	    (context->current_bus          & PAGE_MASK)) {
2870 		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871 			return;
2872 		pd++;
2873 	}
2874 
2875 	do {
2876 		buffer_dma = le32_to_cpu(pd->data_address);
2877 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2878 					      buffer_dma & PAGE_MASK,
2879 					      buffer_dma & ~PAGE_MASK,
2880 					      le16_to_cpu(pd->req_count),
2881 					      DMA_TO_DEVICE);
2882 		control = pd->control;
2883 		pd++;
2884 	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2885 }
2886 
2887 static int handle_it_packet(struct context *context,
2888 			    struct descriptor *d,
2889 			    struct descriptor *last)
2890 {
2891 	struct iso_context *ctx =
2892 		container_of(context, struct iso_context, context);
2893 	struct descriptor *pd;
2894 	__be32 *ctx_hdr;
2895 
2896 	for (pd = d; pd <= last; pd++)
2897 		if (pd->transfer_status)
2898 			break;
2899 	if (pd > last)
2900 		/* Descriptor(s) not done yet, stop iteration */
2901 		return 0;
2902 
2903 	sync_it_packet_for_cpu(context, d);
2904 
2905 	if (ctx->header_length + 4 > PAGE_SIZE) {
2906 		if (ctx->base.drop_overflow_headers)
2907 			return 1;
2908 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2909 	}
2910 
2911 	ctx_hdr = ctx->header + ctx->header_length;
2912 	ctx->last_timestamp = le16_to_cpu(last->res_count);
2913 	/* Present this value as big-endian to match the receive code */
2914 	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2915 			       le16_to_cpu(pd->res_count));
2916 	ctx->header_length += 4;
2917 
2918 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2919 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2920 
2921 	return 1;
2922 }
2923 
2924 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2925 {
2926 	u32 hi = channels >> 32, lo = channels;
2927 
2928 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2929 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2930 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2931 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2932 	ohci->mc_channels = channels;
2933 }
2934 
2935 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2936 				int type, int channel, size_t header_size)
2937 {
2938 	struct fw_ohci *ohci = fw_ohci(card);
2939 	struct iso_context *ctx;
2940 	descriptor_callback_t callback;
2941 	u64 *channels;
2942 	u32 *mask, regs;
2943 	int index, ret = -EBUSY;
2944 
2945 	scoped_guard(spinlock_irq, &ohci->lock) {
2946 		switch (type) {
2947 		case FW_ISO_CONTEXT_TRANSMIT:
2948 			mask     = &ohci->it_context_mask;
2949 			callback = handle_it_packet;
2950 			index    = ffs(*mask) - 1;
2951 			if (index >= 0) {
2952 				*mask &= ~(1 << index);
2953 				regs = OHCI1394_IsoXmitContextBase(index);
2954 				ctx  = &ohci->it_context_list[index];
2955 			}
2956 			break;
2957 
2958 		case FW_ISO_CONTEXT_RECEIVE:
2959 			channels = &ohci->ir_context_channels;
2960 			mask     = &ohci->ir_context_mask;
2961 			callback = handle_ir_packet_per_buffer;
2962 			index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2963 			if (index >= 0) {
2964 				*channels &= ~(1ULL << channel);
2965 				*mask     &= ~(1 << index);
2966 				regs = OHCI1394_IsoRcvContextBase(index);
2967 				ctx  = &ohci->ir_context_list[index];
2968 			}
2969 			break;
2970 
2971 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2972 			mask     = &ohci->ir_context_mask;
2973 			callback = handle_ir_buffer_fill;
2974 			index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2975 			if (index >= 0) {
2976 				ohci->mc_allocated = true;
2977 				*mask &= ~(1 << index);
2978 				regs = OHCI1394_IsoRcvContextBase(index);
2979 				ctx  = &ohci->ir_context_list[index];
2980 			}
2981 			break;
2982 
2983 		default:
2984 			index = -1;
2985 			ret = -ENOSYS;
2986 		}
2987 
2988 		if (index < 0)
2989 			return ERR_PTR(ret);
2990 	}
2991 
2992 	memset(ctx, 0, sizeof(*ctx));
2993 	ctx->header_length = 0;
2994 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2995 	if (ctx->header == NULL) {
2996 		ret = -ENOMEM;
2997 		goto out;
2998 	}
2999 	ret = context_init(&ctx->context, ohci, regs, callback);
3000 	if (ret < 0)
3001 		goto out_with_header;
3002 	fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3003 
3004 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3005 		set_multichannel_mask(ohci, 0);
3006 		ctx->mc_completed = 0;
3007 	}
3008 
3009 	return &ctx->base;
3010 
3011  out_with_header:
3012 	free_page((unsigned long)ctx->header);
3013  out:
3014 	scoped_guard(spinlock_irq, &ohci->lock) {
3015 		switch (type) {
3016 		case FW_ISO_CONTEXT_RECEIVE:
3017 			*channels |= 1ULL << channel;
3018 			break;
3019 
3020 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3021 			ohci->mc_allocated = false;
3022 			break;
3023 		}
3024 		*mask |= 1 << index;
3025 	}
3026 
3027 	return ERR_PTR(ret);
3028 }
3029 
3030 static int ohci_start_iso(struct fw_iso_context *base,
3031 			  s32 cycle, u32 sync, u32 tags)
3032 {
3033 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3034 	struct fw_ohci *ohci = ctx->context.ohci;
3035 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3036 	int index;
3037 
3038 	/* the controller cannot start without any queued packets */
3039 	if (ctx->context.last->branch_address == 0)
3040 		return -ENODATA;
3041 
3042 	switch (ctx->base.type) {
3043 	case FW_ISO_CONTEXT_TRANSMIT:
3044 		index = ctx - ohci->it_context_list;
3045 		match = 0;
3046 		if (cycle >= 0)
3047 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3048 				(cycle & 0x7fff) << 16;
3049 
3050 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3051 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3052 		context_run(&ctx->context, match);
3053 		break;
3054 
3055 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3056 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3057 		fallthrough;
3058 	case FW_ISO_CONTEXT_RECEIVE:
3059 		index = ctx - ohci->ir_context_list;
3060 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3061 		if (cycle >= 0) {
3062 			match |= (cycle & 0x07fff) << 12;
3063 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3064 		}
3065 
3066 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3067 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3068 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3069 		context_run(&ctx->context, control);
3070 
3071 		ctx->sync = sync;
3072 		ctx->tags = tags;
3073 
3074 		break;
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 static int ohci_stop_iso(struct fw_iso_context *base)
3081 {
3082 	struct fw_ohci *ohci = fw_ohci(base->card);
3083 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3084 	int index;
3085 
3086 	switch (ctx->base.type) {
3087 	case FW_ISO_CONTEXT_TRANSMIT:
3088 		index = ctx - ohci->it_context_list;
3089 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3090 		break;
3091 
3092 	case FW_ISO_CONTEXT_RECEIVE:
3093 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094 		index = ctx - ohci->ir_context_list;
3095 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3096 		break;
3097 	}
3098 	flush_writes(ohci);
3099 	context_stop(&ctx->context);
3100 
3101 	return 0;
3102 }
3103 
3104 static void ohci_free_iso_context(struct fw_iso_context *base)
3105 {
3106 	struct fw_ohci *ohci = fw_ohci(base->card);
3107 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3108 	int index;
3109 
3110 	ohci_stop_iso(base);
3111 	context_release(&ctx->context);
3112 	free_page((unsigned long)ctx->header);
3113 
3114 	guard(spinlock_irqsave)(&ohci->lock);
3115 
3116 	switch (base->type) {
3117 	case FW_ISO_CONTEXT_TRANSMIT:
3118 		index = ctx - ohci->it_context_list;
3119 		ohci->it_context_mask |= 1 << index;
3120 		break;
3121 
3122 	case FW_ISO_CONTEXT_RECEIVE:
3123 		index = ctx - ohci->ir_context_list;
3124 		ohci->ir_context_mask |= 1 << index;
3125 		ohci->ir_context_channels |= 1ULL << base->channel;
3126 		break;
3127 
3128 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3129 		index = ctx - ohci->ir_context_list;
3130 		ohci->ir_context_mask |= 1 << index;
3131 		ohci->ir_context_channels |= ohci->mc_channels;
3132 		ohci->mc_channels = 0;
3133 		ohci->mc_allocated = false;
3134 		break;
3135 	}
3136 }
3137 
3138 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3139 {
3140 	struct fw_ohci *ohci = fw_ohci(base->card);
3141 
3142 	switch (base->type) {
3143 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3144 	{
3145 		guard(spinlock_irqsave)(&ohci->lock);
3146 
3147 		// Don't allow multichannel to grab other contexts' channels.
3148 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3149 			*channels = ohci->ir_context_channels;
3150 			return -EBUSY;
3151 		} else {
3152 			set_multichannel_mask(ohci, *channels);
3153 			return 0;
3154 		}
3155 	}
3156 	default:
3157 		return -EINVAL;
3158 	}
3159 }
3160 
3161 static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3162 {
3163 	int i;
3164 	struct iso_context *ctx;
3165 
3166 	for (i = 0 ; i < ohci->n_ir ; i++) {
3167 		ctx = &ohci->ir_context_list[i];
3168 		if (ctx->context.running)
3169 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3170 	}
3171 
3172 	for (i = 0 ; i < ohci->n_it ; i++) {
3173 		ctx = &ohci->it_context_list[i];
3174 		if (ctx->context.running)
3175 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3176 	}
3177 }
3178 
3179 static int queue_iso_transmit(struct iso_context *ctx,
3180 			      struct fw_iso_packet *packet,
3181 			      struct fw_iso_buffer *buffer,
3182 			      unsigned long payload)
3183 {
3184 	struct descriptor *d, *last, *pd;
3185 	struct fw_iso_packet *p;
3186 	__le32 *header;
3187 	dma_addr_t d_bus, page_bus;
3188 	u32 z, header_z, payload_z, irq;
3189 	u32 payload_index, payload_end_index, next_page_index;
3190 	int page, end_page, i, length, offset;
3191 
3192 	p = packet;
3193 	payload_index = payload;
3194 
3195 	if (p->skip)
3196 		z = 1;
3197 	else
3198 		z = 2;
3199 	if (p->header_length > 0)
3200 		z++;
3201 
3202 	/* Determine the first page the payload isn't contained in. */
3203 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3204 	if (p->payload_length > 0)
3205 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3206 	else
3207 		payload_z = 0;
3208 
3209 	z += payload_z;
3210 
3211 	/* Get header size in number of descriptors. */
3212 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3213 
3214 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3215 	if (d == NULL)
3216 		return -ENOMEM;
3217 
3218 	if (!p->skip) {
3219 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3220 		d[0].req_count = cpu_to_le16(8);
3221 		/*
3222 		 * Link the skip address to this descriptor itself.  This causes
3223 		 * a context to skip a cycle whenever lost cycles or FIFO
3224 		 * overruns occur, without dropping the data.  The application
3225 		 * should then decide whether this is an error condition or not.
3226 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3227 		 */
3228 		d[0].branch_address = cpu_to_le32(d_bus | z);
3229 
3230 		header = (__le32 *) &d[1];
3231 
3232 		ohci1394_it_data_set_speed(header, ctx->base.speed);
3233 		ohci1394_it_data_set_tag(header, p->tag);
3234 		ohci1394_it_data_set_channel(header, ctx->base.channel);
3235 		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3236 		ohci1394_it_data_set_sync(header, p->sy);
3237 
3238 		ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3239 	}
3240 
3241 	if (p->header_length > 0) {
3242 		d[2].req_count    = cpu_to_le16(p->header_length);
3243 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3244 		memcpy(&d[z], p->header, p->header_length);
3245 	}
3246 
3247 	pd = d + z - payload_z;
3248 	payload_end_index = payload_index + p->payload_length;
3249 	for (i = 0; i < payload_z; i++) {
3250 		page               = payload_index >> PAGE_SHIFT;
3251 		offset             = payload_index & ~PAGE_MASK;
3252 		next_page_index    = (page + 1) << PAGE_SHIFT;
3253 		length             =
3254 			min(next_page_index, payload_end_index) - payload_index;
3255 		pd[i].req_count    = cpu_to_le16(length);
3256 
3257 		page_bus = page_private(buffer->pages[page]);
3258 		pd[i].data_address = cpu_to_le32(page_bus + offset);
3259 
3260 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3261 						 page_bus, offset, length,
3262 						 DMA_TO_DEVICE);
3263 
3264 		payload_index += length;
3265 	}
3266 
3267 	if (p->interrupt)
3268 		irq = DESCRIPTOR_IRQ_ALWAYS;
3269 	else
3270 		irq = DESCRIPTOR_NO_IRQ;
3271 
3272 	last = z == 2 ? d : d + z - 1;
3273 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3274 				     DESCRIPTOR_STATUS |
3275 				     DESCRIPTOR_BRANCH_ALWAYS |
3276 				     irq);
3277 
3278 	context_append(&ctx->context, d, z, header_z);
3279 
3280 	return 0;
3281 }
3282 
3283 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3284 				       struct fw_iso_packet *packet,
3285 				       struct fw_iso_buffer *buffer,
3286 				       unsigned long payload)
3287 {
3288 	struct device *device = ctx->context.ohci->card.device;
3289 	struct descriptor *d, *pd;
3290 	dma_addr_t d_bus, page_bus;
3291 	u32 z, header_z, rest;
3292 	int i, j, length;
3293 	int page, offset, packet_count, header_size, payload_per_buffer;
3294 
3295 	/*
3296 	 * The OHCI controller puts the isochronous header and trailer in the
3297 	 * buffer, so we need at least 8 bytes.
3298 	 */
3299 	packet_count = packet->header_length / ctx->base.header_size;
3300 	header_size  = max(ctx->base.header_size, (size_t)8);
3301 
3302 	/* Get header size in number of descriptors. */
3303 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3304 	page     = payload >> PAGE_SHIFT;
3305 	offset   = payload & ~PAGE_MASK;
3306 	payload_per_buffer = packet->payload_length / packet_count;
3307 
3308 	for (i = 0; i < packet_count; i++) {
3309 		/* d points to the header descriptor */
3310 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3311 		d = context_get_descriptors(&ctx->context,
3312 				z + header_z, &d_bus);
3313 		if (d == NULL)
3314 			return -ENOMEM;
3315 
3316 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3317 					      DESCRIPTOR_INPUT_MORE);
3318 		if (packet->skip && i == 0)
3319 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3320 		d->req_count    = cpu_to_le16(header_size);
3321 		d->res_count    = d->req_count;
3322 		d->transfer_status = 0;
3323 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3324 
3325 		rest = payload_per_buffer;
3326 		pd = d;
3327 		for (j = 1; j < z; j++) {
3328 			pd++;
3329 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3330 						  DESCRIPTOR_INPUT_MORE);
3331 
3332 			if (offset + rest < PAGE_SIZE)
3333 				length = rest;
3334 			else
3335 				length = PAGE_SIZE - offset;
3336 			pd->req_count = cpu_to_le16(length);
3337 			pd->res_count = pd->req_count;
3338 			pd->transfer_status = 0;
3339 
3340 			page_bus = page_private(buffer->pages[page]);
3341 			pd->data_address = cpu_to_le32(page_bus + offset);
3342 
3343 			dma_sync_single_range_for_device(device, page_bus,
3344 							 offset, length,
3345 							 DMA_FROM_DEVICE);
3346 
3347 			offset = (offset + length) & ~PAGE_MASK;
3348 			rest -= length;
3349 			if (offset == 0)
3350 				page++;
3351 		}
3352 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3353 					  DESCRIPTOR_INPUT_LAST |
3354 					  DESCRIPTOR_BRANCH_ALWAYS);
3355 		if (packet->interrupt && i == packet_count - 1)
3356 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3357 
3358 		context_append(&ctx->context, d, z, header_z);
3359 	}
3360 
3361 	return 0;
3362 }
3363 
3364 static int queue_iso_buffer_fill(struct iso_context *ctx,
3365 				 struct fw_iso_packet *packet,
3366 				 struct fw_iso_buffer *buffer,
3367 				 unsigned long payload)
3368 {
3369 	struct descriptor *d;
3370 	dma_addr_t d_bus, page_bus;
3371 	int page, offset, rest, z, i, length;
3372 
3373 	page   = payload >> PAGE_SHIFT;
3374 	offset = payload & ~PAGE_MASK;
3375 	rest   = packet->payload_length;
3376 
3377 	/* We need one descriptor for each page in the buffer. */
3378 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3379 
3380 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3381 		return -EFAULT;
3382 
3383 	for (i = 0; i < z; i++) {
3384 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3385 		if (d == NULL)
3386 			return -ENOMEM;
3387 
3388 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3389 					 DESCRIPTOR_BRANCH_ALWAYS);
3390 		if (packet->skip && i == 0)
3391 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3392 		if (packet->interrupt && i == z - 1)
3393 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3394 
3395 		if (offset + rest < PAGE_SIZE)
3396 			length = rest;
3397 		else
3398 			length = PAGE_SIZE - offset;
3399 		d->req_count = cpu_to_le16(length);
3400 		d->res_count = d->req_count;
3401 		d->transfer_status = 0;
3402 
3403 		page_bus = page_private(buffer->pages[page]);
3404 		d->data_address = cpu_to_le32(page_bus + offset);
3405 
3406 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3407 						 page_bus, offset, length,
3408 						 DMA_FROM_DEVICE);
3409 
3410 		rest -= length;
3411 		offset = 0;
3412 		page++;
3413 
3414 		context_append(&ctx->context, d, 1, 0);
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 static int ohci_queue_iso(struct fw_iso_context *base,
3421 			  struct fw_iso_packet *packet,
3422 			  struct fw_iso_buffer *buffer,
3423 			  unsigned long payload)
3424 {
3425 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3426 
3427 	guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3428 
3429 	switch (base->type) {
3430 	case FW_ISO_CONTEXT_TRANSMIT:
3431 		return queue_iso_transmit(ctx, packet, buffer, payload);
3432 	case FW_ISO_CONTEXT_RECEIVE:
3433 		return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3434 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3435 		return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3436 	default:
3437 		return -ENOSYS;
3438 	}
3439 }
3440 
3441 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3442 {
3443 	struct context *ctx =
3444 			&container_of(base, struct iso_context, base)->context;
3445 
3446 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3447 }
3448 
3449 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3450 {
3451 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3452 	int ret = 0;
3453 
3454 	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3455 		ohci_isoc_context_work(&base->work);
3456 
3457 		switch (base->type) {
3458 		case FW_ISO_CONTEXT_TRANSMIT:
3459 		case FW_ISO_CONTEXT_RECEIVE:
3460 			if (ctx->header_length != 0)
3461 				flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3462 			break;
3463 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3464 			if (ctx->mc_completed != 0)
3465 				flush_ir_buffer_fill(ctx);
3466 			break;
3467 		default:
3468 			ret = -ENOSYS;
3469 		}
3470 
3471 		clear_bit_unlock(0, &ctx->flushing_completions);
3472 		smp_mb__after_atomic();
3473 	}
3474 
3475 	return ret;
3476 }
3477 
3478 static const struct fw_card_driver ohci_driver = {
3479 	.enable			= ohci_enable,
3480 	.disable		= ohci_disable,
3481 	.read_phy_reg		= ohci_read_phy_reg,
3482 	.update_phy_reg		= ohci_update_phy_reg,
3483 	.set_config_rom		= ohci_set_config_rom,
3484 	.send_request		= ohci_send_request,
3485 	.send_response		= ohci_send_response,
3486 	.cancel_packet		= ohci_cancel_packet,
3487 	.enable_phys_dma	= ohci_enable_phys_dma,
3488 	.read_csr		= ohci_read_csr,
3489 	.write_csr		= ohci_write_csr,
3490 
3491 	.allocate_iso_context	= ohci_allocate_iso_context,
3492 	.free_iso_context	= ohci_free_iso_context,
3493 	.set_iso_channels	= ohci_set_iso_channels,
3494 	.queue_iso		= ohci_queue_iso,
3495 	.flush_queue_iso	= ohci_flush_queue_iso,
3496 	.flush_iso_completions	= ohci_flush_iso_completions,
3497 	.start_iso		= ohci_start_iso,
3498 	.stop_iso		= ohci_stop_iso,
3499 };
3500 
3501 #ifdef CONFIG_PPC_PMAC
3502 static void pmac_ohci_on(struct pci_dev *dev)
3503 {
3504 	if (machine_is(powermac)) {
3505 		struct device_node *ofn = pci_device_to_OF_node(dev);
3506 
3507 		if (ofn) {
3508 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3509 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3510 		}
3511 	}
3512 }
3513 
3514 static void pmac_ohci_off(struct pci_dev *dev)
3515 {
3516 	if (machine_is(powermac)) {
3517 		struct device_node *ofn = pci_device_to_OF_node(dev);
3518 
3519 		if (ofn) {
3520 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3521 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3522 		}
3523 	}
3524 }
3525 #else
3526 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3527 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3528 #endif /* CONFIG_PPC_PMAC */
3529 
3530 static void release_ohci(struct device *dev, void *data)
3531 {
3532 	struct pci_dev *pdev = to_pci_dev(dev);
3533 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3534 
3535 	pmac_ohci_off(pdev);
3536 
3537 	ar_context_release(&ohci->ar_response_ctx);
3538 	ar_context_release(&ohci->ar_request_ctx);
3539 
3540 	dev_notice(dev, "removed fw-ohci device\n");
3541 }
3542 
3543 static int pci_probe(struct pci_dev *dev,
3544 			       const struct pci_device_id *ent)
3545 {
3546 	struct fw_ohci *ohci;
3547 	u32 bus_options, max_receive, link_speed, version;
3548 	u64 guid;
3549 	int i, flags, irq, err;
3550 
3551 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3552 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3553 		return -ENOSYS;
3554 	}
3555 
3556 	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3557 	if (ohci == NULL)
3558 		return -ENOMEM;
3559 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3560 	pci_set_drvdata(dev, ohci);
3561 	pmac_ohci_on(dev);
3562 	devres_add(&dev->dev, ohci);
3563 
3564 	err = pcim_enable_device(dev);
3565 	if (err) {
3566 		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3567 		return err;
3568 	}
3569 
3570 	pci_set_master(dev);
3571 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3572 
3573 	spin_lock_init(&ohci->lock);
3574 	mutex_init(&ohci->phy_reg_mutex);
3575 
3576 	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3577 	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3578 		ohci_err(ohci, "invalid MMIO resource\n");
3579 		return -ENXIO;
3580 	}
3581 
3582 	ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3583 	if (IS_ERR(ohci->registers)) {
3584 		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3585 		return -ENXIO;
3586 	}
3587 
3588 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3589 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3590 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3591 		     ohci_quirks[i].device == dev->device) &&
3592 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3593 		     ohci_quirks[i].revision >= dev->revision)) {
3594 			ohci->quirks = ohci_quirks[i].flags;
3595 			break;
3596 		}
3597 	if (param_quirks)
3598 		ohci->quirks = param_quirks;
3599 
3600 	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3601 		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3602 
3603 	/*
3604 	 * Because dma_alloc_coherent() allocates at least one page,
3605 	 * we save space by using a common buffer for the AR request/
3606 	 * response descriptors and the self IDs buffer.
3607 	 */
3608 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3609 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3610 	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3611 						GFP_KERNEL);
3612 	if (!ohci->misc_buffer)
3613 		return -ENOMEM;
3614 
3615 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3616 			      OHCI1394_AsReqRcvContextControlSet);
3617 	if (err < 0)
3618 		return err;
3619 
3620 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3621 			      OHCI1394_AsRspRcvContextControlSet);
3622 	if (err < 0)
3623 		return err;
3624 
3625 	err = context_init(&ohci->at_request_ctx.context, ohci,
3626 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3627 	if (err < 0)
3628 		return err;
3629 	INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3630 
3631 	err = context_init(&ohci->at_response_ctx.context, ohci,
3632 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3633 	if (err < 0)
3634 		return err;
3635 	INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3636 
3637 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3638 	ohci->ir_context_channels = ~0ULL;
3639 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3640 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3641 	ohci->ir_context_mask = ohci->ir_context_support;
3642 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3643 	ohci->ir_context_list = devm_kcalloc(&dev->dev, ohci->n_ir, sizeof(struct iso_context), GFP_KERNEL);
3644 	if (!ohci->ir_context_list)
3645 		return -ENOMEM;
3646 
3647 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3648 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3649 	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3650 	if (!ohci->it_context_support) {
3651 		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3652 		ohci->it_context_support = 0xf;
3653 	}
3654 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3655 	ohci->it_context_mask = ohci->it_context_support;
3656 	ohci->n_it = hweight32(ohci->it_context_mask);
3657 	ohci->it_context_list = devm_kcalloc(&dev->dev, ohci->n_it, sizeof(struct iso_context), GFP_KERNEL);
3658 	if (!ohci->it_context_list)
3659 		return -ENOMEM;
3660 
3661 	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3662 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3663 
3664 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3665 	max_receive = (bus_options >> 12) & 0xf;
3666 	link_speed = bus_options & 0x7;
3667 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3668 		reg_read(ohci, OHCI1394_GUIDLo);
3669 
3670 	flags = PCI_IRQ_INTX;
3671 	if (!(ohci->quirks & QUIRK_NO_MSI))
3672 		flags |= PCI_IRQ_MSI;
3673 	err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3674 	if (err < 0)
3675 		return err;
3676 	irq = pci_irq_vector(dev, 0);
3677 	if (irq < 0) {
3678 		err = irq;
3679 		goto fail_msi;
3680 	}
3681 
3682 	// IRQF_ONESHOT is not applied so that any events are handled in the hardIRQ handler during
3683 	// invoking the threaded IRQ handler for SelfIDComplete event.
3684 	err = request_threaded_irq(irq, irq_handler, handle_selfid_complete_event,
3685 				   pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3686 				   ohci);
3687 	if (err < 0) {
3688 		ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3689 		goto fail_msi;
3690 	}
3691 
3692 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3693 	if (err)
3694 		goto fail_irq;
3695 
3696 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3697 	ohci_notice(ohci,
3698 		    "added OHCI v%x.%x device as card %d, "
3699 		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3700 		    version >> 16, version & 0xff, ohci->card.index,
3701 		    ohci->n_ir, ohci->n_it, ohci->quirks,
3702 		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3703 			", physUB" : "");
3704 
3705 	return 0;
3706 
3707  fail_irq:
3708 	free_irq(irq, ohci);
3709  fail_msi:
3710 	pci_free_irq_vectors(dev);
3711 
3712 	return err;
3713 }
3714 
3715 static void pci_remove(struct pci_dev *dev)
3716 {
3717 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3718 	int irq;
3719 
3720 	fw_core_remove_card(&ohci->card);
3721 
3722 	software_reset(ohci);
3723 
3724 	irq = pci_irq_vector(dev, 0);
3725 	if (irq >= 0)
3726 		free_irq(irq, ohci);
3727 	pci_free_irq_vectors(dev);
3728 
3729 	dev_notice(&dev->dev, "removing fw-ohci device\n");
3730 }
3731 
3732 static int __maybe_unused pci_suspend(struct device *dev)
3733 {
3734 	struct pci_dev *pdev = to_pci_dev(dev);
3735 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3736 
3737 	software_reset(ohci);
3738 	pmac_ohci_off(pdev);
3739 
3740 	return 0;
3741 }
3742 
3743 
3744 static int __maybe_unused pci_resume(struct device *dev)
3745 {
3746 	struct pci_dev *pdev = to_pci_dev(dev);
3747 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3748 	int err;
3749 
3750 	pmac_ohci_on(pdev);
3751 
3752 	/* Some systems don't setup GUID register on resume from ram  */
3753 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3754 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3755 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3756 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3757 	}
3758 
3759 	err = ohci_enable(&ohci->card, NULL, 0);
3760 	if (err)
3761 		return err;
3762 
3763 	ohci_resume_iso_dma(ohci);
3764 
3765 	return 0;
3766 }
3767 
3768 static const struct pci_device_id pci_table[] = {
3769 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3770 	{ }
3771 };
3772 
3773 MODULE_DEVICE_TABLE(pci, pci_table);
3774 
3775 static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3776 
3777 static struct pci_driver fw_ohci_pci_driver = {
3778 	.name		= ohci_driver_name,
3779 	.id_table	= pci_table,
3780 	.probe		= pci_probe,
3781 	.remove		= pci_remove,
3782 	.driver.pm	= &pci_pm_ops,
3783 };
3784 
3785 static int __init fw_ohci_init(void)
3786 {
3787 	return pci_register_driver(&fw_ohci_pci_driver);
3788 }
3789 
3790 static void __exit fw_ohci_cleanup(void)
3791 {
3792 	pci_unregister_driver(&fw_ohci_pci_driver);
3793 }
3794 
3795 module_init(fw_ohci_init);
3796 module_exit(fw_ohci_cleanup);
3797 
3798 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3799 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3800 MODULE_LICENSE("GPL");
3801 
3802 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3803 MODULE_ALIAS("ohci1394");
3804