1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for OHCI 1394 controllers 4 * 5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/bug.h> 10 #include <linux/compiler.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/firewire.h> 15 #include <linux/firewire-constants.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/mutex.h> 25 #include <linux/pci.h> 26 #include <linux/pci_ids.h> 27 #include <linux/slab.h> 28 #include <linux/spinlock.h> 29 #include <linux/string.h> 30 #include <linux/time.h> 31 #include <linux/vmalloc.h> 32 #include <linux/workqueue.h> 33 34 #include <asm/byteorder.h> 35 #include <asm/page.h> 36 37 #ifdef CONFIG_PPC_PMAC 38 #include <asm/pmac_feature.h> 39 #endif 40 41 #include "core.h" 42 #include "ohci.h" 43 #include "packet-header-definitions.h" 44 #include "phy-packet-definitions.h" 45 46 #include <trace/events/firewire.h> 47 48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk); 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/firewire_ohci.h> 52 53 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args) 54 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args) 55 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args) 56 57 #define DESCRIPTOR_OUTPUT_MORE 0 58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) 59 #define DESCRIPTOR_INPUT_MORE (2 << 12) 60 #define DESCRIPTOR_INPUT_LAST (3 << 12) 61 #define DESCRIPTOR_STATUS (1 << 11) 62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) 63 #define DESCRIPTOR_PING (1 << 7) 64 #define DESCRIPTOR_YY (1 << 6) 65 #define DESCRIPTOR_NO_IRQ (0 << 4) 66 #define DESCRIPTOR_IRQ_ERROR (1 << 4) 67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) 68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) 69 #define DESCRIPTOR_WAIT (3 << 0) 70 71 #define DESCRIPTOR_CMD (0xf << 12) 72 73 struct descriptor { 74 __le16 req_count; 75 __le16 control; 76 __le32 data_address; 77 __le32 branch_address; 78 __le16 res_count; 79 __le16 transfer_status; 80 } __attribute__((aligned(16))); 81 82 #define CONTROL_SET(regs) (regs) 83 #define CONTROL_CLEAR(regs) ((regs) + 4) 84 #define COMMAND_PTR(regs) ((regs) + 12) 85 #define CONTEXT_MATCH(regs) ((regs) + 16) 86 87 #define AR_BUFFER_SIZE (32*1024) 88 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE) 89 /* we need at least two pages for proper list management */ 90 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2) 91 92 #define MAX_ASYNC_PAYLOAD 4096 93 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4) 94 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE) 95 96 struct ar_context { 97 struct fw_ohci *ohci; 98 struct page *pages[AR_BUFFERS]; 99 void *buffer; 100 struct descriptor *descriptors; 101 dma_addr_t descriptors_bus; 102 void *pointer; 103 unsigned int last_buffer_index; 104 u32 regs; 105 struct tasklet_struct tasklet; 106 }; 107 108 struct context; 109 110 typedef int (*descriptor_callback_t)(struct context *ctx, 111 struct descriptor *d, 112 struct descriptor *last); 113 114 /* 115 * A buffer that contains a block of DMA-able coherent memory used for 116 * storing a portion of a DMA descriptor program. 117 */ 118 struct descriptor_buffer { 119 struct list_head list; 120 dma_addr_t buffer_bus; 121 size_t buffer_size; 122 size_t used; 123 struct descriptor buffer[]; 124 }; 125 126 struct context { 127 struct fw_ohci *ohci; 128 u32 regs; 129 int total_allocation; 130 u32 current_bus; 131 bool running; 132 bool flushing; 133 134 /* 135 * List of page-sized buffers for storing DMA descriptors. 136 * Head of list contains buffers in use and tail of list contains 137 * free buffers. 138 */ 139 struct list_head buffer_list; 140 141 /* 142 * Pointer to a buffer inside buffer_list that contains the tail 143 * end of the current DMA program. 144 */ 145 struct descriptor_buffer *buffer_tail; 146 147 /* 148 * The descriptor containing the branch address of the first 149 * descriptor that has not yet been filled by the device. 150 */ 151 struct descriptor *last; 152 153 /* 154 * The last descriptor block in the DMA program. It contains the branch 155 * address that must be updated upon appending a new descriptor. 156 */ 157 struct descriptor *prev; 158 int prev_z; 159 160 descriptor_callback_t callback; 161 162 struct tasklet_struct tasklet; 163 }; 164 165 #define IT_HEADER_SY(v) ((v) << 0) 166 #define IT_HEADER_TCODE(v) ((v) << 4) 167 #define IT_HEADER_CHANNEL(v) ((v) << 8) 168 #define IT_HEADER_TAG(v) ((v) << 14) 169 #define IT_HEADER_SPEED(v) ((v) << 16) 170 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16) 171 172 struct iso_context { 173 struct fw_iso_context base; 174 struct context context; 175 void *header; 176 size_t header_length; 177 unsigned long flushing_completions; 178 u32 mc_buffer_bus; 179 u16 mc_completed; 180 u16 last_timestamp; 181 u8 sync; 182 u8 tags; 183 }; 184 185 #define CONFIG_ROM_SIZE 1024 186 187 struct fw_ohci { 188 struct fw_card card; 189 190 __iomem char *registers; 191 int node_id; 192 int generation; 193 int request_generation; /* for timestamping incoming requests */ 194 unsigned quirks; 195 unsigned int pri_req_max; 196 u32 bus_time; 197 bool bus_time_running; 198 bool is_root; 199 bool csr_state_setclear_abdicate; 200 int n_ir; 201 int n_it; 202 /* 203 * Spinlock for accessing fw_ohci data. Never call out of 204 * this driver with this lock held. 205 */ 206 spinlock_t lock; 207 208 struct mutex phy_reg_mutex; 209 210 void *misc_buffer; 211 dma_addr_t misc_buffer_bus; 212 213 struct ar_context ar_request_ctx; 214 struct ar_context ar_response_ctx; 215 struct context at_request_ctx; 216 struct context at_response_ctx; 217 218 u32 it_context_support; 219 u32 it_context_mask; /* unoccupied IT contexts */ 220 struct iso_context *it_context_list; 221 u64 ir_context_channels; /* unoccupied channels */ 222 u32 ir_context_support; 223 u32 ir_context_mask; /* unoccupied IR contexts */ 224 struct iso_context *ir_context_list; 225 u64 mc_channels; /* channels in use by the multichannel IR context */ 226 bool mc_allocated; 227 228 __be32 *config_rom; 229 dma_addr_t config_rom_bus; 230 __be32 *next_config_rom; 231 dma_addr_t next_config_rom_bus; 232 __be32 next_header; 233 234 __le32 *self_id; 235 dma_addr_t self_id_bus; 236 struct work_struct bus_reset_work; 237 238 u32 self_id_buffer[512]; 239 }; 240 241 static struct workqueue_struct *selfid_workqueue; 242 243 static inline struct fw_ohci *fw_ohci(struct fw_card *card) 244 { 245 return container_of(card, struct fw_ohci, card); 246 } 247 248 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 249 #define IR_CONTEXT_BUFFER_FILL 0x80000000 250 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 251 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 252 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 253 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 254 255 #define CONTEXT_RUN 0x8000 256 #define CONTEXT_WAKE 0x1000 257 #define CONTEXT_DEAD 0x0800 258 #define CONTEXT_ACTIVE 0x0400 259 260 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf 261 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 262 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 263 264 #define OHCI1394_REGISTER_SIZE 0x800 265 #define OHCI1394_PCI_HCI_Control 0x40 266 #define SELF_ID_BUF_SIZE 0x800 267 #define OHCI_TCODE_PHY_PACKET 0x0e 268 #define OHCI_VERSION_1_1 0x010010 269 270 static char ohci_driver_name[] = KBUILD_MODNAME; 271 272 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd 273 #define PCI_DEVICE_ID_AGERE_FW643 0x5901 274 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001 275 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380 276 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009 277 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020 278 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025 279 #define PCI_DEVICE_ID_VIA_VT630X 0x3044 280 #define PCI_REV_ID_VIA_VT6306 0x46 281 #define PCI_DEVICE_ID_VIA_VT6315 0x3403 282 283 #define QUIRK_CYCLE_TIMER 0x1 284 #define QUIRK_RESET_PACKET 0x2 285 #define QUIRK_BE_HEADERS 0x4 286 #define QUIRK_NO_1394A 0x8 287 #define QUIRK_NO_MSI 0x10 288 #define QUIRK_TI_SLLZ059 0x20 289 #define QUIRK_IR_WAKE 0x40 290 291 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia 292 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register 293 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not 294 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register, 295 // while it is probable due to detection of any type of PCIe error. 296 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000 297 298 #if IS_ENABLED(CONFIG_X86) 299 300 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci) 301 { 302 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ); 303 } 304 305 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080 306 307 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev) 308 { 309 const struct pci_dev *pcie_to_pci_bridge; 310 311 // Detect any type of AMD Ryzen machine. 312 if (!static_cpu_has(X86_FEATURE_ZEN)) 313 return false; 314 315 // Detect VIA VT6306/6307/6308. 316 if (pdev->vendor != PCI_VENDOR_ID_VIA) 317 return false; 318 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X) 319 return false; 320 321 // Detect Asmedia ASM1083/1085. 322 pcie_to_pci_bridge = pdev->bus->self; 323 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA) 324 return false; 325 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X) 326 return false; 327 328 return true; 329 } 330 331 #else 332 #define has_reboot_by_cycle_timer_read_quirk(ohci) false 333 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false 334 #endif 335 336 /* In case of multiple matches in ohci_quirks[], only the first one is used. */ 337 static const struct { 338 unsigned short vendor, device, revision, flags; 339 } ohci_quirks[] = { 340 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID, 341 QUIRK_CYCLE_TIMER}, 342 343 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID, 344 QUIRK_BE_HEADERS}, 345 346 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6, 347 QUIRK_NO_MSI}, 348 349 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID, 350 QUIRK_RESET_PACKET}, 351 352 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID, 353 QUIRK_NO_MSI}, 354 355 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID, 356 QUIRK_CYCLE_TIMER}, 357 358 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID, 359 QUIRK_NO_MSI}, 360 361 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID, 362 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 363 364 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID, 365 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A}, 366 367 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID, 368 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 369 370 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID, 371 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 372 373 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID, 374 QUIRK_RESET_PACKET}, 375 376 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306, 377 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE}, 378 379 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0, 380 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI}, 381 382 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID, 383 QUIRK_NO_MSI}, 384 385 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID, 386 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 387 }; 388 389 /* This overrides anything that was found in ohci_quirks[]. */ 390 static int param_quirks; 391 module_param_named(quirks, param_quirks, int, 0644); 392 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0" 393 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER) 394 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET) 395 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS) 396 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A) 397 ", disable MSI = " __stringify(QUIRK_NO_MSI) 398 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059) 399 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE) 400 ")"); 401 402 #define OHCI_PARAM_DEBUG_AT_AR 1 403 #define OHCI_PARAM_DEBUG_SELFIDS 2 404 #define OHCI_PARAM_DEBUG_IRQS 4 405 406 static int param_debug; 407 module_param_named(debug, param_debug, int, 0644); 408 MODULE_PARM_DESC(debug, "Verbose logging (default = 0" 409 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR) 410 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS) 411 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS) 412 ", or a combination, or all = -1)"); 413 414 static bool param_remote_dma; 415 module_param_named(remote_dma, param_remote_dma, bool, 0444); 416 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)"); 417 418 static void log_irqs(struct fw_ohci *ohci, u32 evt) 419 { 420 if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS))) 421 return; 422 423 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, 424 evt & OHCI1394_selfIDComplete ? " selfID" : "", 425 evt & OHCI1394_RQPkt ? " AR_req" : "", 426 evt & OHCI1394_RSPkt ? " AR_resp" : "", 427 evt & OHCI1394_reqTxComplete ? " AT_req" : "", 428 evt & OHCI1394_respTxComplete ? " AT_resp" : "", 429 evt & OHCI1394_isochRx ? " IR" : "", 430 evt & OHCI1394_isochTx ? " IT" : "", 431 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "", 432 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "", 433 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "", 434 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "", 435 evt & OHCI1394_regAccessFail ? " regAccessFail" : "", 436 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "", 437 evt & OHCI1394_busReset ? " busReset" : "", 438 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt | 439 OHCI1394_RSPkt | OHCI1394_reqTxComplete | 440 OHCI1394_respTxComplete | OHCI1394_isochRx | 441 OHCI1394_isochTx | OHCI1394_postedWriteErr | 442 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | 443 OHCI1394_cycleInconsistent | 444 OHCI1394_regAccessFail | OHCI1394_busReset) 445 ? " ?" : ""); 446 } 447 448 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count) 449 { 450 static const char *const speed[] = { 451 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta", 452 }; 453 static const char *const power[] = { 454 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W", 455 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W", 456 }; 457 static const char port[] = { 458 [PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.', 459 [PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-', 460 [PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p', 461 [PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c', 462 }; 463 struct self_id_sequence_enumerator enumerator = { 464 .cursor = ohci->self_id_buffer, 465 .quadlet_count = self_id_count, 466 }; 467 468 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS))) 469 return; 470 471 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n", 472 self_id_count, generation, ohci->node_id); 473 474 while (enumerator.quadlet_count > 0) { 475 unsigned int quadlet_count; 476 unsigned int port_index; 477 const u32 *s; 478 int i; 479 480 s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count); 481 if (IS_ERR(s)) 482 break; 483 484 ohci_notice(ohci, 485 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n", 486 *s, 487 phy_packet_self_id_get_phy_id(*s), 488 port[self_id_sequence_get_port_status(s, quadlet_count, 0)], 489 port[self_id_sequence_get_port_status(s, quadlet_count, 1)], 490 port[self_id_sequence_get_port_status(s, quadlet_count, 2)], 491 speed[*s >> 14 & 3], *s >> 16 & 63, 492 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "", 493 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : ""); 494 495 port_index = 3; 496 for (i = 1; i < quadlet_count; ++i) { 497 ohci_notice(ohci, 498 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", 499 s[i], 500 phy_packet_self_id_get_phy_id(s[i]), 501 port[self_id_sequence_get_port_status(s, quadlet_count, port_index)], 502 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)], 503 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)], 504 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)], 505 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)], 506 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)], 507 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)], 508 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)] 509 ); 510 511 port_index += 8; 512 } 513 } 514 } 515 516 static const char *evts[] = { 517 [0x00] = "evt_no_status", [0x01] = "-reserved-", 518 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", 519 [0x04] = "evt_underrun", [0x05] = "evt_overrun", 520 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", 521 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", 522 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", 523 [0x0c] = "-reserved-", [0x0d] = "-reserved-", 524 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", 525 [0x10] = "-reserved-", [0x11] = "ack_complete", 526 [0x12] = "ack_pending ", [0x13] = "-reserved-", 527 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", 528 [0x16] = "ack_busy_B", [0x17] = "-reserved-", 529 [0x18] = "-reserved-", [0x19] = "-reserved-", 530 [0x1a] = "-reserved-", [0x1b] = "ack_tardy", 531 [0x1c] = "-reserved-", [0x1d] = "ack_data_error", 532 [0x1e] = "ack_type_error", [0x1f] = "-reserved-", 533 [0x20] = "pending/cancelled", 534 }; 535 static const char *tcodes[] = { 536 [0x0] = "QW req", [0x1] = "BW req", 537 [0x2] = "W resp", [0x3] = "-reserved-", 538 [0x4] = "QR req", [0x5] = "BR req", 539 [0x6] = "QR resp", [0x7] = "BR resp", 540 [0x8] = "cycle start", [0x9] = "Lk req", 541 [0xa] = "async stream packet", [0xb] = "Lk resp", 542 [0xc] = "-reserved-", [0xd] = "-reserved-", 543 [0xe] = "link internal", [0xf] = "-reserved-", 544 }; 545 546 static void log_ar_at_event(struct fw_ohci *ohci, 547 char dir, int speed, u32 *header, int evt) 548 { 549 int tcode = async_header_get_tcode(header); 550 char specific[12]; 551 552 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR))) 553 return; 554 555 if (unlikely(evt >= ARRAY_SIZE(evts))) 556 evt = 0x1f; 557 558 if (evt == OHCI1394_evt_bus_reset) { 559 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n", 560 dir, (header[2] >> 16) & 0xff); 561 return; 562 } 563 564 switch (tcode) { 565 case TCODE_WRITE_QUADLET_REQUEST: 566 case TCODE_READ_QUADLET_RESPONSE: 567 case TCODE_CYCLE_START: 568 snprintf(specific, sizeof(specific), " = %08x", 569 be32_to_cpu((__force __be32)header[3])); 570 break; 571 case TCODE_WRITE_BLOCK_REQUEST: 572 case TCODE_READ_BLOCK_REQUEST: 573 case TCODE_READ_BLOCK_RESPONSE: 574 case TCODE_LOCK_REQUEST: 575 case TCODE_LOCK_RESPONSE: 576 snprintf(specific, sizeof(specific), " %x,%x", 577 async_header_get_data_length(header), 578 async_header_get_extended_tcode(header)); 579 break; 580 default: 581 specific[0] = '\0'; 582 } 583 584 switch (tcode) { 585 case TCODE_STREAM_DATA: 586 ohci_notice(ohci, "A%c %s, %s\n", 587 dir, evts[evt], tcodes[tcode]); 588 break; 589 case 0xe: 590 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n", 591 dir, evts[evt], header[1], header[2]); 592 break; 593 case TCODE_WRITE_QUADLET_REQUEST: 594 case TCODE_WRITE_BLOCK_REQUEST: 595 case TCODE_READ_QUADLET_REQUEST: 596 case TCODE_READ_BLOCK_REQUEST: 597 case TCODE_LOCK_REQUEST: 598 ohci_notice(ohci, 599 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n", 600 dir, speed, async_header_get_tlabel(header), 601 async_header_get_source(header), async_header_get_destination(header), 602 evts[evt], tcodes[tcode], async_header_get_offset(header), specific); 603 break; 604 default: 605 ohci_notice(ohci, 606 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n", 607 dir, speed, async_header_get_tlabel(header), 608 async_header_get_source(header), async_header_get_destination(header), 609 evts[evt], tcodes[tcode], specific); 610 } 611 } 612 613 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) 614 { 615 writel(data, ohci->registers + offset); 616 } 617 618 static inline u32 reg_read(const struct fw_ohci *ohci, int offset) 619 { 620 return readl(ohci->registers + offset); 621 } 622 623 static inline void flush_writes(const struct fw_ohci *ohci) 624 { 625 /* Do a dummy read to flush writes. */ 626 reg_read(ohci, OHCI1394_Version); 627 } 628 629 /* 630 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and 631 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex. 632 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg() 633 * directly. Exceptions are intrinsically serialized contexts like pci_probe. 634 */ 635 static int read_phy_reg(struct fw_ohci *ohci, int addr) 636 { 637 u32 val; 638 int i; 639 640 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); 641 for (i = 0; i < 3 + 100; i++) { 642 val = reg_read(ohci, OHCI1394_PhyControl); 643 if (!~val) 644 return -ENODEV; /* Card was ejected. */ 645 646 if (val & OHCI1394_PhyControl_ReadDone) 647 return OHCI1394_PhyControl_ReadData(val); 648 649 /* 650 * Try a few times without waiting. Sleeping is necessary 651 * only when the link/PHY interface is busy. 652 */ 653 if (i >= 3) 654 msleep(1); 655 } 656 ohci_err(ohci, "failed to read phy reg %d\n", addr); 657 dump_stack(); 658 659 return -EBUSY; 660 } 661 662 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val) 663 { 664 int i; 665 666 reg_write(ohci, OHCI1394_PhyControl, 667 OHCI1394_PhyControl_Write(addr, val)); 668 for (i = 0; i < 3 + 100; i++) { 669 val = reg_read(ohci, OHCI1394_PhyControl); 670 if (!~val) 671 return -ENODEV; /* Card was ejected. */ 672 673 if (!(val & OHCI1394_PhyControl_WritePending)) 674 return 0; 675 676 if (i >= 3) 677 msleep(1); 678 } 679 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val); 680 dump_stack(); 681 682 return -EBUSY; 683 } 684 685 static int update_phy_reg(struct fw_ohci *ohci, int addr, 686 int clear_bits, int set_bits) 687 { 688 int ret = read_phy_reg(ohci, addr); 689 if (ret < 0) 690 return ret; 691 692 /* 693 * The interrupt status bits are cleared by writing a one bit. 694 * Avoid clearing them unless explicitly requested in set_bits. 695 */ 696 if (addr == 5) 697 clear_bits |= PHY_INT_STATUS_BITS; 698 699 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits); 700 } 701 702 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr) 703 { 704 int ret; 705 706 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5); 707 if (ret < 0) 708 return ret; 709 710 return read_phy_reg(ohci, addr); 711 } 712 713 static int ohci_read_phy_reg(struct fw_card *card, int addr) 714 { 715 struct fw_ohci *ohci = fw_ohci(card); 716 int ret; 717 718 mutex_lock(&ohci->phy_reg_mutex); 719 ret = read_phy_reg(ohci, addr); 720 mutex_unlock(&ohci->phy_reg_mutex); 721 722 return ret; 723 } 724 725 static int ohci_update_phy_reg(struct fw_card *card, int addr, 726 int clear_bits, int set_bits) 727 { 728 struct fw_ohci *ohci = fw_ohci(card); 729 int ret; 730 731 mutex_lock(&ohci->phy_reg_mutex); 732 ret = update_phy_reg(ohci, addr, clear_bits, set_bits); 733 mutex_unlock(&ohci->phy_reg_mutex); 734 735 return ret; 736 } 737 738 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i) 739 { 740 return page_private(ctx->pages[i]); 741 } 742 743 static void ar_context_link_page(struct ar_context *ctx, unsigned int index) 744 { 745 struct descriptor *d; 746 747 d = &ctx->descriptors[index]; 748 d->branch_address &= cpu_to_le32(~0xf); 749 d->res_count = cpu_to_le16(PAGE_SIZE); 750 d->transfer_status = 0; 751 752 wmb(); /* finish init of new descriptors before branch_address update */ 753 d = &ctx->descriptors[ctx->last_buffer_index]; 754 d->branch_address |= cpu_to_le32(1); 755 756 ctx->last_buffer_index = index; 757 758 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 759 } 760 761 static void ar_context_release(struct ar_context *ctx) 762 { 763 struct device *dev = ctx->ohci->card.device; 764 unsigned int i; 765 766 if (!ctx->buffer) 767 return; 768 769 vunmap(ctx->buffer); 770 771 for (i = 0; i < AR_BUFFERS; i++) { 772 if (ctx->pages[i]) 773 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i], 774 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE); 775 } 776 } 777 778 static void ar_context_abort(struct ar_context *ctx, const char *error_msg) 779 { 780 struct fw_ohci *ohci = ctx->ohci; 781 782 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) { 783 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 784 flush_writes(ohci); 785 786 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg); 787 } 788 /* FIXME: restart? */ 789 } 790 791 static inline unsigned int ar_next_buffer_index(unsigned int index) 792 { 793 return (index + 1) % AR_BUFFERS; 794 } 795 796 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx) 797 { 798 return ar_next_buffer_index(ctx->last_buffer_index); 799 } 800 801 /* 802 * We search for the buffer that contains the last AR packet DMA data written 803 * by the controller. 804 */ 805 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx, 806 unsigned int *buffer_offset) 807 { 808 unsigned int i, next_i, last = ctx->last_buffer_index; 809 __le16 res_count, next_res_count; 810 811 i = ar_first_buffer_index(ctx); 812 res_count = READ_ONCE(ctx->descriptors[i].res_count); 813 814 /* A buffer that is not yet completely filled must be the last one. */ 815 while (i != last && res_count == 0) { 816 817 /* Peek at the next descriptor. */ 818 next_i = ar_next_buffer_index(i); 819 rmb(); /* read descriptors in order */ 820 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 821 /* 822 * If the next descriptor is still empty, we must stop at this 823 * descriptor. 824 */ 825 if (next_res_count == cpu_to_le16(PAGE_SIZE)) { 826 /* 827 * The exception is when the DMA data for one packet is 828 * split over three buffers; in this case, the middle 829 * buffer's descriptor might be never updated by the 830 * controller and look still empty, and we have to peek 831 * at the third one. 832 */ 833 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) { 834 next_i = ar_next_buffer_index(next_i); 835 rmb(); 836 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 837 if (next_res_count != cpu_to_le16(PAGE_SIZE)) 838 goto next_buffer_is_active; 839 } 840 841 break; 842 } 843 844 next_buffer_is_active: 845 i = next_i; 846 res_count = next_res_count; 847 } 848 849 rmb(); /* read res_count before the DMA data */ 850 851 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count); 852 if (*buffer_offset > PAGE_SIZE) { 853 *buffer_offset = 0; 854 ar_context_abort(ctx, "corrupted descriptor"); 855 } 856 857 return i; 858 } 859 860 static void ar_sync_buffers_for_cpu(struct ar_context *ctx, 861 unsigned int end_buffer_index, 862 unsigned int end_buffer_offset) 863 { 864 unsigned int i; 865 866 i = ar_first_buffer_index(ctx); 867 while (i != end_buffer_index) { 868 dma_sync_single_for_cpu(ctx->ohci->card.device, 869 ar_buffer_bus(ctx, i), 870 PAGE_SIZE, DMA_FROM_DEVICE); 871 i = ar_next_buffer_index(i); 872 } 873 if (end_buffer_offset > 0) 874 dma_sync_single_for_cpu(ctx->ohci->card.device, 875 ar_buffer_bus(ctx, i), 876 end_buffer_offset, DMA_FROM_DEVICE); 877 } 878 879 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 880 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk) 881 { 882 return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value); 883 } 884 885 static bool has_be_header_quirk(const struct fw_ohci *ohci) 886 { 887 return !!(ohci->quirks & QUIRK_BE_HEADERS); 888 } 889 #else 890 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused) 891 { 892 return le32_to_cpu(value); 893 } 894 895 static bool has_be_header_quirk(const struct fw_ohci *ohci) 896 { 897 return false; 898 } 899 #endif 900 901 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) 902 { 903 struct fw_ohci *ohci = ctx->ohci; 904 struct fw_packet p; 905 u32 status, length, tcode; 906 int evt; 907 908 p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci)); 909 p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci)); 910 p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci)); 911 912 tcode = async_header_get_tcode(p.header); 913 switch (tcode) { 914 case TCODE_WRITE_QUADLET_REQUEST: 915 case TCODE_READ_QUADLET_RESPONSE: 916 p.header[3] = (__force __u32) buffer[3]; 917 p.header_length = 16; 918 p.payload_length = 0; 919 break; 920 921 case TCODE_READ_BLOCK_REQUEST : 922 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci)); 923 p.header_length = 16; 924 p.payload_length = 0; 925 break; 926 927 case TCODE_WRITE_BLOCK_REQUEST: 928 case TCODE_READ_BLOCK_RESPONSE: 929 case TCODE_LOCK_REQUEST: 930 case TCODE_LOCK_RESPONSE: 931 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci)); 932 p.header_length = 16; 933 p.payload_length = async_header_get_data_length(p.header); 934 if (p.payload_length > MAX_ASYNC_PAYLOAD) { 935 ar_context_abort(ctx, "invalid packet length"); 936 return NULL; 937 } 938 break; 939 940 case TCODE_WRITE_RESPONSE: 941 case TCODE_READ_QUADLET_REQUEST: 942 case OHCI_TCODE_PHY_PACKET: 943 p.header_length = 12; 944 p.payload_length = 0; 945 break; 946 947 default: 948 ar_context_abort(ctx, "invalid tcode"); 949 return NULL; 950 } 951 952 p.payload = (void *) buffer + p.header_length; 953 954 /* FIXME: What to do about evt_* errors? */ 955 length = (p.header_length + p.payload_length + 3) / 4; 956 status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci)); 957 evt = (status >> 16) & 0x1f; 958 959 p.ack = evt - 16; 960 p.speed = (status >> 21) & 0x7; 961 p.timestamp = status & 0xffff; 962 p.generation = ohci->request_generation; 963 964 log_ar_at_event(ohci, 'R', p.speed, p.header, evt); 965 966 /* 967 * Several controllers, notably from NEC and VIA, forget to 968 * write ack_complete status at PHY packet reception. 969 */ 970 if (evt == OHCI1394_evt_no_status && tcode == OHCI1394_phy_tcode) 971 p.ack = ACK_COMPLETE; 972 973 /* 974 * The OHCI bus reset handler synthesizes a PHY packet with 975 * the new generation number when a bus reset happens (see 976 * section 8.4.2.3). This helps us determine when a request 977 * was received and make sure we send the response in the same 978 * generation. We only need this for requests; for responses 979 * we use the unique tlabel for finding the matching 980 * request. 981 * 982 * Alas some chips sometimes emit bus reset packets with a 983 * wrong generation. We set the correct generation for these 984 * at a slightly incorrect time (in bus_reset_work). 985 */ 986 if (evt == OHCI1394_evt_bus_reset) { 987 if (!(ohci->quirks & QUIRK_RESET_PACKET)) 988 ohci->request_generation = (p.header[2] >> 16) & 0xff; 989 } else if (ctx == &ohci->ar_request_ctx) { 990 fw_core_handle_request(&ohci->card, &p); 991 } else { 992 fw_core_handle_response(&ohci->card, &p); 993 } 994 995 return buffer + length + 1; 996 } 997 998 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end) 999 { 1000 void *next; 1001 1002 while (p < end) { 1003 next = handle_ar_packet(ctx, p); 1004 if (!next) 1005 return p; 1006 p = next; 1007 } 1008 1009 return p; 1010 } 1011 1012 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer) 1013 { 1014 unsigned int i; 1015 1016 i = ar_first_buffer_index(ctx); 1017 while (i != end_buffer) { 1018 dma_sync_single_for_device(ctx->ohci->card.device, 1019 ar_buffer_bus(ctx, i), 1020 PAGE_SIZE, DMA_FROM_DEVICE); 1021 ar_context_link_page(ctx, i); 1022 i = ar_next_buffer_index(i); 1023 } 1024 } 1025 1026 static void ar_context_tasklet(unsigned long data) 1027 { 1028 struct ar_context *ctx = (struct ar_context *)data; 1029 unsigned int end_buffer_index, end_buffer_offset; 1030 void *p, *end; 1031 1032 p = ctx->pointer; 1033 if (!p) 1034 return; 1035 1036 end_buffer_index = ar_search_last_active_buffer(ctx, 1037 &end_buffer_offset); 1038 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset); 1039 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset; 1040 1041 if (end_buffer_index < ar_first_buffer_index(ctx)) { 1042 /* 1043 * The filled part of the overall buffer wraps around; handle 1044 * all packets up to the buffer end here. If the last packet 1045 * wraps around, its tail will be visible after the buffer end 1046 * because the buffer start pages are mapped there again. 1047 */ 1048 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE; 1049 p = handle_ar_packets(ctx, p, buffer_end); 1050 if (p < buffer_end) 1051 goto error; 1052 /* adjust p to point back into the actual buffer */ 1053 p -= AR_BUFFERS * PAGE_SIZE; 1054 } 1055 1056 p = handle_ar_packets(ctx, p, end); 1057 if (p != end) { 1058 if (p > end) 1059 ar_context_abort(ctx, "inconsistent descriptor"); 1060 goto error; 1061 } 1062 1063 ctx->pointer = p; 1064 ar_recycle_buffers(ctx, end_buffer_index); 1065 1066 return; 1067 1068 error: 1069 ctx->pointer = NULL; 1070 } 1071 1072 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, 1073 unsigned int descriptors_offset, u32 regs) 1074 { 1075 struct device *dev = ohci->card.device; 1076 unsigned int i; 1077 dma_addr_t dma_addr; 1078 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES]; 1079 struct descriptor *d; 1080 1081 ctx->regs = regs; 1082 ctx->ohci = ohci; 1083 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); 1084 1085 for (i = 0; i < AR_BUFFERS; i++) { 1086 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr, 1087 DMA_FROM_DEVICE, GFP_KERNEL); 1088 if (!ctx->pages[i]) 1089 goto out_of_memory; 1090 set_page_private(ctx->pages[i], dma_addr); 1091 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE, 1092 DMA_FROM_DEVICE); 1093 } 1094 1095 for (i = 0; i < AR_BUFFERS; i++) 1096 pages[i] = ctx->pages[i]; 1097 for (i = 0; i < AR_WRAPAROUND_PAGES; i++) 1098 pages[AR_BUFFERS + i] = ctx->pages[i]; 1099 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL); 1100 if (!ctx->buffer) 1101 goto out_of_memory; 1102 1103 ctx->descriptors = ohci->misc_buffer + descriptors_offset; 1104 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset; 1105 1106 for (i = 0; i < AR_BUFFERS; i++) { 1107 d = &ctx->descriptors[i]; 1108 d->req_count = cpu_to_le16(PAGE_SIZE); 1109 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 1110 DESCRIPTOR_STATUS | 1111 DESCRIPTOR_BRANCH_ALWAYS); 1112 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i)); 1113 d->branch_address = cpu_to_le32(ctx->descriptors_bus + 1114 ar_next_buffer_index(i) * sizeof(struct descriptor)); 1115 } 1116 1117 return 0; 1118 1119 out_of_memory: 1120 ar_context_release(ctx); 1121 1122 return -ENOMEM; 1123 } 1124 1125 static void ar_context_run(struct ar_context *ctx) 1126 { 1127 unsigned int i; 1128 1129 for (i = 0; i < AR_BUFFERS; i++) 1130 ar_context_link_page(ctx, i); 1131 1132 ctx->pointer = ctx->buffer; 1133 1134 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1); 1135 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); 1136 } 1137 1138 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z) 1139 { 1140 __le16 branch; 1141 1142 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS); 1143 1144 /* figure out which descriptor the branch address goes in */ 1145 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 1146 return d; 1147 else 1148 return d + z - 1; 1149 } 1150 1151 static void context_tasklet(unsigned long data) 1152 { 1153 struct context *ctx = (struct context *) data; 1154 struct descriptor *d, *last; 1155 u32 address; 1156 int z; 1157 struct descriptor_buffer *desc; 1158 1159 desc = list_entry(ctx->buffer_list.next, 1160 struct descriptor_buffer, list); 1161 last = ctx->last; 1162 while (last->branch_address != 0) { 1163 struct descriptor_buffer *old_desc = desc; 1164 address = le32_to_cpu(last->branch_address); 1165 z = address & 0xf; 1166 address &= ~0xf; 1167 ctx->current_bus = address; 1168 1169 /* If the branch address points to a buffer outside of the 1170 * current buffer, advance to the next buffer. */ 1171 if (address < desc->buffer_bus || 1172 address >= desc->buffer_bus + desc->used) 1173 desc = list_entry(desc->list.next, 1174 struct descriptor_buffer, list); 1175 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); 1176 last = find_branch_descriptor(d, z); 1177 1178 if (!ctx->callback(ctx, d, last)) 1179 break; 1180 1181 if (old_desc != desc) { 1182 /* If we've advanced to the next buffer, move the 1183 * previous buffer to the free list. */ 1184 unsigned long flags; 1185 old_desc->used = 0; 1186 spin_lock_irqsave(&ctx->ohci->lock, flags); 1187 list_move_tail(&old_desc->list, &ctx->buffer_list); 1188 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1189 } 1190 ctx->last = last; 1191 } 1192 } 1193 1194 /* 1195 * Allocate a new buffer and add it to the list of free buffers for this 1196 * context. Must be called with ohci->lock held. 1197 */ 1198 static int context_add_buffer(struct context *ctx) 1199 { 1200 struct descriptor_buffer *desc; 1201 dma_addr_t bus_addr; 1202 int offset; 1203 1204 /* 1205 * 16MB of descriptors should be far more than enough for any DMA 1206 * program. This will catch run-away userspace or DoS attacks. 1207 */ 1208 if (ctx->total_allocation >= 16*1024*1024) 1209 return -ENOMEM; 1210 1211 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC); 1212 if (!desc) 1213 return -ENOMEM; 1214 1215 offset = (void *)&desc->buffer - (void *)desc; 1216 /* 1217 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads 1218 * for descriptors, even 0x10-byte ones. This can cause page faults when 1219 * an IOMMU is in use and the oversized read crosses a page boundary. 1220 * Work around this by always leaving at least 0x10 bytes of padding. 1221 */ 1222 desc->buffer_size = PAGE_SIZE - offset - 0x10; 1223 desc->buffer_bus = bus_addr + offset; 1224 desc->used = 0; 1225 1226 list_add_tail(&desc->list, &ctx->buffer_list); 1227 ctx->total_allocation += PAGE_SIZE; 1228 1229 return 0; 1230 } 1231 1232 static int context_init(struct context *ctx, struct fw_ohci *ohci, 1233 u32 regs, descriptor_callback_t callback) 1234 { 1235 ctx->ohci = ohci; 1236 ctx->regs = regs; 1237 ctx->total_allocation = 0; 1238 1239 INIT_LIST_HEAD(&ctx->buffer_list); 1240 if (context_add_buffer(ctx) < 0) 1241 return -ENOMEM; 1242 1243 ctx->buffer_tail = list_entry(ctx->buffer_list.next, 1244 struct descriptor_buffer, list); 1245 1246 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); 1247 ctx->callback = callback; 1248 1249 /* 1250 * We put a dummy descriptor in the buffer that has a NULL 1251 * branch address and looks like it's been sent. That way we 1252 * have a descriptor to append DMA programs to. 1253 */ 1254 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); 1255 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); 1256 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); 1257 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); 1258 ctx->last = ctx->buffer_tail->buffer; 1259 ctx->prev = ctx->buffer_tail->buffer; 1260 ctx->prev_z = 1; 1261 1262 return 0; 1263 } 1264 1265 static void context_release(struct context *ctx) 1266 { 1267 struct fw_card *card = &ctx->ohci->card; 1268 struct descriptor_buffer *desc, *tmp; 1269 1270 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) { 1271 dmam_free_coherent(card->device, PAGE_SIZE, desc, 1272 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc)); 1273 } 1274 } 1275 1276 /* Must be called with ohci->lock held */ 1277 static struct descriptor *context_get_descriptors(struct context *ctx, 1278 int z, dma_addr_t *d_bus) 1279 { 1280 struct descriptor *d = NULL; 1281 struct descriptor_buffer *desc = ctx->buffer_tail; 1282 1283 if (z * sizeof(*d) > desc->buffer_size) 1284 return NULL; 1285 1286 if (z * sizeof(*d) > desc->buffer_size - desc->used) { 1287 /* No room for the descriptor in this buffer, so advance to the 1288 * next one. */ 1289 1290 if (desc->list.next == &ctx->buffer_list) { 1291 /* If there is no free buffer next in the list, 1292 * allocate one. */ 1293 if (context_add_buffer(ctx) < 0) 1294 return NULL; 1295 } 1296 desc = list_entry(desc->list.next, 1297 struct descriptor_buffer, list); 1298 ctx->buffer_tail = desc; 1299 } 1300 1301 d = desc->buffer + desc->used / sizeof(*d); 1302 memset(d, 0, z * sizeof(*d)); 1303 *d_bus = desc->buffer_bus + desc->used; 1304 1305 return d; 1306 } 1307 1308 static void context_run(struct context *ctx, u32 extra) 1309 { 1310 struct fw_ohci *ohci = ctx->ohci; 1311 1312 reg_write(ohci, COMMAND_PTR(ctx->regs), 1313 le32_to_cpu(ctx->last->branch_address)); 1314 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); 1315 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); 1316 ctx->running = true; 1317 flush_writes(ohci); 1318 } 1319 1320 static void context_append(struct context *ctx, 1321 struct descriptor *d, int z, int extra) 1322 { 1323 dma_addr_t d_bus; 1324 struct descriptor_buffer *desc = ctx->buffer_tail; 1325 struct descriptor *d_branch; 1326 1327 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); 1328 1329 desc->used += (z + extra) * sizeof(*d); 1330 1331 wmb(); /* finish init of new descriptors before branch_address update */ 1332 1333 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z); 1334 d_branch->branch_address = cpu_to_le32(d_bus | z); 1335 1336 /* 1337 * VT6306 incorrectly checks only the single descriptor at the 1338 * CommandPtr when the wake bit is written, so if it's a 1339 * multi-descriptor block starting with an INPUT_MORE, put a copy of 1340 * the branch address in the first descriptor. 1341 * 1342 * Not doing this for transmit contexts since not sure how it interacts 1343 * with skip addresses. 1344 */ 1345 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) && 1346 d_branch != ctx->prev && 1347 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) == 1348 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) { 1349 ctx->prev->branch_address = cpu_to_le32(d_bus | z); 1350 } 1351 1352 ctx->prev = d; 1353 ctx->prev_z = z; 1354 } 1355 1356 static void context_stop(struct context *ctx) 1357 { 1358 struct fw_ohci *ohci = ctx->ohci; 1359 u32 reg; 1360 int i; 1361 1362 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 1363 ctx->running = false; 1364 1365 for (i = 0; i < 1000; i++) { 1366 reg = reg_read(ohci, CONTROL_SET(ctx->regs)); 1367 if ((reg & CONTEXT_ACTIVE) == 0) 1368 return; 1369 1370 if (i) 1371 udelay(10); 1372 } 1373 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg); 1374 } 1375 1376 struct driver_data { 1377 u8 inline_data[8]; 1378 struct fw_packet *packet; 1379 }; 1380 1381 /* 1382 * This function apppends a packet to the DMA queue for transmission. 1383 * Must always be called with the ochi->lock held to ensure proper 1384 * generation handling and locking around packet queue manipulation. 1385 */ 1386 static int at_context_queue_packet(struct context *ctx, 1387 struct fw_packet *packet) 1388 { 1389 struct fw_ohci *ohci = ctx->ohci; 1390 dma_addr_t d_bus, payload_bus; 1391 struct driver_data *driver_data; 1392 struct descriptor *d, *last; 1393 __le32 *header; 1394 int z, tcode; 1395 1396 d = context_get_descriptors(ctx, 4, &d_bus); 1397 if (d == NULL) { 1398 packet->ack = RCODE_SEND_ERROR; 1399 return -1; 1400 } 1401 1402 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 1403 d[0].res_count = cpu_to_le16(packet->timestamp); 1404 1405 /* 1406 * The DMA format for asynchronous link packets is different 1407 * from the IEEE1394 layout, so shift the fields around 1408 * accordingly. 1409 */ 1410 1411 tcode = async_header_get_tcode(packet->header); 1412 header = (__le32 *) &d[1]; 1413 switch (tcode) { 1414 case TCODE_WRITE_QUADLET_REQUEST: 1415 case TCODE_WRITE_BLOCK_REQUEST: 1416 case TCODE_WRITE_RESPONSE: 1417 case TCODE_READ_QUADLET_REQUEST: 1418 case TCODE_READ_BLOCK_REQUEST: 1419 case TCODE_READ_QUADLET_RESPONSE: 1420 case TCODE_READ_BLOCK_RESPONSE: 1421 case TCODE_LOCK_REQUEST: 1422 case TCODE_LOCK_RESPONSE: 1423 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1424 (packet->speed << 16)); 1425 header[1] = cpu_to_le32((packet->header[1] & 0xffff) | 1426 (packet->header[0] & 0xffff0000)); 1427 header[2] = cpu_to_le32(packet->header[2]); 1428 1429 if (tcode_is_block_packet(tcode)) 1430 header[3] = cpu_to_le32(packet->header[3]); 1431 else 1432 header[3] = (__force __le32) packet->header[3]; 1433 1434 d[0].req_count = cpu_to_le16(packet->header_length); 1435 break; 1436 1437 case TCODE_LINK_INTERNAL: 1438 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | 1439 (packet->speed << 16)); 1440 header[1] = cpu_to_le32(packet->header[1]); 1441 header[2] = cpu_to_le32(packet->header[2]); 1442 d[0].req_count = cpu_to_le16(12); 1443 1444 if (is_ping_packet(&packet->header[1])) 1445 d[0].control |= cpu_to_le16(DESCRIPTOR_PING); 1446 break; 1447 1448 case TCODE_STREAM_DATA: 1449 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1450 (packet->speed << 16)); 1451 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000); 1452 d[0].req_count = cpu_to_le16(8); 1453 break; 1454 1455 default: 1456 /* BUG(); */ 1457 packet->ack = RCODE_SEND_ERROR; 1458 return -1; 1459 } 1460 1461 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor)); 1462 driver_data = (struct driver_data *) &d[3]; 1463 driver_data->packet = packet; 1464 packet->driver_data = driver_data; 1465 1466 if (packet->payload_length > 0) { 1467 if (packet->payload_length > sizeof(driver_data->inline_data)) { 1468 payload_bus = dma_map_single(ohci->card.device, 1469 packet->payload, 1470 packet->payload_length, 1471 DMA_TO_DEVICE); 1472 if (dma_mapping_error(ohci->card.device, payload_bus)) { 1473 packet->ack = RCODE_SEND_ERROR; 1474 return -1; 1475 } 1476 packet->payload_bus = payload_bus; 1477 packet->payload_mapped = true; 1478 } else { 1479 memcpy(driver_data->inline_data, packet->payload, 1480 packet->payload_length); 1481 payload_bus = d_bus + 3 * sizeof(*d); 1482 } 1483 1484 d[2].req_count = cpu_to_le16(packet->payload_length); 1485 d[2].data_address = cpu_to_le32(payload_bus); 1486 last = &d[2]; 1487 z = 3; 1488 } else { 1489 last = &d[0]; 1490 z = 2; 1491 } 1492 1493 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 1494 DESCRIPTOR_IRQ_ALWAYS | 1495 DESCRIPTOR_BRANCH_ALWAYS); 1496 1497 /* FIXME: Document how the locking works. */ 1498 if (ohci->generation != packet->generation) { 1499 if (packet->payload_mapped) 1500 dma_unmap_single(ohci->card.device, payload_bus, 1501 packet->payload_length, DMA_TO_DEVICE); 1502 packet->ack = RCODE_GENERATION; 1503 return -1; 1504 } 1505 1506 context_append(ctx, d, z, 4 - z); 1507 1508 if (ctx->running) 1509 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 1510 else 1511 context_run(ctx, 0); 1512 1513 return 0; 1514 } 1515 1516 static void at_context_flush(struct context *ctx) 1517 { 1518 tasklet_disable(&ctx->tasklet); 1519 1520 ctx->flushing = true; 1521 context_tasklet((unsigned long)ctx); 1522 ctx->flushing = false; 1523 1524 tasklet_enable(&ctx->tasklet); 1525 } 1526 1527 static int handle_at_packet(struct context *context, 1528 struct descriptor *d, 1529 struct descriptor *last) 1530 { 1531 struct driver_data *driver_data; 1532 struct fw_packet *packet; 1533 struct fw_ohci *ohci = context->ohci; 1534 int evt; 1535 1536 if (last->transfer_status == 0 && !context->flushing) 1537 /* This descriptor isn't done yet, stop iteration. */ 1538 return 0; 1539 1540 driver_data = (struct driver_data *) &d[3]; 1541 packet = driver_data->packet; 1542 if (packet == NULL) 1543 /* This packet was cancelled, just continue. */ 1544 return 1; 1545 1546 if (packet->payload_mapped) 1547 dma_unmap_single(ohci->card.device, packet->payload_bus, 1548 packet->payload_length, DMA_TO_DEVICE); 1549 1550 evt = le16_to_cpu(last->transfer_status) & 0x1f; 1551 packet->timestamp = le16_to_cpu(last->res_count); 1552 1553 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt); 1554 1555 switch (evt) { 1556 case OHCI1394_evt_timeout: 1557 /* Async response transmit timed out. */ 1558 packet->ack = RCODE_CANCELLED; 1559 break; 1560 1561 case OHCI1394_evt_flushed: 1562 /* 1563 * The packet was flushed should give same error as 1564 * when we try to use a stale generation count. 1565 */ 1566 packet->ack = RCODE_GENERATION; 1567 break; 1568 1569 case OHCI1394_evt_missing_ack: 1570 if (context->flushing) 1571 packet->ack = RCODE_GENERATION; 1572 else { 1573 /* 1574 * Using a valid (current) generation count, but the 1575 * node is not on the bus or not sending acks. 1576 */ 1577 packet->ack = RCODE_NO_ACK; 1578 } 1579 break; 1580 1581 case ACK_COMPLETE + 0x10: 1582 case ACK_PENDING + 0x10: 1583 case ACK_BUSY_X + 0x10: 1584 case ACK_BUSY_A + 0x10: 1585 case ACK_BUSY_B + 0x10: 1586 case ACK_DATA_ERROR + 0x10: 1587 case ACK_TYPE_ERROR + 0x10: 1588 packet->ack = evt - 0x10; 1589 break; 1590 1591 case OHCI1394_evt_no_status: 1592 if (context->flushing) { 1593 packet->ack = RCODE_GENERATION; 1594 break; 1595 } 1596 fallthrough; 1597 1598 default: 1599 packet->ack = RCODE_SEND_ERROR; 1600 break; 1601 } 1602 1603 packet->callback(packet, &ohci->card, packet->ack); 1604 1605 return 1; 1606 } 1607 1608 static u32 get_cycle_time(struct fw_ohci *ohci); 1609 1610 static void handle_local_rom(struct fw_ohci *ohci, 1611 struct fw_packet *packet, u32 csr) 1612 { 1613 struct fw_packet response; 1614 int tcode, length, i; 1615 1616 tcode = async_header_get_tcode(packet->header); 1617 if (tcode_is_block_packet(tcode)) 1618 length = async_header_get_data_length(packet->header); 1619 else 1620 length = 4; 1621 1622 i = csr - CSR_CONFIG_ROM; 1623 if (i + length > CONFIG_ROM_SIZE) { 1624 fw_fill_response(&response, packet->header, 1625 RCODE_ADDRESS_ERROR, NULL, 0); 1626 } else if (!tcode_is_read_request(tcode)) { 1627 fw_fill_response(&response, packet->header, 1628 RCODE_TYPE_ERROR, NULL, 0); 1629 } else { 1630 fw_fill_response(&response, packet->header, RCODE_COMPLETE, 1631 (void *) ohci->config_rom + i, length); 1632 } 1633 1634 // Timestamping on behalf of the hardware. 1635 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 1636 fw_core_handle_response(&ohci->card, &response); 1637 } 1638 1639 static void handle_local_lock(struct fw_ohci *ohci, 1640 struct fw_packet *packet, u32 csr) 1641 { 1642 struct fw_packet response; 1643 int tcode, length, ext_tcode, sel, try; 1644 __be32 *payload, lock_old; 1645 u32 lock_arg, lock_data; 1646 1647 tcode = async_header_get_tcode(packet->header); 1648 length = async_header_get_data_length(packet->header); 1649 payload = packet->payload; 1650 ext_tcode = async_header_get_extended_tcode(packet->header); 1651 1652 if (tcode == TCODE_LOCK_REQUEST && 1653 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { 1654 lock_arg = be32_to_cpu(payload[0]); 1655 lock_data = be32_to_cpu(payload[1]); 1656 } else if (tcode == TCODE_READ_QUADLET_REQUEST) { 1657 lock_arg = 0; 1658 lock_data = 0; 1659 } else { 1660 fw_fill_response(&response, packet->header, 1661 RCODE_TYPE_ERROR, NULL, 0); 1662 goto out; 1663 } 1664 1665 sel = (csr - CSR_BUS_MANAGER_ID) / 4; 1666 reg_write(ohci, OHCI1394_CSRData, lock_data); 1667 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); 1668 reg_write(ohci, OHCI1394_CSRControl, sel); 1669 1670 for (try = 0; try < 20; try++) 1671 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) { 1672 lock_old = cpu_to_be32(reg_read(ohci, 1673 OHCI1394_CSRData)); 1674 fw_fill_response(&response, packet->header, 1675 RCODE_COMPLETE, 1676 &lock_old, sizeof(lock_old)); 1677 goto out; 1678 } 1679 1680 ohci_err(ohci, "swap not done (CSR lock timeout)\n"); 1681 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0); 1682 1683 out: 1684 // Timestamping on behalf of the hardware. 1685 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 1686 fw_core_handle_response(&ohci->card, &response); 1687 } 1688 1689 static void handle_local_request(struct context *ctx, struct fw_packet *packet) 1690 { 1691 u64 offset, csr; 1692 1693 if (ctx == &ctx->ohci->at_request_ctx) { 1694 packet->ack = ACK_PENDING; 1695 packet->callback(packet, &ctx->ohci->card, packet->ack); 1696 } 1697 1698 offset = async_header_get_offset(packet->header); 1699 csr = offset - CSR_REGISTER_BASE; 1700 1701 /* Handle config rom reads. */ 1702 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) 1703 handle_local_rom(ctx->ohci, packet, csr); 1704 else switch (csr) { 1705 case CSR_BUS_MANAGER_ID: 1706 case CSR_BANDWIDTH_AVAILABLE: 1707 case CSR_CHANNELS_AVAILABLE_HI: 1708 case CSR_CHANNELS_AVAILABLE_LO: 1709 handle_local_lock(ctx->ohci, packet, csr); 1710 break; 1711 default: 1712 if (ctx == &ctx->ohci->at_request_ctx) 1713 fw_core_handle_request(&ctx->ohci->card, packet); 1714 else 1715 fw_core_handle_response(&ctx->ohci->card, packet); 1716 break; 1717 } 1718 1719 if (ctx == &ctx->ohci->at_response_ctx) { 1720 packet->ack = ACK_COMPLETE; 1721 packet->callback(packet, &ctx->ohci->card, packet->ack); 1722 } 1723 } 1724 1725 static void at_context_transmit(struct context *ctx, struct fw_packet *packet) 1726 { 1727 unsigned long flags; 1728 int ret; 1729 1730 spin_lock_irqsave(&ctx->ohci->lock, flags); 1731 1732 if (async_header_get_destination(packet->header) == ctx->ohci->node_id && 1733 ctx->ohci->generation == packet->generation) { 1734 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1735 1736 // Timestamping on behalf of the hardware. 1737 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci)); 1738 1739 handle_local_request(ctx, packet); 1740 return; 1741 } 1742 1743 ret = at_context_queue_packet(ctx, packet); 1744 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1745 1746 if (ret < 0) { 1747 // Timestamping on behalf of the hardware. 1748 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci)); 1749 1750 packet->callback(packet, &ctx->ohci->card, packet->ack); 1751 } 1752 } 1753 1754 static void detect_dead_context(struct fw_ohci *ohci, 1755 const char *name, unsigned int regs) 1756 { 1757 u32 ctl; 1758 1759 ctl = reg_read(ohci, CONTROL_SET(regs)); 1760 if (ctl & CONTEXT_DEAD) 1761 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n", 1762 name, evts[ctl & 0x1f]); 1763 } 1764 1765 static void handle_dead_contexts(struct fw_ohci *ohci) 1766 { 1767 unsigned int i; 1768 char name[8]; 1769 1770 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase); 1771 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase); 1772 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase); 1773 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase); 1774 for (i = 0; i < 32; ++i) { 1775 if (!(ohci->it_context_support & (1 << i))) 1776 continue; 1777 sprintf(name, "IT%u", i); 1778 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i)); 1779 } 1780 for (i = 0; i < 32; ++i) { 1781 if (!(ohci->ir_context_support & (1 << i))) 1782 continue; 1783 sprintf(name, "IR%u", i); 1784 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i)); 1785 } 1786 /* TODO: maybe try to flush and restart the dead contexts */ 1787 } 1788 1789 static u32 cycle_timer_ticks(u32 cycle_timer) 1790 { 1791 u32 ticks; 1792 1793 ticks = cycle_timer & 0xfff; 1794 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff); 1795 ticks += (3072 * 8000) * (cycle_timer >> 25); 1796 1797 return ticks; 1798 } 1799 1800 /* 1801 * Some controllers exhibit one or more of the following bugs when updating the 1802 * iso cycle timer register: 1803 * - When the lowest six bits are wrapping around to zero, a read that happens 1804 * at the same time will return garbage in the lowest ten bits. 1805 * - When the cycleOffset field wraps around to zero, the cycleCount field is 1806 * not incremented for about 60 ns. 1807 * - Occasionally, the entire register reads zero. 1808 * 1809 * To catch these, we read the register three times and ensure that the 1810 * difference between each two consecutive reads is approximately the same, i.e. 1811 * less than twice the other. Furthermore, any negative difference indicates an 1812 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to 1813 * execute, so we have enough precision to compute the ratio of the differences.) 1814 */ 1815 static u32 get_cycle_time(struct fw_ohci *ohci) 1816 { 1817 u32 c0, c1, c2; 1818 u32 t0, t1, t2; 1819 s32 diff01, diff12; 1820 int i; 1821 1822 if (has_reboot_by_cycle_timer_read_quirk(ohci)) 1823 return 0; 1824 1825 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1826 1827 if (ohci->quirks & QUIRK_CYCLE_TIMER) { 1828 i = 0; 1829 c1 = c2; 1830 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1831 do { 1832 c0 = c1; 1833 c1 = c2; 1834 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1835 t0 = cycle_timer_ticks(c0); 1836 t1 = cycle_timer_ticks(c1); 1837 t2 = cycle_timer_ticks(c2); 1838 diff01 = t1 - t0; 1839 diff12 = t2 - t1; 1840 } while ((diff01 <= 0 || diff12 <= 0 || 1841 diff01 / diff12 >= 2 || diff12 / diff01 >= 2) 1842 && i++ < 20); 1843 } 1844 1845 return c2; 1846 } 1847 1848 /* 1849 * This function has to be called at least every 64 seconds. The bus_time 1850 * field stores not only the upper 25 bits of the BUS_TIME register but also 1851 * the most significant bit of the cycle timer in bit 6 so that we can detect 1852 * changes in this bit. 1853 */ 1854 static u32 update_bus_time(struct fw_ohci *ohci) 1855 { 1856 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25; 1857 1858 if (unlikely(!ohci->bus_time_running)) { 1859 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds); 1860 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) | 1861 (cycle_time_seconds & 0x40); 1862 ohci->bus_time_running = true; 1863 } 1864 1865 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40)) 1866 ohci->bus_time += 0x40; 1867 1868 return ohci->bus_time | cycle_time_seconds; 1869 } 1870 1871 static int get_status_for_port(struct fw_ohci *ohci, int port_index, 1872 enum phy_packet_self_id_port_status *status) 1873 { 1874 int reg; 1875 1876 mutex_lock(&ohci->phy_reg_mutex); 1877 reg = write_phy_reg(ohci, 7, port_index); 1878 if (reg >= 0) 1879 reg = read_phy_reg(ohci, 8); 1880 mutex_unlock(&ohci->phy_reg_mutex); 1881 if (reg < 0) 1882 return reg; 1883 1884 switch (reg & 0x0f) { 1885 case 0x06: 1886 // is child node (connected to parent node) 1887 *status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT; 1888 break; 1889 case 0x0e: 1890 // is parent node (connected to child node) 1891 *status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD; 1892 break; 1893 default: 1894 // not connected 1895 *status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN; 1896 break; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id, 1903 int self_id_count) 1904 { 1905 unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id); 1906 int i; 1907 1908 for (i = 0; i < self_id_count; i++) { 1909 u32 entry = ohci->self_id_buffer[i]; 1910 unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry); 1911 1912 if (left_phy_id == right_phy_id) 1913 return -1; 1914 if (left_phy_id < right_phy_id) 1915 return i; 1916 } 1917 return i; 1918 } 1919 1920 static bool initiated_reset(struct fw_ohci *ohci) 1921 { 1922 int reg; 1923 int ret = false; 1924 1925 mutex_lock(&ohci->phy_reg_mutex); 1926 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */ 1927 if (reg >= 0) { 1928 reg = read_phy_reg(ohci, 8); 1929 reg |= 0x40; 1930 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */ 1931 if (reg >= 0) { 1932 reg = read_phy_reg(ohci, 12); /* read register 12 */ 1933 if (reg >= 0) { 1934 if ((reg & 0x08) == 0x08) { 1935 /* bit 3 indicates "initiated reset" */ 1936 ret = true; 1937 } 1938 } 1939 } 1940 } 1941 mutex_unlock(&ohci->phy_reg_mutex); 1942 return ret; 1943 } 1944 1945 /* 1946 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally 1947 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059. 1948 * Construct the selfID from phy register contents. 1949 */ 1950 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count) 1951 { 1952 int reg, i, pos; 1953 u32 self_id = 0; 1954 1955 // link active 1, speed 3, bridge 0, contender 1, more packets 0. 1956 phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID); 1957 phy_packet_self_id_zero_set_link_active(&self_id, true); 1958 phy_packet_self_id_zero_set_scode(&self_id, SCODE_800); 1959 phy_packet_self_id_zero_set_contender(&self_id, true); 1960 1961 reg = reg_read(ohci, OHCI1394_NodeID); 1962 if (!(reg & OHCI1394_NodeID_idValid)) { 1963 ohci_notice(ohci, 1964 "node ID not valid, new bus reset in progress\n"); 1965 return -EBUSY; 1966 } 1967 phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f); 1968 1969 reg = ohci_read_phy_reg(&ohci->card, 4); 1970 if (reg < 0) 1971 return reg; 1972 phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07); 1973 1974 reg = ohci_read_phy_reg(&ohci->card, 1); 1975 if (reg < 0) 1976 return reg; 1977 phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f); 1978 1979 for (i = 0; i < 3; i++) { 1980 enum phy_packet_self_id_port_status status; 1981 int err; 1982 1983 err = get_status_for_port(ohci, i, &status); 1984 if (err < 0) 1985 return err; 1986 1987 self_id_sequence_set_port_status(&self_id, 1, i, status); 1988 } 1989 1990 phy_packet_self_id_zero_set_initiated_reset(&self_id, initiated_reset(ohci)); 1991 1992 pos = get_self_id_pos(ohci, self_id, self_id_count); 1993 if (pos >= 0) { 1994 memmove(&(ohci->self_id_buffer[pos+1]), 1995 &(ohci->self_id_buffer[pos]), 1996 (self_id_count - pos) * sizeof(*ohci->self_id_buffer)); 1997 ohci->self_id_buffer[pos] = self_id; 1998 self_id_count++; 1999 } 2000 return self_id_count; 2001 } 2002 2003 static void bus_reset_work(struct work_struct *work) 2004 { 2005 struct fw_ohci *ohci = 2006 container_of(work, struct fw_ohci, bus_reset_work); 2007 int self_id_count, generation, new_generation, i, j; 2008 u32 reg, quadlet; 2009 void *free_rom = NULL; 2010 dma_addr_t free_rom_bus = 0; 2011 bool is_new_root; 2012 2013 reg = reg_read(ohci, OHCI1394_NodeID); 2014 if (!(reg & OHCI1394_NodeID_idValid)) { 2015 ohci_notice(ohci, 2016 "node ID not valid, new bus reset in progress\n"); 2017 return; 2018 } 2019 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { 2020 ohci_notice(ohci, "malconfigured bus\n"); 2021 return; 2022 } 2023 ohci->node_id = reg & (OHCI1394_NodeID_busNumber | 2024 OHCI1394_NodeID_nodeNumber); 2025 2026 is_new_root = (reg & OHCI1394_NodeID_root) != 0; 2027 if (!(ohci->is_root && is_new_root)) 2028 reg_write(ohci, OHCI1394_LinkControlSet, 2029 OHCI1394_LinkControl_cycleMaster); 2030 ohci->is_root = is_new_root; 2031 2032 reg = reg_read(ohci, OHCI1394_SelfIDCount); 2033 if (ohci1394_self_id_count_is_error(reg)) { 2034 ohci_notice(ohci, "self ID receive error\n"); 2035 return; 2036 } 2037 /* 2038 * The count in the SelfIDCount register is the number of 2039 * bytes in the self ID receive buffer. Since we also receive 2040 * the inverted quadlets and a header quadlet, we shift one 2041 * bit extra to get the actual number of self IDs. 2042 */ 2043 self_id_count = ohci1394_self_id_count_get_size(reg) >> 1; 2044 2045 if (self_id_count > 252) { 2046 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg); 2047 return; 2048 } 2049 2050 quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci)); 2051 generation = ohci1394_self_id_receive_q0_get_generation(quadlet); 2052 rmb(); 2053 2054 for (i = 1, j = 0; j < self_id_count; i += 2, j++) { 2055 u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci)); 2056 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci)); 2057 2058 if (id != ~id2) { 2059 /* 2060 * If the invalid data looks like a cycle start packet, 2061 * it's likely to be the result of the cycle master 2062 * having a wrong gap count. In this case, the self IDs 2063 * so far are valid and should be processed so that the 2064 * bus manager can then correct the gap count. 2065 */ 2066 if (id == 0xffff008f) { 2067 ohci_notice(ohci, "ignoring spurious self IDs\n"); 2068 self_id_count = j; 2069 break; 2070 } 2071 2072 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n", 2073 j, self_id_count, id, id2); 2074 return; 2075 } 2076 ohci->self_id_buffer[j] = id; 2077 } 2078 2079 if (ohci->quirks & QUIRK_TI_SLLZ059) { 2080 self_id_count = find_and_insert_self_id(ohci, self_id_count); 2081 if (self_id_count < 0) { 2082 ohci_notice(ohci, 2083 "could not construct local self ID\n"); 2084 return; 2085 } 2086 } 2087 2088 if (self_id_count == 0) { 2089 ohci_notice(ohci, "no self IDs\n"); 2090 return; 2091 } 2092 rmb(); 2093 2094 /* 2095 * Check the consistency of the self IDs we just read. The 2096 * problem we face is that a new bus reset can start while we 2097 * read out the self IDs from the DMA buffer. If this happens, 2098 * the DMA buffer will be overwritten with new self IDs and we 2099 * will read out inconsistent data. The OHCI specification 2100 * (section 11.2) recommends a technique similar to 2101 * linux/seqlock.h, where we remember the generation of the 2102 * self IDs in the buffer before reading them out and compare 2103 * it to the current generation after reading them out. If 2104 * the two generations match we know we have a consistent set 2105 * of self IDs. 2106 */ 2107 2108 reg = reg_read(ohci, OHCI1394_SelfIDCount); 2109 new_generation = ohci1394_self_id_count_get_generation(reg); 2110 if (new_generation != generation) { 2111 ohci_notice(ohci, "new bus reset, discarding self ids\n"); 2112 return; 2113 } 2114 2115 /* FIXME: Document how the locking works. */ 2116 spin_lock_irq(&ohci->lock); 2117 2118 ohci->generation = -1; /* prevent AT packet queueing */ 2119 context_stop(&ohci->at_request_ctx); 2120 context_stop(&ohci->at_response_ctx); 2121 2122 spin_unlock_irq(&ohci->lock); 2123 2124 /* 2125 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent 2126 * packets in the AT queues and software needs to drain them. 2127 * Some OHCI 1.1 controllers (JMicron) apparently require this too. 2128 */ 2129 at_context_flush(&ohci->at_request_ctx); 2130 at_context_flush(&ohci->at_response_ctx); 2131 2132 spin_lock_irq(&ohci->lock); 2133 2134 ohci->generation = generation; 2135 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); 2136 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset); 2137 2138 if (ohci->quirks & QUIRK_RESET_PACKET) 2139 ohci->request_generation = generation; 2140 2141 /* 2142 * This next bit is unrelated to the AT context stuff but we 2143 * have to do it under the spinlock also. If a new config rom 2144 * was set up before this reset, the old one is now no longer 2145 * in use and we can free it. Update the config rom pointers 2146 * to point to the current config rom and clear the 2147 * next_config_rom pointer so a new update can take place. 2148 */ 2149 2150 if (ohci->next_config_rom != NULL) { 2151 if (ohci->next_config_rom != ohci->config_rom) { 2152 free_rom = ohci->config_rom; 2153 free_rom_bus = ohci->config_rom_bus; 2154 } 2155 ohci->config_rom = ohci->next_config_rom; 2156 ohci->config_rom_bus = ohci->next_config_rom_bus; 2157 ohci->next_config_rom = NULL; 2158 2159 /* 2160 * Restore config_rom image and manually update 2161 * config_rom registers. Writing the header quadlet 2162 * will indicate that the config rom is ready, so we 2163 * do that last. 2164 */ 2165 reg_write(ohci, OHCI1394_BusOptions, 2166 be32_to_cpu(ohci->config_rom[2])); 2167 ohci->config_rom[0] = ohci->next_header; 2168 reg_write(ohci, OHCI1394_ConfigROMhdr, 2169 be32_to_cpu(ohci->next_header)); 2170 } 2171 2172 if (param_remote_dma) { 2173 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); 2174 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); 2175 } 2176 2177 spin_unlock_irq(&ohci->lock); 2178 2179 if (free_rom) 2180 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus); 2181 2182 log_selfids(ohci, generation, self_id_count); 2183 2184 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, 2185 self_id_count, ohci->self_id_buffer, 2186 ohci->csr_state_setclear_abdicate); 2187 ohci->csr_state_setclear_abdicate = false; 2188 } 2189 2190 static irqreturn_t irq_handler(int irq, void *data) 2191 { 2192 struct fw_ohci *ohci = data; 2193 u32 event, iso_event; 2194 int i; 2195 2196 event = reg_read(ohci, OHCI1394_IntEventClear); 2197 2198 if (!event || !~event) 2199 return IRQ_NONE; 2200 2201 /* 2202 * busReset and postedWriteErr events must not be cleared yet 2203 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1) 2204 */ 2205 reg_write(ohci, OHCI1394_IntEventClear, 2206 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr)); 2207 trace_irqs(ohci->card.index, event); 2208 log_irqs(ohci, event); 2209 // The flag is masked again at bus_reset_work() scheduled by selfID event. 2210 if (event & OHCI1394_busReset) 2211 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset); 2212 2213 if (event & OHCI1394_selfIDComplete) { 2214 if (trace_self_id_complete_enabled()) { 2215 u32 reg = reg_read(ohci, OHCI1394_SelfIDCount); 2216 2217 trace_self_id_complete(ohci->card.index, reg, ohci->self_id, 2218 has_be_header_quirk(ohci)); 2219 } 2220 queue_work(selfid_workqueue, &ohci->bus_reset_work); 2221 } 2222 2223 if (event & OHCI1394_RQPkt) 2224 tasklet_schedule(&ohci->ar_request_ctx.tasklet); 2225 2226 if (event & OHCI1394_RSPkt) 2227 tasklet_schedule(&ohci->ar_response_ctx.tasklet); 2228 2229 if (event & OHCI1394_reqTxComplete) 2230 tasklet_schedule(&ohci->at_request_ctx.tasklet); 2231 2232 if (event & OHCI1394_respTxComplete) 2233 tasklet_schedule(&ohci->at_response_ctx.tasklet); 2234 2235 if (event & OHCI1394_isochRx) { 2236 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); 2237 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); 2238 2239 while (iso_event) { 2240 i = ffs(iso_event) - 1; 2241 tasklet_schedule( 2242 &ohci->ir_context_list[i].context.tasklet); 2243 iso_event &= ~(1 << i); 2244 } 2245 } 2246 2247 if (event & OHCI1394_isochTx) { 2248 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); 2249 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); 2250 2251 while (iso_event) { 2252 i = ffs(iso_event) - 1; 2253 tasklet_schedule( 2254 &ohci->it_context_list[i].context.tasklet); 2255 iso_event &= ~(1 << i); 2256 } 2257 } 2258 2259 if (unlikely(event & OHCI1394_regAccessFail)) 2260 ohci_err(ohci, "register access failure\n"); 2261 2262 if (unlikely(event & OHCI1394_postedWriteErr)) { 2263 reg_read(ohci, OHCI1394_PostedWriteAddressHi); 2264 reg_read(ohci, OHCI1394_PostedWriteAddressLo); 2265 reg_write(ohci, OHCI1394_IntEventClear, 2266 OHCI1394_postedWriteErr); 2267 if (printk_ratelimit()) 2268 ohci_err(ohci, "PCI posted write error\n"); 2269 } 2270 2271 if (unlikely(event & OHCI1394_cycleTooLong)) { 2272 if (printk_ratelimit()) 2273 ohci_notice(ohci, "isochronous cycle too long\n"); 2274 reg_write(ohci, OHCI1394_LinkControlSet, 2275 OHCI1394_LinkControl_cycleMaster); 2276 } 2277 2278 if (unlikely(event & OHCI1394_cycleInconsistent)) { 2279 /* 2280 * We need to clear this event bit in order to make 2281 * cycleMatch isochronous I/O work. In theory we should 2282 * stop active cycleMatch iso contexts now and restart 2283 * them at least two cycles later. (FIXME?) 2284 */ 2285 if (printk_ratelimit()) 2286 ohci_notice(ohci, "isochronous cycle inconsistent\n"); 2287 } 2288 2289 if (unlikely(event & OHCI1394_unrecoverableError)) 2290 handle_dead_contexts(ohci); 2291 2292 if (event & OHCI1394_cycle64Seconds) { 2293 spin_lock(&ohci->lock); 2294 update_bus_time(ohci); 2295 spin_unlock(&ohci->lock); 2296 } else 2297 flush_writes(ohci); 2298 2299 return IRQ_HANDLED; 2300 } 2301 2302 static int software_reset(struct fw_ohci *ohci) 2303 { 2304 u32 val; 2305 int i; 2306 2307 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); 2308 for (i = 0; i < 500; i++) { 2309 val = reg_read(ohci, OHCI1394_HCControlSet); 2310 if (!~val) 2311 return -ENODEV; /* Card was ejected. */ 2312 2313 if (!(val & OHCI1394_HCControl_softReset)) 2314 return 0; 2315 2316 msleep(1); 2317 } 2318 2319 return -EBUSY; 2320 } 2321 2322 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length) 2323 { 2324 size_t size = length * 4; 2325 2326 memcpy(dest, src, size); 2327 if (size < CONFIG_ROM_SIZE) 2328 memset(&dest[length], 0, CONFIG_ROM_SIZE - size); 2329 } 2330 2331 static int configure_1394a_enhancements(struct fw_ohci *ohci) 2332 { 2333 bool enable_1394a; 2334 int ret, clear, set, offset; 2335 2336 /* Check if the driver should configure link and PHY. */ 2337 if (!(reg_read(ohci, OHCI1394_HCControlSet) & 2338 OHCI1394_HCControl_programPhyEnable)) 2339 return 0; 2340 2341 /* Paranoia: check whether the PHY supports 1394a, too. */ 2342 enable_1394a = false; 2343 ret = read_phy_reg(ohci, 2); 2344 if (ret < 0) 2345 return ret; 2346 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) { 2347 ret = read_paged_phy_reg(ohci, 1, 8); 2348 if (ret < 0) 2349 return ret; 2350 if (ret >= 1) 2351 enable_1394a = true; 2352 } 2353 2354 if (ohci->quirks & QUIRK_NO_1394A) 2355 enable_1394a = false; 2356 2357 /* Configure PHY and link consistently. */ 2358 if (enable_1394a) { 2359 clear = 0; 2360 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2361 } else { 2362 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2363 set = 0; 2364 } 2365 ret = update_phy_reg(ohci, 5, clear, set); 2366 if (ret < 0) 2367 return ret; 2368 2369 if (enable_1394a) 2370 offset = OHCI1394_HCControlSet; 2371 else 2372 offset = OHCI1394_HCControlClear; 2373 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable); 2374 2375 /* Clean up: configuration has been taken care of. */ 2376 reg_write(ohci, OHCI1394_HCControlClear, 2377 OHCI1394_HCControl_programPhyEnable); 2378 2379 return 0; 2380 } 2381 2382 static int probe_tsb41ba3d(struct fw_ohci *ohci) 2383 { 2384 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */ 2385 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, }; 2386 int reg, i; 2387 2388 reg = read_phy_reg(ohci, 2); 2389 if (reg < 0) 2390 return reg; 2391 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS) 2392 return 0; 2393 2394 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) { 2395 reg = read_paged_phy_reg(ohci, 1, i + 10); 2396 if (reg < 0) 2397 return reg; 2398 if (reg != id[i]) 2399 return 0; 2400 } 2401 return 1; 2402 } 2403 2404 static int ohci_enable(struct fw_card *card, 2405 const __be32 *config_rom, size_t length) 2406 { 2407 struct fw_ohci *ohci = fw_ohci(card); 2408 u32 lps, version, irqs; 2409 int i, ret; 2410 2411 ret = software_reset(ohci); 2412 if (ret < 0) { 2413 ohci_err(ohci, "failed to reset ohci card\n"); 2414 return ret; 2415 } 2416 2417 /* 2418 * Now enable LPS, which we need in order to start accessing 2419 * most of the registers. In fact, on some cards (ALI M5251), 2420 * accessing registers in the SClk domain without LPS enabled 2421 * will lock up the machine. Wait 50msec to make sure we have 2422 * full link enabled. However, with some cards (well, at least 2423 * a JMicron PCIe card), we have to try again sometimes. 2424 * 2425 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but 2426 * cannot actually use the phy at that time. These need tens of 2427 * millisecods pause between LPS write and first phy access too. 2428 */ 2429 2430 reg_write(ohci, OHCI1394_HCControlSet, 2431 OHCI1394_HCControl_LPS | 2432 OHCI1394_HCControl_postedWriteEnable); 2433 flush_writes(ohci); 2434 2435 for (lps = 0, i = 0; !lps && i < 3; i++) { 2436 msleep(50); 2437 lps = reg_read(ohci, OHCI1394_HCControlSet) & 2438 OHCI1394_HCControl_LPS; 2439 } 2440 2441 if (!lps) { 2442 ohci_err(ohci, "failed to set Link Power Status\n"); 2443 return -EIO; 2444 } 2445 2446 if (ohci->quirks & QUIRK_TI_SLLZ059) { 2447 ret = probe_tsb41ba3d(ohci); 2448 if (ret < 0) 2449 return ret; 2450 if (ret) 2451 ohci_notice(ohci, "local TSB41BA3D phy\n"); 2452 else 2453 ohci->quirks &= ~QUIRK_TI_SLLZ059; 2454 } 2455 2456 reg_write(ohci, OHCI1394_HCControlClear, 2457 OHCI1394_HCControl_noByteSwapData); 2458 2459 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); 2460 reg_write(ohci, OHCI1394_LinkControlSet, 2461 OHCI1394_LinkControl_cycleTimerEnable | 2462 OHCI1394_LinkControl_cycleMaster); 2463 2464 reg_write(ohci, OHCI1394_ATRetries, 2465 OHCI1394_MAX_AT_REQ_RETRIES | 2466 (OHCI1394_MAX_AT_RESP_RETRIES << 4) | 2467 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) | 2468 (200 << 16)); 2469 2470 ohci->bus_time_running = false; 2471 2472 for (i = 0; i < 32; i++) 2473 if (ohci->ir_context_support & (1 << i)) 2474 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i), 2475 IR_CONTEXT_MULTI_CHANNEL_MODE); 2476 2477 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 2478 if (version >= OHCI_VERSION_1_1) { 2479 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi, 2480 0xfffffffe); 2481 card->broadcast_channel_auto_allocated = true; 2482 } 2483 2484 /* Get implemented bits of the priority arbitration request counter. */ 2485 reg_write(ohci, OHCI1394_FairnessControl, 0x3f); 2486 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f; 2487 reg_write(ohci, OHCI1394_FairnessControl, 0); 2488 card->priority_budget_implemented = ohci->pri_req_max != 0; 2489 2490 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16); 2491 reg_write(ohci, OHCI1394_IntEventClear, ~0); 2492 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 2493 2494 ret = configure_1394a_enhancements(ohci); 2495 if (ret < 0) 2496 return ret; 2497 2498 /* Activate link_on bit and contender bit in our self ID packets.*/ 2499 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER); 2500 if (ret < 0) 2501 return ret; 2502 2503 /* 2504 * When the link is not yet enabled, the atomic config rom 2505 * update mechanism described below in ohci_set_config_rom() 2506 * is not active. We have to update ConfigRomHeader and 2507 * BusOptions manually, and the write to ConfigROMmap takes 2508 * effect immediately. We tie this to the enabling of the 2509 * link, so we have a valid config rom before enabling - the 2510 * OHCI requires that ConfigROMhdr and BusOptions have valid 2511 * values before enabling. 2512 * 2513 * However, when the ConfigROMmap is written, some controllers 2514 * always read back quadlets 0 and 2 from the config rom to 2515 * the ConfigRomHeader and BusOptions registers on bus reset. 2516 * They shouldn't do that in this initial case where the link 2517 * isn't enabled. This means we have to use the same 2518 * workaround here, setting the bus header to 0 and then write 2519 * the right values in the bus reset tasklet. 2520 */ 2521 2522 if (config_rom) { 2523 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2524 &ohci->next_config_rom_bus, GFP_KERNEL); 2525 if (ohci->next_config_rom == NULL) 2526 return -ENOMEM; 2527 2528 copy_config_rom(ohci->next_config_rom, config_rom, length); 2529 } else { 2530 /* 2531 * In the suspend case, config_rom is NULL, which 2532 * means that we just reuse the old config rom. 2533 */ 2534 ohci->next_config_rom = ohci->config_rom; 2535 ohci->next_config_rom_bus = ohci->config_rom_bus; 2536 } 2537 2538 ohci->next_header = ohci->next_config_rom[0]; 2539 ohci->next_config_rom[0] = 0; 2540 reg_write(ohci, OHCI1394_ConfigROMhdr, 0); 2541 reg_write(ohci, OHCI1394_BusOptions, 2542 be32_to_cpu(ohci->next_config_rom[2])); 2543 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2544 2545 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); 2546 2547 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete | 2548 OHCI1394_RQPkt | OHCI1394_RSPkt | 2549 OHCI1394_isochTx | OHCI1394_isochRx | 2550 OHCI1394_postedWriteErr | 2551 OHCI1394_selfIDComplete | 2552 OHCI1394_regAccessFail | 2553 OHCI1394_cycleInconsistent | 2554 OHCI1394_unrecoverableError | 2555 OHCI1394_cycleTooLong | 2556 OHCI1394_masterIntEnable | 2557 OHCI1394_busReset; 2558 reg_write(ohci, OHCI1394_IntMaskSet, irqs); 2559 2560 reg_write(ohci, OHCI1394_HCControlSet, 2561 OHCI1394_HCControl_linkEnable | 2562 OHCI1394_HCControl_BIBimageValid); 2563 2564 reg_write(ohci, OHCI1394_LinkControlSet, 2565 OHCI1394_LinkControl_rcvSelfID | 2566 OHCI1394_LinkControl_rcvPhyPkt); 2567 2568 ar_context_run(&ohci->ar_request_ctx); 2569 ar_context_run(&ohci->ar_response_ctx); 2570 2571 flush_writes(ohci); 2572 2573 /* We are ready to go, reset bus to finish initialization. */ 2574 fw_schedule_bus_reset(&ohci->card, false, true); 2575 2576 return 0; 2577 } 2578 2579 static int ohci_set_config_rom(struct fw_card *card, 2580 const __be32 *config_rom, size_t length) 2581 { 2582 struct fw_ohci *ohci; 2583 __be32 *next_config_rom; 2584 dma_addr_t next_config_rom_bus; 2585 2586 ohci = fw_ohci(card); 2587 2588 /* 2589 * When the OHCI controller is enabled, the config rom update 2590 * mechanism is a bit tricky, but easy enough to use. See 2591 * section 5.5.6 in the OHCI specification. 2592 * 2593 * The OHCI controller caches the new config rom address in a 2594 * shadow register (ConfigROMmapNext) and needs a bus reset 2595 * for the changes to take place. When the bus reset is 2596 * detected, the controller loads the new values for the 2597 * ConfigRomHeader and BusOptions registers from the specified 2598 * config rom and loads ConfigROMmap from the ConfigROMmapNext 2599 * shadow register. All automatically and atomically. 2600 * 2601 * Now, there's a twist to this story. The automatic load of 2602 * ConfigRomHeader and BusOptions doesn't honor the 2603 * noByteSwapData bit, so with a be32 config rom, the 2604 * controller will load be32 values in to these registers 2605 * during the atomic update, even on litte endian 2606 * architectures. The workaround we use is to put a 0 in the 2607 * header quadlet; 0 is endian agnostic and means that the 2608 * config rom isn't ready yet. In the bus reset tasklet we 2609 * then set up the real values for the two registers. 2610 * 2611 * We use ohci->lock to avoid racing with the code that sets 2612 * ohci->next_config_rom to NULL (see bus_reset_work). 2613 */ 2614 2615 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2616 &next_config_rom_bus, GFP_KERNEL); 2617 if (next_config_rom == NULL) 2618 return -ENOMEM; 2619 2620 spin_lock_irq(&ohci->lock); 2621 2622 /* 2623 * If there is not an already pending config_rom update, 2624 * push our new allocation into the ohci->next_config_rom 2625 * and then mark the local variable as null so that we 2626 * won't deallocate the new buffer. 2627 * 2628 * OTOH, if there is a pending config_rom update, just 2629 * use that buffer with the new config_rom data, and 2630 * let this routine free the unused DMA allocation. 2631 */ 2632 2633 if (ohci->next_config_rom == NULL) { 2634 ohci->next_config_rom = next_config_rom; 2635 ohci->next_config_rom_bus = next_config_rom_bus; 2636 next_config_rom = NULL; 2637 } 2638 2639 copy_config_rom(ohci->next_config_rom, config_rom, length); 2640 2641 ohci->next_header = config_rom[0]; 2642 ohci->next_config_rom[0] = 0; 2643 2644 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2645 2646 spin_unlock_irq(&ohci->lock); 2647 2648 /* If we didn't use the DMA allocation, delete it. */ 2649 if (next_config_rom != NULL) { 2650 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom, 2651 next_config_rom_bus); 2652 } 2653 2654 /* 2655 * Now initiate a bus reset to have the changes take 2656 * effect. We clean up the old config rom memory and DMA 2657 * mappings in the bus reset tasklet, since the OHCI 2658 * controller could need to access it before the bus reset 2659 * takes effect. 2660 */ 2661 2662 fw_schedule_bus_reset(&ohci->card, true, true); 2663 2664 return 0; 2665 } 2666 2667 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) 2668 { 2669 struct fw_ohci *ohci = fw_ohci(card); 2670 2671 at_context_transmit(&ohci->at_request_ctx, packet); 2672 } 2673 2674 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) 2675 { 2676 struct fw_ohci *ohci = fw_ohci(card); 2677 2678 at_context_transmit(&ohci->at_response_ctx, packet); 2679 } 2680 2681 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) 2682 { 2683 struct fw_ohci *ohci = fw_ohci(card); 2684 struct context *ctx = &ohci->at_request_ctx; 2685 struct driver_data *driver_data = packet->driver_data; 2686 int ret = -ENOENT; 2687 2688 tasklet_disable_in_atomic(&ctx->tasklet); 2689 2690 if (packet->ack != 0) 2691 goto out; 2692 2693 if (packet->payload_mapped) 2694 dma_unmap_single(ohci->card.device, packet->payload_bus, 2695 packet->payload_length, DMA_TO_DEVICE); 2696 2697 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20); 2698 driver_data->packet = NULL; 2699 packet->ack = RCODE_CANCELLED; 2700 2701 // Timestamping on behalf of the hardware. 2702 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 2703 2704 packet->callback(packet, &ohci->card, packet->ack); 2705 ret = 0; 2706 out: 2707 tasklet_enable(&ctx->tasklet); 2708 2709 return ret; 2710 } 2711 2712 static int ohci_enable_phys_dma(struct fw_card *card, 2713 int node_id, int generation) 2714 { 2715 struct fw_ohci *ohci = fw_ohci(card); 2716 unsigned long flags; 2717 int n, ret = 0; 2718 2719 if (param_remote_dma) 2720 return 0; 2721 2722 /* 2723 * FIXME: Make sure this bitmask is cleared when we clear the busReset 2724 * interrupt bit. Clear physReqResourceAllBuses on bus reset. 2725 */ 2726 2727 spin_lock_irqsave(&ohci->lock, flags); 2728 2729 if (ohci->generation != generation) { 2730 ret = -ESTALE; 2731 goto out; 2732 } 2733 2734 /* 2735 * Note, if the node ID contains a non-local bus ID, physical DMA is 2736 * enabled for _all_ nodes on remote buses. 2737 */ 2738 2739 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; 2740 if (n < 32) 2741 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); 2742 else 2743 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); 2744 2745 flush_writes(ohci); 2746 out: 2747 spin_unlock_irqrestore(&ohci->lock, flags); 2748 2749 return ret; 2750 } 2751 2752 static u32 ohci_read_csr(struct fw_card *card, int csr_offset) 2753 { 2754 struct fw_ohci *ohci = fw_ohci(card); 2755 unsigned long flags; 2756 u32 value; 2757 2758 switch (csr_offset) { 2759 case CSR_STATE_CLEAR: 2760 case CSR_STATE_SET: 2761 if (ohci->is_root && 2762 (reg_read(ohci, OHCI1394_LinkControlSet) & 2763 OHCI1394_LinkControl_cycleMaster)) 2764 value = CSR_STATE_BIT_CMSTR; 2765 else 2766 value = 0; 2767 if (ohci->csr_state_setclear_abdicate) 2768 value |= CSR_STATE_BIT_ABDICATE; 2769 2770 return value; 2771 2772 case CSR_NODE_IDS: 2773 return reg_read(ohci, OHCI1394_NodeID) << 16; 2774 2775 case CSR_CYCLE_TIME: 2776 return get_cycle_time(ohci); 2777 2778 case CSR_BUS_TIME: 2779 /* 2780 * We might be called just after the cycle timer has wrapped 2781 * around but just before the cycle64Seconds handler, so we 2782 * better check here, too, if the bus time needs to be updated. 2783 */ 2784 spin_lock_irqsave(&ohci->lock, flags); 2785 value = update_bus_time(ohci); 2786 spin_unlock_irqrestore(&ohci->lock, flags); 2787 return value; 2788 2789 case CSR_BUSY_TIMEOUT: 2790 value = reg_read(ohci, OHCI1394_ATRetries); 2791 return (value >> 4) & 0x0ffff00f; 2792 2793 case CSR_PRIORITY_BUDGET: 2794 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) | 2795 (ohci->pri_req_max << 8); 2796 2797 default: 2798 WARN_ON(1); 2799 return 0; 2800 } 2801 } 2802 2803 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value) 2804 { 2805 struct fw_ohci *ohci = fw_ohci(card); 2806 unsigned long flags; 2807 2808 switch (csr_offset) { 2809 case CSR_STATE_CLEAR: 2810 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2811 reg_write(ohci, OHCI1394_LinkControlClear, 2812 OHCI1394_LinkControl_cycleMaster); 2813 flush_writes(ohci); 2814 } 2815 if (value & CSR_STATE_BIT_ABDICATE) 2816 ohci->csr_state_setclear_abdicate = false; 2817 break; 2818 2819 case CSR_STATE_SET: 2820 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2821 reg_write(ohci, OHCI1394_LinkControlSet, 2822 OHCI1394_LinkControl_cycleMaster); 2823 flush_writes(ohci); 2824 } 2825 if (value & CSR_STATE_BIT_ABDICATE) 2826 ohci->csr_state_setclear_abdicate = true; 2827 break; 2828 2829 case CSR_NODE_IDS: 2830 reg_write(ohci, OHCI1394_NodeID, value >> 16); 2831 flush_writes(ohci); 2832 break; 2833 2834 case CSR_CYCLE_TIME: 2835 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value); 2836 reg_write(ohci, OHCI1394_IntEventSet, 2837 OHCI1394_cycleInconsistent); 2838 flush_writes(ohci); 2839 break; 2840 2841 case CSR_BUS_TIME: 2842 spin_lock_irqsave(&ohci->lock, flags); 2843 ohci->bus_time = (update_bus_time(ohci) & 0x40) | 2844 (value & ~0x7f); 2845 spin_unlock_irqrestore(&ohci->lock, flags); 2846 break; 2847 2848 case CSR_BUSY_TIMEOUT: 2849 value = (value & 0xf) | ((value & 0xf) << 4) | 2850 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4); 2851 reg_write(ohci, OHCI1394_ATRetries, value); 2852 flush_writes(ohci); 2853 break; 2854 2855 case CSR_PRIORITY_BUDGET: 2856 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f); 2857 flush_writes(ohci); 2858 break; 2859 2860 default: 2861 WARN_ON(1); 2862 break; 2863 } 2864 } 2865 2866 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause) 2867 { 2868 trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header, 2869 ctx->header_length); 2870 trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header, 2871 ctx->header_length); 2872 2873 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp, 2874 ctx->header_length, ctx->header, 2875 ctx->base.callback_data); 2876 ctx->header_length = 0; 2877 } 2878 2879 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr) 2880 { 2881 u32 *ctx_hdr; 2882 2883 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) { 2884 if (ctx->base.drop_overflow_headers) 2885 return; 2886 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW); 2887 } 2888 2889 ctx_hdr = ctx->header + ctx->header_length; 2890 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]); 2891 2892 /* 2893 * The two iso header quadlets are byteswapped to little 2894 * endian by the controller, but we want to present them 2895 * as big endian for consistency with the bus endianness. 2896 */ 2897 if (ctx->base.header_size > 0) 2898 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */ 2899 if (ctx->base.header_size > 4) 2900 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */ 2901 if (ctx->base.header_size > 8) 2902 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8); 2903 ctx->header_length += ctx->base.header_size; 2904 } 2905 2906 static int handle_ir_packet_per_buffer(struct context *context, 2907 struct descriptor *d, 2908 struct descriptor *last) 2909 { 2910 struct iso_context *ctx = 2911 container_of(context, struct iso_context, context); 2912 struct descriptor *pd; 2913 u32 buffer_dma; 2914 2915 for (pd = d; pd <= last; pd++) 2916 if (pd->transfer_status) 2917 break; 2918 if (pd > last) 2919 /* Descriptor(s) not done yet, stop iteration */ 2920 return 0; 2921 2922 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) { 2923 d++; 2924 buffer_dma = le32_to_cpu(d->data_address); 2925 dma_sync_single_range_for_cpu(context->ohci->card.device, 2926 buffer_dma & PAGE_MASK, 2927 buffer_dma & ~PAGE_MASK, 2928 le16_to_cpu(d->req_count), 2929 DMA_FROM_DEVICE); 2930 } 2931 2932 copy_iso_headers(ctx, (u32 *) (last + 1)); 2933 2934 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2935 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ); 2936 2937 return 1; 2938 } 2939 2940 /* d == last because each descriptor block is only a single descriptor. */ 2941 static int handle_ir_buffer_fill(struct context *context, 2942 struct descriptor *d, 2943 struct descriptor *last) 2944 { 2945 struct iso_context *ctx = 2946 container_of(context, struct iso_context, context); 2947 unsigned int req_count, res_count, completed; 2948 u32 buffer_dma; 2949 2950 req_count = le16_to_cpu(last->req_count); 2951 res_count = le16_to_cpu(READ_ONCE(last->res_count)); 2952 completed = req_count - res_count; 2953 buffer_dma = le32_to_cpu(last->data_address); 2954 2955 if (completed > 0) { 2956 ctx->mc_buffer_bus = buffer_dma; 2957 ctx->mc_completed = completed; 2958 } 2959 2960 if (res_count != 0) 2961 /* Descriptor(s) not done yet, stop iteration */ 2962 return 0; 2963 2964 dma_sync_single_range_for_cpu(context->ohci->card.device, 2965 buffer_dma & PAGE_MASK, 2966 buffer_dma & ~PAGE_MASK, 2967 completed, DMA_FROM_DEVICE); 2968 2969 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) { 2970 trace_isoc_inbound_multiple_completions(&ctx->base, completed, 2971 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ); 2972 2973 ctx->base.callback.mc(&ctx->base, 2974 buffer_dma + completed, 2975 ctx->base.callback_data); 2976 ctx->mc_completed = 0; 2977 } 2978 2979 return 1; 2980 } 2981 2982 static void flush_ir_buffer_fill(struct iso_context *ctx) 2983 { 2984 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device, 2985 ctx->mc_buffer_bus & PAGE_MASK, 2986 ctx->mc_buffer_bus & ~PAGE_MASK, 2987 ctx->mc_completed, DMA_FROM_DEVICE); 2988 2989 trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed, 2990 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH); 2991 2992 ctx->base.callback.mc(&ctx->base, 2993 ctx->mc_buffer_bus + ctx->mc_completed, 2994 ctx->base.callback_data); 2995 ctx->mc_completed = 0; 2996 } 2997 2998 static inline void sync_it_packet_for_cpu(struct context *context, 2999 struct descriptor *pd) 3000 { 3001 __le16 control; 3002 u32 buffer_dma; 3003 3004 /* only packets beginning with OUTPUT_MORE* have data buffers */ 3005 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 3006 return; 3007 3008 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */ 3009 pd += 2; 3010 3011 /* 3012 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's 3013 * data buffer is in the context program's coherent page and must not 3014 * be synced. 3015 */ 3016 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) == 3017 (context->current_bus & PAGE_MASK)) { 3018 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 3019 return; 3020 pd++; 3021 } 3022 3023 do { 3024 buffer_dma = le32_to_cpu(pd->data_address); 3025 dma_sync_single_range_for_cpu(context->ohci->card.device, 3026 buffer_dma & PAGE_MASK, 3027 buffer_dma & ~PAGE_MASK, 3028 le16_to_cpu(pd->req_count), 3029 DMA_TO_DEVICE); 3030 control = pd->control; 3031 pd++; 3032 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))); 3033 } 3034 3035 static int handle_it_packet(struct context *context, 3036 struct descriptor *d, 3037 struct descriptor *last) 3038 { 3039 struct iso_context *ctx = 3040 container_of(context, struct iso_context, context); 3041 struct descriptor *pd; 3042 __be32 *ctx_hdr; 3043 3044 for (pd = d; pd <= last; pd++) 3045 if (pd->transfer_status) 3046 break; 3047 if (pd > last) 3048 /* Descriptor(s) not done yet, stop iteration */ 3049 return 0; 3050 3051 sync_it_packet_for_cpu(context, d); 3052 3053 if (ctx->header_length + 4 > PAGE_SIZE) { 3054 if (ctx->base.drop_overflow_headers) 3055 return 1; 3056 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW); 3057 } 3058 3059 ctx_hdr = ctx->header + ctx->header_length; 3060 ctx->last_timestamp = le16_to_cpu(last->res_count); 3061 /* Present this value as big-endian to match the receive code */ 3062 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) | 3063 le16_to_cpu(pd->res_count)); 3064 ctx->header_length += 4; 3065 3066 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 3067 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ); 3068 3069 return 1; 3070 } 3071 3072 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels) 3073 { 3074 u32 hi = channels >> 32, lo = channels; 3075 3076 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi); 3077 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo); 3078 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi); 3079 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo); 3080 ohci->mc_channels = channels; 3081 } 3082 3083 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, 3084 int type, int channel, size_t header_size) 3085 { 3086 struct fw_ohci *ohci = fw_ohci(card); 3087 struct iso_context *ctx; 3088 descriptor_callback_t callback; 3089 u64 *channels; 3090 u32 *mask, regs; 3091 int index, ret = -EBUSY; 3092 3093 spin_lock_irq(&ohci->lock); 3094 3095 switch (type) { 3096 case FW_ISO_CONTEXT_TRANSMIT: 3097 mask = &ohci->it_context_mask; 3098 callback = handle_it_packet; 3099 index = ffs(*mask) - 1; 3100 if (index >= 0) { 3101 *mask &= ~(1 << index); 3102 regs = OHCI1394_IsoXmitContextBase(index); 3103 ctx = &ohci->it_context_list[index]; 3104 } 3105 break; 3106 3107 case FW_ISO_CONTEXT_RECEIVE: 3108 channels = &ohci->ir_context_channels; 3109 mask = &ohci->ir_context_mask; 3110 callback = handle_ir_packet_per_buffer; 3111 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1; 3112 if (index >= 0) { 3113 *channels &= ~(1ULL << channel); 3114 *mask &= ~(1 << index); 3115 regs = OHCI1394_IsoRcvContextBase(index); 3116 ctx = &ohci->ir_context_list[index]; 3117 } 3118 break; 3119 3120 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3121 mask = &ohci->ir_context_mask; 3122 callback = handle_ir_buffer_fill; 3123 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1; 3124 if (index >= 0) { 3125 ohci->mc_allocated = true; 3126 *mask &= ~(1 << index); 3127 regs = OHCI1394_IsoRcvContextBase(index); 3128 ctx = &ohci->ir_context_list[index]; 3129 } 3130 break; 3131 3132 default: 3133 index = -1; 3134 ret = -ENOSYS; 3135 } 3136 3137 spin_unlock_irq(&ohci->lock); 3138 3139 if (index < 0) 3140 return ERR_PTR(ret); 3141 3142 memset(ctx, 0, sizeof(*ctx)); 3143 ctx->header_length = 0; 3144 ctx->header = (void *) __get_free_page(GFP_KERNEL); 3145 if (ctx->header == NULL) { 3146 ret = -ENOMEM; 3147 goto out; 3148 } 3149 ret = context_init(&ctx->context, ohci, regs, callback); 3150 if (ret < 0) 3151 goto out_with_header; 3152 3153 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) { 3154 set_multichannel_mask(ohci, 0); 3155 ctx->mc_completed = 0; 3156 } 3157 3158 return &ctx->base; 3159 3160 out_with_header: 3161 free_page((unsigned long)ctx->header); 3162 out: 3163 spin_lock_irq(&ohci->lock); 3164 3165 switch (type) { 3166 case FW_ISO_CONTEXT_RECEIVE: 3167 *channels |= 1ULL << channel; 3168 break; 3169 3170 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3171 ohci->mc_allocated = false; 3172 break; 3173 } 3174 *mask |= 1 << index; 3175 3176 spin_unlock_irq(&ohci->lock); 3177 3178 return ERR_PTR(ret); 3179 } 3180 3181 static int ohci_start_iso(struct fw_iso_context *base, 3182 s32 cycle, u32 sync, u32 tags) 3183 { 3184 struct iso_context *ctx = container_of(base, struct iso_context, base); 3185 struct fw_ohci *ohci = ctx->context.ohci; 3186 u32 control = IR_CONTEXT_ISOCH_HEADER, match; 3187 int index; 3188 3189 /* the controller cannot start without any queued packets */ 3190 if (ctx->context.last->branch_address == 0) 3191 return -ENODATA; 3192 3193 switch (ctx->base.type) { 3194 case FW_ISO_CONTEXT_TRANSMIT: 3195 index = ctx - ohci->it_context_list; 3196 match = 0; 3197 if (cycle >= 0) 3198 match = IT_CONTEXT_CYCLE_MATCH_ENABLE | 3199 (cycle & 0x7fff) << 16; 3200 3201 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); 3202 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); 3203 context_run(&ctx->context, match); 3204 break; 3205 3206 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3207 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE; 3208 fallthrough; 3209 case FW_ISO_CONTEXT_RECEIVE: 3210 index = ctx - ohci->ir_context_list; 3211 match = (tags << 28) | (sync << 8) | ctx->base.channel; 3212 if (cycle >= 0) { 3213 match |= (cycle & 0x07fff) << 12; 3214 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; 3215 } 3216 3217 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); 3218 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); 3219 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); 3220 context_run(&ctx->context, control); 3221 3222 ctx->sync = sync; 3223 ctx->tags = tags; 3224 3225 break; 3226 } 3227 3228 return 0; 3229 } 3230 3231 static int ohci_stop_iso(struct fw_iso_context *base) 3232 { 3233 struct fw_ohci *ohci = fw_ohci(base->card); 3234 struct iso_context *ctx = container_of(base, struct iso_context, base); 3235 int index; 3236 3237 switch (ctx->base.type) { 3238 case FW_ISO_CONTEXT_TRANSMIT: 3239 index = ctx - ohci->it_context_list; 3240 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); 3241 break; 3242 3243 case FW_ISO_CONTEXT_RECEIVE: 3244 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3245 index = ctx - ohci->ir_context_list; 3246 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); 3247 break; 3248 } 3249 flush_writes(ohci); 3250 context_stop(&ctx->context); 3251 tasklet_kill(&ctx->context.tasklet); 3252 3253 return 0; 3254 } 3255 3256 static void ohci_free_iso_context(struct fw_iso_context *base) 3257 { 3258 struct fw_ohci *ohci = fw_ohci(base->card); 3259 struct iso_context *ctx = container_of(base, struct iso_context, base); 3260 unsigned long flags; 3261 int index; 3262 3263 ohci_stop_iso(base); 3264 context_release(&ctx->context); 3265 free_page((unsigned long)ctx->header); 3266 3267 spin_lock_irqsave(&ohci->lock, flags); 3268 3269 switch (base->type) { 3270 case FW_ISO_CONTEXT_TRANSMIT: 3271 index = ctx - ohci->it_context_list; 3272 ohci->it_context_mask |= 1 << index; 3273 break; 3274 3275 case FW_ISO_CONTEXT_RECEIVE: 3276 index = ctx - ohci->ir_context_list; 3277 ohci->ir_context_mask |= 1 << index; 3278 ohci->ir_context_channels |= 1ULL << base->channel; 3279 break; 3280 3281 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3282 index = ctx - ohci->ir_context_list; 3283 ohci->ir_context_mask |= 1 << index; 3284 ohci->ir_context_channels |= ohci->mc_channels; 3285 ohci->mc_channels = 0; 3286 ohci->mc_allocated = false; 3287 break; 3288 } 3289 3290 spin_unlock_irqrestore(&ohci->lock, flags); 3291 } 3292 3293 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels) 3294 { 3295 struct fw_ohci *ohci = fw_ohci(base->card); 3296 unsigned long flags; 3297 int ret; 3298 3299 switch (base->type) { 3300 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3301 3302 spin_lock_irqsave(&ohci->lock, flags); 3303 3304 /* Don't allow multichannel to grab other contexts' channels. */ 3305 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) { 3306 *channels = ohci->ir_context_channels; 3307 ret = -EBUSY; 3308 } else { 3309 set_multichannel_mask(ohci, *channels); 3310 ret = 0; 3311 } 3312 3313 spin_unlock_irqrestore(&ohci->lock, flags); 3314 3315 break; 3316 default: 3317 ret = -EINVAL; 3318 } 3319 3320 return ret; 3321 } 3322 3323 #ifdef CONFIG_PM 3324 static void ohci_resume_iso_dma(struct fw_ohci *ohci) 3325 { 3326 int i; 3327 struct iso_context *ctx; 3328 3329 for (i = 0 ; i < ohci->n_ir ; i++) { 3330 ctx = &ohci->ir_context_list[i]; 3331 if (ctx->context.running) 3332 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3333 } 3334 3335 for (i = 0 ; i < ohci->n_it ; i++) { 3336 ctx = &ohci->it_context_list[i]; 3337 if (ctx->context.running) 3338 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3339 } 3340 } 3341 #endif 3342 3343 static int queue_iso_transmit(struct iso_context *ctx, 3344 struct fw_iso_packet *packet, 3345 struct fw_iso_buffer *buffer, 3346 unsigned long payload) 3347 { 3348 struct descriptor *d, *last, *pd; 3349 struct fw_iso_packet *p; 3350 __le32 *header; 3351 dma_addr_t d_bus, page_bus; 3352 u32 z, header_z, payload_z, irq; 3353 u32 payload_index, payload_end_index, next_page_index; 3354 int page, end_page, i, length, offset; 3355 3356 p = packet; 3357 payload_index = payload; 3358 3359 if (p->skip) 3360 z = 1; 3361 else 3362 z = 2; 3363 if (p->header_length > 0) 3364 z++; 3365 3366 /* Determine the first page the payload isn't contained in. */ 3367 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; 3368 if (p->payload_length > 0) 3369 payload_z = end_page - (payload_index >> PAGE_SHIFT); 3370 else 3371 payload_z = 0; 3372 3373 z += payload_z; 3374 3375 /* Get header size in number of descriptors. */ 3376 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); 3377 3378 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); 3379 if (d == NULL) 3380 return -ENOMEM; 3381 3382 if (!p->skip) { 3383 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 3384 d[0].req_count = cpu_to_le16(8); 3385 /* 3386 * Link the skip address to this descriptor itself. This causes 3387 * a context to skip a cycle whenever lost cycles or FIFO 3388 * overruns occur, without dropping the data. The application 3389 * should then decide whether this is an error condition or not. 3390 * FIXME: Make the context's cycle-lost behaviour configurable? 3391 */ 3392 d[0].branch_address = cpu_to_le32(d_bus | z); 3393 3394 header = (__le32 *) &d[1]; 3395 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) | 3396 IT_HEADER_TAG(p->tag) | 3397 IT_HEADER_TCODE(TCODE_STREAM_DATA) | 3398 IT_HEADER_CHANNEL(ctx->base.channel) | 3399 IT_HEADER_SPEED(ctx->base.speed)); 3400 header[1] = 3401 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length + 3402 p->payload_length)); 3403 } 3404 3405 if (p->header_length > 0) { 3406 d[2].req_count = cpu_to_le16(p->header_length); 3407 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); 3408 memcpy(&d[z], p->header, p->header_length); 3409 } 3410 3411 pd = d + z - payload_z; 3412 payload_end_index = payload_index + p->payload_length; 3413 for (i = 0; i < payload_z; i++) { 3414 page = payload_index >> PAGE_SHIFT; 3415 offset = payload_index & ~PAGE_MASK; 3416 next_page_index = (page + 1) << PAGE_SHIFT; 3417 length = 3418 min(next_page_index, payload_end_index) - payload_index; 3419 pd[i].req_count = cpu_to_le16(length); 3420 3421 page_bus = page_private(buffer->pages[page]); 3422 pd[i].data_address = cpu_to_le32(page_bus + offset); 3423 3424 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3425 page_bus, offset, length, 3426 DMA_TO_DEVICE); 3427 3428 payload_index += length; 3429 } 3430 3431 if (p->interrupt) 3432 irq = DESCRIPTOR_IRQ_ALWAYS; 3433 else 3434 irq = DESCRIPTOR_NO_IRQ; 3435 3436 last = z == 2 ? d : d + z - 1; 3437 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 3438 DESCRIPTOR_STATUS | 3439 DESCRIPTOR_BRANCH_ALWAYS | 3440 irq); 3441 3442 context_append(&ctx->context, d, z, header_z); 3443 3444 return 0; 3445 } 3446 3447 static int queue_iso_packet_per_buffer(struct iso_context *ctx, 3448 struct fw_iso_packet *packet, 3449 struct fw_iso_buffer *buffer, 3450 unsigned long payload) 3451 { 3452 struct device *device = ctx->context.ohci->card.device; 3453 struct descriptor *d, *pd; 3454 dma_addr_t d_bus, page_bus; 3455 u32 z, header_z, rest; 3456 int i, j, length; 3457 int page, offset, packet_count, header_size, payload_per_buffer; 3458 3459 /* 3460 * The OHCI controller puts the isochronous header and trailer in the 3461 * buffer, so we need at least 8 bytes. 3462 */ 3463 packet_count = packet->header_length / ctx->base.header_size; 3464 header_size = max(ctx->base.header_size, (size_t)8); 3465 3466 /* Get header size in number of descriptors. */ 3467 header_z = DIV_ROUND_UP(header_size, sizeof(*d)); 3468 page = payload >> PAGE_SHIFT; 3469 offset = payload & ~PAGE_MASK; 3470 payload_per_buffer = packet->payload_length / packet_count; 3471 3472 for (i = 0; i < packet_count; i++) { 3473 /* d points to the header descriptor */ 3474 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; 3475 d = context_get_descriptors(&ctx->context, 3476 z + header_z, &d_bus); 3477 if (d == NULL) 3478 return -ENOMEM; 3479 3480 d->control = cpu_to_le16(DESCRIPTOR_STATUS | 3481 DESCRIPTOR_INPUT_MORE); 3482 if (packet->skip && i == 0) 3483 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3484 d->req_count = cpu_to_le16(header_size); 3485 d->res_count = d->req_count; 3486 d->transfer_status = 0; 3487 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); 3488 3489 rest = payload_per_buffer; 3490 pd = d; 3491 for (j = 1; j < z; j++) { 3492 pd++; 3493 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3494 DESCRIPTOR_INPUT_MORE); 3495 3496 if (offset + rest < PAGE_SIZE) 3497 length = rest; 3498 else 3499 length = PAGE_SIZE - offset; 3500 pd->req_count = cpu_to_le16(length); 3501 pd->res_count = pd->req_count; 3502 pd->transfer_status = 0; 3503 3504 page_bus = page_private(buffer->pages[page]); 3505 pd->data_address = cpu_to_le32(page_bus + offset); 3506 3507 dma_sync_single_range_for_device(device, page_bus, 3508 offset, length, 3509 DMA_FROM_DEVICE); 3510 3511 offset = (offset + length) & ~PAGE_MASK; 3512 rest -= length; 3513 if (offset == 0) 3514 page++; 3515 } 3516 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3517 DESCRIPTOR_INPUT_LAST | 3518 DESCRIPTOR_BRANCH_ALWAYS); 3519 if (packet->interrupt && i == packet_count - 1) 3520 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3521 3522 context_append(&ctx->context, d, z, header_z); 3523 } 3524 3525 return 0; 3526 } 3527 3528 static int queue_iso_buffer_fill(struct iso_context *ctx, 3529 struct fw_iso_packet *packet, 3530 struct fw_iso_buffer *buffer, 3531 unsigned long payload) 3532 { 3533 struct descriptor *d; 3534 dma_addr_t d_bus, page_bus; 3535 int page, offset, rest, z, i, length; 3536 3537 page = payload >> PAGE_SHIFT; 3538 offset = payload & ~PAGE_MASK; 3539 rest = packet->payload_length; 3540 3541 /* We need one descriptor for each page in the buffer. */ 3542 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE); 3543 3544 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count)) 3545 return -EFAULT; 3546 3547 for (i = 0; i < z; i++) { 3548 d = context_get_descriptors(&ctx->context, 1, &d_bus); 3549 if (d == NULL) 3550 return -ENOMEM; 3551 3552 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 3553 DESCRIPTOR_BRANCH_ALWAYS); 3554 if (packet->skip && i == 0) 3555 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3556 if (packet->interrupt && i == z - 1) 3557 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3558 3559 if (offset + rest < PAGE_SIZE) 3560 length = rest; 3561 else 3562 length = PAGE_SIZE - offset; 3563 d->req_count = cpu_to_le16(length); 3564 d->res_count = d->req_count; 3565 d->transfer_status = 0; 3566 3567 page_bus = page_private(buffer->pages[page]); 3568 d->data_address = cpu_to_le32(page_bus + offset); 3569 3570 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3571 page_bus, offset, length, 3572 DMA_FROM_DEVICE); 3573 3574 rest -= length; 3575 offset = 0; 3576 page++; 3577 3578 context_append(&ctx->context, d, 1, 0); 3579 } 3580 3581 return 0; 3582 } 3583 3584 static int ohci_queue_iso(struct fw_iso_context *base, 3585 struct fw_iso_packet *packet, 3586 struct fw_iso_buffer *buffer, 3587 unsigned long payload) 3588 { 3589 struct iso_context *ctx = container_of(base, struct iso_context, base); 3590 unsigned long flags; 3591 int ret = -ENOSYS; 3592 3593 spin_lock_irqsave(&ctx->context.ohci->lock, flags); 3594 switch (base->type) { 3595 case FW_ISO_CONTEXT_TRANSMIT: 3596 ret = queue_iso_transmit(ctx, packet, buffer, payload); 3597 break; 3598 case FW_ISO_CONTEXT_RECEIVE: 3599 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload); 3600 break; 3601 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3602 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload); 3603 break; 3604 } 3605 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags); 3606 3607 return ret; 3608 } 3609 3610 static void ohci_flush_queue_iso(struct fw_iso_context *base) 3611 { 3612 struct context *ctx = 3613 &container_of(base, struct iso_context, base)->context; 3614 3615 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 3616 } 3617 3618 static int ohci_flush_iso_completions(struct fw_iso_context *base) 3619 { 3620 struct iso_context *ctx = container_of(base, struct iso_context, base); 3621 int ret = 0; 3622 3623 tasklet_disable_in_atomic(&ctx->context.tasklet); 3624 3625 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) { 3626 context_tasklet((unsigned long)&ctx->context); 3627 3628 switch (base->type) { 3629 case FW_ISO_CONTEXT_TRANSMIT: 3630 case FW_ISO_CONTEXT_RECEIVE: 3631 if (ctx->header_length != 0) 3632 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH); 3633 break; 3634 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3635 if (ctx->mc_completed != 0) 3636 flush_ir_buffer_fill(ctx); 3637 break; 3638 default: 3639 ret = -ENOSYS; 3640 } 3641 3642 clear_bit_unlock(0, &ctx->flushing_completions); 3643 smp_mb__after_atomic(); 3644 } 3645 3646 tasklet_enable(&ctx->context.tasklet); 3647 3648 return ret; 3649 } 3650 3651 static const struct fw_card_driver ohci_driver = { 3652 .enable = ohci_enable, 3653 .read_phy_reg = ohci_read_phy_reg, 3654 .update_phy_reg = ohci_update_phy_reg, 3655 .set_config_rom = ohci_set_config_rom, 3656 .send_request = ohci_send_request, 3657 .send_response = ohci_send_response, 3658 .cancel_packet = ohci_cancel_packet, 3659 .enable_phys_dma = ohci_enable_phys_dma, 3660 .read_csr = ohci_read_csr, 3661 .write_csr = ohci_write_csr, 3662 3663 .allocate_iso_context = ohci_allocate_iso_context, 3664 .free_iso_context = ohci_free_iso_context, 3665 .set_iso_channels = ohci_set_iso_channels, 3666 .queue_iso = ohci_queue_iso, 3667 .flush_queue_iso = ohci_flush_queue_iso, 3668 .flush_iso_completions = ohci_flush_iso_completions, 3669 .start_iso = ohci_start_iso, 3670 .stop_iso = ohci_stop_iso, 3671 }; 3672 3673 #ifdef CONFIG_PPC_PMAC 3674 static void pmac_ohci_on(struct pci_dev *dev) 3675 { 3676 if (machine_is(powermac)) { 3677 struct device_node *ofn = pci_device_to_OF_node(dev); 3678 3679 if (ofn) { 3680 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); 3681 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); 3682 } 3683 } 3684 } 3685 3686 static void pmac_ohci_off(struct pci_dev *dev) 3687 { 3688 if (machine_is(powermac)) { 3689 struct device_node *ofn = pci_device_to_OF_node(dev); 3690 3691 if (ofn) { 3692 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); 3693 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); 3694 } 3695 } 3696 } 3697 #else 3698 static inline void pmac_ohci_on(struct pci_dev *dev) {} 3699 static inline void pmac_ohci_off(struct pci_dev *dev) {} 3700 #endif /* CONFIG_PPC_PMAC */ 3701 3702 static void release_ohci(struct device *dev, void *data) 3703 { 3704 struct pci_dev *pdev = to_pci_dev(dev); 3705 struct fw_ohci *ohci = pci_get_drvdata(pdev); 3706 3707 pmac_ohci_off(pdev); 3708 3709 ar_context_release(&ohci->ar_response_ctx); 3710 ar_context_release(&ohci->ar_request_ctx); 3711 3712 dev_notice(dev, "removed fw-ohci device\n"); 3713 } 3714 3715 static int pci_probe(struct pci_dev *dev, 3716 const struct pci_device_id *ent) 3717 { 3718 struct fw_ohci *ohci; 3719 u32 bus_options, max_receive, link_speed, version; 3720 u64 guid; 3721 int i, flags, irq, err; 3722 size_t size; 3723 3724 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) { 3725 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n"); 3726 return -ENOSYS; 3727 } 3728 3729 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL); 3730 if (ohci == NULL) 3731 return -ENOMEM; 3732 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); 3733 pci_set_drvdata(dev, ohci); 3734 pmac_ohci_on(dev); 3735 devres_add(&dev->dev, ohci); 3736 3737 err = pcim_enable_device(dev); 3738 if (err) { 3739 dev_err(&dev->dev, "failed to enable OHCI hardware\n"); 3740 return err; 3741 } 3742 3743 pci_set_master(dev); 3744 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); 3745 3746 spin_lock_init(&ohci->lock); 3747 mutex_init(&ohci->phy_reg_mutex); 3748 3749 INIT_WORK(&ohci->bus_reset_work, bus_reset_work); 3750 3751 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) || 3752 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) { 3753 ohci_err(ohci, "invalid MMIO resource\n"); 3754 return -ENXIO; 3755 } 3756 3757 err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name); 3758 if (err) { 3759 ohci_err(ohci, "request and map MMIO resource unavailable\n"); 3760 return -ENXIO; 3761 } 3762 ohci->registers = pcim_iomap_table(dev)[0]; 3763 3764 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++) 3765 if ((ohci_quirks[i].vendor == dev->vendor) && 3766 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID || 3767 ohci_quirks[i].device == dev->device) && 3768 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID || 3769 ohci_quirks[i].revision >= dev->revision)) { 3770 ohci->quirks = ohci_quirks[i].flags; 3771 break; 3772 } 3773 if (param_quirks) 3774 ohci->quirks = param_quirks; 3775 3776 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev)) 3777 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ; 3778 3779 /* 3780 * Because dma_alloc_coherent() allocates at least one page, 3781 * we save space by using a common buffer for the AR request/ 3782 * response descriptors and the self IDs buffer. 3783 */ 3784 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4); 3785 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2); 3786 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus, 3787 GFP_KERNEL); 3788 if (!ohci->misc_buffer) 3789 return -ENOMEM; 3790 3791 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0, 3792 OHCI1394_AsReqRcvContextControlSet); 3793 if (err < 0) 3794 return err; 3795 3796 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4, 3797 OHCI1394_AsRspRcvContextControlSet); 3798 if (err < 0) 3799 return err; 3800 3801 err = context_init(&ohci->at_request_ctx, ohci, 3802 OHCI1394_AsReqTrContextControlSet, handle_at_packet); 3803 if (err < 0) 3804 return err; 3805 3806 err = context_init(&ohci->at_response_ctx, ohci, 3807 OHCI1394_AsRspTrContextControlSet, handle_at_packet); 3808 if (err < 0) 3809 return err; 3810 3811 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); 3812 ohci->ir_context_channels = ~0ULL; 3813 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); 3814 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); 3815 ohci->ir_context_mask = ohci->ir_context_support; 3816 ohci->n_ir = hweight32(ohci->ir_context_mask); 3817 size = sizeof(struct iso_context) * ohci->n_ir; 3818 ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL); 3819 if (!ohci->ir_context_list) 3820 return -ENOMEM; 3821 3822 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); 3823 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); 3824 /* JMicron JMB38x often shows 0 at first read, just ignore it */ 3825 if (!ohci->it_context_support) { 3826 ohci_notice(ohci, "overriding IsoXmitIntMask\n"); 3827 ohci->it_context_support = 0xf; 3828 } 3829 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); 3830 ohci->it_context_mask = ohci->it_context_support; 3831 ohci->n_it = hweight32(ohci->it_context_mask); 3832 size = sizeof(struct iso_context) * ohci->n_it; 3833 ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL); 3834 if (!ohci->it_context_list) 3835 return -ENOMEM; 3836 3837 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2; 3838 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2; 3839 3840 bus_options = reg_read(ohci, OHCI1394_BusOptions); 3841 max_receive = (bus_options >> 12) & 0xf; 3842 link_speed = bus_options & 0x7; 3843 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | 3844 reg_read(ohci, OHCI1394_GUIDLo); 3845 3846 flags = PCI_IRQ_INTX; 3847 if (!(ohci->quirks & QUIRK_NO_MSI)) 3848 flags |= PCI_IRQ_MSI; 3849 err = pci_alloc_irq_vectors(dev, 1, 1, flags); 3850 if (err < 0) 3851 return err; 3852 irq = pci_irq_vector(dev, 0); 3853 if (irq < 0) { 3854 err = irq; 3855 goto fail_msi; 3856 } 3857 3858 err = request_threaded_irq(irq, irq_handler, NULL, 3859 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, 3860 ohci); 3861 if (err < 0) { 3862 ohci_err(ohci, "failed to allocate interrupt %d\n", irq); 3863 goto fail_msi; 3864 } 3865 3866 err = fw_card_add(&ohci->card, max_receive, link_speed, guid); 3867 if (err) 3868 goto fail_irq; 3869 3870 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 3871 ohci_notice(ohci, 3872 "added OHCI v%x.%x device as card %d, " 3873 "%d IR + %d IT contexts, quirks 0x%x%s\n", 3874 version >> 16, version & 0xff, ohci->card.index, 3875 ohci->n_ir, ohci->n_it, ohci->quirks, 3876 reg_read(ohci, OHCI1394_PhyUpperBound) ? 3877 ", physUB" : ""); 3878 3879 return 0; 3880 3881 fail_irq: 3882 free_irq(irq, ohci); 3883 fail_msi: 3884 pci_free_irq_vectors(dev); 3885 3886 return err; 3887 } 3888 3889 static void pci_remove(struct pci_dev *dev) 3890 { 3891 struct fw_ohci *ohci = pci_get_drvdata(dev); 3892 int irq; 3893 3894 /* 3895 * If the removal is happening from the suspend state, LPS won't be 3896 * enabled and host registers (eg., IntMaskClear) won't be accessible. 3897 */ 3898 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) { 3899 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 3900 flush_writes(ohci); 3901 } 3902 cancel_work_sync(&ohci->bus_reset_work); 3903 fw_core_remove_card(&ohci->card); 3904 3905 /* 3906 * FIXME: Fail all pending packets here, now that the upper 3907 * layers can't queue any more. 3908 */ 3909 3910 software_reset(ohci); 3911 3912 irq = pci_irq_vector(dev, 0); 3913 if (irq >= 0) 3914 free_irq(irq, ohci); 3915 pci_free_irq_vectors(dev); 3916 3917 dev_notice(&dev->dev, "removing fw-ohci device\n"); 3918 } 3919 3920 #ifdef CONFIG_PM 3921 static int pci_suspend(struct pci_dev *dev, pm_message_t state) 3922 { 3923 struct fw_ohci *ohci = pci_get_drvdata(dev); 3924 int err; 3925 3926 software_reset(ohci); 3927 err = pci_save_state(dev); 3928 if (err) { 3929 ohci_err(ohci, "pci_save_state failed\n"); 3930 return err; 3931 } 3932 err = pci_set_power_state(dev, pci_choose_state(dev, state)); 3933 if (err) 3934 ohci_err(ohci, "pci_set_power_state failed with %d\n", err); 3935 pmac_ohci_off(dev); 3936 3937 return 0; 3938 } 3939 3940 static int pci_resume(struct pci_dev *dev) 3941 { 3942 struct fw_ohci *ohci = pci_get_drvdata(dev); 3943 int err; 3944 3945 pmac_ohci_on(dev); 3946 pci_set_power_state(dev, PCI_D0); 3947 pci_restore_state(dev); 3948 err = pci_enable_device(dev); 3949 if (err) { 3950 ohci_err(ohci, "pci_enable_device failed\n"); 3951 return err; 3952 } 3953 3954 /* Some systems don't setup GUID register on resume from ram */ 3955 if (!reg_read(ohci, OHCI1394_GUIDLo) && 3956 !reg_read(ohci, OHCI1394_GUIDHi)) { 3957 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid); 3958 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32)); 3959 } 3960 3961 err = ohci_enable(&ohci->card, NULL, 0); 3962 if (err) 3963 return err; 3964 3965 ohci_resume_iso_dma(ohci); 3966 3967 return 0; 3968 } 3969 #endif 3970 3971 static const struct pci_device_id pci_table[] = { 3972 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, 3973 { } 3974 }; 3975 3976 MODULE_DEVICE_TABLE(pci, pci_table); 3977 3978 static struct pci_driver fw_ohci_pci_driver = { 3979 .name = ohci_driver_name, 3980 .id_table = pci_table, 3981 .probe = pci_probe, 3982 .remove = pci_remove, 3983 #ifdef CONFIG_PM 3984 .resume = pci_resume, 3985 .suspend = pci_suspend, 3986 #endif 3987 }; 3988 3989 static int __init fw_ohci_init(void) 3990 { 3991 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0); 3992 if (!selfid_workqueue) 3993 return -ENOMEM; 3994 3995 return pci_register_driver(&fw_ohci_pci_driver); 3996 } 3997 3998 static void __exit fw_ohci_cleanup(void) 3999 { 4000 pci_unregister_driver(&fw_ohci_pci_driver); 4001 destroy_workqueue(selfid_workqueue); 4002 } 4003 4004 module_init(fw_ohci_init); 4005 module_exit(fw_ohci_cleanup); 4006 4007 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 4008 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); 4009 MODULE_LICENSE("GPL"); 4010 4011 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 4012 MODULE_ALIAS("ohci1394"); 4013