xref: /linux/drivers/firewire/ohci.c (revision a9aaf1ff88a8cb99a1335c9eb76de637f0cf8c10)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40 
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
45 
46 #include <trace/events/firewire.h>
47 
48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
52 
53 #define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
54 #define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
55 #define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
56 
57 #define DESCRIPTOR_OUTPUT_MORE		0
58 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
59 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
60 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
61 #define DESCRIPTOR_STATUS		(1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
63 #define DESCRIPTOR_PING			(1 << 7)
64 #define DESCRIPTOR_YY			(1 << 6)
65 #define DESCRIPTOR_NO_IRQ		(0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
69 #define DESCRIPTOR_WAIT			(3 << 0)
70 
71 #define DESCRIPTOR_CMD			(0xf << 12)
72 
73 struct descriptor {
74 	__le16 req_count;
75 	__le16 control;
76 	__le32 data_address;
77 	__le32 branch_address;
78 	__le16 res_count;
79 	__le16 transfer_status;
80 } __attribute__((aligned(16)));
81 
82 #define CONTROL_SET(regs)	(regs)
83 #define CONTROL_CLEAR(regs)	((regs) + 4)
84 #define COMMAND_PTR(regs)	((regs) + 12)
85 #define CONTEXT_MATCH(regs)	((regs) + 16)
86 
87 #define AR_BUFFER_SIZE	(32*1024)
88 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
89 /* we need at least two pages for proper list management */
90 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
91 
92 #define MAX_ASYNC_PAYLOAD	4096
93 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
94 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
95 
96 struct ar_context {
97 	struct fw_ohci *ohci;
98 	struct page *pages[AR_BUFFERS];
99 	void *buffer;
100 	struct descriptor *descriptors;
101 	dma_addr_t descriptors_bus;
102 	void *pointer;
103 	unsigned int last_buffer_index;
104 	u32 regs;
105 	struct tasklet_struct tasklet;
106 };
107 
108 struct context;
109 
110 typedef int (*descriptor_callback_t)(struct context *ctx,
111 				     struct descriptor *d,
112 				     struct descriptor *last);
113 
114 /*
115  * A buffer that contains a block of DMA-able coherent memory used for
116  * storing a portion of a DMA descriptor program.
117  */
118 struct descriptor_buffer {
119 	struct list_head list;
120 	dma_addr_t buffer_bus;
121 	size_t buffer_size;
122 	size_t used;
123 	struct descriptor buffer[];
124 };
125 
126 struct context {
127 	struct fw_ohci *ohci;
128 	u32 regs;
129 	int total_allocation;
130 	u32 current_bus;
131 	bool running;
132 	bool flushing;
133 
134 	/*
135 	 * List of page-sized buffers for storing DMA descriptors.
136 	 * Head of list contains buffers in use and tail of list contains
137 	 * free buffers.
138 	 */
139 	struct list_head buffer_list;
140 
141 	/*
142 	 * Pointer to a buffer inside buffer_list that contains the tail
143 	 * end of the current DMA program.
144 	 */
145 	struct descriptor_buffer *buffer_tail;
146 
147 	/*
148 	 * The descriptor containing the branch address of the first
149 	 * descriptor that has not yet been filled by the device.
150 	 */
151 	struct descriptor *last;
152 
153 	/*
154 	 * The last descriptor block in the DMA program. It contains the branch
155 	 * address that must be updated upon appending a new descriptor.
156 	 */
157 	struct descriptor *prev;
158 	int prev_z;
159 
160 	descriptor_callback_t callback;
161 
162 	struct tasklet_struct tasklet;
163 };
164 
165 #define IT_HEADER_SY(v)          ((v) <<  0)
166 #define IT_HEADER_TCODE(v)       ((v) <<  4)
167 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
168 #define IT_HEADER_TAG(v)         ((v) << 14)
169 #define IT_HEADER_SPEED(v)       ((v) << 16)
170 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
171 
172 struct iso_context {
173 	struct fw_iso_context base;
174 	struct context context;
175 	void *header;
176 	size_t header_length;
177 	unsigned long flushing_completions;
178 	u32 mc_buffer_bus;
179 	u16 mc_completed;
180 	u16 last_timestamp;
181 	u8 sync;
182 	u8 tags;
183 };
184 
185 #define CONFIG_ROM_SIZE 1024
186 
187 struct fw_ohci {
188 	struct fw_card card;
189 
190 	__iomem char *registers;
191 	int node_id;
192 	int generation;
193 	int request_generation;	/* for timestamping incoming requests */
194 	unsigned quirks;
195 	unsigned int pri_req_max;
196 	u32 bus_time;
197 	bool bus_time_running;
198 	bool is_root;
199 	bool csr_state_setclear_abdicate;
200 	int n_ir;
201 	int n_it;
202 	/*
203 	 * Spinlock for accessing fw_ohci data.  Never call out of
204 	 * this driver with this lock held.
205 	 */
206 	spinlock_t lock;
207 
208 	struct mutex phy_reg_mutex;
209 
210 	void *misc_buffer;
211 	dma_addr_t misc_buffer_bus;
212 
213 	struct ar_context ar_request_ctx;
214 	struct ar_context ar_response_ctx;
215 	struct context at_request_ctx;
216 	struct context at_response_ctx;
217 
218 	u32 it_context_support;
219 	u32 it_context_mask;     /* unoccupied IT contexts */
220 	struct iso_context *it_context_list;
221 	u64 ir_context_channels; /* unoccupied channels */
222 	u32 ir_context_support;
223 	u32 ir_context_mask;     /* unoccupied IR contexts */
224 	struct iso_context *ir_context_list;
225 	u64 mc_channels; /* channels in use by the multichannel IR context */
226 	bool mc_allocated;
227 
228 	__be32    *config_rom;
229 	dma_addr_t config_rom_bus;
230 	__be32    *next_config_rom;
231 	dma_addr_t next_config_rom_bus;
232 	__be32     next_header;
233 
234 	__le32    *self_id;
235 	dma_addr_t self_id_bus;
236 	struct work_struct bus_reset_work;
237 
238 	u32 self_id_buffer[512];
239 };
240 
241 static struct workqueue_struct *selfid_workqueue;
242 
243 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
244 {
245 	return container_of(card, struct fw_ohci, card);
246 }
247 
248 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
249 #define IR_CONTEXT_BUFFER_FILL		0x80000000
250 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
251 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
252 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
253 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
254 
255 #define CONTEXT_RUN	0x8000
256 #define CONTEXT_WAKE	0x1000
257 #define CONTEXT_DEAD	0x0800
258 #define CONTEXT_ACTIVE	0x0400
259 
260 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
261 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
262 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
263 
264 #define OHCI1394_REGISTER_SIZE		0x800
265 #define OHCI1394_PCI_HCI_Control	0x40
266 #define SELF_ID_BUF_SIZE		0x800
267 #define OHCI_TCODE_PHY_PACKET		0x0e
268 #define OHCI_VERSION_1_1		0x010010
269 
270 static char ohci_driver_name[] = KBUILD_MODNAME;
271 
272 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
273 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
274 #define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
275 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
276 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
277 #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
278 #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
279 #define PCI_DEVICE_ID_VIA_VT630X	0x3044
280 #define PCI_REV_ID_VIA_VT6306		0x46
281 #define PCI_DEVICE_ID_VIA_VT6315	0x3403
282 
283 #define QUIRK_CYCLE_TIMER		0x1
284 #define QUIRK_RESET_PACKET		0x2
285 #define QUIRK_BE_HEADERS		0x4
286 #define QUIRK_NO_1394A			0x8
287 #define QUIRK_NO_MSI			0x10
288 #define QUIRK_TI_SLLZ059		0x20
289 #define QUIRK_IR_WAKE			0x40
290 
291 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
292 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
293 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
294 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
295 // while it is probable due to detection of any type of PCIe error.
296 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
297 
298 #if IS_ENABLED(CONFIG_X86)
299 
300 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
301 {
302 	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
303 }
304 
305 #define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
306 
307 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
308 {
309 	const struct pci_dev *pcie_to_pci_bridge;
310 
311 	// Detect any type of AMD Ryzen machine.
312 	if (!static_cpu_has(X86_FEATURE_ZEN))
313 		return false;
314 
315 	// Detect VIA VT6306/6307/6308.
316 	if (pdev->vendor != PCI_VENDOR_ID_VIA)
317 		return false;
318 	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
319 		return false;
320 
321 	// Detect Asmedia ASM1083/1085.
322 	pcie_to_pci_bridge = pdev->bus->self;
323 	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
324 		return false;
325 	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
326 		return false;
327 
328 	return true;
329 }
330 
331 #else
332 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
333 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
334 #endif
335 
336 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
337 static const struct {
338 	unsigned short vendor, device, revision, flags;
339 } ohci_quirks[] = {
340 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
341 		QUIRK_CYCLE_TIMER},
342 
343 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
344 		QUIRK_BE_HEADERS},
345 
346 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
347 		QUIRK_NO_MSI},
348 
349 	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
350 		QUIRK_RESET_PACKET},
351 
352 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
353 		QUIRK_NO_MSI},
354 
355 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
356 		QUIRK_CYCLE_TIMER},
357 
358 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
359 		QUIRK_NO_MSI},
360 
361 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
362 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
363 
364 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
365 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
366 
367 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
368 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
369 
370 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
371 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
372 
373 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
374 		QUIRK_RESET_PACKET},
375 
376 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
377 		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
378 
379 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
380 		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
381 
382 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
383 		QUIRK_NO_MSI},
384 
385 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
386 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
387 };
388 
389 /* This overrides anything that was found in ohci_quirks[]. */
390 static int param_quirks;
391 module_param_named(quirks, param_quirks, int, 0644);
392 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
393 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
394 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
395 	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
396 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
397 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
398 	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
399 	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
400 	")");
401 
402 #define OHCI_PARAM_DEBUG_AT_AR		1
403 #define OHCI_PARAM_DEBUG_SELFIDS	2
404 #define OHCI_PARAM_DEBUG_IRQS		4
405 
406 static int param_debug;
407 module_param_named(debug, param_debug, int, 0644);
408 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
409 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
410 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
411 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
412 	", or a combination, or all = -1)");
413 
414 static bool param_remote_dma;
415 module_param_named(remote_dma, param_remote_dma, bool, 0444);
416 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
417 
418 static void log_irqs(struct fw_ohci *ohci, u32 evt)
419 {
420 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
421 		return;
422 
423 	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
424 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
425 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
426 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
427 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
428 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
429 	    evt & OHCI1394_isochRx		? " IR"			: "",
430 	    evt & OHCI1394_isochTx		? " IT"			: "",
431 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
432 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
433 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
434 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
435 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
436 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
437 	    evt & OHCI1394_busReset		? " busReset"		: "",
438 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
439 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
440 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
441 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
442 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
443 		    OHCI1394_cycleInconsistent |
444 		    OHCI1394_regAccessFail | OHCI1394_busReset)
445 						? " ?"			: "");
446 }
447 
448 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
449 {
450 	static const char *const speed[] = {
451 		[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
452 	};
453 	static const char *const power[] = {
454 		[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
455 		[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
456 	};
457 	static const char port[] = {
458 		[PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
459 		[PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
460 		[PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
461 		[PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
462 	};
463 	struct self_id_sequence_enumerator enumerator = {
464 		.cursor = ohci->self_id_buffer,
465 		.quadlet_count = self_id_count,
466 	};
467 
468 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
469 		return;
470 
471 	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
472 		    self_id_count, generation, ohci->node_id);
473 
474 	while (enumerator.quadlet_count > 0) {
475 		unsigned int quadlet_count;
476 		unsigned int port_index;
477 		const u32 *s;
478 		int i;
479 
480 		s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
481 		if (IS_ERR(s))
482 			break;
483 
484 		ohci_notice(ohci,
485 		    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
486 		    *s,
487 		    phy_packet_self_id_get_phy_id(*s),
488 		    port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
489 		    port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
490 		    port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
491 		    speed[*s >> 14 & 3], *s >> 16 & 63,
492 		    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
493 		    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
494 
495 		port_index = 3;
496 		for (i = 1; i < quadlet_count; ++i) {
497 			ohci_notice(ohci,
498 			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
499 			    s[i],
500 			    phy_packet_self_id_get_phy_id(s[i]),
501 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
502 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
503 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
504 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
505 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
506 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
507 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
508 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
509 			);
510 
511 			port_index += 8;
512 		}
513 	}
514 }
515 
516 static const char *evts[] = {
517 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
518 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
519 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
520 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
521 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
522 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
523 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
524 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
525 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
526 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
527 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
528 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
529 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
530 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
531 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
532 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
533 	[0x20] = "pending/cancelled",
534 };
535 static const char *tcodes[] = {
536 	[0x0] = "QW req",		[0x1] = "BW req",
537 	[0x2] = "W resp",		[0x3] = "-reserved-",
538 	[0x4] = "QR req",		[0x5] = "BR req",
539 	[0x6] = "QR resp",		[0x7] = "BR resp",
540 	[0x8] = "cycle start",		[0x9] = "Lk req",
541 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
542 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
543 	[0xe] = "link internal",	[0xf] = "-reserved-",
544 };
545 
546 static void log_ar_at_event(struct fw_ohci *ohci,
547 			    char dir, int speed, u32 *header, int evt)
548 {
549 	int tcode = async_header_get_tcode(header);
550 	char specific[12];
551 
552 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
553 		return;
554 
555 	if (unlikely(evt >= ARRAY_SIZE(evts)))
556 		evt = 0x1f;
557 
558 	if (evt == OHCI1394_evt_bus_reset) {
559 		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
560 			    dir, (header[2] >> 16) & 0xff);
561 		return;
562 	}
563 
564 	switch (tcode) {
565 	case TCODE_WRITE_QUADLET_REQUEST:
566 	case TCODE_READ_QUADLET_RESPONSE:
567 	case TCODE_CYCLE_START:
568 		snprintf(specific, sizeof(specific), " = %08x",
569 			 be32_to_cpu((__force __be32)header[3]));
570 		break;
571 	case TCODE_WRITE_BLOCK_REQUEST:
572 	case TCODE_READ_BLOCK_REQUEST:
573 	case TCODE_READ_BLOCK_RESPONSE:
574 	case TCODE_LOCK_REQUEST:
575 	case TCODE_LOCK_RESPONSE:
576 		snprintf(specific, sizeof(specific), " %x,%x",
577 			 async_header_get_data_length(header),
578 			 async_header_get_extended_tcode(header));
579 		break;
580 	default:
581 		specific[0] = '\0';
582 	}
583 
584 	switch (tcode) {
585 	case TCODE_STREAM_DATA:
586 		ohci_notice(ohci, "A%c %s, %s\n",
587 			    dir, evts[evt], tcodes[tcode]);
588 		break;
589 	case 0xe:
590 		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
591 			    dir, evts[evt], header[1], header[2]);
592 		break;
593 	case TCODE_WRITE_QUADLET_REQUEST:
594 	case TCODE_WRITE_BLOCK_REQUEST:
595 	case TCODE_READ_QUADLET_REQUEST:
596 	case TCODE_READ_BLOCK_REQUEST:
597 	case TCODE_LOCK_REQUEST:
598 		ohci_notice(ohci,
599 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
600 			    dir, speed, async_header_get_tlabel(header),
601 			    async_header_get_source(header), async_header_get_destination(header),
602 			    evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
603 		break;
604 	default:
605 		ohci_notice(ohci,
606 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
607 			    dir, speed, async_header_get_tlabel(header),
608 			    async_header_get_source(header), async_header_get_destination(header),
609 			    evts[evt], tcodes[tcode], specific);
610 	}
611 }
612 
613 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
614 {
615 	writel(data, ohci->registers + offset);
616 }
617 
618 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
619 {
620 	return readl(ohci->registers + offset);
621 }
622 
623 static inline void flush_writes(const struct fw_ohci *ohci)
624 {
625 	/* Do a dummy read to flush writes. */
626 	reg_read(ohci, OHCI1394_Version);
627 }
628 
629 /*
630  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
631  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
632  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
633  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
634  */
635 static int read_phy_reg(struct fw_ohci *ohci, int addr)
636 {
637 	u32 val;
638 	int i;
639 
640 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
641 	for (i = 0; i < 3 + 100; i++) {
642 		val = reg_read(ohci, OHCI1394_PhyControl);
643 		if (!~val)
644 			return -ENODEV; /* Card was ejected. */
645 
646 		if (val & OHCI1394_PhyControl_ReadDone)
647 			return OHCI1394_PhyControl_ReadData(val);
648 
649 		/*
650 		 * Try a few times without waiting.  Sleeping is necessary
651 		 * only when the link/PHY interface is busy.
652 		 */
653 		if (i >= 3)
654 			msleep(1);
655 	}
656 	ohci_err(ohci, "failed to read phy reg %d\n", addr);
657 	dump_stack();
658 
659 	return -EBUSY;
660 }
661 
662 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
663 {
664 	int i;
665 
666 	reg_write(ohci, OHCI1394_PhyControl,
667 		  OHCI1394_PhyControl_Write(addr, val));
668 	for (i = 0; i < 3 + 100; i++) {
669 		val = reg_read(ohci, OHCI1394_PhyControl);
670 		if (!~val)
671 			return -ENODEV; /* Card was ejected. */
672 
673 		if (!(val & OHCI1394_PhyControl_WritePending))
674 			return 0;
675 
676 		if (i >= 3)
677 			msleep(1);
678 	}
679 	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
680 	dump_stack();
681 
682 	return -EBUSY;
683 }
684 
685 static int update_phy_reg(struct fw_ohci *ohci, int addr,
686 			  int clear_bits, int set_bits)
687 {
688 	int ret = read_phy_reg(ohci, addr);
689 	if (ret < 0)
690 		return ret;
691 
692 	/*
693 	 * The interrupt status bits are cleared by writing a one bit.
694 	 * Avoid clearing them unless explicitly requested in set_bits.
695 	 */
696 	if (addr == 5)
697 		clear_bits |= PHY_INT_STATUS_BITS;
698 
699 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
700 }
701 
702 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
703 {
704 	int ret;
705 
706 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
707 	if (ret < 0)
708 		return ret;
709 
710 	return read_phy_reg(ohci, addr);
711 }
712 
713 static int ohci_read_phy_reg(struct fw_card *card, int addr)
714 {
715 	struct fw_ohci *ohci = fw_ohci(card);
716 	int ret;
717 
718 	mutex_lock(&ohci->phy_reg_mutex);
719 	ret = read_phy_reg(ohci, addr);
720 	mutex_unlock(&ohci->phy_reg_mutex);
721 
722 	return ret;
723 }
724 
725 static int ohci_update_phy_reg(struct fw_card *card, int addr,
726 			       int clear_bits, int set_bits)
727 {
728 	struct fw_ohci *ohci = fw_ohci(card);
729 	int ret;
730 
731 	mutex_lock(&ohci->phy_reg_mutex);
732 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
733 	mutex_unlock(&ohci->phy_reg_mutex);
734 
735 	return ret;
736 }
737 
738 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
739 {
740 	return page_private(ctx->pages[i]);
741 }
742 
743 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
744 {
745 	struct descriptor *d;
746 
747 	d = &ctx->descriptors[index];
748 	d->branch_address  &= cpu_to_le32(~0xf);
749 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
750 	d->transfer_status =  0;
751 
752 	wmb(); /* finish init of new descriptors before branch_address update */
753 	d = &ctx->descriptors[ctx->last_buffer_index];
754 	d->branch_address  |= cpu_to_le32(1);
755 
756 	ctx->last_buffer_index = index;
757 
758 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
759 }
760 
761 static void ar_context_release(struct ar_context *ctx)
762 {
763 	struct device *dev = ctx->ohci->card.device;
764 	unsigned int i;
765 
766 	if (!ctx->buffer)
767 		return;
768 
769 	vunmap(ctx->buffer);
770 
771 	for (i = 0; i < AR_BUFFERS; i++) {
772 		if (ctx->pages[i])
773 			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
774 				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
775 	}
776 }
777 
778 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
779 {
780 	struct fw_ohci *ohci = ctx->ohci;
781 
782 	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
783 		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
784 		flush_writes(ohci);
785 
786 		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
787 	}
788 	/* FIXME: restart? */
789 }
790 
791 static inline unsigned int ar_next_buffer_index(unsigned int index)
792 {
793 	return (index + 1) % AR_BUFFERS;
794 }
795 
796 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
797 {
798 	return ar_next_buffer_index(ctx->last_buffer_index);
799 }
800 
801 /*
802  * We search for the buffer that contains the last AR packet DMA data written
803  * by the controller.
804  */
805 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
806 						 unsigned int *buffer_offset)
807 {
808 	unsigned int i, next_i, last = ctx->last_buffer_index;
809 	__le16 res_count, next_res_count;
810 
811 	i = ar_first_buffer_index(ctx);
812 	res_count = READ_ONCE(ctx->descriptors[i].res_count);
813 
814 	/* A buffer that is not yet completely filled must be the last one. */
815 	while (i != last && res_count == 0) {
816 
817 		/* Peek at the next descriptor. */
818 		next_i = ar_next_buffer_index(i);
819 		rmb(); /* read descriptors in order */
820 		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
821 		/*
822 		 * If the next descriptor is still empty, we must stop at this
823 		 * descriptor.
824 		 */
825 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
826 			/*
827 			 * The exception is when the DMA data for one packet is
828 			 * split over three buffers; in this case, the middle
829 			 * buffer's descriptor might be never updated by the
830 			 * controller and look still empty, and we have to peek
831 			 * at the third one.
832 			 */
833 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
834 				next_i = ar_next_buffer_index(next_i);
835 				rmb();
836 				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
837 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
838 					goto next_buffer_is_active;
839 			}
840 
841 			break;
842 		}
843 
844 next_buffer_is_active:
845 		i = next_i;
846 		res_count = next_res_count;
847 	}
848 
849 	rmb(); /* read res_count before the DMA data */
850 
851 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
852 	if (*buffer_offset > PAGE_SIZE) {
853 		*buffer_offset = 0;
854 		ar_context_abort(ctx, "corrupted descriptor");
855 	}
856 
857 	return i;
858 }
859 
860 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
861 				    unsigned int end_buffer_index,
862 				    unsigned int end_buffer_offset)
863 {
864 	unsigned int i;
865 
866 	i = ar_first_buffer_index(ctx);
867 	while (i != end_buffer_index) {
868 		dma_sync_single_for_cpu(ctx->ohci->card.device,
869 					ar_buffer_bus(ctx, i),
870 					PAGE_SIZE, DMA_FROM_DEVICE);
871 		i = ar_next_buffer_index(i);
872 	}
873 	if (end_buffer_offset > 0)
874 		dma_sync_single_for_cpu(ctx->ohci->card.device,
875 					ar_buffer_bus(ctx, i),
876 					end_buffer_offset, DMA_FROM_DEVICE);
877 }
878 
879 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
880 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
881 {
882 	return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
883 }
884 
885 static bool has_be_header_quirk(const struct fw_ohci *ohci)
886 {
887 	return !!(ohci->quirks & QUIRK_BE_HEADERS);
888 }
889 #else
890 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
891 {
892 	return le32_to_cpu(value);
893 }
894 
895 static bool has_be_header_quirk(const struct fw_ohci *ohci)
896 {
897 	return false;
898 }
899 #endif
900 
901 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
902 {
903 	struct fw_ohci *ohci = ctx->ohci;
904 	struct fw_packet p;
905 	u32 status, length, tcode;
906 	int evt;
907 
908 	p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
909 	p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
910 	p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
911 
912 	tcode = async_header_get_tcode(p.header);
913 	switch (tcode) {
914 	case TCODE_WRITE_QUADLET_REQUEST:
915 	case TCODE_READ_QUADLET_RESPONSE:
916 		p.header[3] = (__force __u32) buffer[3];
917 		p.header_length = 16;
918 		p.payload_length = 0;
919 		break;
920 
921 	case TCODE_READ_BLOCK_REQUEST :
922 		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
923 		p.header_length = 16;
924 		p.payload_length = 0;
925 		break;
926 
927 	case TCODE_WRITE_BLOCK_REQUEST:
928 	case TCODE_READ_BLOCK_RESPONSE:
929 	case TCODE_LOCK_REQUEST:
930 	case TCODE_LOCK_RESPONSE:
931 		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
932 		p.header_length = 16;
933 		p.payload_length = async_header_get_data_length(p.header);
934 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
935 			ar_context_abort(ctx, "invalid packet length");
936 			return NULL;
937 		}
938 		break;
939 
940 	case TCODE_WRITE_RESPONSE:
941 	case TCODE_READ_QUADLET_REQUEST:
942 	case OHCI_TCODE_PHY_PACKET:
943 		p.header_length = 12;
944 		p.payload_length = 0;
945 		break;
946 
947 	default:
948 		ar_context_abort(ctx, "invalid tcode");
949 		return NULL;
950 	}
951 
952 	p.payload = (void *) buffer + p.header_length;
953 
954 	/* FIXME: What to do about evt_* errors? */
955 	length = (p.header_length + p.payload_length + 3) / 4;
956 	status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
957 	evt    = (status >> 16) & 0x1f;
958 
959 	p.ack        = evt - 16;
960 	p.speed      = (status >> 21) & 0x7;
961 	p.timestamp  = status & 0xffff;
962 	p.generation = ohci->request_generation;
963 
964 	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
965 
966 	/*
967 	 * Several controllers, notably from NEC and VIA, forget to
968 	 * write ack_complete status at PHY packet reception.
969 	 */
970 	if (evt == OHCI1394_evt_no_status && tcode == OHCI1394_phy_tcode)
971 		p.ack = ACK_COMPLETE;
972 
973 	/*
974 	 * The OHCI bus reset handler synthesizes a PHY packet with
975 	 * the new generation number when a bus reset happens (see
976 	 * section 8.4.2.3).  This helps us determine when a request
977 	 * was received and make sure we send the response in the same
978 	 * generation.  We only need this for requests; for responses
979 	 * we use the unique tlabel for finding the matching
980 	 * request.
981 	 *
982 	 * Alas some chips sometimes emit bus reset packets with a
983 	 * wrong generation.  We set the correct generation for these
984 	 * at a slightly incorrect time (in bus_reset_work).
985 	 */
986 	if (evt == OHCI1394_evt_bus_reset) {
987 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
988 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
989 	} else if (ctx == &ohci->ar_request_ctx) {
990 		fw_core_handle_request(&ohci->card, &p);
991 	} else {
992 		fw_core_handle_response(&ohci->card, &p);
993 	}
994 
995 	return buffer + length + 1;
996 }
997 
998 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
999 {
1000 	void *next;
1001 
1002 	while (p < end) {
1003 		next = handle_ar_packet(ctx, p);
1004 		if (!next)
1005 			return p;
1006 		p = next;
1007 	}
1008 
1009 	return p;
1010 }
1011 
1012 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1013 {
1014 	unsigned int i;
1015 
1016 	i = ar_first_buffer_index(ctx);
1017 	while (i != end_buffer) {
1018 		dma_sync_single_for_device(ctx->ohci->card.device,
1019 					   ar_buffer_bus(ctx, i),
1020 					   PAGE_SIZE, DMA_FROM_DEVICE);
1021 		ar_context_link_page(ctx, i);
1022 		i = ar_next_buffer_index(i);
1023 	}
1024 }
1025 
1026 static void ar_context_tasklet(unsigned long data)
1027 {
1028 	struct ar_context *ctx = (struct ar_context *)data;
1029 	unsigned int end_buffer_index, end_buffer_offset;
1030 	void *p, *end;
1031 
1032 	p = ctx->pointer;
1033 	if (!p)
1034 		return;
1035 
1036 	end_buffer_index = ar_search_last_active_buffer(ctx,
1037 							&end_buffer_offset);
1038 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1039 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1040 
1041 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
1042 		/*
1043 		 * The filled part of the overall buffer wraps around; handle
1044 		 * all packets up to the buffer end here.  If the last packet
1045 		 * wraps around, its tail will be visible after the buffer end
1046 		 * because the buffer start pages are mapped there again.
1047 		 */
1048 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1049 		p = handle_ar_packets(ctx, p, buffer_end);
1050 		if (p < buffer_end)
1051 			goto error;
1052 		/* adjust p to point back into the actual buffer */
1053 		p -= AR_BUFFERS * PAGE_SIZE;
1054 	}
1055 
1056 	p = handle_ar_packets(ctx, p, end);
1057 	if (p != end) {
1058 		if (p > end)
1059 			ar_context_abort(ctx, "inconsistent descriptor");
1060 		goto error;
1061 	}
1062 
1063 	ctx->pointer = p;
1064 	ar_recycle_buffers(ctx, end_buffer_index);
1065 
1066 	return;
1067 
1068 error:
1069 	ctx->pointer = NULL;
1070 }
1071 
1072 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1073 			   unsigned int descriptors_offset, u32 regs)
1074 {
1075 	struct device *dev = ohci->card.device;
1076 	unsigned int i;
1077 	dma_addr_t dma_addr;
1078 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1079 	struct descriptor *d;
1080 
1081 	ctx->regs        = regs;
1082 	ctx->ohci        = ohci;
1083 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1084 
1085 	for (i = 0; i < AR_BUFFERS; i++) {
1086 		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1087 						DMA_FROM_DEVICE, GFP_KERNEL);
1088 		if (!ctx->pages[i])
1089 			goto out_of_memory;
1090 		set_page_private(ctx->pages[i], dma_addr);
1091 		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1092 					   DMA_FROM_DEVICE);
1093 	}
1094 
1095 	for (i = 0; i < AR_BUFFERS; i++)
1096 		pages[i]              = ctx->pages[i];
1097 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1098 		pages[AR_BUFFERS + i] = ctx->pages[i];
1099 	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1100 	if (!ctx->buffer)
1101 		goto out_of_memory;
1102 
1103 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1104 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1105 
1106 	for (i = 0; i < AR_BUFFERS; i++) {
1107 		d = &ctx->descriptors[i];
1108 		d->req_count      = cpu_to_le16(PAGE_SIZE);
1109 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1110 						DESCRIPTOR_STATUS |
1111 						DESCRIPTOR_BRANCH_ALWAYS);
1112 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1113 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1114 			ar_next_buffer_index(i) * sizeof(struct descriptor));
1115 	}
1116 
1117 	return 0;
1118 
1119 out_of_memory:
1120 	ar_context_release(ctx);
1121 
1122 	return -ENOMEM;
1123 }
1124 
1125 static void ar_context_run(struct ar_context *ctx)
1126 {
1127 	unsigned int i;
1128 
1129 	for (i = 0; i < AR_BUFFERS; i++)
1130 		ar_context_link_page(ctx, i);
1131 
1132 	ctx->pointer = ctx->buffer;
1133 
1134 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1135 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1136 }
1137 
1138 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1139 {
1140 	__le16 branch;
1141 
1142 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1143 
1144 	/* figure out which descriptor the branch address goes in */
1145 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1146 		return d;
1147 	else
1148 		return d + z - 1;
1149 }
1150 
1151 static void context_tasklet(unsigned long data)
1152 {
1153 	struct context *ctx = (struct context *) data;
1154 	struct descriptor *d, *last;
1155 	u32 address;
1156 	int z;
1157 	struct descriptor_buffer *desc;
1158 
1159 	desc = list_entry(ctx->buffer_list.next,
1160 			struct descriptor_buffer, list);
1161 	last = ctx->last;
1162 	while (last->branch_address != 0) {
1163 		struct descriptor_buffer *old_desc = desc;
1164 		address = le32_to_cpu(last->branch_address);
1165 		z = address & 0xf;
1166 		address &= ~0xf;
1167 		ctx->current_bus = address;
1168 
1169 		/* If the branch address points to a buffer outside of the
1170 		 * current buffer, advance to the next buffer. */
1171 		if (address < desc->buffer_bus ||
1172 				address >= desc->buffer_bus + desc->used)
1173 			desc = list_entry(desc->list.next,
1174 					struct descriptor_buffer, list);
1175 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1176 		last = find_branch_descriptor(d, z);
1177 
1178 		if (!ctx->callback(ctx, d, last))
1179 			break;
1180 
1181 		if (old_desc != desc) {
1182 			/* If we've advanced to the next buffer, move the
1183 			 * previous buffer to the free list. */
1184 			unsigned long flags;
1185 			old_desc->used = 0;
1186 			spin_lock_irqsave(&ctx->ohci->lock, flags);
1187 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1188 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1189 		}
1190 		ctx->last = last;
1191 	}
1192 }
1193 
1194 /*
1195  * Allocate a new buffer and add it to the list of free buffers for this
1196  * context.  Must be called with ohci->lock held.
1197  */
1198 static int context_add_buffer(struct context *ctx)
1199 {
1200 	struct descriptor_buffer *desc;
1201 	dma_addr_t bus_addr;
1202 	int offset;
1203 
1204 	/*
1205 	 * 16MB of descriptors should be far more than enough for any DMA
1206 	 * program.  This will catch run-away userspace or DoS attacks.
1207 	 */
1208 	if (ctx->total_allocation >= 16*1024*1024)
1209 		return -ENOMEM;
1210 
1211 	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1212 	if (!desc)
1213 		return -ENOMEM;
1214 
1215 	offset = (void *)&desc->buffer - (void *)desc;
1216 	/*
1217 	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1218 	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1219 	 * an IOMMU is in use and the oversized read crosses a page boundary.
1220 	 * Work around this by always leaving at least 0x10 bytes of padding.
1221 	 */
1222 	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1223 	desc->buffer_bus = bus_addr + offset;
1224 	desc->used = 0;
1225 
1226 	list_add_tail(&desc->list, &ctx->buffer_list);
1227 	ctx->total_allocation += PAGE_SIZE;
1228 
1229 	return 0;
1230 }
1231 
1232 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1233 			u32 regs, descriptor_callback_t callback)
1234 {
1235 	ctx->ohci = ohci;
1236 	ctx->regs = regs;
1237 	ctx->total_allocation = 0;
1238 
1239 	INIT_LIST_HEAD(&ctx->buffer_list);
1240 	if (context_add_buffer(ctx) < 0)
1241 		return -ENOMEM;
1242 
1243 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1244 			struct descriptor_buffer, list);
1245 
1246 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1247 	ctx->callback = callback;
1248 
1249 	/*
1250 	 * We put a dummy descriptor in the buffer that has a NULL
1251 	 * branch address and looks like it's been sent.  That way we
1252 	 * have a descriptor to append DMA programs to.
1253 	 */
1254 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1255 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1256 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1257 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1258 	ctx->last = ctx->buffer_tail->buffer;
1259 	ctx->prev = ctx->buffer_tail->buffer;
1260 	ctx->prev_z = 1;
1261 
1262 	return 0;
1263 }
1264 
1265 static void context_release(struct context *ctx)
1266 {
1267 	struct fw_card *card = &ctx->ohci->card;
1268 	struct descriptor_buffer *desc, *tmp;
1269 
1270 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1271 		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1272 				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1273 	}
1274 }
1275 
1276 /* Must be called with ohci->lock held */
1277 static struct descriptor *context_get_descriptors(struct context *ctx,
1278 						  int z, dma_addr_t *d_bus)
1279 {
1280 	struct descriptor *d = NULL;
1281 	struct descriptor_buffer *desc = ctx->buffer_tail;
1282 
1283 	if (z * sizeof(*d) > desc->buffer_size)
1284 		return NULL;
1285 
1286 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1287 		/* No room for the descriptor in this buffer, so advance to the
1288 		 * next one. */
1289 
1290 		if (desc->list.next == &ctx->buffer_list) {
1291 			/* If there is no free buffer next in the list,
1292 			 * allocate one. */
1293 			if (context_add_buffer(ctx) < 0)
1294 				return NULL;
1295 		}
1296 		desc = list_entry(desc->list.next,
1297 				struct descriptor_buffer, list);
1298 		ctx->buffer_tail = desc;
1299 	}
1300 
1301 	d = desc->buffer + desc->used / sizeof(*d);
1302 	memset(d, 0, z * sizeof(*d));
1303 	*d_bus = desc->buffer_bus + desc->used;
1304 
1305 	return d;
1306 }
1307 
1308 static void context_run(struct context *ctx, u32 extra)
1309 {
1310 	struct fw_ohci *ohci = ctx->ohci;
1311 
1312 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1313 		  le32_to_cpu(ctx->last->branch_address));
1314 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1315 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1316 	ctx->running = true;
1317 	flush_writes(ohci);
1318 }
1319 
1320 static void context_append(struct context *ctx,
1321 			   struct descriptor *d, int z, int extra)
1322 {
1323 	dma_addr_t d_bus;
1324 	struct descriptor_buffer *desc = ctx->buffer_tail;
1325 	struct descriptor *d_branch;
1326 
1327 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1328 
1329 	desc->used += (z + extra) * sizeof(*d);
1330 
1331 	wmb(); /* finish init of new descriptors before branch_address update */
1332 
1333 	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1334 	d_branch->branch_address = cpu_to_le32(d_bus | z);
1335 
1336 	/*
1337 	 * VT6306 incorrectly checks only the single descriptor at the
1338 	 * CommandPtr when the wake bit is written, so if it's a
1339 	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1340 	 * the branch address in the first descriptor.
1341 	 *
1342 	 * Not doing this for transmit contexts since not sure how it interacts
1343 	 * with skip addresses.
1344 	 */
1345 	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1346 	    d_branch != ctx->prev &&
1347 	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1348 	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1349 		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1350 	}
1351 
1352 	ctx->prev = d;
1353 	ctx->prev_z = z;
1354 }
1355 
1356 static void context_stop(struct context *ctx)
1357 {
1358 	struct fw_ohci *ohci = ctx->ohci;
1359 	u32 reg;
1360 	int i;
1361 
1362 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1363 	ctx->running = false;
1364 
1365 	for (i = 0; i < 1000; i++) {
1366 		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1367 		if ((reg & CONTEXT_ACTIVE) == 0)
1368 			return;
1369 
1370 		if (i)
1371 			udelay(10);
1372 	}
1373 	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1374 }
1375 
1376 struct driver_data {
1377 	u8 inline_data[8];
1378 	struct fw_packet *packet;
1379 };
1380 
1381 /*
1382  * This function apppends a packet to the DMA queue for transmission.
1383  * Must always be called with the ochi->lock held to ensure proper
1384  * generation handling and locking around packet queue manipulation.
1385  */
1386 static int at_context_queue_packet(struct context *ctx,
1387 				   struct fw_packet *packet)
1388 {
1389 	struct fw_ohci *ohci = ctx->ohci;
1390 	dma_addr_t d_bus, payload_bus;
1391 	struct driver_data *driver_data;
1392 	struct descriptor *d, *last;
1393 	__le32 *header;
1394 	int z, tcode;
1395 
1396 	d = context_get_descriptors(ctx, 4, &d_bus);
1397 	if (d == NULL) {
1398 		packet->ack = RCODE_SEND_ERROR;
1399 		return -1;
1400 	}
1401 
1402 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1403 	d[0].res_count = cpu_to_le16(packet->timestamp);
1404 
1405 	/*
1406 	 * The DMA format for asynchronous link packets is different
1407 	 * from the IEEE1394 layout, so shift the fields around
1408 	 * accordingly.
1409 	 */
1410 
1411 	tcode = async_header_get_tcode(packet->header);
1412 	header = (__le32 *) &d[1];
1413 	switch (tcode) {
1414 	case TCODE_WRITE_QUADLET_REQUEST:
1415 	case TCODE_WRITE_BLOCK_REQUEST:
1416 	case TCODE_WRITE_RESPONSE:
1417 	case TCODE_READ_QUADLET_REQUEST:
1418 	case TCODE_READ_BLOCK_REQUEST:
1419 	case TCODE_READ_QUADLET_RESPONSE:
1420 	case TCODE_READ_BLOCK_RESPONSE:
1421 	case TCODE_LOCK_REQUEST:
1422 	case TCODE_LOCK_RESPONSE:
1423 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1424 					(packet->speed << 16));
1425 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1426 					(packet->header[0] & 0xffff0000));
1427 		header[2] = cpu_to_le32(packet->header[2]);
1428 
1429 		if (tcode_is_block_packet(tcode))
1430 			header[3] = cpu_to_le32(packet->header[3]);
1431 		else
1432 			header[3] = (__force __le32) packet->header[3];
1433 
1434 		d[0].req_count = cpu_to_le16(packet->header_length);
1435 		break;
1436 
1437 	case TCODE_LINK_INTERNAL:
1438 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1439 					(packet->speed << 16));
1440 		header[1] = cpu_to_le32(packet->header[1]);
1441 		header[2] = cpu_to_le32(packet->header[2]);
1442 		d[0].req_count = cpu_to_le16(12);
1443 
1444 		if (is_ping_packet(&packet->header[1]))
1445 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1446 		break;
1447 
1448 	case TCODE_STREAM_DATA:
1449 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1450 					(packet->speed << 16));
1451 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1452 		d[0].req_count = cpu_to_le16(8);
1453 		break;
1454 
1455 	default:
1456 		/* BUG(); */
1457 		packet->ack = RCODE_SEND_ERROR;
1458 		return -1;
1459 	}
1460 
1461 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1462 	driver_data = (struct driver_data *) &d[3];
1463 	driver_data->packet = packet;
1464 	packet->driver_data = driver_data;
1465 
1466 	if (packet->payload_length > 0) {
1467 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1468 			payload_bus = dma_map_single(ohci->card.device,
1469 						     packet->payload,
1470 						     packet->payload_length,
1471 						     DMA_TO_DEVICE);
1472 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1473 				packet->ack = RCODE_SEND_ERROR;
1474 				return -1;
1475 			}
1476 			packet->payload_bus	= payload_bus;
1477 			packet->payload_mapped	= true;
1478 		} else {
1479 			memcpy(driver_data->inline_data, packet->payload,
1480 			       packet->payload_length);
1481 			payload_bus = d_bus + 3 * sizeof(*d);
1482 		}
1483 
1484 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1485 		d[2].data_address = cpu_to_le32(payload_bus);
1486 		last = &d[2];
1487 		z = 3;
1488 	} else {
1489 		last = &d[0];
1490 		z = 2;
1491 	}
1492 
1493 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1494 				     DESCRIPTOR_IRQ_ALWAYS |
1495 				     DESCRIPTOR_BRANCH_ALWAYS);
1496 
1497 	/* FIXME: Document how the locking works. */
1498 	if (ohci->generation != packet->generation) {
1499 		if (packet->payload_mapped)
1500 			dma_unmap_single(ohci->card.device, payload_bus,
1501 					 packet->payload_length, DMA_TO_DEVICE);
1502 		packet->ack = RCODE_GENERATION;
1503 		return -1;
1504 	}
1505 
1506 	context_append(ctx, d, z, 4 - z);
1507 
1508 	if (ctx->running)
1509 		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1510 	else
1511 		context_run(ctx, 0);
1512 
1513 	return 0;
1514 }
1515 
1516 static void at_context_flush(struct context *ctx)
1517 {
1518 	tasklet_disable(&ctx->tasklet);
1519 
1520 	ctx->flushing = true;
1521 	context_tasklet((unsigned long)ctx);
1522 	ctx->flushing = false;
1523 
1524 	tasklet_enable(&ctx->tasklet);
1525 }
1526 
1527 static int handle_at_packet(struct context *context,
1528 			    struct descriptor *d,
1529 			    struct descriptor *last)
1530 {
1531 	struct driver_data *driver_data;
1532 	struct fw_packet *packet;
1533 	struct fw_ohci *ohci = context->ohci;
1534 	int evt;
1535 
1536 	if (last->transfer_status == 0 && !context->flushing)
1537 		/* This descriptor isn't done yet, stop iteration. */
1538 		return 0;
1539 
1540 	driver_data = (struct driver_data *) &d[3];
1541 	packet = driver_data->packet;
1542 	if (packet == NULL)
1543 		/* This packet was cancelled, just continue. */
1544 		return 1;
1545 
1546 	if (packet->payload_mapped)
1547 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1548 				 packet->payload_length, DMA_TO_DEVICE);
1549 
1550 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1551 	packet->timestamp = le16_to_cpu(last->res_count);
1552 
1553 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1554 
1555 	switch (evt) {
1556 	case OHCI1394_evt_timeout:
1557 		/* Async response transmit timed out. */
1558 		packet->ack = RCODE_CANCELLED;
1559 		break;
1560 
1561 	case OHCI1394_evt_flushed:
1562 		/*
1563 		 * The packet was flushed should give same error as
1564 		 * when we try to use a stale generation count.
1565 		 */
1566 		packet->ack = RCODE_GENERATION;
1567 		break;
1568 
1569 	case OHCI1394_evt_missing_ack:
1570 		if (context->flushing)
1571 			packet->ack = RCODE_GENERATION;
1572 		else {
1573 			/*
1574 			 * Using a valid (current) generation count, but the
1575 			 * node is not on the bus or not sending acks.
1576 			 */
1577 			packet->ack = RCODE_NO_ACK;
1578 		}
1579 		break;
1580 
1581 	case ACK_COMPLETE + 0x10:
1582 	case ACK_PENDING + 0x10:
1583 	case ACK_BUSY_X + 0x10:
1584 	case ACK_BUSY_A + 0x10:
1585 	case ACK_BUSY_B + 0x10:
1586 	case ACK_DATA_ERROR + 0x10:
1587 	case ACK_TYPE_ERROR + 0x10:
1588 		packet->ack = evt - 0x10;
1589 		break;
1590 
1591 	case OHCI1394_evt_no_status:
1592 		if (context->flushing) {
1593 			packet->ack = RCODE_GENERATION;
1594 			break;
1595 		}
1596 		fallthrough;
1597 
1598 	default:
1599 		packet->ack = RCODE_SEND_ERROR;
1600 		break;
1601 	}
1602 
1603 	packet->callback(packet, &ohci->card, packet->ack);
1604 
1605 	return 1;
1606 }
1607 
1608 static u32 get_cycle_time(struct fw_ohci *ohci);
1609 
1610 static void handle_local_rom(struct fw_ohci *ohci,
1611 			     struct fw_packet *packet, u32 csr)
1612 {
1613 	struct fw_packet response;
1614 	int tcode, length, i;
1615 
1616 	tcode = async_header_get_tcode(packet->header);
1617 	if (tcode_is_block_packet(tcode))
1618 		length = async_header_get_data_length(packet->header);
1619 	else
1620 		length = 4;
1621 
1622 	i = csr - CSR_CONFIG_ROM;
1623 	if (i + length > CONFIG_ROM_SIZE) {
1624 		fw_fill_response(&response, packet->header,
1625 				 RCODE_ADDRESS_ERROR, NULL, 0);
1626 	} else if (!tcode_is_read_request(tcode)) {
1627 		fw_fill_response(&response, packet->header,
1628 				 RCODE_TYPE_ERROR, NULL, 0);
1629 	} else {
1630 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1631 				 (void *) ohci->config_rom + i, length);
1632 	}
1633 
1634 	// Timestamping on behalf of the hardware.
1635 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1636 	fw_core_handle_response(&ohci->card, &response);
1637 }
1638 
1639 static void handle_local_lock(struct fw_ohci *ohci,
1640 			      struct fw_packet *packet, u32 csr)
1641 {
1642 	struct fw_packet response;
1643 	int tcode, length, ext_tcode, sel, try;
1644 	__be32 *payload, lock_old;
1645 	u32 lock_arg, lock_data;
1646 
1647 	tcode = async_header_get_tcode(packet->header);
1648 	length = async_header_get_data_length(packet->header);
1649 	payload = packet->payload;
1650 	ext_tcode = async_header_get_extended_tcode(packet->header);
1651 
1652 	if (tcode == TCODE_LOCK_REQUEST &&
1653 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1654 		lock_arg = be32_to_cpu(payload[0]);
1655 		lock_data = be32_to_cpu(payload[1]);
1656 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1657 		lock_arg = 0;
1658 		lock_data = 0;
1659 	} else {
1660 		fw_fill_response(&response, packet->header,
1661 				 RCODE_TYPE_ERROR, NULL, 0);
1662 		goto out;
1663 	}
1664 
1665 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1666 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1667 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1668 	reg_write(ohci, OHCI1394_CSRControl, sel);
1669 
1670 	for (try = 0; try < 20; try++)
1671 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1672 			lock_old = cpu_to_be32(reg_read(ohci,
1673 							OHCI1394_CSRData));
1674 			fw_fill_response(&response, packet->header,
1675 					 RCODE_COMPLETE,
1676 					 &lock_old, sizeof(lock_old));
1677 			goto out;
1678 		}
1679 
1680 	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1681 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1682 
1683  out:
1684 	// Timestamping on behalf of the hardware.
1685 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1686 	fw_core_handle_response(&ohci->card, &response);
1687 }
1688 
1689 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1690 {
1691 	u64 offset, csr;
1692 
1693 	if (ctx == &ctx->ohci->at_request_ctx) {
1694 		packet->ack = ACK_PENDING;
1695 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1696 	}
1697 
1698 	offset = async_header_get_offset(packet->header);
1699 	csr = offset - CSR_REGISTER_BASE;
1700 
1701 	/* Handle config rom reads. */
1702 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1703 		handle_local_rom(ctx->ohci, packet, csr);
1704 	else switch (csr) {
1705 	case CSR_BUS_MANAGER_ID:
1706 	case CSR_BANDWIDTH_AVAILABLE:
1707 	case CSR_CHANNELS_AVAILABLE_HI:
1708 	case CSR_CHANNELS_AVAILABLE_LO:
1709 		handle_local_lock(ctx->ohci, packet, csr);
1710 		break;
1711 	default:
1712 		if (ctx == &ctx->ohci->at_request_ctx)
1713 			fw_core_handle_request(&ctx->ohci->card, packet);
1714 		else
1715 			fw_core_handle_response(&ctx->ohci->card, packet);
1716 		break;
1717 	}
1718 
1719 	if (ctx == &ctx->ohci->at_response_ctx) {
1720 		packet->ack = ACK_COMPLETE;
1721 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1722 	}
1723 }
1724 
1725 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1726 {
1727 	unsigned long flags;
1728 	int ret;
1729 
1730 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1731 
1732 	if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1733 	    ctx->ohci->generation == packet->generation) {
1734 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1735 
1736 		// Timestamping on behalf of the hardware.
1737 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1738 
1739 		handle_local_request(ctx, packet);
1740 		return;
1741 	}
1742 
1743 	ret = at_context_queue_packet(ctx, packet);
1744 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1745 
1746 	if (ret < 0) {
1747 		// Timestamping on behalf of the hardware.
1748 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1749 
1750 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1751 	}
1752 }
1753 
1754 static void detect_dead_context(struct fw_ohci *ohci,
1755 				const char *name, unsigned int regs)
1756 {
1757 	u32 ctl;
1758 
1759 	ctl = reg_read(ohci, CONTROL_SET(regs));
1760 	if (ctl & CONTEXT_DEAD)
1761 		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1762 			name, evts[ctl & 0x1f]);
1763 }
1764 
1765 static void handle_dead_contexts(struct fw_ohci *ohci)
1766 {
1767 	unsigned int i;
1768 	char name[8];
1769 
1770 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1771 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1772 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1773 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1774 	for (i = 0; i < 32; ++i) {
1775 		if (!(ohci->it_context_support & (1 << i)))
1776 			continue;
1777 		sprintf(name, "IT%u", i);
1778 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1779 	}
1780 	for (i = 0; i < 32; ++i) {
1781 		if (!(ohci->ir_context_support & (1 << i)))
1782 			continue;
1783 		sprintf(name, "IR%u", i);
1784 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1785 	}
1786 	/* TODO: maybe try to flush and restart the dead contexts */
1787 }
1788 
1789 static u32 cycle_timer_ticks(u32 cycle_timer)
1790 {
1791 	u32 ticks;
1792 
1793 	ticks = cycle_timer & 0xfff;
1794 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1795 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1796 
1797 	return ticks;
1798 }
1799 
1800 /*
1801  * Some controllers exhibit one or more of the following bugs when updating the
1802  * iso cycle timer register:
1803  *  - When the lowest six bits are wrapping around to zero, a read that happens
1804  *    at the same time will return garbage in the lowest ten bits.
1805  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1806  *    not incremented for about 60 ns.
1807  *  - Occasionally, the entire register reads zero.
1808  *
1809  * To catch these, we read the register three times and ensure that the
1810  * difference between each two consecutive reads is approximately the same, i.e.
1811  * less than twice the other.  Furthermore, any negative difference indicates an
1812  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1813  * execute, so we have enough precision to compute the ratio of the differences.)
1814  */
1815 static u32 get_cycle_time(struct fw_ohci *ohci)
1816 {
1817 	u32 c0, c1, c2;
1818 	u32 t0, t1, t2;
1819 	s32 diff01, diff12;
1820 	int i;
1821 
1822 	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1823 		return 0;
1824 
1825 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1826 
1827 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1828 		i = 0;
1829 		c1 = c2;
1830 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1831 		do {
1832 			c0 = c1;
1833 			c1 = c2;
1834 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1835 			t0 = cycle_timer_ticks(c0);
1836 			t1 = cycle_timer_ticks(c1);
1837 			t2 = cycle_timer_ticks(c2);
1838 			diff01 = t1 - t0;
1839 			diff12 = t2 - t1;
1840 		} while ((diff01 <= 0 || diff12 <= 0 ||
1841 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1842 			 && i++ < 20);
1843 	}
1844 
1845 	return c2;
1846 }
1847 
1848 /*
1849  * This function has to be called at least every 64 seconds.  The bus_time
1850  * field stores not only the upper 25 bits of the BUS_TIME register but also
1851  * the most significant bit of the cycle timer in bit 6 so that we can detect
1852  * changes in this bit.
1853  */
1854 static u32 update_bus_time(struct fw_ohci *ohci)
1855 {
1856 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1857 
1858 	if (unlikely(!ohci->bus_time_running)) {
1859 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1860 		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1861 		                 (cycle_time_seconds & 0x40);
1862 		ohci->bus_time_running = true;
1863 	}
1864 
1865 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1866 		ohci->bus_time += 0x40;
1867 
1868 	return ohci->bus_time | cycle_time_seconds;
1869 }
1870 
1871 static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1872 			       enum phy_packet_self_id_port_status *status)
1873 {
1874 	int reg;
1875 
1876 	mutex_lock(&ohci->phy_reg_mutex);
1877 	reg = write_phy_reg(ohci, 7, port_index);
1878 	if (reg >= 0)
1879 		reg = read_phy_reg(ohci, 8);
1880 	mutex_unlock(&ohci->phy_reg_mutex);
1881 	if (reg < 0)
1882 		return reg;
1883 
1884 	switch (reg & 0x0f) {
1885 	case 0x06:
1886 		// is child node (connected to parent node)
1887 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1888 		break;
1889 	case 0x0e:
1890 		// is parent node (connected to child node)
1891 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1892 		break;
1893 	default:
1894 		// not connected
1895 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1896 		break;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1903 	int self_id_count)
1904 {
1905 	unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1906 	int i;
1907 
1908 	for (i = 0; i < self_id_count; i++) {
1909 		u32 entry = ohci->self_id_buffer[i];
1910 		unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1911 
1912 		if (left_phy_id == right_phy_id)
1913 			return -1;
1914 		if (left_phy_id < right_phy_id)
1915 			return i;
1916 	}
1917 	return i;
1918 }
1919 
1920 static bool initiated_reset(struct fw_ohci *ohci)
1921 {
1922 	int reg;
1923 	int ret = false;
1924 
1925 	mutex_lock(&ohci->phy_reg_mutex);
1926 	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1927 	if (reg >= 0) {
1928 		reg = read_phy_reg(ohci, 8);
1929 		reg |= 0x40;
1930 		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1931 		if (reg >= 0) {
1932 			reg = read_phy_reg(ohci, 12); /* read register 12 */
1933 			if (reg >= 0) {
1934 				if ((reg & 0x08) == 0x08) {
1935 					/* bit 3 indicates "initiated reset" */
1936 					ret = true;
1937 				}
1938 			}
1939 		}
1940 	}
1941 	mutex_unlock(&ohci->phy_reg_mutex);
1942 	return ret;
1943 }
1944 
1945 /*
1946  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1947  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1948  * Construct the selfID from phy register contents.
1949  */
1950 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1951 {
1952 	int reg, i, pos;
1953 	u32 self_id = 0;
1954 
1955 	// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1956 	phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1957 	phy_packet_self_id_zero_set_link_active(&self_id, true);
1958 	phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1959 	phy_packet_self_id_zero_set_contender(&self_id, true);
1960 
1961 	reg = reg_read(ohci, OHCI1394_NodeID);
1962 	if (!(reg & OHCI1394_NodeID_idValid)) {
1963 		ohci_notice(ohci,
1964 			    "node ID not valid, new bus reset in progress\n");
1965 		return -EBUSY;
1966 	}
1967 	phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1968 
1969 	reg = ohci_read_phy_reg(&ohci->card, 4);
1970 	if (reg < 0)
1971 		return reg;
1972 	phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1973 
1974 	reg = ohci_read_phy_reg(&ohci->card, 1);
1975 	if (reg < 0)
1976 		return reg;
1977 	phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1978 
1979 	for (i = 0; i < 3; i++) {
1980 		enum phy_packet_self_id_port_status status;
1981 		int err;
1982 
1983 		err = get_status_for_port(ohci, i, &status);
1984 		if (err < 0)
1985 			return err;
1986 
1987 		self_id_sequence_set_port_status(&self_id, 1, i, status);
1988 	}
1989 
1990 	phy_packet_self_id_zero_set_initiated_reset(&self_id, initiated_reset(ohci));
1991 
1992 	pos = get_self_id_pos(ohci, self_id, self_id_count);
1993 	if (pos >= 0) {
1994 		memmove(&(ohci->self_id_buffer[pos+1]),
1995 			&(ohci->self_id_buffer[pos]),
1996 			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1997 		ohci->self_id_buffer[pos] = self_id;
1998 		self_id_count++;
1999 	}
2000 	return self_id_count;
2001 }
2002 
2003 static void bus_reset_work(struct work_struct *work)
2004 {
2005 	struct fw_ohci *ohci =
2006 		container_of(work, struct fw_ohci, bus_reset_work);
2007 	int self_id_count, generation, new_generation, i, j;
2008 	u32 reg, quadlet;
2009 	void *free_rom = NULL;
2010 	dma_addr_t free_rom_bus = 0;
2011 	bool is_new_root;
2012 
2013 	reg = reg_read(ohci, OHCI1394_NodeID);
2014 	if (!(reg & OHCI1394_NodeID_idValid)) {
2015 		ohci_notice(ohci,
2016 			    "node ID not valid, new bus reset in progress\n");
2017 		return;
2018 	}
2019 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2020 		ohci_notice(ohci, "malconfigured bus\n");
2021 		return;
2022 	}
2023 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2024 			       OHCI1394_NodeID_nodeNumber);
2025 
2026 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2027 	if (!(ohci->is_root && is_new_root))
2028 		reg_write(ohci, OHCI1394_LinkControlSet,
2029 			  OHCI1394_LinkControl_cycleMaster);
2030 	ohci->is_root = is_new_root;
2031 
2032 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2033 	if (ohci1394_self_id_count_is_error(reg)) {
2034 		ohci_notice(ohci, "self ID receive error\n");
2035 		return;
2036 	}
2037 	/*
2038 	 * The count in the SelfIDCount register is the number of
2039 	 * bytes in the self ID receive buffer.  Since we also receive
2040 	 * the inverted quadlets and a header quadlet, we shift one
2041 	 * bit extra to get the actual number of self IDs.
2042 	 */
2043 	self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2044 
2045 	if (self_id_count > 252) {
2046 		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2047 		return;
2048 	}
2049 
2050 	quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2051 	generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2052 	rmb();
2053 
2054 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2055 		u32 id  = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2056 		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2057 
2058 		if (id != ~id2) {
2059 			/*
2060 			 * If the invalid data looks like a cycle start packet,
2061 			 * it's likely to be the result of the cycle master
2062 			 * having a wrong gap count.  In this case, the self IDs
2063 			 * so far are valid and should be processed so that the
2064 			 * bus manager can then correct the gap count.
2065 			 */
2066 			if (id == 0xffff008f) {
2067 				ohci_notice(ohci, "ignoring spurious self IDs\n");
2068 				self_id_count = j;
2069 				break;
2070 			}
2071 
2072 			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2073 				    j, self_id_count, id, id2);
2074 			return;
2075 		}
2076 		ohci->self_id_buffer[j] = id;
2077 	}
2078 
2079 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2080 		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2081 		if (self_id_count < 0) {
2082 			ohci_notice(ohci,
2083 				    "could not construct local self ID\n");
2084 			return;
2085 		}
2086 	}
2087 
2088 	if (self_id_count == 0) {
2089 		ohci_notice(ohci, "no self IDs\n");
2090 		return;
2091 	}
2092 	rmb();
2093 
2094 	/*
2095 	 * Check the consistency of the self IDs we just read.  The
2096 	 * problem we face is that a new bus reset can start while we
2097 	 * read out the self IDs from the DMA buffer. If this happens,
2098 	 * the DMA buffer will be overwritten with new self IDs and we
2099 	 * will read out inconsistent data.  The OHCI specification
2100 	 * (section 11.2) recommends a technique similar to
2101 	 * linux/seqlock.h, where we remember the generation of the
2102 	 * self IDs in the buffer before reading them out and compare
2103 	 * it to the current generation after reading them out.  If
2104 	 * the two generations match we know we have a consistent set
2105 	 * of self IDs.
2106 	 */
2107 
2108 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2109 	new_generation = ohci1394_self_id_count_get_generation(reg);
2110 	if (new_generation != generation) {
2111 		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2112 		return;
2113 	}
2114 
2115 	/* FIXME: Document how the locking works. */
2116 	spin_lock_irq(&ohci->lock);
2117 
2118 	ohci->generation = -1; /* prevent AT packet queueing */
2119 	context_stop(&ohci->at_request_ctx);
2120 	context_stop(&ohci->at_response_ctx);
2121 
2122 	spin_unlock_irq(&ohci->lock);
2123 
2124 	/*
2125 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2126 	 * packets in the AT queues and software needs to drain them.
2127 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2128 	 */
2129 	at_context_flush(&ohci->at_request_ctx);
2130 	at_context_flush(&ohci->at_response_ctx);
2131 
2132 	spin_lock_irq(&ohci->lock);
2133 
2134 	ohci->generation = generation;
2135 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2136 	reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2137 
2138 	if (ohci->quirks & QUIRK_RESET_PACKET)
2139 		ohci->request_generation = generation;
2140 
2141 	/*
2142 	 * This next bit is unrelated to the AT context stuff but we
2143 	 * have to do it under the spinlock also.  If a new config rom
2144 	 * was set up before this reset, the old one is now no longer
2145 	 * in use and we can free it. Update the config rom pointers
2146 	 * to point to the current config rom and clear the
2147 	 * next_config_rom pointer so a new update can take place.
2148 	 */
2149 
2150 	if (ohci->next_config_rom != NULL) {
2151 		if (ohci->next_config_rom != ohci->config_rom) {
2152 			free_rom      = ohci->config_rom;
2153 			free_rom_bus  = ohci->config_rom_bus;
2154 		}
2155 		ohci->config_rom      = ohci->next_config_rom;
2156 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2157 		ohci->next_config_rom = NULL;
2158 
2159 		/*
2160 		 * Restore config_rom image and manually update
2161 		 * config_rom registers.  Writing the header quadlet
2162 		 * will indicate that the config rom is ready, so we
2163 		 * do that last.
2164 		 */
2165 		reg_write(ohci, OHCI1394_BusOptions,
2166 			  be32_to_cpu(ohci->config_rom[2]));
2167 		ohci->config_rom[0] = ohci->next_header;
2168 		reg_write(ohci, OHCI1394_ConfigROMhdr,
2169 			  be32_to_cpu(ohci->next_header));
2170 	}
2171 
2172 	if (param_remote_dma) {
2173 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2174 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2175 	}
2176 
2177 	spin_unlock_irq(&ohci->lock);
2178 
2179 	if (free_rom)
2180 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2181 
2182 	log_selfids(ohci, generation, self_id_count);
2183 
2184 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2185 				 self_id_count, ohci->self_id_buffer,
2186 				 ohci->csr_state_setclear_abdicate);
2187 	ohci->csr_state_setclear_abdicate = false;
2188 }
2189 
2190 static irqreturn_t irq_handler(int irq, void *data)
2191 {
2192 	struct fw_ohci *ohci = data;
2193 	u32 event, iso_event;
2194 	int i;
2195 
2196 	event = reg_read(ohci, OHCI1394_IntEventClear);
2197 
2198 	if (!event || !~event)
2199 		return IRQ_NONE;
2200 
2201 	/*
2202 	 * busReset and postedWriteErr events must not be cleared yet
2203 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2204 	 */
2205 	reg_write(ohci, OHCI1394_IntEventClear,
2206 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2207 	trace_irqs(ohci->card.index, event);
2208 	log_irqs(ohci, event);
2209 	// The flag is masked again at bus_reset_work() scheduled by selfID event.
2210 	if (event & OHCI1394_busReset)
2211 		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2212 
2213 	if (event & OHCI1394_selfIDComplete) {
2214 		if (trace_self_id_complete_enabled()) {
2215 			u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2216 
2217 			trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2218 					       has_be_header_quirk(ohci));
2219 		}
2220 		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2221 	}
2222 
2223 	if (event & OHCI1394_RQPkt)
2224 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2225 
2226 	if (event & OHCI1394_RSPkt)
2227 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2228 
2229 	if (event & OHCI1394_reqTxComplete)
2230 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2231 
2232 	if (event & OHCI1394_respTxComplete)
2233 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2234 
2235 	if (event & OHCI1394_isochRx) {
2236 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2237 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2238 
2239 		while (iso_event) {
2240 			i = ffs(iso_event) - 1;
2241 			tasklet_schedule(
2242 				&ohci->ir_context_list[i].context.tasklet);
2243 			iso_event &= ~(1 << i);
2244 		}
2245 	}
2246 
2247 	if (event & OHCI1394_isochTx) {
2248 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2249 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2250 
2251 		while (iso_event) {
2252 			i = ffs(iso_event) - 1;
2253 			tasklet_schedule(
2254 				&ohci->it_context_list[i].context.tasklet);
2255 			iso_event &= ~(1 << i);
2256 		}
2257 	}
2258 
2259 	if (unlikely(event & OHCI1394_regAccessFail))
2260 		ohci_err(ohci, "register access failure\n");
2261 
2262 	if (unlikely(event & OHCI1394_postedWriteErr)) {
2263 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2264 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2265 		reg_write(ohci, OHCI1394_IntEventClear,
2266 			  OHCI1394_postedWriteErr);
2267 		if (printk_ratelimit())
2268 			ohci_err(ohci, "PCI posted write error\n");
2269 	}
2270 
2271 	if (unlikely(event & OHCI1394_cycleTooLong)) {
2272 		if (printk_ratelimit())
2273 			ohci_notice(ohci, "isochronous cycle too long\n");
2274 		reg_write(ohci, OHCI1394_LinkControlSet,
2275 			  OHCI1394_LinkControl_cycleMaster);
2276 	}
2277 
2278 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2279 		/*
2280 		 * We need to clear this event bit in order to make
2281 		 * cycleMatch isochronous I/O work.  In theory we should
2282 		 * stop active cycleMatch iso contexts now and restart
2283 		 * them at least two cycles later.  (FIXME?)
2284 		 */
2285 		if (printk_ratelimit())
2286 			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2287 	}
2288 
2289 	if (unlikely(event & OHCI1394_unrecoverableError))
2290 		handle_dead_contexts(ohci);
2291 
2292 	if (event & OHCI1394_cycle64Seconds) {
2293 		spin_lock(&ohci->lock);
2294 		update_bus_time(ohci);
2295 		spin_unlock(&ohci->lock);
2296 	} else
2297 		flush_writes(ohci);
2298 
2299 	return IRQ_HANDLED;
2300 }
2301 
2302 static int software_reset(struct fw_ohci *ohci)
2303 {
2304 	u32 val;
2305 	int i;
2306 
2307 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2308 	for (i = 0; i < 500; i++) {
2309 		val = reg_read(ohci, OHCI1394_HCControlSet);
2310 		if (!~val)
2311 			return -ENODEV; /* Card was ejected. */
2312 
2313 		if (!(val & OHCI1394_HCControl_softReset))
2314 			return 0;
2315 
2316 		msleep(1);
2317 	}
2318 
2319 	return -EBUSY;
2320 }
2321 
2322 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2323 {
2324 	size_t size = length * 4;
2325 
2326 	memcpy(dest, src, size);
2327 	if (size < CONFIG_ROM_SIZE)
2328 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2329 }
2330 
2331 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2332 {
2333 	bool enable_1394a;
2334 	int ret, clear, set, offset;
2335 
2336 	/* Check if the driver should configure link and PHY. */
2337 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2338 	      OHCI1394_HCControl_programPhyEnable))
2339 		return 0;
2340 
2341 	/* Paranoia: check whether the PHY supports 1394a, too. */
2342 	enable_1394a = false;
2343 	ret = read_phy_reg(ohci, 2);
2344 	if (ret < 0)
2345 		return ret;
2346 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2347 		ret = read_paged_phy_reg(ohci, 1, 8);
2348 		if (ret < 0)
2349 			return ret;
2350 		if (ret >= 1)
2351 			enable_1394a = true;
2352 	}
2353 
2354 	if (ohci->quirks & QUIRK_NO_1394A)
2355 		enable_1394a = false;
2356 
2357 	/* Configure PHY and link consistently. */
2358 	if (enable_1394a) {
2359 		clear = 0;
2360 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2361 	} else {
2362 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2363 		set = 0;
2364 	}
2365 	ret = update_phy_reg(ohci, 5, clear, set);
2366 	if (ret < 0)
2367 		return ret;
2368 
2369 	if (enable_1394a)
2370 		offset = OHCI1394_HCControlSet;
2371 	else
2372 		offset = OHCI1394_HCControlClear;
2373 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2374 
2375 	/* Clean up: configuration has been taken care of. */
2376 	reg_write(ohci, OHCI1394_HCControlClear,
2377 		  OHCI1394_HCControl_programPhyEnable);
2378 
2379 	return 0;
2380 }
2381 
2382 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2383 {
2384 	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2385 	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2386 	int reg, i;
2387 
2388 	reg = read_phy_reg(ohci, 2);
2389 	if (reg < 0)
2390 		return reg;
2391 	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2392 		return 0;
2393 
2394 	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2395 		reg = read_paged_phy_reg(ohci, 1, i + 10);
2396 		if (reg < 0)
2397 			return reg;
2398 		if (reg != id[i])
2399 			return 0;
2400 	}
2401 	return 1;
2402 }
2403 
2404 static int ohci_enable(struct fw_card *card,
2405 		       const __be32 *config_rom, size_t length)
2406 {
2407 	struct fw_ohci *ohci = fw_ohci(card);
2408 	u32 lps, version, irqs;
2409 	int i, ret;
2410 
2411 	ret = software_reset(ohci);
2412 	if (ret < 0) {
2413 		ohci_err(ohci, "failed to reset ohci card\n");
2414 		return ret;
2415 	}
2416 
2417 	/*
2418 	 * Now enable LPS, which we need in order to start accessing
2419 	 * most of the registers.  In fact, on some cards (ALI M5251),
2420 	 * accessing registers in the SClk domain without LPS enabled
2421 	 * will lock up the machine.  Wait 50msec to make sure we have
2422 	 * full link enabled.  However, with some cards (well, at least
2423 	 * a JMicron PCIe card), we have to try again sometimes.
2424 	 *
2425 	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2426 	 * cannot actually use the phy at that time.  These need tens of
2427 	 * millisecods pause between LPS write and first phy access too.
2428 	 */
2429 
2430 	reg_write(ohci, OHCI1394_HCControlSet,
2431 		  OHCI1394_HCControl_LPS |
2432 		  OHCI1394_HCControl_postedWriteEnable);
2433 	flush_writes(ohci);
2434 
2435 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2436 		msleep(50);
2437 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2438 		      OHCI1394_HCControl_LPS;
2439 	}
2440 
2441 	if (!lps) {
2442 		ohci_err(ohci, "failed to set Link Power Status\n");
2443 		return -EIO;
2444 	}
2445 
2446 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2447 		ret = probe_tsb41ba3d(ohci);
2448 		if (ret < 0)
2449 			return ret;
2450 		if (ret)
2451 			ohci_notice(ohci, "local TSB41BA3D phy\n");
2452 		else
2453 			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2454 	}
2455 
2456 	reg_write(ohci, OHCI1394_HCControlClear,
2457 		  OHCI1394_HCControl_noByteSwapData);
2458 
2459 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2460 	reg_write(ohci, OHCI1394_LinkControlSet,
2461 		  OHCI1394_LinkControl_cycleTimerEnable |
2462 		  OHCI1394_LinkControl_cycleMaster);
2463 
2464 	reg_write(ohci, OHCI1394_ATRetries,
2465 		  OHCI1394_MAX_AT_REQ_RETRIES |
2466 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2467 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2468 		  (200 << 16));
2469 
2470 	ohci->bus_time_running = false;
2471 
2472 	for (i = 0; i < 32; i++)
2473 		if (ohci->ir_context_support & (1 << i))
2474 			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2475 				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2476 
2477 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2478 	if (version >= OHCI_VERSION_1_1) {
2479 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2480 			  0xfffffffe);
2481 		card->broadcast_channel_auto_allocated = true;
2482 	}
2483 
2484 	/* Get implemented bits of the priority arbitration request counter. */
2485 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2486 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2487 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2488 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2489 
2490 	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2491 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2492 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2493 
2494 	ret = configure_1394a_enhancements(ohci);
2495 	if (ret < 0)
2496 		return ret;
2497 
2498 	/* Activate link_on bit and contender bit in our self ID packets.*/
2499 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2500 	if (ret < 0)
2501 		return ret;
2502 
2503 	/*
2504 	 * When the link is not yet enabled, the atomic config rom
2505 	 * update mechanism described below in ohci_set_config_rom()
2506 	 * is not active.  We have to update ConfigRomHeader and
2507 	 * BusOptions manually, and the write to ConfigROMmap takes
2508 	 * effect immediately.  We tie this to the enabling of the
2509 	 * link, so we have a valid config rom before enabling - the
2510 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2511 	 * values before enabling.
2512 	 *
2513 	 * However, when the ConfigROMmap is written, some controllers
2514 	 * always read back quadlets 0 and 2 from the config rom to
2515 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2516 	 * They shouldn't do that in this initial case where the link
2517 	 * isn't enabled.  This means we have to use the same
2518 	 * workaround here, setting the bus header to 0 and then write
2519 	 * the right values in the bus reset tasklet.
2520 	 */
2521 
2522 	if (config_rom) {
2523 		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524 							    &ohci->next_config_rom_bus, GFP_KERNEL);
2525 		if (ohci->next_config_rom == NULL)
2526 			return -ENOMEM;
2527 
2528 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2529 	} else {
2530 		/*
2531 		 * In the suspend case, config_rom is NULL, which
2532 		 * means that we just reuse the old config rom.
2533 		 */
2534 		ohci->next_config_rom = ohci->config_rom;
2535 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2536 	}
2537 
2538 	ohci->next_header = ohci->next_config_rom[0];
2539 	ohci->next_config_rom[0] = 0;
2540 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2541 	reg_write(ohci, OHCI1394_BusOptions,
2542 		  be32_to_cpu(ohci->next_config_rom[2]));
2543 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2544 
2545 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2546 
2547 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2548 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2549 		OHCI1394_isochTx | OHCI1394_isochRx |
2550 		OHCI1394_postedWriteErr |
2551 		OHCI1394_selfIDComplete |
2552 		OHCI1394_regAccessFail |
2553 		OHCI1394_cycleInconsistent |
2554 		OHCI1394_unrecoverableError |
2555 		OHCI1394_cycleTooLong |
2556 		OHCI1394_masterIntEnable |
2557 		OHCI1394_busReset;
2558 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2559 
2560 	reg_write(ohci, OHCI1394_HCControlSet,
2561 		  OHCI1394_HCControl_linkEnable |
2562 		  OHCI1394_HCControl_BIBimageValid);
2563 
2564 	reg_write(ohci, OHCI1394_LinkControlSet,
2565 		  OHCI1394_LinkControl_rcvSelfID |
2566 		  OHCI1394_LinkControl_rcvPhyPkt);
2567 
2568 	ar_context_run(&ohci->ar_request_ctx);
2569 	ar_context_run(&ohci->ar_response_ctx);
2570 
2571 	flush_writes(ohci);
2572 
2573 	/* We are ready to go, reset bus to finish initialization. */
2574 	fw_schedule_bus_reset(&ohci->card, false, true);
2575 
2576 	return 0;
2577 }
2578 
2579 static int ohci_set_config_rom(struct fw_card *card,
2580 			       const __be32 *config_rom, size_t length)
2581 {
2582 	struct fw_ohci *ohci;
2583 	__be32 *next_config_rom;
2584 	dma_addr_t next_config_rom_bus;
2585 
2586 	ohci = fw_ohci(card);
2587 
2588 	/*
2589 	 * When the OHCI controller is enabled, the config rom update
2590 	 * mechanism is a bit tricky, but easy enough to use.  See
2591 	 * section 5.5.6 in the OHCI specification.
2592 	 *
2593 	 * The OHCI controller caches the new config rom address in a
2594 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2595 	 * for the changes to take place.  When the bus reset is
2596 	 * detected, the controller loads the new values for the
2597 	 * ConfigRomHeader and BusOptions registers from the specified
2598 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2599 	 * shadow register. All automatically and atomically.
2600 	 *
2601 	 * Now, there's a twist to this story.  The automatic load of
2602 	 * ConfigRomHeader and BusOptions doesn't honor the
2603 	 * noByteSwapData bit, so with a be32 config rom, the
2604 	 * controller will load be32 values in to these registers
2605 	 * during the atomic update, even on litte endian
2606 	 * architectures.  The workaround we use is to put a 0 in the
2607 	 * header quadlet; 0 is endian agnostic and means that the
2608 	 * config rom isn't ready yet.  In the bus reset tasklet we
2609 	 * then set up the real values for the two registers.
2610 	 *
2611 	 * We use ohci->lock to avoid racing with the code that sets
2612 	 * ohci->next_config_rom to NULL (see bus_reset_work).
2613 	 */
2614 
2615 	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2616 					      &next_config_rom_bus, GFP_KERNEL);
2617 	if (next_config_rom == NULL)
2618 		return -ENOMEM;
2619 
2620 	spin_lock_irq(&ohci->lock);
2621 
2622 	/*
2623 	 * If there is not an already pending config_rom update,
2624 	 * push our new allocation into the ohci->next_config_rom
2625 	 * and then mark the local variable as null so that we
2626 	 * won't deallocate the new buffer.
2627 	 *
2628 	 * OTOH, if there is a pending config_rom update, just
2629 	 * use that buffer with the new config_rom data, and
2630 	 * let this routine free the unused DMA allocation.
2631 	 */
2632 
2633 	if (ohci->next_config_rom == NULL) {
2634 		ohci->next_config_rom = next_config_rom;
2635 		ohci->next_config_rom_bus = next_config_rom_bus;
2636 		next_config_rom = NULL;
2637 	}
2638 
2639 	copy_config_rom(ohci->next_config_rom, config_rom, length);
2640 
2641 	ohci->next_header = config_rom[0];
2642 	ohci->next_config_rom[0] = 0;
2643 
2644 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2645 
2646 	spin_unlock_irq(&ohci->lock);
2647 
2648 	/* If we didn't use the DMA allocation, delete it. */
2649 	if (next_config_rom != NULL) {
2650 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2651 				   next_config_rom_bus);
2652 	}
2653 
2654 	/*
2655 	 * Now initiate a bus reset to have the changes take
2656 	 * effect. We clean up the old config rom memory and DMA
2657 	 * mappings in the bus reset tasklet, since the OHCI
2658 	 * controller could need to access it before the bus reset
2659 	 * takes effect.
2660 	 */
2661 
2662 	fw_schedule_bus_reset(&ohci->card, true, true);
2663 
2664 	return 0;
2665 }
2666 
2667 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2668 {
2669 	struct fw_ohci *ohci = fw_ohci(card);
2670 
2671 	at_context_transmit(&ohci->at_request_ctx, packet);
2672 }
2673 
2674 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2675 {
2676 	struct fw_ohci *ohci = fw_ohci(card);
2677 
2678 	at_context_transmit(&ohci->at_response_ctx, packet);
2679 }
2680 
2681 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2682 {
2683 	struct fw_ohci *ohci = fw_ohci(card);
2684 	struct context *ctx = &ohci->at_request_ctx;
2685 	struct driver_data *driver_data = packet->driver_data;
2686 	int ret = -ENOENT;
2687 
2688 	tasklet_disable_in_atomic(&ctx->tasklet);
2689 
2690 	if (packet->ack != 0)
2691 		goto out;
2692 
2693 	if (packet->payload_mapped)
2694 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2695 				 packet->payload_length, DMA_TO_DEVICE);
2696 
2697 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2698 	driver_data->packet = NULL;
2699 	packet->ack = RCODE_CANCELLED;
2700 
2701 	// Timestamping on behalf of the hardware.
2702 	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2703 
2704 	packet->callback(packet, &ohci->card, packet->ack);
2705 	ret = 0;
2706  out:
2707 	tasklet_enable(&ctx->tasklet);
2708 
2709 	return ret;
2710 }
2711 
2712 static int ohci_enable_phys_dma(struct fw_card *card,
2713 				int node_id, int generation)
2714 {
2715 	struct fw_ohci *ohci = fw_ohci(card);
2716 	unsigned long flags;
2717 	int n, ret = 0;
2718 
2719 	if (param_remote_dma)
2720 		return 0;
2721 
2722 	/*
2723 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2724 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2725 	 */
2726 
2727 	spin_lock_irqsave(&ohci->lock, flags);
2728 
2729 	if (ohci->generation != generation) {
2730 		ret = -ESTALE;
2731 		goto out;
2732 	}
2733 
2734 	/*
2735 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2736 	 * enabled for _all_ nodes on remote buses.
2737 	 */
2738 
2739 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2740 	if (n < 32)
2741 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2742 	else
2743 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2744 
2745 	flush_writes(ohci);
2746  out:
2747 	spin_unlock_irqrestore(&ohci->lock, flags);
2748 
2749 	return ret;
2750 }
2751 
2752 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2753 {
2754 	struct fw_ohci *ohci = fw_ohci(card);
2755 	unsigned long flags;
2756 	u32 value;
2757 
2758 	switch (csr_offset) {
2759 	case CSR_STATE_CLEAR:
2760 	case CSR_STATE_SET:
2761 		if (ohci->is_root &&
2762 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2763 		     OHCI1394_LinkControl_cycleMaster))
2764 			value = CSR_STATE_BIT_CMSTR;
2765 		else
2766 			value = 0;
2767 		if (ohci->csr_state_setclear_abdicate)
2768 			value |= CSR_STATE_BIT_ABDICATE;
2769 
2770 		return value;
2771 
2772 	case CSR_NODE_IDS:
2773 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2774 
2775 	case CSR_CYCLE_TIME:
2776 		return get_cycle_time(ohci);
2777 
2778 	case CSR_BUS_TIME:
2779 		/*
2780 		 * We might be called just after the cycle timer has wrapped
2781 		 * around but just before the cycle64Seconds handler, so we
2782 		 * better check here, too, if the bus time needs to be updated.
2783 		 */
2784 		spin_lock_irqsave(&ohci->lock, flags);
2785 		value = update_bus_time(ohci);
2786 		spin_unlock_irqrestore(&ohci->lock, flags);
2787 		return value;
2788 
2789 	case CSR_BUSY_TIMEOUT:
2790 		value = reg_read(ohci, OHCI1394_ATRetries);
2791 		return (value >> 4) & 0x0ffff00f;
2792 
2793 	case CSR_PRIORITY_BUDGET:
2794 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2795 			(ohci->pri_req_max << 8);
2796 
2797 	default:
2798 		WARN_ON(1);
2799 		return 0;
2800 	}
2801 }
2802 
2803 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2804 {
2805 	struct fw_ohci *ohci = fw_ohci(card);
2806 	unsigned long flags;
2807 
2808 	switch (csr_offset) {
2809 	case CSR_STATE_CLEAR:
2810 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2811 			reg_write(ohci, OHCI1394_LinkControlClear,
2812 				  OHCI1394_LinkControl_cycleMaster);
2813 			flush_writes(ohci);
2814 		}
2815 		if (value & CSR_STATE_BIT_ABDICATE)
2816 			ohci->csr_state_setclear_abdicate = false;
2817 		break;
2818 
2819 	case CSR_STATE_SET:
2820 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2821 			reg_write(ohci, OHCI1394_LinkControlSet,
2822 				  OHCI1394_LinkControl_cycleMaster);
2823 			flush_writes(ohci);
2824 		}
2825 		if (value & CSR_STATE_BIT_ABDICATE)
2826 			ohci->csr_state_setclear_abdicate = true;
2827 		break;
2828 
2829 	case CSR_NODE_IDS:
2830 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2831 		flush_writes(ohci);
2832 		break;
2833 
2834 	case CSR_CYCLE_TIME:
2835 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2836 		reg_write(ohci, OHCI1394_IntEventSet,
2837 			  OHCI1394_cycleInconsistent);
2838 		flush_writes(ohci);
2839 		break;
2840 
2841 	case CSR_BUS_TIME:
2842 		spin_lock_irqsave(&ohci->lock, flags);
2843 		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2844 		                 (value & ~0x7f);
2845 		spin_unlock_irqrestore(&ohci->lock, flags);
2846 		break;
2847 
2848 	case CSR_BUSY_TIMEOUT:
2849 		value = (value & 0xf) | ((value & 0xf) << 4) |
2850 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2851 		reg_write(ohci, OHCI1394_ATRetries, value);
2852 		flush_writes(ohci);
2853 		break;
2854 
2855 	case CSR_PRIORITY_BUDGET:
2856 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2857 		flush_writes(ohci);
2858 		break;
2859 
2860 	default:
2861 		WARN_ON(1);
2862 		break;
2863 	}
2864 }
2865 
2866 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2867 {
2868 	trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2869 					      ctx->header_length);
2870 	trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2871 					ctx->header_length);
2872 
2873 	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2874 			      ctx->header_length, ctx->header,
2875 			      ctx->base.callback_data);
2876 	ctx->header_length = 0;
2877 }
2878 
2879 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2880 {
2881 	u32 *ctx_hdr;
2882 
2883 	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2884 		if (ctx->base.drop_overflow_headers)
2885 			return;
2886 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2887 	}
2888 
2889 	ctx_hdr = ctx->header + ctx->header_length;
2890 	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2891 
2892 	/*
2893 	 * The two iso header quadlets are byteswapped to little
2894 	 * endian by the controller, but we want to present them
2895 	 * as big endian for consistency with the bus endianness.
2896 	 */
2897 	if (ctx->base.header_size > 0)
2898 		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2899 	if (ctx->base.header_size > 4)
2900 		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2901 	if (ctx->base.header_size > 8)
2902 		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2903 	ctx->header_length += ctx->base.header_size;
2904 }
2905 
2906 static int handle_ir_packet_per_buffer(struct context *context,
2907 				       struct descriptor *d,
2908 				       struct descriptor *last)
2909 {
2910 	struct iso_context *ctx =
2911 		container_of(context, struct iso_context, context);
2912 	struct descriptor *pd;
2913 	u32 buffer_dma;
2914 
2915 	for (pd = d; pd <= last; pd++)
2916 		if (pd->transfer_status)
2917 			break;
2918 	if (pd > last)
2919 		/* Descriptor(s) not done yet, stop iteration */
2920 		return 0;
2921 
2922 	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2923 		d++;
2924 		buffer_dma = le32_to_cpu(d->data_address);
2925 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2926 					      buffer_dma & PAGE_MASK,
2927 					      buffer_dma & ~PAGE_MASK,
2928 					      le16_to_cpu(d->req_count),
2929 					      DMA_FROM_DEVICE);
2930 	}
2931 
2932 	copy_iso_headers(ctx, (u32 *) (last + 1));
2933 
2934 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2935 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
2936 
2937 	return 1;
2938 }
2939 
2940 /* d == last because each descriptor block is only a single descriptor. */
2941 static int handle_ir_buffer_fill(struct context *context,
2942 				 struct descriptor *d,
2943 				 struct descriptor *last)
2944 {
2945 	struct iso_context *ctx =
2946 		container_of(context, struct iso_context, context);
2947 	unsigned int req_count, res_count, completed;
2948 	u32 buffer_dma;
2949 
2950 	req_count = le16_to_cpu(last->req_count);
2951 	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2952 	completed = req_count - res_count;
2953 	buffer_dma = le32_to_cpu(last->data_address);
2954 
2955 	if (completed > 0) {
2956 		ctx->mc_buffer_bus = buffer_dma;
2957 		ctx->mc_completed = completed;
2958 	}
2959 
2960 	if (res_count != 0)
2961 		/* Descriptor(s) not done yet, stop iteration */
2962 		return 0;
2963 
2964 	dma_sync_single_range_for_cpu(context->ohci->card.device,
2965 				      buffer_dma & PAGE_MASK,
2966 				      buffer_dma & ~PAGE_MASK,
2967 				      completed, DMA_FROM_DEVICE);
2968 
2969 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2970 		trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2971 							FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
2972 
2973 		ctx->base.callback.mc(&ctx->base,
2974 				      buffer_dma + completed,
2975 				      ctx->base.callback_data);
2976 		ctx->mc_completed = 0;
2977 	}
2978 
2979 	return 1;
2980 }
2981 
2982 static void flush_ir_buffer_fill(struct iso_context *ctx)
2983 {
2984 	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2985 				      ctx->mc_buffer_bus & PAGE_MASK,
2986 				      ctx->mc_buffer_bus & ~PAGE_MASK,
2987 				      ctx->mc_completed, DMA_FROM_DEVICE);
2988 
2989 	trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2990 						FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2991 
2992 	ctx->base.callback.mc(&ctx->base,
2993 			      ctx->mc_buffer_bus + ctx->mc_completed,
2994 			      ctx->base.callback_data);
2995 	ctx->mc_completed = 0;
2996 }
2997 
2998 static inline void sync_it_packet_for_cpu(struct context *context,
2999 					  struct descriptor *pd)
3000 {
3001 	__le16 control;
3002 	u32 buffer_dma;
3003 
3004 	/* only packets beginning with OUTPUT_MORE* have data buffers */
3005 	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3006 		return;
3007 
3008 	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3009 	pd += 2;
3010 
3011 	/*
3012 	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3013 	 * data buffer is in the context program's coherent page and must not
3014 	 * be synced.
3015 	 */
3016 	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3017 	    (context->current_bus          & PAGE_MASK)) {
3018 		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3019 			return;
3020 		pd++;
3021 	}
3022 
3023 	do {
3024 		buffer_dma = le32_to_cpu(pd->data_address);
3025 		dma_sync_single_range_for_cpu(context->ohci->card.device,
3026 					      buffer_dma & PAGE_MASK,
3027 					      buffer_dma & ~PAGE_MASK,
3028 					      le16_to_cpu(pd->req_count),
3029 					      DMA_TO_DEVICE);
3030 		control = pd->control;
3031 		pd++;
3032 	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3033 }
3034 
3035 static int handle_it_packet(struct context *context,
3036 			    struct descriptor *d,
3037 			    struct descriptor *last)
3038 {
3039 	struct iso_context *ctx =
3040 		container_of(context, struct iso_context, context);
3041 	struct descriptor *pd;
3042 	__be32 *ctx_hdr;
3043 
3044 	for (pd = d; pd <= last; pd++)
3045 		if (pd->transfer_status)
3046 			break;
3047 	if (pd > last)
3048 		/* Descriptor(s) not done yet, stop iteration */
3049 		return 0;
3050 
3051 	sync_it_packet_for_cpu(context, d);
3052 
3053 	if (ctx->header_length + 4 > PAGE_SIZE) {
3054 		if (ctx->base.drop_overflow_headers)
3055 			return 1;
3056 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3057 	}
3058 
3059 	ctx_hdr = ctx->header + ctx->header_length;
3060 	ctx->last_timestamp = le16_to_cpu(last->res_count);
3061 	/* Present this value as big-endian to match the receive code */
3062 	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3063 			       le16_to_cpu(pd->res_count));
3064 	ctx->header_length += 4;
3065 
3066 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3067 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
3068 
3069 	return 1;
3070 }
3071 
3072 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3073 {
3074 	u32 hi = channels >> 32, lo = channels;
3075 
3076 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3077 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3078 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3079 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3080 	ohci->mc_channels = channels;
3081 }
3082 
3083 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3084 				int type, int channel, size_t header_size)
3085 {
3086 	struct fw_ohci *ohci = fw_ohci(card);
3087 	struct iso_context *ctx;
3088 	descriptor_callback_t callback;
3089 	u64 *channels;
3090 	u32 *mask, regs;
3091 	int index, ret = -EBUSY;
3092 
3093 	spin_lock_irq(&ohci->lock);
3094 
3095 	switch (type) {
3096 	case FW_ISO_CONTEXT_TRANSMIT:
3097 		mask     = &ohci->it_context_mask;
3098 		callback = handle_it_packet;
3099 		index    = ffs(*mask) - 1;
3100 		if (index >= 0) {
3101 			*mask &= ~(1 << index);
3102 			regs = OHCI1394_IsoXmitContextBase(index);
3103 			ctx  = &ohci->it_context_list[index];
3104 		}
3105 		break;
3106 
3107 	case FW_ISO_CONTEXT_RECEIVE:
3108 		channels = &ohci->ir_context_channels;
3109 		mask     = &ohci->ir_context_mask;
3110 		callback = handle_ir_packet_per_buffer;
3111 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3112 		if (index >= 0) {
3113 			*channels &= ~(1ULL << channel);
3114 			*mask     &= ~(1 << index);
3115 			regs = OHCI1394_IsoRcvContextBase(index);
3116 			ctx  = &ohci->ir_context_list[index];
3117 		}
3118 		break;
3119 
3120 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3121 		mask     = &ohci->ir_context_mask;
3122 		callback = handle_ir_buffer_fill;
3123 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3124 		if (index >= 0) {
3125 			ohci->mc_allocated = true;
3126 			*mask &= ~(1 << index);
3127 			regs = OHCI1394_IsoRcvContextBase(index);
3128 			ctx  = &ohci->ir_context_list[index];
3129 		}
3130 		break;
3131 
3132 	default:
3133 		index = -1;
3134 		ret = -ENOSYS;
3135 	}
3136 
3137 	spin_unlock_irq(&ohci->lock);
3138 
3139 	if (index < 0)
3140 		return ERR_PTR(ret);
3141 
3142 	memset(ctx, 0, sizeof(*ctx));
3143 	ctx->header_length = 0;
3144 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3145 	if (ctx->header == NULL) {
3146 		ret = -ENOMEM;
3147 		goto out;
3148 	}
3149 	ret = context_init(&ctx->context, ohci, regs, callback);
3150 	if (ret < 0)
3151 		goto out_with_header;
3152 
3153 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3154 		set_multichannel_mask(ohci, 0);
3155 		ctx->mc_completed = 0;
3156 	}
3157 
3158 	return &ctx->base;
3159 
3160  out_with_header:
3161 	free_page((unsigned long)ctx->header);
3162  out:
3163 	spin_lock_irq(&ohci->lock);
3164 
3165 	switch (type) {
3166 	case FW_ISO_CONTEXT_RECEIVE:
3167 		*channels |= 1ULL << channel;
3168 		break;
3169 
3170 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3171 		ohci->mc_allocated = false;
3172 		break;
3173 	}
3174 	*mask |= 1 << index;
3175 
3176 	spin_unlock_irq(&ohci->lock);
3177 
3178 	return ERR_PTR(ret);
3179 }
3180 
3181 static int ohci_start_iso(struct fw_iso_context *base,
3182 			  s32 cycle, u32 sync, u32 tags)
3183 {
3184 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3185 	struct fw_ohci *ohci = ctx->context.ohci;
3186 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3187 	int index;
3188 
3189 	/* the controller cannot start without any queued packets */
3190 	if (ctx->context.last->branch_address == 0)
3191 		return -ENODATA;
3192 
3193 	switch (ctx->base.type) {
3194 	case FW_ISO_CONTEXT_TRANSMIT:
3195 		index = ctx - ohci->it_context_list;
3196 		match = 0;
3197 		if (cycle >= 0)
3198 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3199 				(cycle & 0x7fff) << 16;
3200 
3201 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3202 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3203 		context_run(&ctx->context, match);
3204 		break;
3205 
3206 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3207 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3208 		fallthrough;
3209 	case FW_ISO_CONTEXT_RECEIVE:
3210 		index = ctx - ohci->ir_context_list;
3211 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3212 		if (cycle >= 0) {
3213 			match |= (cycle & 0x07fff) << 12;
3214 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3215 		}
3216 
3217 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3218 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3219 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3220 		context_run(&ctx->context, control);
3221 
3222 		ctx->sync = sync;
3223 		ctx->tags = tags;
3224 
3225 		break;
3226 	}
3227 
3228 	return 0;
3229 }
3230 
3231 static int ohci_stop_iso(struct fw_iso_context *base)
3232 {
3233 	struct fw_ohci *ohci = fw_ohci(base->card);
3234 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3235 	int index;
3236 
3237 	switch (ctx->base.type) {
3238 	case FW_ISO_CONTEXT_TRANSMIT:
3239 		index = ctx - ohci->it_context_list;
3240 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3241 		break;
3242 
3243 	case FW_ISO_CONTEXT_RECEIVE:
3244 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3245 		index = ctx - ohci->ir_context_list;
3246 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3247 		break;
3248 	}
3249 	flush_writes(ohci);
3250 	context_stop(&ctx->context);
3251 	tasklet_kill(&ctx->context.tasklet);
3252 
3253 	return 0;
3254 }
3255 
3256 static void ohci_free_iso_context(struct fw_iso_context *base)
3257 {
3258 	struct fw_ohci *ohci = fw_ohci(base->card);
3259 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3260 	unsigned long flags;
3261 	int index;
3262 
3263 	ohci_stop_iso(base);
3264 	context_release(&ctx->context);
3265 	free_page((unsigned long)ctx->header);
3266 
3267 	spin_lock_irqsave(&ohci->lock, flags);
3268 
3269 	switch (base->type) {
3270 	case FW_ISO_CONTEXT_TRANSMIT:
3271 		index = ctx - ohci->it_context_list;
3272 		ohci->it_context_mask |= 1 << index;
3273 		break;
3274 
3275 	case FW_ISO_CONTEXT_RECEIVE:
3276 		index = ctx - ohci->ir_context_list;
3277 		ohci->ir_context_mask |= 1 << index;
3278 		ohci->ir_context_channels |= 1ULL << base->channel;
3279 		break;
3280 
3281 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3282 		index = ctx - ohci->ir_context_list;
3283 		ohci->ir_context_mask |= 1 << index;
3284 		ohci->ir_context_channels |= ohci->mc_channels;
3285 		ohci->mc_channels = 0;
3286 		ohci->mc_allocated = false;
3287 		break;
3288 	}
3289 
3290 	spin_unlock_irqrestore(&ohci->lock, flags);
3291 }
3292 
3293 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3294 {
3295 	struct fw_ohci *ohci = fw_ohci(base->card);
3296 	unsigned long flags;
3297 	int ret;
3298 
3299 	switch (base->type) {
3300 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3301 
3302 		spin_lock_irqsave(&ohci->lock, flags);
3303 
3304 		/* Don't allow multichannel to grab other contexts' channels. */
3305 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3306 			*channels = ohci->ir_context_channels;
3307 			ret = -EBUSY;
3308 		} else {
3309 			set_multichannel_mask(ohci, *channels);
3310 			ret = 0;
3311 		}
3312 
3313 		spin_unlock_irqrestore(&ohci->lock, flags);
3314 
3315 		break;
3316 	default:
3317 		ret = -EINVAL;
3318 	}
3319 
3320 	return ret;
3321 }
3322 
3323 #ifdef CONFIG_PM
3324 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3325 {
3326 	int i;
3327 	struct iso_context *ctx;
3328 
3329 	for (i = 0 ; i < ohci->n_ir ; i++) {
3330 		ctx = &ohci->ir_context_list[i];
3331 		if (ctx->context.running)
3332 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3333 	}
3334 
3335 	for (i = 0 ; i < ohci->n_it ; i++) {
3336 		ctx = &ohci->it_context_list[i];
3337 		if (ctx->context.running)
3338 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3339 	}
3340 }
3341 #endif
3342 
3343 static int queue_iso_transmit(struct iso_context *ctx,
3344 			      struct fw_iso_packet *packet,
3345 			      struct fw_iso_buffer *buffer,
3346 			      unsigned long payload)
3347 {
3348 	struct descriptor *d, *last, *pd;
3349 	struct fw_iso_packet *p;
3350 	__le32 *header;
3351 	dma_addr_t d_bus, page_bus;
3352 	u32 z, header_z, payload_z, irq;
3353 	u32 payload_index, payload_end_index, next_page_index;
3354 	int page, end_page, i, length, offset;
3355 
3356 	p = packet;
3357 	payload_index = payload;
3358 
3359 	if (p->skip)
3360 		z = 1;
3361 	else
3362 		z = 2;
3363 	if (p->header_length > 0)
3364 		z++;
3365 
3366 	/* Determine the first page the payload isn't contained in. */
3367 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3368 	if (p->payload_length > 0)
3369 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3370 	else
3371 		payload_z = 0;
3372 
3373 	z += payload_z;
3374 
3375 	/* Get header size in number of descriptors. */
3376 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3377 
3378 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3379 	if (d == NULL)
3380 		return -ENOMEM;
3381 
3382 	if (!p->skip) {
3383 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3384 		d[0].req_count = cpu_to_le16(8);
3385 		/*
3386 		 * Link the skip address to this descriptor itself.  This causes
3387 		 * a context to skip a cycle whenever lost cycles or FIFO
3388 		 * overruns occur, without dropping the data.  The application
3389 		 * should then decide whether this is an error condition or not.
3390 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3391 		 */
3392 		d[0].branch_address = cpu_to_le32(d_bus | z);
3393 
3394 		header = (__le32 *) &d[1];
3395 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3396 					IT_HEADER_TAG(p->tag) |
3397 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3398 					IT_HEADER_CHANNEL(ctx->base.channel) |
3399 					IT_HEADER_SPEED(ctx->base.speed));
3400 		header[1] =
3401 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3402 							  p->payload_length));
3403 	}
3404 
3405 	if (p->header_length > 0) {
3406 		d[2].req_count    = cpu_to_le16(p->header_length);
3407 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3408 		memcpy(&d[z], p->header, p->header_length);
3409 	}
3410 
3411 	pd = d + z - payload_z;
3412 	payload_end_index = payload_index + p->payload_length;
3413 	for (i = 0; i < payload_z; i++) {
3414 		page               = payload_index >> PAGE_SHIFT;
3415 		offset             = payload_index & ~PAGE_MASK;
3416 		next_page_index    = (page + 1) << PAGE_SHIFT;
3417 		length             =
3418 			min(next_page_index, payload_end_index) - payload_index;
3419 		pd[i].req_count    = cpu_to_le16(length);
3420 
3421 		page_bus = page_private(buffer->pages[page]);
3422 		pd[i].data_address = cpu_to_le32(page_bus + offset);
3423 
3424 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3425 						 page_bus, offset, length,
3426 						 DMA_TO_DEVICE);
3427 
3428 		payload_index += length;
3429 	}
3430 
3431 	if (p->interrupt)
3432 		irq = DESCRIPTOR_IRQ_ALWAYS;
3433 	else
3434 		irq = DESCRIPTOR_NO_IRQ;
3435 
3436 	last = z == 2 ? d : d + z - 1;
3437 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3438 				     DESCRIPTOR_STATUS |
3439 				     DESCRIPTOR_BRANCH_ALWAYS |
3440 				     irq);
3441 
3442 	context_append(&ctx->context, d, z, header_z);
3443 
3444 	return 0;
3445 }
3446 
3447 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3448 				       struct fw_iso_packet *packet,
3449 				       struct fw_iso_buffer *buffer,
3450 				       unsigned long payload)
3451 {
3452 	struct device *device = ctx->context.ohci->card.device;
3453 	struct descriptor *d, *pd;
3454 	dma_addr_t d_bus, page_bus;
3455 	u32 z, header_z, rest;
3456 	int i, j, length;
3457 	int page, offset, packet_count, header_size, payload_per_buffer;
3458 
3459 	/*
3460 	 * The OHCI controller puts the isochronous header and trailer in the
3461 	 * buffer, so we need at least 8 bytes.
3462 	 */
3463 	packet_count = packet->header_length / ctx->base.header_size;
3464 	header_size  = max(ctx->base.header_size, (size_t)8);
3465 
3466 	/* Get header size in number of descriptors. */
3467 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3468 	page     = payload >> PAGE_SHIFT;
3469 	offset   = payload & ~PAGE_MASK;
3470 	payload_per_buffer = packet->payload_length / packet_count;
3471 
3472 	for (i = 0; i < packet_count; i++) {
3473 		/* d points to the header descriptor */
3474 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3475 		d = context_get_descriptors(&ctx->context,
3476 				z + header_z, &d_bus);
3477 		if (d == NULL)
3478 			return -ENOMEM;
3479 
3480 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3481 					      DESCRIPTOR_INPUT_MORE);
3482 		if (packet->skip && i == 0)
3483 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3484 		d->req_count    = cpu_to_le16(header_size);
3485 		d->res_count    = d->req_count;
3486 		d->transfer_status = 0;
3487 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3488 
3489 		rest = payload_per_buffer;
3490 		pd = d;
3491 		for (j = 1; j < z; j++) {
3492 			pd++;
3493 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3494 						  DESCRIPTOR_INPUT_MORE);
3495 
3496 			if (offset + rest < PAGE_SIZE)
3497 				length = rest;
3498 			else
3499 				length = PAGE_SIZE - offset;
3500 			pd->req_count = cpu_to_le16(length);
3501 			pd->res_count = pd->req_count;
3502 			pd->transfer_status = 0;
3503 
3504 			page_bus = page_private(buffer->pages[page]);
3505 			pd->data_address = cpu_to_le32(page_bus + offset);
3506 
3507 			dma_sync_single_range_for_device(device, page_bus,
3508 							 offset, length,
3509 							 DMA_FROM_DEVICE);
3510 
3511 			offset = (offset + length) & ~PAGE_MASK;
3512 			rest -= length;
3513 			if (offset == 0)
3514 				page++;
3515 		}
3516 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3517 					  DESCRIPTOR_INPUT_LAST |
3518 					  DESCRIPTOR_BRANCH_ALWAYS);
3519 		if (packet->interrupt && i == packet_count - 1)
3520 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3521 
3522 		context_append(&ctx->context, d, z, header_z);
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 static int queue_iso_buffer_fill(struct iso_context *ctx,
3529 				 struct fw_iso_packet *packet,
3530 				 struct fw_iso_buffer *buffer,
3531 				 unsigned long payload)
3532 {
3533 	struct descriptor *d;
3534 	dma_addr_t d_bus, page_bus;
3535 	int page, offset, rest, z, i, length;
3536 
3537 	page   = payload >> PAGE_SHIFT;
3538 	offset = payload & ~PAGE_MASK;
3539 	rest   = packet->payload_length;
3540 
3541 	/* We need one descriptor for each page in the buffer. */
3542 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3543 
3544 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3545 		return -EFAULT;
3546 
3547 	for (i = 0; i < z; i++) {
3548 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3549 		if (d == NULL)
3550 			return -ENOMEM;
3551 
3552 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3553 					 DESCRIPTOR_BRANCH_ALWAYS);
3554 		if (packet->skip && i == 0)
3555 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3556 		if (packet->interrupt && i == z - 1)
3557 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3558 
3559 		if (offset + rest < PAGE_SIZE)
3560 			length = rest;
3561 		else
3562 			length = PAGE_SIZE - offset;
3563 		d->req_count = cpu_to_le16(length);
3564 		d->res_count = d->req_count;
3565 		d->transfer_status = 0;
3566 
3567 		page_bus = page_private(buffer->pages[page]);
3568 		d->data_address = cpu_to_le32(page_bus + offset);
3569 
3570 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3571 						 page_bus, offset, length,
3572 						 DMA_FROM_DEVICE);
3573 
3574 		rest -= length;
3575 		offset = 0;
3576 		page++;
3577 
3578 		context_append(&ctx->context, d, 1, 0);
3579 	}
3580 
3581 	return 0;
3582 }
3583 
3584 static int ohci_queue_iso(struct fw_iso_context *base,
3585 			  struct fw_iso_packet *packet,
3586 			  struct fw_iso_buffer *buffer,
3587 			  unsigned long payload)
3588 {
3589 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3590 	unsigned long flags;
3591 	int ret = -ENOSYS;
3592 
3593 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3594 	switch (base->type) {
3595 	case FW_ISO_CONTEXT_TRANSMIT:
3596 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3597 		break;
3598 	case FW_ISO_CONTEXT_RECEIVE:
3599 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3600 		break;
3601 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3602 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3603 		break;
3604 	}
3605 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3606 
3607 	return ret;
3608 }
3609 
3610 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3611 {
3612 	struct context *ctx =
3613 			&container_of(base, struct iso_context, base)->context;
3614 
3615 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3616 }
3617 
3618 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3619 {
3620 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3621 	int ret = 0;
3622 
3623 	tasklet_disable_in_atomic(&ctx->context.tasklet);
3624 
3625 	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3626 		context_tasklet((unsigned long)&ctx->context);
3627 
3628 		switch (base->type) {
3629 		case FW_ISO_CONTEXT_TRANSMIT:
3630 		case FW_ISO_CONTEXT_RECEIVE:
3631 			if (ctx->header_length != 0)
3632 				flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3633 			break;
3634 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3635 			if (ctx->mc_completed != 0)
3636 				flush_ir_buffer_fill(ctx);
3637 			break;
3638 		default:
3639 			ret = -ENOSYS;
3640 		}
3641 
3642 		clear_bit_unlock(0, &ctx->flushing_completions);
3643 		smp_mb__after_atomic();
3644 	}
3645 
3646 	tasklet_enable(&ctx->context.tasklet);
3647 
3648 	return ret;
3649 }
3650 
3651 static const struct fw_card_driver ohci_driver = {
3652 	.enable			= ohci_enable,
3653 	.read_phy_reg		= ohci_read_phy_reg,
3654 	.update_phy_reg		= ohci_update_phy_reg,
3655 	.set_config_rom		= ohci_set_config_rom,
3656 	.send_request		= ohci_send_request,
3657 	.send_response		= ohci_send_response,
3658 	.cancel_packet		= ohci_cancel_packet,
3659 	.enable_phys_dma	= ohci_enable_phys_dma,
3660 	.read_csr		= ohci_read_csr,
3661 	.write_csr		= ohci_write_csr,
3662 
3663 	.allocate_iso_context	= ohci_allocate_iso_context,
3664 	.free_iso_context	= ohci_free_iso_context,
3665 	.set_iso_channels	= ohci_set_iso_channels,
3666 	.queue_iso		= ohci_queue_iso,
3667 	.flush_queue_iso	= ohci_flush_queue_iso,
3668 	.flush_iso_completions	= ohci_flush_iso_completions,
3669 	.start_iso		= ohci_start_iso,
3670 	.stop_iso		= ohci_stop_iso,
3671 };
3672 
3673 #ifdef CONFIG_PPC_PMAC
3674 static void pmac_ohci_on(struct pci_dev *dev)
3675 {
3676 	if (machine_is(powermac)) {
3677 		struct device_node *ofn = pci_device_to_OF_node(dev);
3678 
3679 		if (ofn) {
3680 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3681 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3682 		}
3683 	}
3684 }
3685 
3686 static void pmac_ohci_off(struct pci_dev *dev)
3687 {
3688 	if (machine_is(powermac)) {
3689 		struct device_node *ofn = pci_device_to_OF_node(dev);
3690 
3691 		if (ofn) {
3692 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3693 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3694 		}
3695 	}
3696 }
3697 #else
3698 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3699 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3700 #endif /* CONFIG_PPC_PMAC */
3701 
3702 static void release_ohci(struct device *dev, void *data)
3703 {
3704 	struct pci_dev *pdev = to_pci_dev(dev);
3705 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3706 
3707 	pmac_ohci_off(pdev);
3708 
3709 	ar_context_release(&ohci->ar_response_ctx);
3710 	ar_context_release(&ohci->ar_request_ctx);
3711 
3712 	dev_notice(dev, "removed fw-ohci device\n");
3713 }
3714 
3715 static int pci_probe(struct pci_dev *dev,
3716 			       const struct pci_device_id *ent)
3717 {
3718 	struct fw_ohci *ohci;
3719 	u32 bus_options, max_receive, link_speed, version;
3720 	u64 guid;
3721 	int i, flags, irq, err;
3722 	size_t size;
3723 
3724 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3725 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3726 		return -ENOSYS;
3727 	}
3728 
3729 	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3730 	if (ohci == NULL)
3731 		return -ENOMEM;
3732 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3733 	pci_set_drvdata(dev, ohci);
3734 	pmac_ohci_on(dev);
3735 	devres_add(&dev->dev, ohci);
3736 
3737 	err = pcim_enable_device(dev);
3738 	if (err) {
3739 		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3740 		return err;
3741 	}
3742 
3743 	pci_set_master(dev);
3744 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3745 
3746 	spin_lock_init(&ohci->lock);
3747 	mutex_init(&ohci->phy_reg_mutex);
3748 
3749 	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3750 
3751 	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3752 	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3753 		ohci_err(ohci, "invalid MMIO resource\n");
3754 		return -ENXIO;
3755 	}
3756 
3757 	err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3758 	if (err) {
3759 		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3760 		return -ENXIO;
3761 	}
3762 	ohci->registers = pcim_iomap_table(dev)[0];
3763 
3764 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3765 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3766 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3767 		     ohci_quirks[i].device == dev->device) &&
3768 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3769 		     ohci_quirks[i].revision >= dev->revision)) {
3770 			ohci->quirks = ohci_quirks[i].flags;
3771 			break;
3772 		}
3773 	if (param_quirks)
3774 		ohci->quirks = param_quirks;
3775 
3776 	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3777 		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3778 
3779 	/*
3780 	 * Because dma_alloc_coherent() allocates at least one page,
3781 	 * we save space by using a common buffer for the AR request/
3782 	 * response descriptors and the self IDs buffer.
3783 	 */
3784 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3785 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3786 	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3787 						GFP_KERNEL);
3788 	if (!ohci->misc_buffer)
3789 		return -ENOMEM;
3790 
3791 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3792 			      OHCI1394_AsReqRcvContextControlSet);
3793 	if (err < 0)
3794 		return err;
3795 
3796 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3797 			      OHCI1394_AsRspRcvContextControlSet);
3798 	if (err < 0)
3799 		return err;
3800 
3801 	err = context_init(&ohci->at_request_ctx, ohci,
3802 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3803 	if (err < 0)
3804 		return err;
3805 
3806 	err = context_init(&ohci->at_response_ctx, ohci,
3807 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3808 	if (err < 0)
3809 		return err;
3810 
3811 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3812 	ohci->ir_context_channels = ~0ULL;
3813 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3814 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3815 	ohci->ir_context_mask = ohci->ir_context_support;
3816 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3817 	size = sizeof(struct iso_context) * ohci->n_ir;
3818 	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3819 	if (!ohci->ir_context_list)
3820 		return -ENOMEM;
3821 
3822 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3823 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3824 	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3825 	if (!ohci->it_context_support) {
3826 		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3827 		ohci->it_context_support = 0xf;
3828 	}
3829 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3830 	ohci->it_context_mask = ohci->it_context_support;
3831 	ohci->n_it = hweight32(ohci->it_context_mask);
3832 	size = sizeof(struct iso_context) * ohci->n_it;
3833 	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3834 	if (!ohci->it_context_list)
3835 		return -ENOMEM;
3836 
3837 	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3838 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3839 
3840 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3841 	max_receive = (bus_options >> 12) & 0xf;
3842 	link_speed = bus_options & 0x7;
3843 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3844 		reg_read(ohci, OHCI1394_GUIDLo);
3845 
3846 	flags = PCI_IRQ_INTX;
3847 	if (!(ohci->quirks & QUIRK_NO_MSI))
3848 		flags |= PCI_IRQ_MSI;
3849 	err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3850 	if (err < 0)
3851 		return err;
3852 	irq = pci_irq_vector(dev, 0);
3853 	if (irq < 0) {
3854 		err = irq;
3855 		goto fail_msi;
3856 	}
3857 
3858 	err = request_threaded_irq(irq, irq_handler, NULL,
3859 				   pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3860 				   ohci);
3861 	if (err < 0) {
3862 		ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3863 		goto fail_msi;
3864 	}
3865 
3866 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3867 	if (err)
3868 		goto fail_irq;
3869 
3870 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3871 	ohci_notice(ohci,
3872 		    "added OHCI v%x.%x device as card %d, "
3873 		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3874 		    version >> 16, version & 0xff, ohci->card.index,
3875 		    ohci->n_ir, ohci->n_it, ohci->quirks,
3876 		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3877 			", physUB" : "");
3878 
3879 	return 0;
3880 
3881  fail_irq:
3882 	free_irq(irq, ohci);
3883  fail_msi:
3884 	pci_free_irq_vectors(dev);
3885 
3886 	return err;
3887 }
3888 
3889 static void pci_remove(struct pci_dev *dev)
3890 {
3891 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3892 	int irq;
3893 
3894 	/*
3895 	 * If the removal is happening from the suspend state, LPS won't be
3896 	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3897 	 */
3898 	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3899 		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3900 		flush_writes(ohci);
3901 	}
3902 	cancel_work_sync(&ohci->bus_reset_work);
3903 	fw_core_remove_card(&ohci->card);
3904 
3905 	/*
3906 	 * FIXME: Fail all pending packets here, now that the upper
3907 	 * layers can't queue any more.
3908 	 */
3909 
3910 	software_reset(ohci);
3911 
3912 	irq = pci_irq_vector(dev, 0);
3913 	if (irq >= 0)
3914 		free_irq(irq, ohci);
3915 	pci_free_irq_vectors(dev);
3916 
3917 	dev_notice(&dev->dev, "removing fw-ohci device\n");
3918 }
3919 
3920 #ifdef CONFIG_PM
3921 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3922 {
3923 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3924 	int err;
3925 
3926 	software_reset(ohci);
3927 	err = pci_save_state(dev);
3928 	if (err) {
3929 		ohci_err(ohci, "pci_save_state failed\n");
3930 		return err;
3931 	}
3932 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3933 	if (err)
3934 		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3935 	pmac_ohci_off(dev);
3936 
3937 	return 0;
3938 }
3939 
3940 static int pci_resume(struct pci_dev *dev)
3941 {
3942 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3943 	int err;
3944 
3945 	pmac_ohci_on(dev);
3946 	pci_set_power_state(dev, PCI_D0);
3947 	pci_restore_state(dev);
3948 	err = pci_enable_device(dev);
3949 	if (err) {
3950 		ohci_err(ohci, "pci_enable_device failed\n");
3951 		return err;
3952 	}
3953 
3954 	/* Some systems don't setup GUID register on resume from ram  */
3955 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3956 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3957 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3958 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3959 	}
3960 
3961 	err = ohci_enable(&ohci->card, NULL, 0);
3962 	if (err)
3963 		return err;
3964 
3965 	ohci_resume_iso_dma(ohci);
3966 
3967 	return 0;
3968 }
3969 #endif
3970 
3971 static const struct pci_device_id pci_table[] = {
3972 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3973 	{ }
3974 };
3975 
3976 MODULE_DEVICE_TABLE(pci, pci_table);
3977 
3978 static struct pci_driver fw_ohci_pci_driver = {
3979 	.name		= ohci_driver_name,
3980 	.id_table	= pci_table,
3981 	.probe		= pci_probe,
3982 	.remove		= pci_remove,
3983 #ifdef CONFIG_PM
3984 	.resume		= pci_resume,
3985 	.suspend	= pci_suspend,
3986 #endif
3987 };
3988 
3989 static int __init fw_ohci_init(void)
3990 {
3991 	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3992 	if (!selfid_workqueue)
3993 		return -ENOMEM;
3994 
3995 	return pci_register_driver(&fw_ohci_pci_driver);
3996 }
3997 
3998 static void __exit fw_ohci_cleanup(void)
3999 {
4000 	pci_unregister_driver(&fw_ohci_pci_driver);
4001 	destroy_workqueue(selfid_workqueue);
4002 }
4003 
4004 module_init(fw_ohci_init);
4005 module_exit(fw_ohci_cleanup);
4006 
4007 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
4008 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
4009 MODULE_LICENSE("GPL");
4010 
4011 /* Provide a module alias so root-on-sbp2 initrds don't break. */
4012 MODULE_ALIAS("ohci1394");
4013