1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for OHCI 1394 controllers 4 * 5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/bug.h> 10 #include <linux/compiler.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/firewire.h> 15 #include <linux/firewire-constants.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/mutex.h> 25 #include <linux/pci.h> 26 #include <linux/pci_ids.h> 27 #include <linux/slab.h> 28 #include <linux/spinlock.h> 29 #include <linux/string.h> 30 #include <linux/time.h> 31 #include <linux/vmalloc.h> 32 #include <linux/workqueue.h> 33 34 #include <asm/byteorder.h> 35 #include <asm/page.h> 36 37 #ifdef CONFIG_PPC_PMAC 38 #include <asm/pmac_feature.h> 39 #endif 40 41 #include "core.h" 42 #include "ohci.h" 43 44 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args) 45 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args) 46 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args) 47 48 #define DESCRIPTOR_OUTPUT_MORE 0 49 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) 50 #define DESCRIPTOR_INPUT_MORE (2 << 12) 51 #define DESCRIPTOR_INPUT_LAST (3 << 12) 52 #define DESCRIPTOR_STATUS (1 << 11) 53 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) 54 #define DESCRIPTOR_PING (1 << 7) 55 #define DESCRIPTOR_YY (1 << 6) 56 #define DESCRIPTOR_NO_IRQ (0 << 4) 57 #define DESCRIPTOR_IRQ_ERROR (1 << 4) 58 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) 59 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) 60 #define DESCRIPTOR_WAIT (3 << 0) 61 62 #define DESCRIPTOR_CMD (0xf << 12) 63 64 struct descriptor { 65 __le16 req_count; 66 __le16 control; 67 __le32 data_address; 68 __le32 branch_address; 69 __le16 res_count; 70 __le16 transfer_status; 71 } __attribute__((aligned(16))); 72 73 #define CONTROL_SET(regs) (regs) 74 #define CONTROL_CLEAR(regs) ((regs) + 4) 75 #define COMMAND_PTR(regs) ((regs) + 12) 76 #define CONTEXT_MATCH(regs) ((regs) + 16) 77 78 #define AR_BUFFER_SIZE (32*1024) 79 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE) 80 /* we need at least two pages for proper list management */ 81 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2) 82 83 #define MAX_ASYNC_PAYLOAD 4096 84 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4) 85 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE) 86 87 struct ar_context { 88 struct fw_ohci *ohci; 89 struct page *pages[AR_BUFFERS]; 90 void *buffer; 91 struct descriptor *descriptors; 92 dma_addr_t descriptors_bus; 93 void *pointer; 94 unsigned int last_buffer_index; 95 u32 regs; 96 struct tasklet_struct tasklet; 97 }; 98 99 struct context; 100 101 typedef int (*descriptor_callback_t)(struct context *ctx, 102 struct descriptor *d, 103 struct descriptor *last); 104 105 /* 106 * A buffer that contains a block of DMA-able coherent memory used for 107 * storing a portion of a DMA descriptor program. 108 */ 109 struct descriptor_buffer { 110 struct list_head list; 111 dma_addr_t buffer_bus; 112 size_t buffer_size; 113 size_t used; 114 struct descriptor buffer[]; 115 }; 116 117 struct context { 118 struct fw_ohci *ohci; 119 u32 regs; 120 int total_allocation; 121 u32 current_bus; 122 bool running; 123 bool flushing; 124 125 /* 126 * List of page-sized buffers for storing DMA descriptors. 127 * Head of list contains buffers in use and tail of list contains 128 * free buffers. 129 */ 130 struct list_head buffer_list; 131 132 /* 133 * Pointer to a buffer inside buffer_list that contains the tail 134 * end of the current DMA program. 135 */ 136 struct descriptor_buffer *buffer_tail; 137 138 /* 139 * The descriptor containing the branch address of the first 140 * descriptor that has not yet been filled by the device. 141 */ 142 struct descriptor *last; 143 144 /* 145 * The last descriptor block in the DMA program. It contains the branch 146 * address that must be updated upon appending a new descriptor. 147 */ 148 struct descriptor *prev; 149 int prev_z; 150 151 descriptor_callback_t callback; 152 153 struct tasklet_struct tasklet; 154 }; 155 156 #define IT_HEADER_SY(v) ((v) << 0) 157 #define IT_HEADER_TCODE(v) ((v) << 4) 158 #define IT_HEADER_CHANNEL(v) ((v) << 8) 159 #define IT_HEADER_TAG(v) ((v) << 14) 160 #define IT_HEADER_SPEED(v) ((v) << 16) 161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16) 162 163 struct iso_context { 164 struct fw_iso_context base; 165 struct context context; 166 void *header; 167 size_t header_length; 168 unsigned long flushing_completions; 169 u32 mc_buffer_bus; 170 u16 mc_completed; 171 u16 last_timestamp; 172 u8 sync; 173 u8 tags; 174 }; 175 176 #define CONFIG_ROM_SIZE 1024 177 178 struct fw_ohci { 179 struct fw_card card; 180 181 __iomem char *registers; 182 int node_id; 183 int generation; 184 int request_generation; /* for timestamping incoming requests */ 185 unsigned quirks; 186 unsigned int pri_req_max; 187 u32 bus_time; 188 bool bus_time_running; 189 bool is_root; 190 bool csr_state_setclear_abdicate; 191 int n_ir; 192 int n_it; 193 /* 194 * Spinlock for accessing fw_ohci data. Never call out of 195 * this driver with this lock held. 196 */ 197 spinlock_t lock; 198 199 struct mutex phy_reg_mutex; 200 201 void *misc_buffer; 202 dma_addr_t misc_buffer_bus; 203 204 struct ar_context ar_request_ctx; 205 struct ar_context ar_response_ctx; 206 struct context at_request_ctx; 207 struct context at_response_ctx; 208 209 u32 it_context_support; 210 u32 it_context_mask; /* unoccupied IT contexts */ 211 struct iso_context *it_context_list; 212 u64 ir_context_channels; /* unoccupied channels */ 213 u32 ir_context_support; 214 u32 ir_context_mask; /* unoccupied IR contexts */ 215 struct iso_context *ir_context_list; 216 u64 mc_channels; /* channels in use by the multichannel IR context */ 217 bool mc_allocated; 218 219 __be32 *config_rom; 220 dma_addr_t config_rom_bus; 221 __be32 *next_config_rom; 222 dma_addr_t next_config_rom_bus; 223 __be32 next_header; 224 225 __le32 *self_id; 226 dma_addr_t self_id_bus; 227 struct work_struct bus_reset_work; 228 229 u32 self_id_buffer[512]; 230 }; 231 232 static struct workqueue_struct *selfid_workqueue; 233 234 static inline struct fw_ohci *fw_ohci(struct fw_card *card) 235 { 236 return container_of(card, struct fw_ohci, card); 237 } 238 239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 240 #define IR_CONTEXT_BUFFER_FILL 0x80000000 241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 245 246 #define CONTEXT_RUN 0x8000 247 #define CONTEXT_WAKE 0x1000 248 #define CONTEXT_DEAD 0x0800 249 #define CONTEXT_ACTIVE 0x0400 250 251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf 252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 254 255 #define OHCI1394_REGISTER_SIZE 0x800 256 #define OHCI1394_PCI_HCI_Control 0x40 257 #define SELF_ID_BUF_SIZE 0x800 258 #define OHCI_TCODE_PHY_PACKET 0x0e 259 #define OHCI_VERSION_1_1 0x010010 260 261 static char ohci_driver_name[] = KBUILD_MODNAME; 262 263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd 264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901 265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001 266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380 267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009 268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020 269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025 270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044 271 #define PCI_REV_ID_VIA_VT6306 0x46 272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403 273 274 #define QUIRK_CYCLE_TIMER 0x1 275 #define QUIRK_RESET_PACKET 0x2 276 #define QUIRK_BE_HEADERS 0x4 277 #define QUIRK_NO_1394A 0x8 278 #define QUIRK_NO_MSI 0x10 279 #define QUIRK_TI_SLLZ059 0x20 280 #define QUIRK_IR_WAKE 0x40 281 282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia 283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register 284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not 285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register, 286 // while it is probable due to detection of any type of PCIe error. 287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000 288 289 #if IS_ENABLED(CONFIG_X86) 290 291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci) 292 { 293 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ); 294 } 295 296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080 297 298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev) 299 { 300 const struct pci_dev *pcie_to_pci_bridge; 301 302 // Detect any type of AMD Ryzen machine. 303 if (!static_cpu_has(X86_FEATURE_ZEN)) 304 return false; 305 306 // Detect VIA VT6306/6307/6308. 307 if (pdev->vendor != PCI_VENDOR_ID_VIA) 308 return false; 309 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X) 310 return false; 311 312 // Detect Asmedia ASM1083/1085. 313 pcie_to_pci_bridge = pdev->bus->self; 314 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA) 315 return false; 316 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X) 317 return false; 318 319 return true; 320 } 321 322 #else 323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false 324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false 325 #endif 326 327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */ 328 static const struct { 329 unsigned short vendor, device, revision, flags; 330 } ohci_quirks[] = { 331 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID, 332 QUIRK_CYCLE_TIMER}, 333 334 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID, 335 QUIRK_BE_HEADERS}, 336 337 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6, 338 QUIRK_NO_MSI}, 339 340 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID, 341 QUIRK_RESET_PACKET}, 342 343 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID, 344 QUIRK_NO_MSI}, 345 346 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID, 347 QUIRK_CYCLE_TIMER}, 348 349 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID, 350 QUIRK_NO_MSI}, 351 352 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID, 353 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 354 355 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID, 356 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A}, 357 358 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID, 359 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 360 361 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID, 362 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 363 364 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID, 365 QUIRK_RESET_PACKET}, 366 367 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306, 368 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE}, 369 370 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0, 371 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI}, 372 373 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID, 374 QUIRK_NO_MSI}, 375 376 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID, 377 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 378 }; 379 380 /* This overrides anything that was found in ohci_quirks[]. */ 381 static int param_quirks; 382 module_param_named(quirks, param_quirks, int, 0644); 383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0" 384 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER) 385 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET) 386 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS) 387 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A) 388 ", disable MSI = " __stringify(QUIRK_NO_MSI) 389 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059) 390 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE) 391 ")"); 392 393 #define OHCI_PARAM_DEBUG_AT_AR 1 394 #define OHCI_PARAM_DEBUG_SELFIDS 2 395 #define OHCI_PARAM_DEBUG_IRQS 4 396 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */ 397 398 static int param_debug; 399 module_param_named(debug, param_debug, int, 0644); 400 MODULE_PARM_DESC(debug, "Verbose logging (default = 0" 401 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR) 402 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS) 403 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS) 404 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS) 405 ", or a combination, or all = -1)"); 406 407 static bool param_remote_dma; 408 module_param_named(remote_dma, param_remote_dma, bool, 0444); 409 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)"); 410 411 static void log_irqs(struct fw_ohci *ohci, u32 evt) 412 { 413 if (likely(!(param_debug & 414 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS)))) 415 return; 416 417 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) && 418 !(evt & OHCI1394_busReset)) 419 return; 420 421 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, 422 evt & OHCI1394_selfIDComplete ? " selfID" : "", 423 evt & OHCI1394_RQPkt ? " AR_req" : "", 424 evt & OHCI1394_RSPkt ? " AR_resp" : "", 425 evt & OHCI1394_reqTxComplete ? " AT_req" : "", 426 evt & OHCI1394_respTxComplete ? " AT_resp" : "", 427 evt & OHCI1394_isochRx ? " IR" : "", 428 evt & OHCI1394_isochTx ? " IT" : "", 429 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "", 430 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "", 431 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "", 432 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "", 433 evt & OHCI1394_regAccessFail ? " regAccessFail" : "", 434 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "", 435 evt & OHCI1394_busReset ? " busReset" : "", 436 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt | 437 OHCI1394_RSPkt | OHCI1394_reqTxComplete | 438 OHCI1394_respTxComplete | OHCI1394_isochRx | 439 OHCI1394_isochTx | OHCI1394_postedWriteErr | 440 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | 441 OHCI1394_cycleInconsistent | 442 OHCI1394_regAccessFail | OHCI1394_busReset) 443 ? " ?" : ""); 444 } 445 446 static const char *speed[] = { 447 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta", 448 }; 449 static const char *power[] = { 450 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W", 451 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W", 452 }; 453 static const char port[] = { '.', '-', 'p', 'c', }; 454 455 static char _p(u32 *s, int shift) 456 { 457 return port[*s >> shift & 3]; 458 } 459 460 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count) 461 { 462 u32 *s; 463 464 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS))) 465 return; 466 467 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n", 468 self_id_count, generation, ohci->node_id); 469 470 for (s = ohci->self_id_buffer; self_id_count--; ++s) 471 if ((*s & 1 << 23) == 0) 472 ohci_notice(ohci, 473 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n", 474 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2), 475 speed[*s >> 14 & 3], *s >> 16 & 63, 476 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "", 477 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : ""); 478 else 479 ohci_notice(ohci, 480 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", 481 *s, *s >> 24 & 63, 482 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10), 483 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2)); 484 } 485 486 static const char *evts[] = { 487 [0x00] = "evt_no_status", [0x01] = "-reserved-", 488 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", 489 [0x04] = "evt_underrun", [0x05] = "evt_overrun", 490 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", 491 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", 492 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", 493 [0x0c] = "-reserved-", [0x0d] = "-reserved-", 494 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", 495 [0x10] = "-reserved-", [0x11] = "ack_complete", 496 [0x12] = "ack_pending ", [0x13] = "-reserved-", 497 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", 498 [0x16] = "ack_busy_B", [0x17] = "-reserved-", 499 [0x18] = "-reserved-", [0x19] = "-reserved-", 500 [0x1a] = "-reserved-", [0x1b] = "ack_tardy", 501 [0x1c] = "-reserved-", [0x1d] = "ack_data_error", 502 [0x1e] = "ack_type_error", [0x1f] = "-reserved-", 503 [0x20] = "pending/cancelled", 504 }; 505 static const char *tcodes[] = { 506 [0x0] = "QW req", [0x1] = "BW req", 507 [0x2] = "W resp", [0x3] = "-reserved-", 508 [0x4] = "QR req", [0x5] = "BR req", 509 [0x6] = "QR resp", [0x7] = "BR resp", 510 [0x8] = "cycle start", [0x9] = "Lk req", 511 [0xa] = "async stream packet", [0xb] = "Lk resp", 512 [0xc] = "-reserved-", [0xd] = "-reserved-", 513 [0xe] = "link internal", [0xf] = "-reserved-", 514 }; 515 516 static void log_ar_at_event(struct fw_ohci *ohci, 517 char dir, int speed, u32 *header, int evt) 518 { 519 int tcode = header[0] >> 4 & 0xf; 520 char specific[12]; 521 522 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR))) 523 return; 524 525 if (unlikely(evt >= ARRAY_SIZE(evts))) 526 evt = 0x1f; 527 528 if (evt == OHCI1394_evt_bus_reset) { 529 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n", 530 dir, (header[2] >> 16) & 0xff); 531 return; 532 } 533 534 switch (tcode) { 535 case 0x0: case 0x6: case 0x8: 536 snprintf(specific, sizeof(specific), " = %08x", 537 be32_to_cpu((__force __be32)header[3])); 538 break; 539 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb: 540 snprintf(specific, sizeof(specific), " %x,%x", 541 header[3] >> 16, header[3] & 0xffff); 542 break; 543 default: 544 specific[0] = '\0'; 545 } 546 547 switch (tcode) { 548 case 0xa: 549 ohci_notice(ohci, "A%c %s, %s\n", 550 dir, evts[evt], tcodes[tcode]); 551 break; 552 case 0xe: 553 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n", 554 dir, evts[evt], header[1], header[2]); 555 break; 556 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9: 557 ohci_notice(ohci, 558 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n", 559 dir, speed, header[0] >> 10 & 0x3f, 560 header[1] >> 16, header[0] >> 16, evts[evt], 561 tcodes[tcode], header[1] & 0xffff, header[2], specific); 562 break; 563 default: 564 ohci_notice(ohci, 565 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n", 566 dir, speed, header[0] >> 10 & 0x3f, 567 header[1] >> 16, header[0] >> 16, evts[evt], 568 tcodes[tcode], specific); 569 } 570 } 571 572 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) 573 { 574 writel(data, ohci->registers + offset); 575 } 576 577 static inline u32 reg_read(const struct fw_ohci *ohci, int offset) 578 { 579 return readl(ohci->registers + offset); 580 } 581 582 static inline void flush_writes(const struct fw_ohci *ohci) 583 { 584 /* Do a dummy read to flush writes. */ 585 reg_read(ohci, OHCI1394_Version); 586 } 587 588 /* 589 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and 590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex. 591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg() 592 * directly. Exceptions are intrinsically serialized contexts like pci_probe. 593 */ 594 static int read_phy_reg(struct fw_ohci *ohci, int addr) 595 { 596 u32 val; 597 int i; 598 599 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); 600 for (i = 0; i < 3 + 100; i++) { 601 val = reg_read(ohci, OHCI1394_PhyControl); 602 if (!~val) 603 return -ENODEV; /* Card was ejected. */ 604 605 if (val & OHCI1394_PhyControl_ReadDone) 606 return OHCI1394_PhyControl_ReadData(val); 607 608 /* 609 * Try a few times without waiting. Sleeping is necessary 610 * only when the link/PHY interface is busy. 611 */ 612 if (i >= 3) 613 msleep(1); 614 } 615 ohci_err(ohci, "failed to read phy reg %d\n", addr); 616 dump_stack(); 617 618 return -EBUSY; 619 } 620 621 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val) 622 { 623 int i; 624 625 reg_write(ohci, OHCI1394_PhyControl, 626 OHCI1394_PhyControl_Write(addr, val)); 627 for (i = 0; i < 3 + 100; i++) { 628 val = reg_read(ohci, OHCI1394_PhyControl); 629 if (!~val) 630 return -ENODEV; /* Card was ejected. */ 631 632 if (!(val & OHCI1394_PhyControl_WritePending)) 633 return 0; 634 635 if (i >= 3) 636 msleep(1); 637 } 638 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val); 639 dump_stack(); 640 641 return -EBUSY; 642 } 643 644 static int update_phy_reg(struct fw_ohci *ohci, int addr, 645 int clear_bits, int set_bits) 646 { 647 int ret = read_phy_reg(ohci, addr); 648 if (ret < 0) 649 return ret; 650 651 /* 652 * The interrupt status bits are cleared by writing a one bit. 653 * Avoid clearing them unless explicitly requested in set_bits. 654 */ 655 if (addr == 5) 656 clear_bits |= PHY_INT_STATUS_BITS; 657 658 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits); 659 } 660 661 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr) 662 { 663 int ret; 664 665 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5); 666 if (ret < 0) 667 return ret; 668 669 return read_phy_reg(ohci, addr); 670 } 671 672 static int ohci_read_phy_reg(struct fw_card *card, int addr) 673 { 674 struct fw_ohci *ohci = fw_ohci(card); 675 int ret; 676 677 mutex_lock(&ohci->phy_reg_mutex); 678 ret = read_phy_reg(ohci, addr); 679 mutex_unlock(&ohci->phy_reg_mutex); 680 681 return ret; 682 } 683 684 static int ohci_update_phy_reg(struct fw_card *card, int addr, 685 int clear_bits, int set_bits) 686 { 687 struct fw_ohci *ohci = fw_ohci(card); 688 int ret; 689 690 mutex_lock(&ohci->phy_reg_mutex); 691 ret = update_phy_reg(ohci, addr, clear_bits, set_bits); 692 mutex_unlock(&ohci->phy_reg_mutex); 693 694 return ret; 695 } 696 697 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i) 698 { 699 return page_private(ctx->pages[i]); 700 } 701 702 static void ar_context_link_page(struct ar_context *ctx, unsigned int index) 703 { 704 struct descriptor *d; 705 706 d = &ctx->descriptors[index]; 707 d->branch_address &= cpu_to_le32(~0xf); 708 d->res_count = cpu_to_le16(PAGE_SIZE); 709 d->transfer_status = 0; 710 711 wmb(); /* finish init of new descriptors before branch_address update */ 712 d = &ctx->descriptors[ctx->last_buffer_index]; 713 d->branch_address |= cpu_to_le32(1); 714 715 ctx->last_buffer_index = index; 716 717 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 718 } 719 720 static void ar_context_release(struct ar_context *ctx) 721 { 722 struct device *dev = ctx->ohci->card.device; 723 unsigned int i; 724 725 if (!ctx->buffer) 726 return; 727 728 vunmap(ctx->buffer); 729 730 for (i = 0; i < AR_BUFFERS; i++) { 731 if (ctx->pages[i]) 732 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i], 733 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE); 734 } 735 } 736 737 static void ar_context_abort(struct ar_context *ctx, const char *error_msg) 738 { 739 struct fw_ohci *ohci = ctx->ohci; 740 741 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) { 742 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 743 flush_writes(ohci); 744 745 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg); 746 } 747 /* FIXME: restart? */ 748 } 749 750 static inline unsigned int ar_next_buffer_index(unsigned int index) 751 { 752 return (index + 1) % AR_BUFFERS; 753 } 754 755 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx) 756 { 757 return ar_next_buffer_index(ctx->last_buffer_index); 758 } 759 760 /* 761 * We search for the buffer that contains the last AR packet DMA data written 762 * by the controller. 763 */ 764 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx, 765 unsigned int *buffer_offset) 766 { 767 unsigned int i, next_i, last = ctx->last_buffer_index; 768 __le16 res_count, next_res_count; 769 770 i = ar_first_buffer_index(ctx); 771 res_count = READ_ONCE(ctx->descriptors[i].res_count); 772 773 /* A buffer that is not yet completely filled must be the last one. */ 774 while (i != last && res_count == 0) { 775 776 /* Peek at the next descriptor. */ 777 next_i = ar_next_buffer_index(i); 778 rmb(); /* read descriptors in order */ 779 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 780 /* 781 * If the next descriptor is still empty, we must stop at this 782 * descriptor. 783 */ 784 if (next_res_count == cpu_to_le16(PAGE_SIZE)) { 785 /* 786 * The exception is when the DMA data for one packet is 787 * split over three buffers; in this case, the middle 788 * buffer's descriptor might be never updated by the 789 * controller and look still empty, and we have to peek 790 * at the third one. 791 */ 792 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) { 793 next_i = ar_next_buffer_index(next_i); 794 rmb(); 795 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 796 if (next_res_count != cpu_to_le16(PAGE_SIZE)) 797 goto next_buffer_is_active; 798 } 799 800 break; 801 } 802 803 next_buffer_is_active: 804 i = next_i; 805 res_count = next_res_count; 806 } 807 808 rmb(); /* read res_count before the DMA data */ 809 810 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count); 811 if (*buffer_offset > PAGE_SIZE) { 812 *buffer_offset = 0; 813 ar_context_abort(ctx, "corrupted descriptor"); 814 } 815 816 return i; 817 } 818 819 static void ar_sync_buffers_for_cpu(struct ar_context *ctx, 820 unsigned int end_buffer_index, 821 unsigned int end_buffer_offset) 822 { 823 unsigned int i; 824 825 i = ar_first_buffer_index(ctx); 826 while (i != end_buffer_index) { 827 dma_sync_single_for_cpu(ctx->ohci->card.device, 828 ar_buffer_bus(ctx, i), 829 PAGE_SIZE, DMA_FROM_DEVICE); 830 i = ar_next_buffer_index(i); 831 } 832 if (end_buffer_offset > 0) 833 dma_sync_single_for_cpu(ctx->ohci->card.device, 834 ar_buffer_bus(ctx, i), 835 end_buffer_offset, DMA_FROM_DEVICE); 836 } 837 838 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 839 #define cond_le32_to_cpu(v) \ 840 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v)) 841 #else 842 #define cond_le32_to_cpu(v) le32_to_cpu(v) 843 #endif 844 845 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) 846 { 847 struct fw_ohci *ohci = ctx->ohci; 848 struct fw_packet p; 849 u32 status, length, tcode; 850 int evt; 851 852 p.header[0] = cond_le32_to_cpu(buffer[0]); 853 p.header[1] = cond_le32_to_cpu(buffer[1]); 854 p.header[2] = cond_le32_to_cpu(buffer[2]); 855 856 tcode = (p.header[0] >> 4) & 0x0f; 857 switch (tcode) { 858 case TCODE_WRITE_QUADLET_REQUEST: 859 case TCODE_READ_QUADLET_RESPONSE: 860 p.header[3] = (__force __u32) buffer[3]; 861 p.header_length = 16; 862 p.payload_length = 0; 863 break; 864 865 case TCODE_READ_BLOCK_REQUEST : 866 p.header[3] = cond_le32_to_cpu(buffer[3]); 867 p.header_length = 16; 868 p.payload_length = 0; 869 break; 870 871 case TCODE_WRITE_BLOCK_REQUEST: 872 case TCODE_READ_BLOCK_RESPONSE: 873 case TCODE_LOCK_REQUEST: 874 case TCODE_LOCK_RESPONSE: 875 p.header[3] = cond_le32_to_cpu(buffer[3]); 876 p.header_length = 16; 877 p.payload_length = p.header[3] >> 16; 878 if (p.payload_length > MAX_ASYNC_PAYLOAD) { 879 ar_context_abort(ctx, "invalid packet length"); 880 return NULL; 881 } 882 break; 883 884 case TCODE_WRITE_RESPONSE: 885 case TCODE_READ_QUADLET_REQUEST: 886 case OHCI_TCODE_PHY_PACKET: 887 p.header_length = 12; 888 p.payload_length = 0; 889 break; 890 891 default: 892 ar_context_abort(ctx, "invalid tcode"); 893 return NULL; 894 } 895 896 p.payload = (void *) buffer + p.header_length; 897 898 /* FIXME: What to do about evt_* errors? */ 899 length = (p.header_length + p.payload_length + 3) / 4; 900 status = cond_le32_to_cpu(buffer[length]); 901 evt = (status >> 16) & 0x1f; 902 903 p.ack = evt - 16; 904 p.speed = (status >> 21) & 0x7; 905 p.timestamp = status & 0xffff; 906 p.generation = ohci->request_generation; 907 908 log_ar_at_event(ohci, 'R', p.speed, p.header, evt); 909 910 /* 911 * Several controllers, notably from NEC and VIA, forget to 912 * write ack_complete status at PHY packet reception. 913 */ 914 if (evt == OHCI1394_evt_no_status && 915 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4)) 916 p.ack = ACK_COMPLETE; 917 918 /* 919 * The OHCI bus reset handler synthesizes a PHY packet with 920 * the new generation number when a bus reset happens (see 921 * section 8.4.2.3). This helps us determine when a request 922 * was received and make sure we send the response in the same 923 * generation. We only need this for requests; for responses 924 * we use the unique tlabel for finding the matching 925 * request. 926 * 927 * Alas some chips sometimes emit bus reset packets with a 928 * wrong generation. We set the correct generation for these 929 * at a slightly incorrect time (in bus_reset_work). 930 */ 931 if (evt == OHCI1394_evt_bus_reset) { 932 if (!(ohci->quirks & QUIRK_RESET_PACKET)) 933 ohci->request_generation = (p.header[2] >> 16) & 0xff; 934 } else if (ctx == &ohci->ar_request_ctx) { 935 fw_core_handle_request(&ohci->card, &p); 936 } else { 937 fw_core_handle_response(&ohci->card, &p); 938 } 939 940 return buffer + length + 1; 941 } 942 943 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end) 944 { 945 void *next; 946 947 while (p < end) { 948 next = handle_ar_packet(ctx, p); 949 if (!next) 950 return p; 951 p = next; 952 } 953 954 return p; 955 } 956 957 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer) 958 { 959 unsigned int i; 960 961 i = ar_first_buffer_index(ctx); 962 while (i != end_buffer) { 963 dma_sync_single_for_device(ctx->ohci->card.device, 964 ar_buffer_bus(ctx, i), 965 PAGE_SIZE, DMA_FROM_DEVICE); 966 ar_context_link_page(ctx, i); 967 i = ar_next_buffer_index(i); 968 } 969 } 970 971 static void ar_context_tasklet(unsigned long data) 972 { 973 struct ar_context *ctx = (struct ar_context *)data; 974 unsigned int end_buffer_index, end_buffer_offset; 975 void *p, *end; 976 977 p = ctx->pointer; 978 if (!p) 979 return; 980 981 end_buffer_index = ar_search_last_active_buffer(ctx, 982 &end_buffer_offset); 983 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset); 984 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset; 985 986 if (end_buffer_index < ar_first_buffer_index(ctx)) { 987 /* 988 * The filled part of the overall buffer wraps around; handle 989 * all packets up to the buffer end here. If the last packet 990 * wraps around, its tail will be visible after the buffer end 991 * because the buffer start pages are mapped there again. 992 */ 993 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE; 994 p = handle_ar_packets(ctx, p, buffer_end); 995 if (p < buffer_end) 996 goto error; 997 /* adjust p to point back into the actual buffer */ 998 p -= AR_BUFFERS * PAGE_SIZE; 999 } 1000 1001 p = handle_ar_packets(ctx, p, end); 1002 if (p != end) { 1003 if (p > end) 1004 ar_context_abort(ctx, "inconsistent descriptor"); 1005 goto error; 1006 } 1007 1008 ctx->pointer = p; 1009 ar_recycle_buffers(ctx, end_buffer_index); 1010 1011 return; 1012 1013 error: 1014 ctx->pointer = NULL; 1015 } 1016 1017 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, 1018 unsigned int descriptors_offset, u32 regs) 1019 { 1020 struct device *dev = ohci->card.device; 1021 unsigned int i; 1022 dma_addr_t dma_addr; 1023 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES]; 1024 struct descriptor *d; 1025 1026 ctx->regs = regs; 1027 ctx->ohci = ohci; 1028 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); 1029 1030 for (i = 0; i < AR_BUFFERS; i++) { 1031 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr, 1032 DMA_FROM_DEVICE, GFP_KERNEL); 1033 if (!ctx->pages[i]) 1034 goto out_of_memory; 1035 set_page_private(ctx->pages[i], dma_addr); 1036 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE, 1037 DMA_FROM_DEVICE); 1038 } 1039 1040 for (i = 0; i < AR_BUFFERS; i++) 1041 pages[i] = ctx->pages[i]; 1042 for (i = 0; i < AR_WRAPAROUND_PAGES; i++) 1043 pages[AR_BUFFERS + i] = ctx->pages[i]; 1044 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL); 1045 if (!ctx->buffer) 1046 goto out_of_memory; 1047 1048 ctx->descriptors = ohci->misc_buffer + descriptors_offset; 1049 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset; 1050 1051 for (i = 0; i < AR_BUFFERS; i++) { 1052 d = &ctx->descriptors[i]; 1053 d->req_count = cpu_to_le16(PAGE_SIZE); 1054 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 1055 DESCRIPTOR_STATUS | 1056 DESCRIPTOR_BRANCH_ALWAYS); 1057 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i)); 1058 d->branch_address = cpu_to_le32(ctx->descriptors_bus + 1059 ar_next_buffer_index(i) * sizeof(struct descriptor)); 1060 } 1061 1062 return 0; 1063 1064 out_of_memory: 1065 ar_context_release(ctx); 1066 1067 return -ENOMEM; 1068 } 1069 1070 static void ar_context_run(struct ar_context *ctx) 1071 { 1072 unsigned int i; 1073 1074 for (i = 0; i < AR_BUFFERS; i++) 1075 ar_context_link_page(ctx, i); 1076 1077 ctx->pointer = ctx->buffer; 1078 1079 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1); 1080 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); 1081 } 1082 1083 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z) 1084 { 1085 __le16 branch; 1086 1087 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS); 1088 1089 /* figure out which descriptor the branch address goes in */ 1090 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 1091 return d; 1092 else 1093 return d + z - 1; 1094 } 1095 1096 static void context_tasklet(unsigned long data) 1097 { 1098 struct context *ctx = (struct context *) data; 1099 struct descriptor *d, *last; 1100 u32 address; 1101 int z; 1102 struct descriptor_buffer *desc; 1103 1104 desc = list_entry(ctx->buffer_list.next, 1105 struct descriptor_buffer, list); 1106 last = ctx->last; 1107 while (last->branch_address != 0) { 1108 struct descriptor_buffer *old_desc = desc; 1109 address = le32_to_cpu(last->branch_address); 1110 z = address & 0xf; 1111 address &= ~0xf; 1112 ctx->current_bus = address; 1113 1114 /* If the branch address points to a buffer outside of the 1115 * current buffer, advance to the next buffer. */ 1116 if (address < desc->buffer_bus || 1117 address >= desc->buffer_bus + desc->used) 1118 desc = list_entry(desc->list.next, 1119 struct descriptor_buffer, list); 1120 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); 1121 last = find_branch_descriptor(d, z); 1122 1123 if (!ctx->callback(ctx, d, last)) 1124 break; 1125 1126 if (old_desc != desc) { 1127 /* If we've advanced to the next buffer, move the 1128 * previous buffer to the free list. */ 1129 unsigned long flags; 1130 old_desc->used = 0; 1131 spin_lock_irqsave(&ctx->ohci->lock, flags); 1132 list_move_tail(&old_desc->list, &ctx->buffer_list); 1133 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1134 } 1135 ctx->last = last; 1136 } 1137 } 1138 1139 /* 1140 * Allocate a new buffer and add it to the list of free buffers for this 1141 * context. Must be called with ohci->lock held. 1142 */ 1143 static int context_add_buffer(struct context *ctx) 1144 { 1145 struct descriptor_buffer *desc; 1146 dma_addr_t bus_addr; 1147 int offset; 1148 1149 /* 1150 * 16MB of descriptors should be far more than enough for any DMA 1151 * program. This will catch run-away userspace or DoS attacks. 1152 */ 1153 if (ctx->total_allocation >= 16*1024*1024) 1154 return -ENOMEM; 1155 1156 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC); 1157 if (!desc) 1158 return -ENOMEM; 1159 1160 offset = (void *)&desc->buffer - (void *)desc; 1161 /* 1162 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads 1163 * for descriptors, even 0x10-byte ones. This can cause page faults when 1164 * an IOMMU is in use and the oversized read crosses a page boundary. 1165 * Work around this by always leaving at least 0x10 bytes of padding. 1166 */ 1167 desc->buffer_size = PAGE_SIZE - offset - 0x10; 1168 desc->buffer_bus = bus_addr + offset; 1169 desc->used = 0; 1170 1171 list_add_tail(&desc->list, &ctx->buffer_list); 1172 ctx->total_allocation += PAGE_SIZE; 1173 1174 return 0; 1175 } 1176 1177 static int context_init(struct context *ctx, struct fw_ohci *ohci, 1178 u32 regs, descriptor_callback_t callback) 1179 { 1180 ctx->ohci = ohci; 1181 ctx->regs = regs; 1182 ctx->total_allocation = 0; 1183 1184 INIT_LIST_HEAD(&ctx->buffer_list); 1185 if (context_add_buffer(ctx) < 0) 1186 return -ENOMEM; 1187 1188 ctx->buffer_tail = list_entry(ctx->buffer_list.next, 1189 struct descriptor_buffer, list); 1190 1191 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); 1192 ctx->callback = callback; 1193 1194 /* 1195 * We put a dummy descriptor in the buffer that has a NULL 1196 * branch address and looks like it's been sent. That way we 1197 * have a descriptor to append DMA programs to. 1198 */ 1199 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); 1200 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); 1201 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); 1202 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); 1203 ctx->last = ctx->buffer_tail->buffer; 1204 ctx->prev = ctx->buffer_tail->buffer; 1205 ctx->prev_z = 1; 1206 1207 return 0; 1208 } 1209 1210 static void context_release(struct context *ctx) 1211 { 1212 struct fw_card *card = &ctx->ohci->card; 1213 struct descriptor_buffer *desc, *tmp; 1214 1215 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) { 1216 dmam_free_coherent(card->device, PAGE_SIZE, desc, 1217 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc)); 1218 } 1219 } 1220 1221 /* Must be called with ohci->lock held */ 1222 static struct descriptor *context_get_descriptors(struct context *ctx, 1223 int z, dma_addr_t *d_bus) 1224 { 1225 struct descriptor *d = NULL; 1226 struct descriptor_buffer *desc = ctx->buffer_tail; 1227 1228 if (z * sizeof(*d) > desc->buffer_size) 1229 return NULL; 1230 1231 if (z * sizeof(*d) > desc->buffer_size - desc->used) { 1232 /* No room for the descriptor in this buffer, so advance to the 1233 * next one. */ 1234 1235 if (desc->list.next == &ctx->buffer_list) { 1236 /* If there is no free buffer next in the list, 1237 * allocate one. */ 1238 if (context_add_buffer(ctx) < 0) 1239 return NULL; 1240 } 1241 desc = list_entry(desc->list.next, 1242 struct descriptor_buffer, list); 1243 ctx->buffer_tail = desc; 1244 } 1245 1246 d = desc->buffer + desc->used / sizeof(*d); 1247 memset(d, 0, z * sizeof(*d)); 1248 *d_bus = desc->buffer_bus + desc->used; 1249 1250 return d; 1251 } 1252 1253 static void context_run(struct context *ctx, u32 extra) 1254 { 1255 struct fw_ohci *ohci = ctx->ohci; 1256 1257 reg_write(ohci, COMMAND_PTR(ctx->regs), 1258 le32_to_cpu(ctx->last->branch_address)); 1259 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); 1260 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); 1261 ctx->running = true; 1262 flush_writes(ohci); 1263 } 1264 1265 static void context_append(struct context *ctx, 1266 struct descriptor *d, int z, int extra) 1267 { 1268 dma_addr_t d_bus; 1269 struct descriptor_buffer *desc = ctx->buffer_tail; 1270 struct descriptor *d_branch; 1271 1272 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); 1273 1274 desc->used += (z + extra) * sizeof(*d); 1275 1276 wmb(); /* finish init of new descriptors before branch_address update */ 1277 1278 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z); 1279 d_branch->branch_address = cpu_to_le32(d_bus | z); 1280 1281 /* 1282 * VT6306 incorrectly checks only the single descriptor at the 1283 * CommandPtr when the wake bit is written, so if it's a 1284 * multi-descriptor block starting with an INPUT_MORE, put a copy of 1285 * the branch address in the first descriptor. 1286 * 1287 * Not doing this for transmit contexts since not sure how it interacts 1288 * with skip addresses. 1289 */ 1290 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) && 1291 d_branch != ctx->prev && 1292 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) == 1293 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) { 1294 ctx->prev->branch_address = cpu_to_le32(d_bus | z); 1295 } 1296 1297 ctx->prev = d; 1298 ctx->prev_z = z; 1299 } 1300 1301 static void context_stop(struct context *ctx) 1302 { 1303 struct fw_ohci *ohci = ctx->ohci; 1304 u32 reg; 1305 int i; 1306 1307 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 1308 ctx->running = false; 1309 1310 for (i = 0; i < 1000; i++) { 1311 reg = reg_read(ohci, CONTROL_SET(ctx->regs)); 1312 if ((reg & CONTEXT_ACTIVE) == 0) 1313 return; 1314 1315 if (i) 1316 udelay(10); 1317 } 1318 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg); 1319 } 1320 1321 struct driver_data { 1322 u8 inline_data[8]; 1323 struct fw_packet *packet; 1324 }; 1325 1326 /* 1327 * This function apppends a packet to the DMA queue for transmission. 1328 * Must always be called with the ochi->lock held to ensure proper 1329 * generation handling and locking around packet queue manipulation. 1330 */ 1331 static int at_context_queue_packet(struct context *ctx, 1332 struct fw_packet *packet) 1333 { 1334 struct fw_ohci *ohci = ctx->ohci; 1335 dma_addr_t d_bus, payload_bus; 1336 struct driver_data *driver_data; 1337 struct descriptor *d, *last; 1338 __le32 *header; 1339 int z, tcode; 1340 1341 d = context_get_descriptors(ctx, 4, &d_bus); 1342 if (d == NULL) { 1343 packet->ack = RCODE_SEND_ERROR; 1344 return -1; 1345 } 1346 1347 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 1348 d[0].res_count = cpu_to_le16(packet->timestamp); 1349 1350 /* 1351 * The DMA format for asynchronous link packets is different 1352 * from the IEEE1394 layout, so shift the fields around 1353 * accordingly. 1354 */ 1355 1356 tcode = (packet->header[0] >> 4) & 0x0f; 1357 header = (__le32 *) &d[1]; 1358 switch (tcode) { 1359 case TCODE_WRITE_QUADLET_REQUEST: 1360 case TCODE_WRITE_BLOCK_REQUEST: 1361 case TCODE_WRITE_RESPONSE: 1362 case TCODE_READ_QUADLET_REQUEST: 1363 case TCODE_READ_BLOCK_REQUEST: 1364 case TCODE_READ_QUADLET_RESPONSE: 1365 case TCODE_READ_BLOCK_RESPONSE: 1366 case TCODE_LOCK_REQUEST: 1367 case TCODE_LOCK_RESPONSE: 1368 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1369 (packet->speed << 16)); 1370 header[1] = cpu_to_le32((packet->header[1] & 0xffff) | 1371 (packet->header[0] & 0xffff0000)); 1372 header[2] = cpu_to_le32(packet->header[2]); 1373 1374 if (TCODE_IS_BLOCK_PACKET(tcode)) 1375 header[3] = cpu_to_le32(packet->header[3]); 1376 else 1377 header[3] = (__force __le32) packet->header[3]; 1378 1379 d[0].req_count = cpu_to_le16(packet->header_length); 1380 break; 1381 1382 case TCODE_LINK_INTERNAL: 1383 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | 1384 (packet->speed << 16)); 1385 header[1] = cpu_to_le32(packet->header[1]); 1386 header[2] = cpu_to_le32(packet->header[2]); 1387 d[0].req_count = cpu_to_le16(12); 1388 1389 if (is_ping_packet(&packet->header[1])) 1390 d[0].control |= cpu_to_le16(DESCRIPTOR_PING); 1391 break; 1392 1393 case TCODE_STREAM_DATA: 1394 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1395 (packet->speed << 16)); 1396 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000); 1397 d[0].req_count = cpu_to_le16(8); 1398 break; 1399 1400 default: 1401 /* BUG(); */ 1402 packet->ack = RCODE_SEND_ERROR; 1403 return -1; 1404 } 1405 1406 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor)); 1407 driver_data = (struct driver_data *) &d[3]; 1408 driver_data->packet = packet; 1409 packet->driver_data = driver_data; 1410 1411 if (packet->payload_length > 0) { 1412 if (packet->payload_length > sizeof(driver_data->inline_data)) { 1413 payload_bus = dma_map_single(ohci->card.device, 1414 packet->payload, 1415 packet->payload_length, 1416 DMA_TO_DEVICE); 1417 if (dma_mapping_error(ohci->card.device, payload_bus)) { 1418 packet->ack = RCODE_SEND_ERROR; 1419 return -1; 1420 } 1421 packet->payload_bus = payload_bus; 1422 packet->payload_mapped = true; 1423 } else { 1424 memcpy(driver_data->inline_data, packet->payload, 1425 packet->payload_length); 1426 payload_bus = d_bus + 3 * sizeof(*d); 1427 } 1428 1429 d[2].req_count = cpu_to_le16(packet->payload_length); 1430 d[2].data_address = cpu_to_le32(payload_bus); 1431 last = &d[2]; 1432 z = 3; 1433 } else { 1434 last = &d[0]; 1435 z = 2; 1436 } 1437 1438 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 1439 DESCRIPTOR_IRQ_ALWAYS | 1440 DESCRIPTOR_BRANCH_ALWAYS); 1441 1442 /* FIXME: Document how the locking works. */ 1443 if (ohci->generation != packet->generation) { 1444 if (packet->payload_mapped) 1445 dma_unmap_single(ohci->card.device, payload_bus, 1446 packet->payload_length, DMA_TO_DEVICE); 1447 packet->ack = RCODE_GENERATION; 1448 return -1; 1449 } 1450 1451 context_append(ctx, d, z, 4 - z); 1452 1453 if (ctx->running) 1454 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 1455 else 1456 context_run(ctx, 0); 1457 1458 return 0; 1459 } 1460 1461 static void at_context_flush(struct context *ctx) 1462 { 1463 tasklet_disable(&ctx->tasklet); 1464 1465 ctx->flushing = true; 1466 context_tasklet((unsigned long)ctx); 1467 ctx->flushing = false; 1468 1469 tasklet_enable(&ctx->tasklet); 1470 } 1471 1472 static int handle_at_packet(struct context *context, 1473 struct descriptor *d, 1474 struct descriptor *last) 1475 { 1476 struct driver_data *driver_data; 1477 struct fw_packet *packet; 1478 struct fw_ohci *ohci = context->ohci; 1479 int evt; 1480 1481 if (last->transfer_status == 0 && !context->flushing) 1482 /* This descriptor isn't done yet, stop iteration. */ 1483 return 0; 1484 1485 driver_data = (struct driver_data *) &d[3]; 1486 packet = driver_data->packet; 1487 if (packet == NULL) 1488 /* This packet was cancelled, just continue. */ 1489 return 1; 1490 1491 if (packet->payload_mapped) 1492 dma_unmap_single(ohci->card.device, packet->payload_bus, 1493 packet->payload_length, DMA_TO_DEVICE); 1494 1495 evt = le16_to_cpu(last->transfer_status) & 0x1f; 1496 packet->timestamp = le16_to_cpu(last->res_count); 1497 1498 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt); 1499 1500 switch (evt) { 1501 case OHCI1394_evt_timeout: 1502 /* Async response transmit timed out. */ 1503 packet->ack = RCODE_CANCELLED; 1504 break; 1505 1506 case OHCI1394_evt_flushed: 1507 /* 1508 * The packet was flushed should give same error as 1509 * when we try to use a stale generation count. 1510 */ 1511 packet->ack = RCODE_GENERATION; 1512 break; 1513 1514 case OHCI1394_evt_missing_ack: 1515 if (context->flushing) 1516 packet->ack = RCODE_GENERATION; 1517 else { 1518 /* 1519 * Using a valid (current) generation count, but the 1520 * node is not on the bus or not sending acks. 1521 */ 1522 packet->ack = RCODE_NO_ACK; 1523 } 1524 break; 1525 1526 case ACK_COMPLETE + 0x10: 1527 case ACK_PENDING + 0x10: 1528 case ACK_BUSY_X + 0x10: 1529 case ACK_BUSY_A + 0x10: 1530 case ACK_BUSY_B + 0x10: 1531 case ACK_DATA_ERROR + 0x10: 1532 case ACK_TYPE_ERROR + 0x10: 1533 packet->ack = evt - 0x10; 1534 break; 1535 1536 case OHCI1394_evt_no_status: 1537 if (context->flushing) { 1538 packet->ack = RCODE_GENERATION; 1539 break; 1540 } 1541 fallthrough; 1542 1543 default: 1544 packet->ack = RCODE_SEND_ERROR; 1545 break; 1546 } 1547 1548 packet->callback(packet, &ohci->card, packet->ack); 1549 1550 return 1; 1551 } 1552 1553 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 1554 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 1555 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 1556 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 1557 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 1558 1559 static void handle_local_rom(struct fw_ohci *ohci, 1560 struct fw_packet *packet, u32 csr) 1561 { 1562 struct fw_packet response; 1563 int tcode, length, i; 1564 1565 tcode = HEADER_GET_TCODE(packet->header[0]); 1566 if (TCODE_IS_BLOCK_PACKET(tcode)) 1567 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1568 else 1569 length = 4; 1570 1571 i = csr - CSR_CONFIG_ROM; 1572 if (i + length > CONFIG_ROM_SIZE) { 1573 fw_fill_response(&response, packet->header, 1574 RCODE_ADDRESS_ERROR, NULL, 0); 1575 } else if (!TCODE_IS_READ_REQUEST(tcode)) { 1576 fw_fill_response(&response, packet->header, 1577 RCODE_TYPE_ERROR, NULL, 0); 1578 } else { 1579 fw_fill_response(&response, packet->header, RCODE_COMPLETE, 1580 (void *) ohci->config_rom + i, length); 1581 } 1582 1583 fw_core_handle_response(&ohci->card, &response); 1584 } 1585 1586 static void handle_local_lock(struct fw_ohci *ohci, 1587 struct fw_packet *packet, u32 csr) 1588 { 1589 struct fw_packet response; 1590 int tcode, length, ext_tcode, sel, try; 1591 __be32 *payload, lock_old; 1592 u32 lock_arg, lock_data; 1593 1594 tcode = HEADER_GET_TCODE(packet->header[0]); 1595 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1596 payload = packet->payload; 1597 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]); 1598 1599 if (tcode == TCODE_LOCK_REQUEST && 1600 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { 1601 lock_arg = be32_to_cpu(payload[0]); 1602 lock_data = be32_to_cpu(payload[1]); 1603 } else if (tcode == TCODE_READ_QUADLET_REQUEST) { 1604 lock_arg = 0; 1605 lock_data = 0; 1606 } else { 1607 fw_fill_response(&response, packet->header, 1608 RCODE_TYPE_ERROR, NULL, 0); 1609 goto out; 1610 } 1611 1612 sel = (csr - CSR_BUS_MANAGER_ID) / 4; 1613 reg_write(ohci, OHCI1394_CSRData, lock_data); 1614 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); 1615 reg_write(ohci, OHCI1394_CSRControl, sel); 1616 1617 for (try = 0; try < 20; try++) 1618 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) { 1619 lock_old = cpu_to_be32(reg_read(ohci, 1620 OHCI1394_CSRData)); 1621 fw_fill_response(&response, packet->header, 1622 RCODE_COMPLETE, 1623 &lock_old, sizeof(lock_old)); 1624 goto out; 1625 } 1626 1627 ohci_err(ohci, "swap not done (CSR lock timeout)\n"); 1628 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0); 1629 1630 out: 1631 fw_core_handle_response(&ohci->card, &response); 1632 } 1633 1634 static void handle_local_request(struct context *ctx, struct fw_packet *packet) 1635 { 1636 u64 offset, csr; 1637 1638 if (ctx == &ctx->ohci->at_request_ctx) { 1639 packet->ack = ACK_PENDING; 1640 packet->callback(packet, &ctx->ohci->card, packet->ack); 1641 } 1642 1643 offset = 1644 ((unsigned long long) 1645 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) | 1646 packet->header[2]; 1647 csr = offset - CSR_REGISTER_BASE; 1648 1649 /* Handle config rom reads. */ 1650 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) 1651 handle_local_rom(ctx->ohci, packet, csr); 1652 else switch (csr) { 1653 case CSR_BUS_MANAGER_ID: 1654 case CSR_BANDWIDTH_AVAILABLE: 1655 case CSR_CHANNELS_AVAILABLE_HI: 1656 case CSR_CHANNELS_AVAILABLE_LO: 1657 handle_local_lock(ctx->ohci, packet, csr); 1658 break; 1659 default: 1660 if (ctx == &ctx->ohci->at_request_ctx) 1661 fw_core_handle_request(&ctx->ohci->card, packet); 1662 else 1663 fw_core_handle_response(&ctx->ohci->card, packet); 1664 break; 1665 } 1666 1667 if (ctx == &ctx->ohci->at_response_ctx) { 1668 packet->ack = ACK_COMPLETE; 1669 packet->callback(packet, &ctx->ohci->card, packet->ack); 1670 } 1671 } 1672 1673 static u32 get_cycle_time(struct fw_ohci *ohci); 1674 1675 static void at_context_transmit(struct context *ctx, struct fw_packet *packet) 1676 { 1677 unsigned long flags; 1678 int ret; 1679 1680 spin_lock_irqsave(&ctx->ohci->lock, flags); 1681 1682 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id && 1683 ctx->ohci->generation == packet->generation) { 1684 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1685 1686 // Timestamping on behalf of the hardware. 1687 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci)); 1688 1689 handle_local_request(ctx, packet); 1690 return; 1691 } 1692 1693 ret = at_context_queue_packet(ctx, packet); 1694 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1695 1696 if (ret < 0) { 1697 // Timestamping on behalf of the hardware. 1698 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci)); 1699 1700 packet->callback(packet, &ctx->ohci->card, packet->ack); 1701 } 1702 } 1703 1704 static void detect_dead_context(struct fw_ohci *ohci, 1705 const char *name, unsigned int regs) 1706 { 1707 u32 ctl; 1708 1709 ctl = reg_read(ohci, CONTROL_SET(regs)); 1710 if (ctl & CONTEXT_DEAD) 1711 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n", 1712 name, evts[ctl & 0x1f]); 1713 } 1714 1715 static void handle_dead_contexts(struct fw_ohci *ohci) 1716 { 1717 unsigned int i; 1718 char name[8]; 1719 1720 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase); 1721 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase); 1722 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase); 1723 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase); 1724 for (i = 0; i < 32; ++i) { 1725 if (!(ohci->it_context_support & (1 << i))) 1726 continue; 1727 sprintf(name, "IT%u", i); 1728 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i)); 1729 } 1730 for (i = 0; i < 32; ++i) { 1731 if (!(ohci->ir_context_support & (1 << i))) 1732 continue; 1733 sprintf(name, "IR%u", i); 1734 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i)); 1735 } 1736 /* TODO: maybe try to flush and restart the dead contexts */ 1737 } 1738 1739 static u32 cycle_timer_ticks(u32 cycle_timer) 1740 { 1741 u32 ticks; 1742 1743 ticks = cycle_timer & 0xfff; 1744 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff); 1745 ticks += (3072 * 8000) * (cycle_timer >> 25); 1746 1747 return ticks; 1748 } 1749 1750 /* 1751 * Some controllers exhibit one or more of the following bugs when updating the 1752 * iso cycle timer register: 1753 * - When the lowest six bits are wrapping around to zero, a read that happens 1754 * at the same time will return garbage in the lowest ten bits. 1755 * - When the cycleOffset field wraps around to zero, the cycleCount field is 1756 * not incremented for about 60 ns. 1757 * - Occasionally, the entire register reads zero. 1758 * 1759 * To catch these, we read the register three times and ensure that the 1760 * difference between each two consecutive reads is approximately the same, i.e. 1761 * less than twice the other. Furthermore, any negative difference indicates an 1762 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to 1763 * execute, so we have enough precision to compute the ratio of the differences.) 1764 */ 1765 static u32 get_cycle_time(struct fw_ohci *ohci) 1766 { 1767 u32 c0, c1, c2; 1768 u32 t0, t1, t2; 1769 s32 diff01, diff12; 1770 int i; 1771 1772 if (has_reboot_by_cycle_timer_read_quirk(ohci)) 1773 return 0; 1774 1775 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1776 1777 if (ohci->quirks & QUIRK_CYCLE_TIMER) { 1778 i = 0; 1779 c1 = c2; 1780 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1781 do { 1782 c0 = c1; 1783 c1 = c2; 1784 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1785 t0 = cycle_timer_ticks(c0); 1786 t1 = cycle_timer_ticks(c1); 1787 t2 = cycle_timer_ticks(c2); 1788 diff01 = t1 - t0; 1789 diff12 = t2 - t1; 1790 } while ((diff01 <= 0 || diff12 <= 0 || 1791 diff01 / diff12 >= 2 || diff12 / diff01 >= 2) 1792 && i++ < 20); 1793 } 1794 1795 return c2; 1796 } 1797 1798 /* 1799 * This function has to be called at least every 64 seconds. The bus_time 1800 * field stores not only the upper 25 bits of the BUS_TIME register but also 1801 * the most significant bit of the cycle timer in bit 6 so that we can detect 1802 * changes in this bit. 1803 */ 1804 static u32 update_bus_time(struct fw_ohci *ohci) 1805 { 1806 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25; 1807 1808 if (unlikely(!ohci->bus_time_running)) { 1809 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds); 1810 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) | 1811 (cycle_time_seconds & 0x40); 1812 ohci->bus_time_running = true; 1813 } 1814 1815 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40)) 1816 ohci->bus_time += 0x40; 1817 1818 return ohci->bus_time | cycle_time_seconds; 1819 } 1820 1821 static int get_status_for_port(struct fw_ohci *ohci, int port_index) 1822 { 1823 int reg; 1824 1825 mutex_lock(&ohci->phy_reg_mutex); 1826 reg = write_phy_reg(ohci, 7, port_index); 1827 if (reg >= 0) 1828 reg = read_phy_reg(ohci, 8); 1829 mutex_unlock(&ohci->phy_reg_mutex); 1830 if (reg < 0) 1831 return reg; 1832 1833 switch (reg & 0x0f) { 1834 case 0x06: 1835 return 2; /* is child node (connected to parent node) */ 1836 case 0x0e: 1837 return 3; /* is parent node (connected to child node) */ 1838 } 1839 return 1; /* not connected */ 1840 } 1841 1842 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id, 1843 int self_id_count) 1844 { 1845 int i; 1846 u32 entry; 1847 1848 for (i = 0; i < self_id_count; i++) { 1849 entry = ohci->self_id_buffer[i]; 1850 if ((self_id & 0xff000000) == (entry & 0xff000000)) 1851 return -1; 1852 if ((self_id & 0xff000000) < (entry & 0xff000000)) 1853 return i; 1854 } 1855 return i; 1856 } 1857 1858 static int initiated_reset(struct fw_ohci *ohci) 1859 { 1860 int reg; 1861 int ret = 0; 1862 1863 mutex_lock(&ohci->phy_reg_mutex); 1864 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */ 1865 if (reg >= 0) { 1866 reg = read_phy_reg(ohci, 8); 1867 reg |= 0x40; 1868 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */ 1869 if (reg >= 0) { 1870 reg = read_phy_reg(ohci, 12); /* read register 12 */ 1871 if (reg >= 0) { 1872 if ((reg & 0x08) == 0x08) { 1873 /* bit 3 indicates "initiated reset" */ 1874 ret = 0x2; 1875 } 1876 } 1877 } 1878 } 1879 mutex_unlock(&ohci->phy_reg_mutex); 1880 return ret; 1881 } 1882 1883 /* 1884 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally 1885 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059. 1886 * Construct the selfID from phy register contents. 1887 */ 1888 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count) 1889 { 1890 int reg, i, pos, status; 1891 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */ 1892 u32 self_id = 0x8040c800; 1893 1894 reg = reg_read(ohci, OHCI1394_NodeID); 1895 if (!(reg & OHCI1394_NodeID_idValid)) { 1896 ohci_notice(ohci, 1897 "node ID not valid, new bus reset in progress\n"); 1898 return -EBUSY; 1899 } 1900 self_id |= ((reg & 0x3f) << 24); /* phy ID */ 1901 1902 reg = ohci_read_phy_reg(&ohci->card, 4); 1903 if (reg < 0) 1904 return reg; 1905 self_id |= ((reg & 0x07) << 8); /* power class */ 1906 1907 reg = ohci_read_phy_reg(&ohci->card, 1); 1908 if (reg < 0) 1909 return reg; 1910 self_id |= ((reg & 0x3f) << 16); /* gap count */ 1911 1912 for (i = 0; i < 3; i++) { 1913 status = get_status_for_port(ohci, i); 1914 if (status < 0) 1915 return status; 1916 self_id |= ((status & 0x3) << (6 - (i * 2))); 1917 } 1918 1919 self_id |= initiated_reset(ohci); 1920 1921 pos = get_self_id_pos(ohci, self_id, self_id_count); 1922 if (pos >= 0) { 1923 memmove(&(ohci->self_id_buffer[pos+1]), 1924 &(ohci->self_id_buffer[pos]), 1925 (self_id_count - pos) * sizeof(*ohci->self_id_buffer)); 1926 ohci->self_id_buffer[pos] = self_id; 1927 self_id_count++; 1928 } 1929 return self_id_count; 1930 } 1931 1932 static void bus_reset_work(struct work_struct *work) 1933 { 1934 struct fw_ohci *ohci = 1935 container_of(work, struct fw_ohci, bus_reset_work); 1936 int self_id_count, generation, new_generation, i, j; 1937 u32 reg; 1938 void *free_rom = NULL; 1939 dma_addr_t free_rom_bus = 0; 1940 bool is_new_root; 1941 1942 reg = reg_read(ohci, OHCI1394_NodeID); 1943 if (!(reg & OHCI1394_NodeID_idValid)) { 1944 ohci_notice(ohci, 1945 "node ID not valid, new bus reset in progress\n"); 1946 return; 1947 } 1948 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { 1949 ohci_notice(ohci, "malconfigured bus\n"); 1950 return; 1951 } 1952 ohci->node_id = reg & (OHCI1394_NodeID_busNumber | 1953 OHCI1394_NodeID_nodeNumber); 1954 1955 is_new_root = (reg & OHCI1394_NodeID_root) != 0; 1956 if (!(ohci->is_root && is_new_root)) 1957 reg_write(ohci, OHCI1394_LinkControlSet, 1958 OHCI1394_LinkControl_cycleMaster); 1959 ohci->is_root = is_new_root; 1960 1961 reg = reg_read(ohci, OHCI1394_SelfIDCount); 1962 if (reg & OHCI1394_SelfIDCount_selfIDError) { 1963 ohci_notice(ohci, "self ID receive error\n"); 1964 return; 1965 } 1966 /* 1967 * The count in the SelfIDCount register is the number of 1968 * bytes in the self ID receive buffer. Since we also receive 1969 * the inverted quadlets and a header quadlet, we shift one 1970 * bit extra to get the actual number of self IDs. 1971 */ 1972 self_id_count = (reg >> 3) & 0xff; 1973 1974 if (self_id_count > 252) { 1975 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg); 1976 return; 1977 } 1978 1979 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff; 1980 rmb(); 1981 1982 for (i = 1, j = 0; j < self_id_count; i += 2, j++) { 1983 u32 id = cond_le32_to_cpu(ohci->self_id[i]); 1984 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]); 1985 1986 if (id != ~id2) { 1987 /* 1988 * If the invalid data looks like a cycle start packet, 1989 * it's likely to be the result of the cycle master 1990 * having a wrong gap count. In this case, the self IDs 1991 * so far are valid and should be processed so that the 1992 * bus manager can then correct the gap count. 1993 */ 1994 if (id == 0xffff008f) { 1995 ohci_notice(ohci, "ignoring spurious self IDs\n"); 1996 self_id_count = j; 1997 break; 1998 } 1999 2000 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n", 2001 j, self_id_count, id, id2); 2002 return; 2003 } 2004 ohci->self_id_buffer[j] = id; 2005 } 2006 2007 if (ohci->quirks & QUIRK_TI_SLLZ059) { 2008 self_id_count = find_and_insert_self_id(ohci, self_id_count); 2009 if (self_id_count < 0) { 2010 ohci_notice(ohci, 2011 "could not construct local self ID\n"); 2012 return; 2013 } 2014 } 2015 2016 if (self_id_count == 0) { 2017 ohci_notice(ohci, "no self IDs\n"); 2018 return; 2019 } 2020 rmb(); 2021 2022 /* 2023 * Check the consistency of the self IDs we just read. The 2024 * problem we face is that a new bus reset can start while we 2025 * read out the self IDs from the DMA buffer. If this happens, 2026 * the DMA buffer will be overwritten with new self IDs and we 2027 * will read out inconsistent data. The OHCI specification 2028 * (section 11.2) recommends a technique similar to 2029 * linux/seqlock.h, where we remember the generation of the 2030 * self IDs in the buffer before reading them out and compare 2031 * it to the current generation after reading them out. If 2032 * the two generations match we know we have a consistent set 2033 * of self IDs. 2034 */ 2035 2036 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; 2037 if (new_generation != generation) { 2038 ohci_notice(ohci, "new bus reset, discarding self ids\n"); 2039 return; 2040 } 2041 2042 /* FIXME: Document how the locking works. */ 2043 spin_lock_irq(&ohci->lock); 2044 2045 ohci->generation = -1; /* prevent AT packet queueing */ 2046 context_stop(&ohci->at_request_ctx); 2047 context_stop(&ohci->at_response_ctx); 2048 2049 spin_unlock_irq(&ohci->lock); 2050 2051 /* 2052 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent 2053 * packets in the AT queues and software needs to drain them. 2054 * Some OHCI 1.1 controllers (JMicron) apparently require this too. 2055 */ 2056 at_context_flush(&ohci->at_request_ctx); 2057 at_context_flush(&ohci->at_response_ctx); 2058 2059 spin_lock_irq(&ohci->lock); 2060 2061 ohci->generation = generation; 2062 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); 2063 2064 if (ohci->quirks & QUIRK_RESET_PACKET) 2065 ohci->request_generation = generation; 2066 2067 /* 2068 * This next bit is unrelated to the AT context stuff but we 2069 * have to do it under the spinlock also. If a new config rom 2070 * was set up before this reset, the old one is now no longer 2071 * in use and we can free it. Update the config rom pointers 2072 * to point to the current config rom and clear the 2073 * next_config_rom pointer so a new update can take place. 2074 */ 2075 2076 if (ohci->next_config_rom != NULL) { 2077 if (ohci->next_config_rom != ohci->config_rom) { 2078 free_rom = ohci->config_rom; 2079 free_rom_bus = ohci->config_rom_bus; 2080 } 2081 ohci->config_rom = ohci->next_config_rom; 2082 ohci->config_rom_bus = ohci->next_config_rom_bus; 2083 ohci->next_config_rom = NULL; 2084 2085 /* 2086 * Restore config_rom image and manually update 2087 * config_rom registers. Writing the header quadlet 2088 * will indicate that the config rom is ready, so we 2089 * do that last. 2090 */ 2091 reg_write(ohci, OHCI1394_BusOptions, 2092 be32_to_cpu(ohci->config_rom[2])); 2093 ohci->config_rom[0] = ohci->next_header; 2094 reg_write(ohci, OHCI1394_ConfigROMhdr, 2095 be32_to_cpu(ohci->next_header)); 2096 } 2097 2098 if (param_remote_dma) { 2099 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); 2100 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); 2101 } 2102 2103 spin_unlock_irq(&ohci->lock); 2104 2105 if (free_rom) 2106 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus); 2107 2108 log_selfids(ohci, generation, self_id_count); 2109 2110 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, 2111 self_id_count, ohci->self_id_buffer, 2112 ohci->csr_state_setclear_abdicate); 2113 ohci->csr_state_setclear_abdicate = false; 2114 } 2115 2116 static irqreturn_t irq_handler(int irq, void *data) 2117 { 2118 struct fw_ohci *ohci = data; 2119 u32 event, iso_event; 2120 int i; 2121 2122 event = reg_read(ohci, OHCI1394_IntEventClear); 2123 2124 if (!event || !~event) 2125 return IRQ_NONE; 2126 2127 /* 2128 * busReset and postedWriteErr must not be cleared yet 2129 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1) 2130 */ 2131 reg_write(ohci, OHCI1394_IntEventClear, 2132 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr)); 2133 log_irqs(ohci, event); 2134 2135 if (event & OHCI1394_selfIDComplete) 2136 queue_work(selfid_workqueue, &ohci->bus_reset_work); 2137 2138 if (event & OHCI1394_RQPkt) 2139 tasklet_schedule(&ohci->ar_request_ctx.tasklet); 2140 2141 if (event & OHCI1394_RSPkt) 2142 tasklet_schedule(&ohci->ar_response_ctx.tasklet); 2143 2144 if (event & OHCI1394_reqTxComplete) 2145 tasklet_schedule(&ohci->at_request_ctx.tasklet); 2146 2147 if (event & OHCI1394_respTxComplete) 2148 tasklet_schedule(&ohci->at_response_ctx.tasklet); 2149 2150 if (event & OHCI1394_isochRx) { 2151 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); 2152 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); 2153 2154 while (iso_event) { 2155 i = ffs(iso_event) - 1; 2156 tasklet_schedule( 2157 &ohci->ir_context_list[i].context.tasklet); 2158 iso_event &= ~(1 << i); 2159 } 2160 } 2161 2162 if (event & OHCI1394_isochTx) { 2163 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); 2164 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); 2165 2166 while (iso_event) { 2167 i = ffs(iso_event) - 1; 2168 tasklet_schedule( 2169 &ohci->it_context_list[i].context.tasklet); 2170 iso_event &= ~(1 << i); 2171 } 2172 } 2173 2174 if (unlikely(event & OHCI1394_regAccessFail)) 2175 ohci_err(ohci, "register access failure\n"); 2176 2177 if (unlikely(event & OHCI1394_postedWriteErr)) { 2178 reg_read(ohci, OHCI1394_PostedWriteAddressHi); 2179 reg_read(ohci, OHCI1394_PostedWriteAddressLo); 2180 reg_write(ohci, OHCI1394_IntEventClear, 2181 OHCI1394_postedWriteErr); 2182 if (printk_ratelimit()) 2183 ohci_err(ohci, "PCI posted write error\n"); 2184 } 2185 2186 if (unlikely(event & OHCI1394_cycleTooLong)) { 2187 if (printk_ratelimit()) 2188 ohci_notice(ohci, "isochronous cycle too long\n"); 2189 reg_write(ohci, OHCI1394_LinkControlSet, 2190 OHCI1394_LinkControl_cycleMaster); 2191 } 2192 2193 if (unlikely(event & OHCI1394_cycleInconsistent)) { 2194 /* 2195 * We need to clear this event bit in order to make 2196 * cycleMatch isochronous I/O work. In theory we should 2197 * stop active cycleMatch iso contexts now and restart 2198 * them at least two cycles later. (FIXME?) 2199 */ 2200 if (printk_ratelimit()) 2201 ohci_notice(ohci, "isochronous cycle inconsistent\n"); 2202 } 2203 2204 if (unlikely(event & OHCI1394_unrecoverableError)) 2205 handle_dead_contexts(ohci); 2206 2207 if (event & OHCI1394_cycle64Seconds) { 2208 spin_lock(&ohci->lock); 2209 update_bus_time(ohci); 2210 spin_unlock(&ohci->lock); 2211 } else 2212 flush_writes(ohci); 2213 2214 return IRQ_HANDLED; 2215 } 2216 2217 static int software_reset(struct fw_ohci *ohci) 2218 { 2219 u32 val; 2220 int i; 2221 2222 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); 2223 for (i = 0; i < 500; i++) { 2224 val = reg_read(ohci, OHCI1394_HCControlSet); 2225 if (!~val) 2226 return -ENODEV; /* Card was ejected. */ 2227 2228 if (!(val & OHCI1394_HCControl_softReset)) 2229 return 0; 2230 2231 msleep(1); 2232 } 2233 2234 return -EBUSY; 2235 } 2236 2237 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length) 2238 { 2239 size_t size = length * 4; 2240 2241 memcpy(dest, src, size); 2242 if (size < CONFIG_ROM_SIZE) 2243 memset(&dest[length], 0, CONFIG_ROM_SIZE - size); 2244 } 2245 2246 static int configure_1394a_enhancements(struct fw_ohci *ohci) 2247 { 2248 bool enable_1394a; 2249 int ret, clear, set, offset; 2250 2251 /* Check if the driver should configure link and PHY. */ 2252 if (!(reg_read(ohci, OHCI1394_HCControlSet) & 2253 OHCI1394_HCControl_programPhyEnable)) 2254 return 0; 2255 2256 /* Paranoia: check whether the PHY supports 1394a, too. */ 2257 enable_1394a = false; 2258 ret = read_phy_reg(ohci, 2); 2259 if (ret < 0) 2260 return ret; 2261 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) { 2262 ret = read_paged_phy_reg(ohci, 1, 8); 2263 if (ret < 0) 2264 return ret; 2265 if (ret >= 1) 2266 enable_1394a = true; 2267 } 2268 2269 if (ohci->quirks & QUIRK_NO_1394A) 2270 enable_1394a = false; 2271 2272 /* Configure PHY and link consistently. */ 2273 if (enable_1394a) { 2274 clear = 0; 2275 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2276 } else { 2277 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2278 set = 0; 2279 } 2280 ret = update_phy_reg(ohci, 5, clear, set); 2281 if (ret < 0) 2282 return ret; 2283 2284 if (enable_1394a) 2285 offset = OHCI1394_HCControlSet; 2286 else 2287 offset = OHCI1394_HCControlClear; 2288 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable); 2289 2290 /* Clean up: configuration has been taken care of. */ 2291 reg_write(ohci, OHCI1394_HCControlClear, 2292 OHCI1394_HCControl_programPhyEnable); 2293 2294 return 0; 2295 } 2296 2297 static int probe_tsb41ba3d(struct fw_ohci *ohci) 2298 { 2299 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */ 2300 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, }; 2301 int reg, i; 2302 2303 reg = read_phy_reg(ohci, 2); 2304 if (reg < 0) 2305 return reg; 2306 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS) 2307 return 0; 2308 2309 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) { 2310 reg = read_paged_phy_reg(ohci, 1, i + 10); 2311 if (reg < 0) 2312 return reg; 2313 if (reg != id[i]) 2314 return 0; 2315 } 2316 return 1; 2317 } 2318 2319 static int ohci_enable(struct fw_card *card, 2320 const __be32 *config_rom, size_t length) 2321 { 2322 struct fw_ohci *ohci = fw_ohci(card); 2323 u32 lps, version, irqs; 2324 int i, ret; 2325 2326 ret = software_reset(ohci); 2327 if (ret < 0) { 2328 ohci_err(ohci, "failed to reset ohci card\n"); 2329 return ret; 2330 } 2331 2332 /* 2333 * Now enable LPS, which we need in order to start accessing 2334 * most of the registers. In fact, on some cards (ALI M5251), 2335 * accessing registers in the SClk domain without LPS enabled 2336 * will lock up the machine. Wait 50msec to make sure we have 2337 * full link enabled. However, with some cards (well, at least 2338 * a JMicron PCIe card), we have to try again sometimes. 2339 * 2340 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but 2341 * cannot actually use the phy at that time. These need tens of 2342 * millisecods pause between LPS write and first phy access too. 2343 */ 2344 2345 reg_write(ohci, OHCI1394_HCControlSet, 2346 OHCI1394_HCControl_LPS | 2347 OHCI1394_HCControl_postedWriteEnable); 2348 flush_writes(ohci); 2349 2350 for (lps = 0, i = 0; !lps && i < 3; i++) { 2351 msleep(50); 2352 lps = reg_read(ohci, OHCI1394_HCControlSet) & 2353 OHCI1394_HCControl_LPS; 2354 } 2355 2356 if (!lps) { 2357 ohci_err(ohci, "failed to set Link Power Status\n"); 2358 return -EIO; 2359 } 2360 2361 if (ohci->quirks & QUIRK_TI_SLLZ059) { 2362 ret = probe_tsb41ba3d(ohci); 2363 if (ret < 0) 2364 return ret; 2365 if (ret) 2366 ohci_notice(ohci, "local TSB41BA3D phy\n"); 2367 else 2368 ohci->quirks &= ~QUIRK_TI_SLLZ059; 2369 } 2370 2371 reg_write(ohci, OHCI1394_HCControlClear, 2372 OHCI1394_HCControl_noByteSwapData); 2373 2374 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); 2375 reg_write(ohci, OHCI1394_LinkControlSet, 2376 OHCI1394_LinkControl_cycleTimerEnable | 2377 OHCI1394_LinkControl_cycleMaster); 2378 2379 reg_write(ohci, OHCI1394_ATRetries, 2380 OHCI1394_MAX_AT_REQ_RETRIES | 2381 (OHCI1394_MAX_AT_RESP_RETRIES << 4) | 2382 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) | 2383 (200 << 16)); 2384 2385 ohci->bus_time_running = false; 2386 2387 for (i = 0; i < 32; i++) 2388 if (ohci->ir_context_support & (1 << i)) 2389 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i), 2390 IR_CONTEXT_MULTI_CHANNEL_MODE); 2391 2392 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 2393 if (version >= OHCI_VERSION_1_1) { 2394 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi, 2395 0xfffffffe); 2396 card->broadcast_channel_auto_allocated = true; 2397 } 2398 2399 /* Get implemented bits of the priority arbitration request counter. */ 2400 reg_write(ohci, OHCI1394_FairnessControl, 0x3f); 2401 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f; 2402 reg_write(ohci, OHCI1394_FairnessControl, 0); 2403 card->priority_budget_implemented = ohci->pri_req_max != 0; 2404 2405 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16); 2406 reg_write(ohci, OHCI1394_IntEventClear, ~0); 2407 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 2408 2409 ret = configure_1394a_enhancements(ohci); 2410 if (ret < 0) 2411 return ret; 2412 2413 /* Activate link_on bit and contender bit in our self ID packets.*/ 2414 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER); 2415 if (ret < 0) 2416 return ret; 2417 2418 /* 2419 * When the link is not yet enabled, the atomic config rom 2420 * update mechanism described below in ohci_set_config_rom() 2421 * is not active. We have to update ConfigRomHeader and 2422 * BusOptions manually, and the write to ConfigROMmap takes 2423 * effect immediately. We tie this to the enabling of the 2424 * link, so we have a valid config rom before enabling - the 2425 * OHCI requires that ConfigROMhdr and BusOptions have valid 2426 * values before enabling. 2427 * 2428 * However, when the ConfigROMmap is written, some controllers 2429 * always read back quadlets 0 and 2 from the config rom to 2430 * the ConfigRomHeader and BusOptions registers on bus reset. 2431 * They shouldn't do that in this initial case where the link 2432 * isn't enabled. This means we have to use the same 2433 * workaround here, setting the bus header to 0 and then write 2434 * the right values in the bus reset tasklet. 2435 */ 2436 2437 if (config_rom) { 2438 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2439 &ohci->next_config_rom_bus, GFP_KERNEL); 2440 if (ohci->next_config_rom == NULL) 2441 return -ENOMEM; 2442 2443 copy_config_rom(ohci->next_config_rom, config_rom, length); 2444 } else { 2445 /* 2446 * In the suspend case, config_rom is NULL, which 2447 * means that we just reuse the old config rom. 2448 */ 2449 ohci->next_config_rom = ohci->config_rom; 2450 ohci->next_config_rom_bus = ohci->config_rom_bus; 2451 } 2452 2453 ohci->next_header = ohci->next_config_rom[0]; 2454 ohci->next_config_rom[0] = 0; 2455 reg_write(ohci, OHCI1394_ConfigROMhdr, 0); 2456 reg_write(ohci, OHCI1394_BusOptions, 2457 be32_to_cpu(ohci->next_config_rom[2])); 2458 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2459 2460 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); 2461 2462 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete | 2463 OHCI1394_RQPkt | OHCI1394_RSPkt | 2464 OHCI1394_isochTx | OHCI1394_isochRx | 2465 OHCI1394_postedWriteErr | 2466 OHCI1394_selfIDComplete | 2467 OHCI1394_regAccessFail | 2468 OHCI1394_cycleInconsistent | 2469 OHCI1394_unrecoverableError | 2470 OHCI1394_cycleTooLong | 2471 OHCI1394_masterIntEnable; 2472 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS) 2473 irqs |= OHCI1394_busReset; 2474 reg_write(ohci, OHCI1394_IntMaskSet, irqs); 2475 2476 reg_write(ohci, OHCI1394_HCControlSet, 2477 OHCI1394_HCControl_linkEnable | 2478 OHCI1394_HCControl_BIBimageValid); 2479 2480 reg_write(ohci, OHCI1394_LinkControlSet, 2481 OHCI1394_LinkControl_rcvSelfID | 2482 OHCI1394_LinkControl_rcvPhyPkt); 2483 2484 ar_context_run(&ohci->ar_request_ctx); 2485 ar_context_run(&ohci->ar_response_ctx); 2486 2487 flush_writes(ohci); 2488 2489 /* We are ready to go, reset bus to finish initialization. */ 2490 fw_schedule_bus_reset(&ohci->card, false, true); 2491 2492 return 0; 2493 } 2494 2495 static int ohci_set_config_rom(struct fw_card *card, 2496 const __be32 *config_rom, size_t length) 2497 { 2498 struct fw_ohci *ohci; 2499 __be32 *next_config_rom; 2500 dma_addr_t next_config_rom_bus; 2501 2502 ohci = fw_ohci(card); 2503 2504 /* 2505 * When the OHCI controller is enabled, the config rom update 2506 * mechanism is a bit tricky, but easy enough to use. See 2507 * section 5.5.6 in the OHCI specification. 2508 * 2509 * The OHCI controller caches the new config rom address in a 2510 * shadow register (ConfigROMmapNext) and needs a bus reset 2511 * for the changes to take place. When the bus reset is 2512 * detected, the controller loads the new values for the 2513 * ConfigRomHeader and BusOptions registers from the specified 2514 * config rom and loads ConfigROMmap from the ConfigROMmapNext 2515 * shadow register. All automatically and atomically. 2516 * 2517 * Now, there's a twist to this story. The automatic load of 2518 * ConfigRomHeader and BusOptions doesn't honor the 2519 * noByteSwapData bit, so with a be32 config rom, the 2520 * controller will load be32 values in to these registers 2521 * during the atomic update, even on litte endian 2522 * architectures. The workaround we use is to put a 0 in the 2523 * header quadlet; 0 is endian agnostic and means that the 2524 * config rom isn't ready yet. In the bus reset tasklet we 2525 * then set up the real values for the two registers. 2526 * 2527 * We use ohci->lock to avoid racing with the code that sets 2528 * ohci->next_config_rom to NULL (see bus_reset_work). 2529 */ 2530 2531 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2532 &next_config_rom_bus, GFP_KERNEL); 2533 if (next_config_rom == NULL) 2534 return -ENOMEM; 2535 2536 spin_lock_irq(&ohci->lock); 2537 2538 /* 2539 * If there is not an already pending config_rom update, 2540 * push our new allocation into the ohci->next_config_rom 2541 * and then mark the local variable as null so that we 2542 * won't deallocate the new buffer. 2543 * 2544 * OTOH, if there is a pending config_rom update, just 2545 * use that buffer with the new config_rom data, and 2546 * let this routine free the unused DMA allocation. 2547 */ 2548 2549 if (ohci->next_config_rom == NULL) { 2550 ohci->next_config_rom = next_config_rom; 2551 ohci->next_config_rom_bus = next_config_rom_bus; 2552 next_config_rom = NULL; 2553 } 2554 2555 copy_config_rom(ohci->next_config_rom, config_rom, length); 2556 2557 ohci->next_header = config_rom[0]; 2558 ohci->next_config_rom[0] = 0; 2559 2560 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2561 2562 spin_unlock_irq(&ohci->lock); 2563 2564 /* If we didn't use the DMA allocation, delete it. */ 2565 if (next_config_rom != NULL) { 2566 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom, 2567 next_config_rom_bus); 2568 } 2569 2570 /* 2571 * Now initiate a bus reset to have the changes take 2572 * effect. We clean up the old config rom memory and DMA 2573 * mappings in the bus reset tasklet, since the OHCI 2574 * controller could need to access it before the bus reset 2575 * takes effect. 2576 */ 2577 2578 fw_schedule_bus_reset(&ohci->card, true, true); 2579 2580 return 0; 2581 } 2582 2583 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) 2584 { 2585 struct fw_ohci *ohci = fw_ohci(card); 2586 2587 at_context_transmit(&ohci->at_request_ctx, packet); 2588 } 2589 2590 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) 2591 { 2592 struct fw_ohci *ohci = fw_ohci(card); 2593 2594 at_context_transmit(&ohci->at_response_ctx, packet); 2595 } 2596 2597 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) 2598 { 2599 struct fw_ohci *ohci = fw_ohci(card); 2600 struct context *ctx = &ohci->at_request_ctx; 2601 struct driver_data *driver_data = packet->driver_data; 2602 int ret = -ENOENT; 2603 2604 tasklet_disable_in_atomic(&ctx->tasklet); 2605 2606 if (packet->ack != 0) 2607 goto out; 2608 2609 if (packet->payload_mapped) 2610 dma_unmap_single(ohci->card.device, packet->payload_bus, 2611 packet->payload_length, DMA_TO_DEVICE); 2612 2613 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20); 2614 driver_data->packet = NULL; 2615 packet->ack = RCODE_CANCELLED; 2616 2617 // Timestamping on behalf of the hardware. 2618 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 2619 2620 packet->callback(packet, &ohci->card, packet->ack); 2621 ret = 0; 2622 out: 2623 tasklet_enable(&ctx->tasklet); 2624 2625 return ret; 2626 } 2627 2628 static int ohci_enable_phys_dma(struct fw_card *card, 2629 int node_id, int generation) 2630 { 2631 struct fw_ohci *ohci = fw_ohci(card); 2632 unsigned long flags; 2633 int n, ret = 0; 2634 2635 if (param_remote_dma) 2636 return 0; 2637 2638 /* 2639 * FIXME: Make sure this bitmask is cleared when we clear the busReset 2640 * interrupt bit. Clear physReqResourceAllBuses on bus reset. 2641 */ 2642 2643 spin_lock_irqsave(&ohci->lock, flags); 2644 2645 if (ohci->generation != generation) { 2646 ret = -ESTALE; 2647 goto out; 2648 } 2649 2650 /* 2651 * Note, if the node ID contains a non-local bus ID, physical DMA is 2652 * enabled for _all_ nodes on remote buses. 2653 */ 2654 2655 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; 2656 if (n < 32) 2657 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); 2658 else 2659 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); 2660 2661 flush_writes(ohci); 2662 out: 2663 spin_unlock_irqrestore(&ohci->lock, flags); 2664 2665 return ret; 2666 } 2667 2668 static u32 ohci_read_csr(struct fw_card *card, int csr_offset) 2669 { 2670 struct fw_ohci *ohci = fw_ohci(card); 2671 unsigned long flags; 2672 u32 value; 2673 2674 switch (csr_offset) { 2675 case CSR_STATE_CLEAR: 2676 case CSR_STATE_SET: 2677 if (ohci->is_root && 2678 (reg_read(ohci, OHCI1394_LinkControlSet) & 2679 OHCI1394_LinkControl_cycleMaster)) 2680 value = CSR_STATE_BIT_CMSTR; 2681 else 2682 value = 0; 2683 if (ohci->csr_state_setclear_abdicate) 2684 value |= CSR_STATE_BIT_ABDICATE; 2685 2686 return value; 2687 2688 case CSR_NODE_IDS: 2689 return reg_read(ohci, OHCI1394_NodeID) << 16; 2690 2691 case CSR_CYCLE_TIME: 2692 return get_cycle_time(ohci); 2693 2694 case CSR_BUS_TIME: 2695 /* 2696 * We might be called just after the cycle timer has wrapped 2697 * around but just before the cycle64Seconds handler, so we 2698 * better check here, too, if the bus time needs to be updated. 2699 */ 2700 spin_lock_irqsave(&ohci->lock, flags); 2701 value = update_bus_time(ohci); 2702 spin_unlock_irqrestore(&ohci->lock, flags); 2703 return value; 2704 2705 case CSR_BUSY_TIMEOUT: 2706 value = reg_read(ohci, OHCI1394_ATRetries); 2707 return (value >> 4) & 0x0ffff00f; 2708 2709 case CSR_PRIORITY_BUDGET: 2710 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) | 2711 (ohci->pri_req_max << 8); 2712 2713 default: 2714 WARN_ON(1); 2715 return 0; 2716 } 2717 } 2718 2719 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value) 2720 { 2721 struct fw_ohci *ohci = fw_ohci(card); 2722 unsigned long flags; 2723 2724 switch (csr_offset) { 2725 case CSR_STATE_CLEAR: 2726 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2727 reg_write(ohci, OHCI1394_LinkControlClear, 2728 OHCI1394_LinkControl_cycleMaster); 2729 flush_writes(ohci); 2730 } 2731 if (value & CSR_STATE_BIT_ABDICATE) 2732 ohci->csr_state_setclear_abdicate = false; 2733 break; 2734 2735 case CSR_STATE_SET: 2736 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2737 reg_write(ohci, OHCI1394_LinkControlSet, 2738 OHCI1394_LinkControl_cycleMaster); 2739 flush_writes(ohci); 2740 } 2741 if (value & CSR_STATE_BIT_ABDICATE) 2742 ohci->csr_state_setclear_abdicate = true; 2743 break; 2744 2745 case CSR_NODE_IDS: 2746 reg_write(ohci, OHCI1394_NodeID, value >> 16); 2747 flush_writes(ohci); 2748 break; 2749 2750 case CSR_CYCLE_TIME: 2751 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value); 2752 reg_write(ohci, OHCI1394_IntEventSet, 2753 OHCI1394_cycleInconsistent); 2754 flush_writes(ohci); 2755 break; 2756 2757 case CSR_BUS_TIME: 2758 spin_lock_irqsave(&ohci->lock, flags); 2759 ohci->bus_time = (update_bus_time(ohci) & 0x40) | 2760 (value & ~0x7f); 2761 spin_unlock_irqrestore(&ohci->lock, flags); 2762 break; 2763 2764 case CSR_BUSY_TIMEOUT: 2765 value = (value & 0xf) | ((value & 0xf) << 4) | 2766 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4); 2767 reg_write(ohci, OHCI1394_ATRetries, value); 2768 flush_writes(ohci); 2769 break; 2770 2771 case CSR_PRIORITY_BUDGET: 2772 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f); 2773 flush_writes(ohci); 2774 break; 2775 2776 default: 2777 WARN_ON(1); 2778 break; 2779 } 2780 } 2781 2782 static void flush_iso_completions(struct iso_context *ctx) 2783 { 2784 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp, 2785 ctx->header_length, ctx->header, 2786 ctx->base.callback_data); 2787 ctx->header_length = 0; 2788 } 2789 2790 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr) 2791 { 2792 u32 *ctx_hdr; 2793 2794 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) { 2795 if (ctx->base.drop_overflow_headers) 2796 return; 2797 flush_iso_completions(ctx); 2798 } 2799 2800 ctx_hdr = ctx->header + ctx->header_length; 2801 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]); 2802 2803 /* 2804 * The two iso header quadlets are byteswapped to little 2805 * endian by the controller, but we want to present them 2806 * as big endian for consistency with the bus endianness. 2807 */ 2808 if (ctx->base.header_size > 0) 2809 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */ 2810 if (ctx->base.header_size > 4) 2811 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */ 2812 if (ctx->base.header_size > 8) 2813 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8); 2814 ctx->header_length += ctx->base.header_size; 2815 } 2816 2817 static int handle_ir_packet_per_buffer(struct context *context, 2818 struct descriptor *d, 2819 struct descriptor *last) 2820 { 2821 struct iso_context *ctx = 2822 container_of(context, struct iso_context, context); 2823 struct descriptor *pd; 2824 u32 buffer_dma; 2825 2826 for (pd = d; pd <= last; pd++) 2827 if (pd->transfer_status) 2828 break; 2829 if (pd > last) 2830 /* Descriptor(s) not done yet, stop iteration */ 2831 return 0; 2832 2833 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) { 2834 d++; 2835 buffer_dma = le32_to_cpu(d->data_address); 2836 dma_sync_single_range_for_cpu(context->ohci->card.device, 2837 buffer_dma & PAGE_MASK, 2838 buffer_dma & ~PAGE_MASK, 2839 le16_to_cpu(d->req_count), 2840 DMA_FROM_DEVICE); 2841 } 2842 2843 copy_iso_headers(ctx, (u32 *) (last + 1)); 2844 2845 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2846 flush_iso_completions(ctx); 2847 2848 return 1; 2849 } 2850 2851 /* d == last because each descriptor block is only a single descriptor. */ 2852 static int handle_ir_buffer_fill(struct context *context, 2853 struct descriptor *d, 2854 struct descriptor *last) 2855 { 2856 struct iso_context *ctx = 2857 container_of(context, struct iso_context, context); 2858 unsigned int req_count, res_count, completed; 2859 u32 buffer_dma; 2860 2861 req_count = le16_to_cpu(last->req_count); 2862 res_count = le16_to_cpu(READ_ONCE(last->res_count)); 2863 completed = req_count - res_count; 2864 buffer_dma = le32_to_cpu(last->data_address); 2865 2866 if (completed > 0) { 2867 ctx->mc_buffer_bus = buffer_dma; 2868 ctx->mc_completed = completed; 2869 } 2870 2871 if (res_count != 0) 2872 /* Descriptor(s) not done yet, stop iteration */ 2873 return 0; 2874 2875 dma_sync_single_range_for_cpu(context->ohci->card.device, 2876 buffer_dma & PAGE_MASK, 2877 buffer_dma & ~PAGE_MASK, 2878 completed, DMA_FROM_DEVICE); 2879 2880 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) { 2881 ctx->base.callback.mc(&ctx->base, 2882 buffer_dma + completed, 2883 ctx->base.callback_data); 2884 ctx->mc_completed = 0; 2885 } 2886 2887 return 1; 2888 } 2889 2890 static void flush_ir_buffer_fill(struct iso_context *ctx) 2891 { 2892 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device, 2893 ctx->mc_buffer_bus & PAGE_MASK, 2894 ctx->mc_buffer_bus & ~PAGE_MASK, 2895 ctx->mc_completed, DMA_FROM_DEVICE); 2896 2897 ctx->base.callback.mc(&ctx->base, 2898 ctx->mc_buffer_bus + ctx->mc_completed, 2899 ctx->base.callback_data); 2900 ctx->mc_completed = 0; 2901 } 2902 2903 static inline void sync_it_packet_for_cpu(struct context *context, 2904 struct descriptor *pd) 2905 { 2906 __le16 control; 2907 u32 buffer_dma; 2908 2909 /* only packets beginning with OUTPUT_MORE* have data buffers */ 2910 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2911 return; 2912 2913 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */ 2914 pd += 2; 2915 2916 /* 2917 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's 2918 * data buffer is in the context program's coherent page and must not 2919 * be synced. 2920 */ 2921 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) == 2922 (context->current_bus & PAGE_MASK)) { 2923 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2924 return; 2925 pd++; 2926 } 2927 2928 do { 2929 buffer_dma = le32_to_cpu(pd->data_address); 2930 dma_sync_single_range_for_cpu(context->ohci->card.device, 2931 buffer_dma & PAGE_MASK, 2932 buffer_dma & ~PAGE_MASK, 2933 le16_to_cpu(pd->req_count), 2934 DMA_TO_DEVICE); 2935 control = pd->control; 2936 pd++; 2937 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))); 2938 } 2939 2940 static int handle_it_packet(struct context *context, 2941 struct descriptor *d, 2942 struct descriptor *last) 2943 { 2944 struct iso_context *ctx = 2945 container_of(context, struct iso_context, context); 2946 struct descriptor *pd; 2947 __be32 *ctx_hdr; 2948 2949 for (pd = d; pd <= last; pd++) 2950 if (pd->transfer_status) 2951 break; 2952 if (pd > last) 2953 /* Descriptor(s) not done yet, stop iteration */ 2954 return 0; 2955 2956 sync_it_packet_for_cpu(context, d); 2957 2958 if (ctx->header_length + 4 > PAGE_SIZE) { 2959 if (ctx->base.drop_overflow_headers) 2960 return 1; 2961 flush_iso_completions(ctx); 2962 } 2963 2964 ctx_hdr = ctx->header + ctx->header_length; 2965 ctx->last_timestamp = le16_to_cpu(last->res_count); 2966 /* Present this value as big-endian to match the receive code */ 2967 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) | 2968 le16_to_cpu(pd->res_count)); 2969 ctx->header_length += 4; 2970 2971 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2972 flush_iso_completions(ctx); 2973 2974 return 1; 2975 } 2976 2977 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels) 2978 { 2979 u32 hi = channels >> 32, lo = channels; 2980 2981 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi); 2982 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo); 2983 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi); 2984 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo); 2985 ohci->mc_channels = channels; 2986 } 2987 2988 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, 2989 int type, int channel, size_t header_size) 2990 { 2991 struct fw_ohci *ohci = fw_ohci(card); 2992 struct iso_context *ctx; 2993 descriptor_callback_t callback; 2994 u64 *channels; 2995 u32 *mask, regs; 2996 int index, ret = -EBUSY; 2997 2998 spin_lock_irq(&ohci->lock); 2999 3000 switch (type) { 3001 case FW_ISO_CONTEXT_TRANSMIT: 3002 mask = &ohci->it_context_mask; 3003 callback = handle_it_packet; 3004 index = ffs(*mask) - 1; 3005 if (index >= 0) { 3006 *mask &= ~(1 << index); 3007 regs = OHCI1394_IsoXmitContextBase(index); 3008 ctx = &ohci->it_context_list[index]; 3009 } 3010 break; 3011 3012 case FW_ISO_CONTEXT_RECEIVE: 3013 channels = &ohci->ir_context_channels; 3014 mask = &ohci->ir_context_mask; 3015 callback = handle_ir_packet_per_buffer; 3016 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1; 3017 if (index >= 0) { 3018 *channels &= ~(1ULL << channel); 3019 *mask &= ~(1 << index); 3020 regs = OHCI1394_IsoRcvContextBase(index); 3021 ctx = &ohci->ir_context_list[index]; 3022 } 3023 break; 3024 3025 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3026 mask = &ohci->ir_context_mask; 3027 callback = handle_ir_buffer_fill; 3028 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1; 3029 if (index >= 0) { 3030 ohci->mc_allocated = true; 3031 *mask &= ~(1 << index); 3032 regs = OHCI1394_IsoRcvContextBase(index); 3033 ctx = &ohci->ir_context_list[index]; 3034 } 3035 break; 3036 3037 default: 3038 index = -1; 3039 ret = -ENOSYS; 3040 } 3041 3042 spin_unlock_irq(&ohci->lock); 3043 3044 if (index < 0) 3045 return ERR_PTR(ret); 3046 3047 memset(ctx, 0, sizeof(*ctx)); 3048 ctx->header_length = 0; 3049 ctx->header = (void *) __get_free_page(GFP_KERNEL); 3050 if (ctx->header == NULL) { 3051 ret = -ENOMEM; 3052 goto out; 3053 } 3054 ret = context_init(&ctx->context, ohci, regs, callback); 3055 if (ret < 0) 3056 goto out_with_header; 3057 3058 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) { 3059 set_multichannel_mask(ohci, 0); 3060 ctx->mc_completed = 0; 3061 } 3062 3063 return &ctx->base; 3064 3065 out_with_header: 3066 free_page((unsigned long)ctx->header); 3067 out: 3068 spin_lock_irq(&ohci->lock); 3069 3070 switch (type) { 3071 case FW_ISO_CONTEXT_RECEIVE: 3072 *channels |= 1ULL << channel; 3073 break; 3074 3075 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3076 ohci->mc_allocated = false; 3077 break; 3078 } 3079 *mask |= 1 << index; 3080 3081 spin_unlock_irq(&ohci->lock); 3082 3083 return ERR_PTR(ret); 3084 } 3085 3086 static int ohci_start_iso(struct fw_iso_context *base, 3087 s32 cycle, u32 sync, u32 tags) 3088 { 3089 struct iso_context *ctx = container_of(base, struct iso_context, base); 3090 struct fw_ohci *ohci = ctx->context.ohci; 3091 u32 control = IR_CONTEXT_ISOCH_HEADER, match; 3092 int index; 3093 3094 /* the controller cannot start without any queued packets */ 3095 if (ctx->context.last->branch_address == 0) 3096 return -ENODATA; 3097 3098 switch (ctx->base.type) { 3099 case FW_ISO_CONTEXT_TRANSMIT: 3100 index = ctx - ohci->it_context_list; 3101 match = 0; 3102 if (cycle >= 0) 3103 match = IT_CONTEXT_CYCLE_MATCH_ENABLE | 3104 (cycle & 0x7fff) << 16; 3105 3106 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); 3107 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); 3108 context_run(&ctx->context, match); 3109 break; 3110 3111 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3112 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE; 3113 fallthrough; 3114 case FW_ISO_CONTEXT_RECEIVE: 3115 index = ctx - ohci->ir_context_list; 3116 match = (tags << 28) | (sync << 8) | ctx->base.channel; 3117 if (cycle >= 0) { 3118 match |= (cycle & 0x07fff) << 12; 3119 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; 3120 } 3121 3122 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); 3123 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); 3124 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); 3125 context_run(&ctx->context, control); 3126 3127 ctx->sync = sync; 3128 ctx->tags = tags; 3129 3130 break; 3131 } 3132 3133 return 0; 3134 } 3135 3136 static int ohci_stop_iso(struct fw_iso_context *base) 3137 { 3138 struct fw_ohci *ohci = fw_ohci(base->card); 3139 struct iso_context *ctx = container_of(base, struct iso_context, base); 3140 int index; 3141 3142 switch (ctx->base.type) { 3143 case FW_ISO_CONTEXT_TRANSMIT: 3144 index = ctx - ohci->it_context_list; 3145 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); 3146 break; 3147 3148 case FW_ISO_CONTEXT_RECEIVE: 3149 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3150 index = ctx - ohci->ir_context_list; 3151 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); 3152 break; 3153 } 3154 flush_writes(ohci); 3155 context_stop(&ctx->context); 3156 tasklet_kill(&ctx->context.tasklet); 3157 3158 return 0; 3159 } 3160 3161 static void ohci_free_iso_context(struct fw_iso_context *base) 3162 { 3163 struct fw_ohci *ohci = fw_ohci(base->card); 3164 struct iso_context *ctx = container_of(base, struct iso_context, base); 3165 unsigned long flags; 3166 int index; 3167 3168 ohci_stop_iso(base); 3169 context_release(&ctx->context); 3170 free_page((unsigned long)ctx->header); 3171 3172 spin_lock_irqsave(&ohci->lock, flags); 3173 3174 switch (base->type) { 3175 case FW_ISO_CONTEXT_TRANSMIT: 3176 index = ctx - ohci->it_context_list; 3177 ohci->it_context_mask |= 1 << index; 3178 break; 3179 3180 case FW_ISO_CONTEXT_RECEIVE: 3181 index = ctx - ohci->ir_context_list; 3182 ohci->ir_context_mask |= 1 << index; 3183 ohci->ir_context_channels |= 1ULL << base->channel; 3184 break; 3185 3186 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3187 index = ctx - ohci->ir_context_list; 3188 ohci->ir_context_mask |= 1 << index; 3189 ohci->ir_context_channels |= ohci->mc_channels; 3190 ohci->mc_channels = 0; 3191 ohci->mc_allocated = false; 3192 break; 3193 } 3194 3195 spin_unlock_irqrestore(&ohci->lock, flags); 3196 } 3197 3198 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels) 3199 { 3200 struct fw_ohci *ohci = fw_ohci(base->card); 3201 unsigned long flags; 3202 int ret; 3203 3204 switch (base->type) { 3205 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3206 3207 spin_lock_irqsave(&ohci->lock, flags); 3208 3209 /* Don't allow multichannel to grab other contexts' channels. */ 3210 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) { 3211 *channels = ohci->ir_context_channels; 3212 ret = -EBUSY; 3213 } else { 3214 set_multichannel_mask(ohci, *channels); 3215 ret = 0; 3216 } 3217 3218 spin_unlock_irqrestore(&ohci->lock, flags); 3219 3220 break; 3221 default: 3222 ret = -EINVAL; 3223 } 3224 3225 return ret; 3226 } 3227 3228 #ifdef CONFIG_PM 3229 static void ohci_resume_iso_dma(struct fw_ohci *ohci) 3230 { 3231 int i; 3232 struct iso_context *ctx; 3233 3234 for (i = 0 ; i < ohci->n_ir ; i++) { 3235 ctx = &ohci->ir_context_list[i]; 3236 if (ctx->context.running) 3237 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3238 } 3239 3240 for (i = 0 ; i < ohci->n_it ; i++) { 3241 ctx = &ohci->it_context_list[i]; 3242 if (ctx->context.running) 3243 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3244 } 3245 } 3246 #endif 3247 3248 static int queue_iso_transmit(struct iso_context *ctx, 3249 struct fw_iso_packet *packet, 3250 struct fw_iso_buffer *buffer, 3251 unsigned long payload) 3252 { 3253 struct descriptor *d, *last, *pd; 3254 struct fw_iso_packet *p; 3255 __le32 *header; 3256 dma_addr_t d_bus, page_bus; 3257 u32 z, header_z, payload_z, irq; 3258 u32 payload_index, payload_end_index, next_page_index; 3259 int page, end_page, i, length, offset; 3260 3261 p = packet; 3262 payload_index = payload; 3263 3264 if (p->skip) 3265 z = 1; 3266 else 3267 z = 2; 3268 if (p->header_length > 0) 3269 z++; 3270 3271 /* Determine the first page the payload isn't contained in. */ 3272 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; 3273 if (p->payload_length > 0) 3274 payload_z = end_page - (payload_index >> PAGE_SHIFT); 3275 else 3276 payload_z = 0; 3277 3278 z += payload_z; 3279 3280 /* Get header size in number of descriptors. */ 3281 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); 3282 3283 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); 3284 if (d == NULL) 3285 return -ENOMEM; 3286 3287 if (!p->skip) { 3288 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 3289 d[0].req_count = cpu_to_le16(8); 3290 /* 3291 * Link the skip address to this descriptor itself. This causes 3292 * a context to skip a cycle whenever lost cycles or FIFO 3293 * overruns occur, without dropping the data. The application 3294 * should then decide whether this is an error condition or not. 3295 * FIXME: Make the context's cycle-lost behaviour configurable? 3296 */ 3297 d[0].branch_address = cpu_to_le32(d_bus | z); 3298 3299 header = (__le32 *) &d[1]; 3300 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) | 3301 IT_HEADER_TAG(p->tag) | 3302 IT_HEADER_TCODE(TCODE_STREAM_DATA) | 3303 IT_HEADER_CHANNEL(ctx->base.channel) | 3304 IT_HEADER_SPEED(ctx->base.speed)); 3305 header[1] = 3306 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length + 3307 p->payload_length)); 3308 } 3309 3310 if (p->header_length > 0) { 3311 d[2].req_count = cpu_to_le16(p->header_length); 3312 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); 3313 memcpy(&d[z], p->header, p->header_length); 3314 } 3315 3316 pd = d + z - payload_z; 3317 payload_end_index = payload_index + p->payload_length; 3318 for (i = 0; i < payload_z; i++) { 3319 page = payload_index >> PAGE_SHIFT; 3320 offset = payload_index & ~PAGE_MASK; 3321 next_page_index = (page + 1) << PAGE_SHIFT; 3322 length = 3323 min(next_page_index, payload_end_index) - payload_index; 3324 pd[i].req_count = cpu_to_le16(length); 3325 3326 page_bus = page_private(buffer->pages[page]); 3327 pd[i].data_address = cpu_to_le32(page_bus + offset); 3328 3329 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3330 page_bus, offset, length, 3331 DMA_TO_DEVICE); 3332 3333 payload_index += length; 3334 } 3335 3336 if (p->interrupt) 3337 irq = DESCRIPTOR_IRQ_ALWAYS; 3338 else 3339 irq = DESCRIPTOR_NO_IRQ; 3340 3341 last = z == 2 ? d : d + z - 1; 3342 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 3343 DESCRIPTOR_STATUS | 3344 DESCRIPTOR_BRANCH_ALWAYS | 3345 irq); 3346 3347 context_append(&ctx->context, d, z, header_z); 3348 3349 return 0; 3350 } 3351 3352 static int queue_iso_packet_per_buffer(struct iso_context *ctx, 3353 struct fw_iso_packet *packet, 3354 struct fw_iso_buffer *buffer, 3355 unsigned long payload) 3356 { 3357 struct device *device = ctx->context.ohci->card.device; 3358 struct descriptor *d, *pd; 3359 dma_addr_t d_bus, page_bus; 3360 u32 z, header_z, rest; 3361 int i, j, length; 3362 int page, offset, packet_count, header_size, payload_per_buffer; 3363 3364 /* 3365 * The OHCI controller puts the isochronous header and trailer in the 3366 * buffer, so we need at least 8 bytes. 3367 */ 3368 packet_count = packet->header_length / ctx->base.header_size; 3369 header_size = max(ctx->base.header_size, (size_t)8); 3370 3371 /* Get header size in number of descriptors. */ 3372 header_z = DIV_ROUND_UP(header_size, sizeof(*d)); 3373 page = payload >> PAGE_SHIFT; 3374 offset = payload & ~PAGE_MASK; 3375 payload_per_buffer = packet->payload_length / packet_count; 3376 3377 for (i = 0; i < packet_count; i++) { 3378 /* d points to the header descriptor */ 3379 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; 3380 d = context_get_descriptors(&ctx->context, 3381 z + header_z, &d_bus); 3382 if (d == NULL) 3383 return -ENOMEM; 3384 3385 d->control = cpu_to_le16(DESCRIPTOR_STATUS | 3386 DESCRIPTOR_INPUT_MORE); 3387 if (packet->skip && i == 0) 3388 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3389 d->req_count = cpu_to_le16(header_size); 3390 d->res_count = d->req_count; 3391 d->transfer_status = 0; 3392 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); 3393 3394 rest = payload_per_buffer; 3395 pd = d; 3396 for (j = 1; j < z; j++) { 3397 pd++; 3398 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3399 DESCRIPTOR_INPUT_MORE); 3400 3401 if (offset + rest < PAGE_SIZE) 3402 length = rest; 3403 else 3404 length = PAGE_SIZE - offset; 3405 pd->req_count = cpu_to_le16(length); 3406 pd->res_count = pd->req_count; 3407 pd->transfer_status = 0; 3408 3409 page_bus = page_private(buffer->pages[page]); 3410 pd->data_address = cpu_to_le32(page_bus + offset); 3411 3412 dma_sync_single_range_for_device(device, page_bus, 3413 offset, length, 3414 DMA_FROM_DEVICE); 3415 3416 offset = (offset + length) & ~PAGE_MASK; 3417 rest -= length; 3418 if (offset == 0) 3419 page++; 3420 } 3421 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3422 DESCRIPTOR_INPUT_LAST | 3423 DESCRIPTOR_BRANCH_ALWAYS); 3424 if (packet->interrupt && i == packet_count - 1) 3425 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3426 3427 context_append(&ctx->context, d, z, header_z); 3428 } 3429 3430 return 0; 3431 } 3432 3433 static int queue_iso_buffer_fill(struct iso_context *ctx, 3434 struct fw_iso_packet *packet, 3435 struct fw_iso_buffer *buffer, 3436 unsigned long payload) 3437 { 3438 struct descriptor *d; 3439 dma_addr_t d_bus, page_bus; 3440 int page, offset, rest, z, i, length; 3441 3442 page = payload >> PAGE_SHIFT; 3443 offset = payload & ~PAGE_MASK; 3444 rest = packet->payload_length; 3445 3446 /* We need one descriptor for each page in the buffer. */ 3447 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE); 3448 3449 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count)) 3450 return -EFAULT; 3451 3452 for (i = 0; i < z; i++) { 3453 d = context_get_descriptors(&ctx->context, 1, &d_bus); 3454 if (d == NULL) 3455 return -ENOMEM; 3456 3457 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 3458 DESCRIPTOR_BRANCH_ALWAYS); 3459 if (packet->skip && i == 0) 3460 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3461 if (packet->interrupt && i == z - 1) 3462 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3463 3464 if (offset + rest < PAGE_SIZE) 3465 length = rest; 3466 else 3467 length = PAGE_SIZE - offset; 3468 d->req_count = cpu_to_le16(length); 3469 d->res_count = d->req_count; 3470 d->transfer_status = 0; 3471 3472 page_bus = page_private(buffer->pages[page]); 3473 d->data_address = cpu_to_le32(page_bus + offset); 3474 3475 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3476 page_bus, offset, length, 3477 DMA_FROM_DEVICE); 3478 3479 rest -= length; 3480 offset = 0; 3481 page++; 3482 3483 context_append(&ctx->context, d, 1, 0); 3484 } 3485 3486 return 0; 3487 } 3488 3489 static int ohci_queue_iso(struct fw_iso_context *base, 3490 struct fw_iso_packet *packet, 3491 struct fw_iso_buffer *buffer, 3492 unsigned long payload) 3493 { 3494 struct iso_context *ctx = container_of(base, struct iso_context, base); 3495 unsigned long flags; 3496 int ret = -ENOSYS; 3497 3498 spin_lock_irqsave(&ctx->context.ohci->lock, flags); 3499 switch (base->type) { 3500 case FW_ISO_CONTEXT_TRANSMIT: 3501 ret = queue_iso_transmit(ctx, packet, buffer, payload); 3502 break; 3503 case FW_ISO_CONTEXT_RECEIVE: 3504 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload); 3505 break; 3506 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3507 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload); 3508 break; 3509 } 3510 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags); 3511 3512 return ret; 3513 } 3514 3515 static void ohci_flush_queue_iso(struct fw_iso_context *base) 3516 { 3517 struct context *ctx = 3518 &container_of(base, struct iso_context, base)->context; 3519 3520 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 3521 } 3522 3523 static int ohci_flush_iso_completions(struct fw_iso_context *base) 3524 { 3525 struct iso_context *ctx = container_of(base, struct iso_context, base); 3526 int ret = 0; 3527 3528 tasklet_disable_in_atomic(&ctx->context.tasklet); 3529 3530 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) { 3531 context_tasklet((unsigned long)&ctx->context); 3532 3533 switch (base->type) { 3534 case FW_ISO_CONTEXT_TRANSMIT: 3535 case FW_ISO_CONTEXT_RECEIVE: 3536 if (ctx->header_length != 0) 3537 flush_iso_completions(ctx); 3538 break; 3539 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3540 if (ctx->mc_completed != 0) 3541 flush_ir_buffer_fill(ctx); 3542 break; 3543 default: 3544 ret = -ENOSYS; 3545 } 3546 3547 clear_bit_unlock(0, &ctx->flushing_completions); 3548 smp_mb__after_atomic(); 3549 } 3550 3551 tasklet_enable(&ctx->context.tasklet); 3552 3553 return ret; 3554 } 3555 3556 static const struct fw_card_driver ohci_driver = { 3557 .enable = ohci_enable, 3558 .read_phy_reg = ohci_read_phy_reg, 3559 .update_phy_reg = ohci_update_phy_reg, 3560 .set_config_rom = ohci_set_config_rom, 3561 .send_request = ohci_send_request, 3562 .send_response = ohci_send_response, 3563 .cancel_packet = ohci_cancel_packet, 3564 .enable_phys_dma = ohci_enable_phys_dma, 3565 .read_csr = ohci_read_csr, 3566 .write_csr = ohci_write_csr, 3567 3568 .allocate_iso_context = ohci_allocate_iso_context, 3569 .free_iso_context = ohci_free_iso_context, 3570 .set_iso_channels = ohci_set_iso_channels, 3571 .queue_iso = ohci_queue_iso, 3572 .flush_queue_iso = ohci_flush_queue_iso, 3573 .flush_iso_completions = ohci_flush_iso_completions, 3574 .start_iso = ohci_start_iso, 3575 .stop_iso = ohci_stop_iso, 3576 }; 3577 3578 #ifdef CONFIG_PPC_PMAC 3579 static void pmac_ohci_on(struct pci_dev *dev) 3580 { 3581 if (machine_is(powermac)) { 3582 struct device_node *ofn = pci_device_to_OF_node(dev); 3583 3584 if (ofn) { 3585 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); 3586 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); 3587 } 3588 } 3589 } 3590 3591 static void pmac_ohci_off(struct pci_dev *dev) 3592 { 3593 if (machine_is(powermac)) { 3594 struct device_node *ofn = pci_device_to_OF_node(dev); 3595 3596 if (ofn) { 3597 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); 3598 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); 3599 } 3600 } 3601 } 3602 #else 3603 static inline void pmac_ohci_on(struct pci_dev *dev) {} 3604 static inline void pmac_ohci_off(struct pci_dev *dev) {} 3605 #endif /* CONFIG_PPC_PMAC */ 3606 3607 static void release_ohci(struct device *dev, void *data) 3608 { 3609 struct pci_dev *pdev = to_pci_dev(dev); 3610 struct fw_ohci *ohci = pci_get_drvdata(pdev); 3611 3612 pmac_ohci_off(pdev); 3613 3614 ar_context_release(&ohci->ar_response_ctx); 3615 ar_context_release(&ohci->ar_request_ctx); 3616 3617 dev_notice(dev, "removed fw-ohci device\n"); 3618 } 3619 3620 static int pci_probe(struct pci_dev *dev, 3621 const struct pci_device_id *ent) 3622 { 3623 struct fw_ohci *ohci; 3624 u32 bus_options, max_receive, link_speed, version; 3625 u64 guid; 3626 int i, err; 3627 size_t size; 3628 3629 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) { 3630 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n"); 3631 return -ENOSYS; 3632 } 3633 3634 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL); 3635 if (ohci == NULL) 3636 return -ENOMEM; 3637 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); 3638 pci_set_drvdata(dev, ohci); 3639 pmac_ohci_on(dev); 3640 devres_add(&dev->dev, ohci); 3641 3642 err = pcim_enable_device(dev); 3643 if (err) { 3644 dev_err(&dev->dev, "failed to enable OHCI hardware\n"); 3645 return err; 3646 } 3647 3648 pci_set_master(dev); 3649 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); 3650 3651 spin_lock_init(&ohci->lock); 3652 mutex_init(&ohci->phy_reg_mutex); 3653 3654 INIT_WORK(&ohci->bus_reset_work, bus_reset_work); 3655 3656 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) || 3657 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) { 3658 ohci_err(ohci, "invalid MMIO resource\n"); 3659 return -ENXIO; 3660 } 3661 3662 err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name); 3663 if (err) { 3664 ohci_err(ohci, "request and map MMIO resource unavailable\n"); 3665 return -ENXIO; 3666 } 3667 ohci->registers = pcim_iomap_table(dev)[0]; 3668 3669 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++) 3670 if ((ohci_quirks[i].vendor == dev->vendor) && 3671 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID || 3672 ohci_quirks[i].device == dev->device) && 3673 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID || 3674 ohci_quirks[i].revision >= dev->revision)) { 3675 ohci->quirks = ohci_quirks[i].flags; 3676 break; 3677 } 3678 if (param_quirks) 3679 ohci->quirks = param_quirks; 3680 3681 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev)) 3682 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ; 3683 3684 /* 3685 * Because dma_alloc_coherent() allocates at least one page, 3686 * we save space by using a common buffer for the AR request/ 3687 * response descriptors and the self IDs buffer. 3688 */ 3689 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4); 3690 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2); 3691 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus, 3692 GFP_KERNEL); 3693 if (!ohci->misc_buffer) 3694 return -ENOMEM; 3695 3696 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0, 3697 OHCI1394_AsReqRcvContextControlSet); 3698 if (err < 0) 3699 return err; 3700 3701 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4, 3702 OHCI1394_AsRspRcvContextControlSet); 3703 if (err < 0) 3704 return err; 3705 3706 err = context_init(&ohci->at_request_ctx, ohci, 3707 OHCI1394_AsReqTrContextControlSet, handle_at_packet); 3708 if (err < 0) 3709 return err; 3710 3711 err = context_init(&ohci->at_response_ctx, ohci, 3712 OHCI1394_AsRspTrContextControlSet, handle_at_packet); 3713 if (err < 0) 3714 return err; 3715 3716 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); 3717 ohci->ir_context_channels = ~0ULL; 3718 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); 3719 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); 3720 ohci->ir_context_mask = ohci->ir_context_support; 3721 ohci->n_ir = hweight32(ohci->ir_context_mask); 3722 size = sizeof(struct iso_context) * ohci->n_ir; 3723 ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL); 3724 if (!ohci->ir_context_list) 3725 return -ENOMEM; 3726 3727 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); 3728 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); 3729 /* JMicron JMB38x often shows 0 at first read, just ignore it */ 3730 if (!ohci->it_context_support) { 3731 ohci_notice(ohci, "overriding IsoXmitIntMask\n"); 3732 ohci->it_context_support = 0xf; 3733 } 3734 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); 3735 ohci->it_context_mask = ohci->it_context_support; 3736 ohci->n_it = hweight32(ohci->it_context_mask); 3737 size = sizeof(struct iso_context) * ohci->n_it; 3738 ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL); 3739 if (!ohci->it_context_list) 3740 return -ENOMEM; 3741 3742 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2; 3743 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2; 3744 3745 bus_options = reg_read(ohci, OHCI1394_BusOptions); 3746 max_receive = (bus_options >> 12) & 0xf; 3747 link_speed = bus_options & 0x7; 3748 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | 3749 reg_read(ohci, OHCI1394_GUIDLo); 3750 3751 if (!(ohci->quirks & QUIRK_NO_MSI)) 3752 pci_enable_msi(dev); 3753 err = devm_request_irq(&dev->dev, dev->irq, irq_handler, 3754 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci); 3755 if (err < 0) { 3756 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq); 3757 goto fail_msi; 3758 } 3759 3760 err = fw_card_add(&ohci->card, max_receive, link_speed, guid); 3761 if (err) 3762 goto fail_msi; 3763 3764 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 3765 ohci_notice(ohci, 3766 "added OHCI v%x.%x device as card %d, " 3767 "%d IR + %d IT contexts, quirks 0x%x%s\n", 3768 version >> 16, version & 0xff, ohci->card.index, 3769 ohci->n_ir, ohci->n_it, ohci->quirks, 3770 reg_read(ohci, OHCI1394_PhyUpperBound) ? 3771 ", physUB" : ""); 3772 3773 return 0; 3774 3775 fail_msi: 3776 pci_disable_msi(dev); 3777 3778 return err; 3779 } 3780 3781 static void pci_remove(struct pci_dev *dev) 3782 { 3783 struct fw_ohci *ohci = pci_get_drvdata(dev); 3784 3785 /* 3786 * If the removal is happening from the suspend state, LPS won't be 3787 * enabled and host registers (eg., IntMaskClear) won't be accessible. 3788 */ 3789 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) { 3790 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 3791 flush_writes(ohci); 3792 } 3793 cancel_work_sync(&ohci->bus_reset_work); 3794 fw_core_remove_card(&ohci->card); 3795 3796 /* 3797 * FIXME: Fail all pending packets here, now that the upper 3798 * layers can't queue any more. 3799 */ 3800 3801 software_reset(ohci); 3802 3803 pci_disable_msi(dev); 3804 3805 dev_notice(&dev->dev, "removing fw-ohci device\n"); 3806 } 3807 3808 #ifdef CONFIG_PM 3809 static int pci_suspend(struct pci_dev *dev, pm_message_t state) 3810 { 3811 struct fw_ohci *ohci = pci_get_drvdata(dev); 3812 int err; 3813 3814 software_reset(ohci); 3815 err = pci_save_state(dev); 3816 if (err) { 3817 ohci_err(ohci, "pci_save_state failed\n"); 3818 return err; 3819 } 3820 err = pci_set_power_state(dev, pci_choose_state(dev, state)); 3821 if (err) 3822 ohci_err(ohci, "pci_set_power_state failed with %d\n", err); 3823 pmac_ohci_off(dev); 3824 3825 return 0; 3826 } 3827 3828 static int pci_resume(struct pci_dev *dev) 3829 { 3830 struct fw_ohci *ohci = pci_get_drvdata(dev); 3831 int err; 3832 3833 pmac_ohci_on(dev); 3834 pci_set_power_state(dev, PCI_D0); 3835 pci_restore_state(dev); 3836 err = pci_enable_device(dev); 3837 if (err) { 3838 ohci_err(ohci, "pci_enable_device failed\n"); 3839 return err; 3840 } 3841 3842 /* Some systems don't setup GUID register on resume from ram */ 3843 if (!reg_read(ohci, OHCI1394_GUIDLo) && 3844 !reg_read(ohci, OHCI1394_GUIDHi)) { 3845 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid); 3846 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32)); 3847 } 3848 3849 err = ohci_enable(&ohci->card, NULL, 0); 3850 if (err) 3851 return err; 3852 3853 ohci_resume_iso_dma(ohci); 3854 3855 return 0; 3856 } 3857 #endif 3858 3859 static const struct pci_device_id pci_table[] = { 3860 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, 3861 { } 3862 }; 3863 3864 MODULE_DEVICE_TABLE(pci, pci_table); 3865 3866 static struct pci_driver fw_ohci_pci_driver = { 3867 .name = ohci_driver_name, 3868 .id_table = pci_table, 3869 .probe = pci_probe, 3870 .remove = pci_remove, 3871 #ifdef CONFIG_PM 3872 .resume = pci_resume, 3873 .suspend = pci_suspend, 3874 #endif 3875 }; 3876 3877 static int __init fw_ohci_init(void) 3878 { 3879 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0); 3880 if (!selfid_workqueue) 3881 return -ENOMEM; 3882 3883 return pci_register_driver(&fw_ohci_pci_driver); 3884 } 3885 3886 static void __exit fw_ohci_cleanup(void) 3887 { 3888 pci_unregister_driver(&fw_ohci_pci_driver); 3889 destroy_workqueue(selfid_workqueue); 3890 } 3891 3892 module_init(fw_ohci_init); 3893 module_exit(fw_ohci_cleanup); 3894 3895 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 3896 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); 3897 MODULE_LICENSE("GPL"); 3898 3899 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 3900 MODULE_ALIAS("ohci1394"); 3901