xref: /linux/drivers/firewire/ohci.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 
40 #include <asm/atomic.h>
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44 
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48 
49 #include "core.h"
50 #include "ohci.h"
51 
52 #define DESCRIPTOR_OUTPUT_MORE		0
53 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
54 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
55 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
56 #define DESCRIPTOR_STATUS		(1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
58 #define DESCRIPTOR_PING			(1 << 7)
59 #define DESCRIPTOR_YY			(1 << 6)
60 #define DESCRIPTOR_NO_IRQ		(0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
64 #define DESCRIPTOR_WAIT			(3 << 0)
65 
66 struct descriptor {
67 	__le16 req_count;
68 	__le16 control;
69 	__le32 data_address;
70 	__le32 branch_address;
71 	__le16 res_count;
72 	__le16 transfer_status;
73 } __attribute__((aligned(16)));
74 
75 struct db_descriptor {
76 	__le16 first_size;
77 	__le16 control;
78 	__le16 second_req_count;
79 	__le16 first_req_count;
80 	__le32 branch_address;
81 	__le16 second_res_count;
82 	__le16 first_res_count;
83 	__le32 reserved0;
84 	__le32 first_buffer;
85 	__le32 second_buffer;
86 	__le32 reserved1;
87 } __attribute__((aligned(16)));
88 
89 #define CONTROL_SET(regs)	(regs)
90 #define CONTROL_CLEAR(regs)	((regs) + 4)
91 #define COMMAND_PTR(regs)	((regs) + 12)
92 #define CONTEXT_MATCH(regs)	((regs) + 16)
93 
94 struct ar_buffer {
95 	struct descriptor descriptor;
96 	struct ar_buffer *next;
97 	__le32 data[0];
98 };
99 
100 struct ar_context {
101 	struct fw_ohci *ohci;
102 	struct ar_buffer *current_buffer;
103 	struct ar_buffer *last_buffer;
104 	void *pointer;
105 	u32 regs;
106 	struct tasklet_struct tasklet;
107 };
108 
109 struct context;
110 
111 typedef int (*descriptor_callback_t)(struct context *ctx,
112 				     struct descriptor *d,
113 				     struct descriptor *last);
114 
115 /*
116  * A buffer that contains a block of DMA-able coherent memory used for
117  * storing a portion of a DMA descriptor program.
118  */
119 struct descriptor_buffer {
120 	struct list_head list;
121 	dma_addr_t buffer_bus;
122 	size_t buffer_size;
123 	size_t used;
124 	struct descriptor buffer[0];
125 };
126 
127 struct context {
128 	struct fw_ohci *ohci;
129 	u32 regs;
130 	int total_allocation;
131 
132 	/*
133 	 * List of page-sized buffers for storing DMA descriptors.
134 	 * Head of list contains buffers in use and tail of list contains
135 	 * free buffers.
136 	 */
137 	struct list_head buffer_list;
138 
139 	/*
140 	 * Pointer to a buffer inside buffer_list that contains the tail
141 	 * end of the current DMA program.
142 	 */
143 	struct descriptor_buffer *buffer_tail;
144 
145 	/*
146 	 * The descriptor containing the branch address of the first
147 	 * descriptor that has not yet been filled by the device.
148 	 */
149 	struct descriptor *last;
150 
151 	/*
152 	 * The last descriptor in the DMA program.  It contains the branch
153 	 * address that must be updated upon appending a new descriptor.
154 	 */
155 	struct descriptor *prev;
156 
157 	descriptor_callback_t callback;
158 
159 	struct tasklet_struct tasklet;
160 };
161 
162 #define IT_HEADER_SY(v)          ((v) <<  0)
163 #define IT_HEADER_TCODE(v)       ((v) <<  4)
164 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
165 #define IT_HEADER_TAG(v)         ((v) << 14)
166 #define IT_HEADER_SPEED(v)       ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 
169 struct iso_context {
170 	struct fw_iso_context base;
171 	struct context context;
172 	int excess_bytes;
173 	void *header;
174 	size_t header_length;
175 };
176 
177 #define CONFIG_ROM_SIZE 1024
178 
179 struct fw_ohci {
180 	struct fw_card card;
181 
182 	__iomem char *registers;
183 	dma_addr_t self_id_bus;
184 	__le32 *self_id_cpu;
185 	struct tasklet_struct bus_reset_tasklet;
186 	int node_id;
187 	int generation;
188 	int request_generation;	/* for timestamping incoming requests */
189 	atomic_t bus_seconds;
190 
191 	bool use_dualbuffer;
192 	bool old_uninorth;
193 	bool bus_reset_packet_quirk;
194 
195 	/*
196 	 * Spinlock for accessing fw_ohci data.  Never call out of
197 	 * this driver with this lock held.
198 	 */
199 	spinlock_t lock;
200 	u32 self_id_buffer[512];
201 
202 	/* Config rom buffers */
203 	__be32 *config_rom;
204 	dma_addr_t config_rom_bus;
205 	__be32 *next_config_rom;
206 	dma_addr_t next_config_rom_bus;
207 	u32 next_header;
208 
209 	struct ar_context ar_request_ctx;
210 	struct ar_context ar_response_ctx;
211 	struct context at_request_ctx;
212 	struct context at_response_ctx;
213 
214 	u32 it_context_mask;
215 	struct iso_context *it_context_list;
216 	u64 ir_context_channels;
217 	u32 ir_context_mask;
218 	struct iso_context *ir_context_list;
219 };
220 
221 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
222 {
223 	return container_of(card, struct fw_ohci, card);
224 }
225 
226 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
227 #define IR_CONTEXT_BUFFER_FILL		0x80000000
228 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
229 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
230 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
231 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
232 
233 #define CONTEXT_RUN	0x8000
234 #define CONTEXT_WAKE	0x1000
235 #define CONTEXT_DEAD	0x0800
236 #define CONTEXT_ACTIVE	0x0400
237 
238 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
239 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
240 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
241 
242 #define OHCI1394_REGISTER_SIZE		0x800
243 #define OHCI_LOOP_COUNT			500
244 #define OHCI1394_PCI_HCI_Control	0x40
245 #define SELF_ID_BUF_SIZE		0x800
246 #define OHCI_TCODE_PHY_PACKET		0x0e
247 #define OHCI_VERSION_1_1		0x010010
248 
249 static char ohci_driver_name[] = KBUILD_MODNAME;
250 
251 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
252 
253 #define OHCI_PARAM_DEBUG_AT_AR		1
254 #define OHCI_PARAM_DEBUG_SELFIDS	2
255 #define OHCI_PARAM_DEBUG_IRQS		4
256 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
257 
258 static int param_debug;
259 module_param_named(debug, param_debug, int, 0644);
260 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
261 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
262 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
263 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
264 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
265 	", or a combination, or all = -1)");
266 
267 static void log_irqs(u32 evt)
268 {
269 	if (likely(!(param_debug &
270 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
271 		return;
272 
273 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
274 	    !(evt & OHCI1394_busReset))
275 		return;
276 
277 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
278 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
279 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
280 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
281 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
282 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
283 	    evt & OHCI1394_isochRx		? " IR"			: "",
284 	    evt & OHCI1394_isochTx		? " IT"			: "",
285 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
286 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
287 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
288 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
289 	    evt & OHCI1394_busReset		? " busReset"		: "",
290 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
291 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
292 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
293 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
294 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
295 		    OHCI1394_regAccessFail | OHCI1394_busReset)
296 						? " ?"			: "");
297 }
298 
299 static const char *speed[] = {
300 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
301 };
302 static const char *power[] = {
303 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
304 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
305 };
306 static const char port[] = { '.', '-', 'p', 'c', };
307 
308 static char _p(u32 *s, int shift)
309 {
310 	return port[*s >> shift & 3];
311 }
312 
313 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
314 {
315 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
316 		return;
317 
318 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
319 		  self_id_count, generation, node_id);
320 
321 	for (; self_id_count--; ++s)
322 		if ((*s & 1 << 23) == 0)
323 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
324 			    "%s gc=%d %s %s%s%s\n",
325 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
326 			    speed[*s >> 14 & 3], *s >> 16 & 63,
327 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
328 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
329 		else
330 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
331 			    *s, *s >> 24 & 63,
332 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
333 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
334 }
335 
336 static const char *evts[] = {
337 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
338 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
339 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
340 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
341 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
342 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
343 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
344 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
345 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
346 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
347 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
348 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
349 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
350 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
351 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
352 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
353 	[0x20] = "pending/cancelled",
354 };
355 static const char *tcodes[] = {
356 	[0x0] = "QW req",		[0x1] = "BW req",
357 	[0x2] = "W resp",		[0x3] = "-reserved-",
358 	[0x4] = "QR req",		[0x5] = "BR req",
359 	[0x6] = "QR resp",		[0x7] = "BR resp",
360 	[0x8] = "cycle start",		[0x9] = "Lk req",
361 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
362 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
363 	[0xe] = "link internal",	[0xf] = "-reserved-",
364 };
365 static const char *phys[] = {
366 	[0x0] = "phy config packet",	[0x1] = "link-on packet",
367 	[0x2] = "self-id packet",	[0x3] = "-reserved-",
368 };
369 
370 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
371 {
372 	int tcode = header[0] >> 4 & 0xf;
373 	char specific[12];
374 
375 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
376 		return;
377 
378 	if (unlikely(evt >= ARRAY_SIZE(evts)))
379 			evt = 0x1f;
380 
381 	if (evt == OHCI1394_evt_bus_reset) {
382 		fw_notify("A%c evt_bus_reset, generation %d\n",
383 		    dir, (header[2] >> 16) & 0xff);
384 		return;
385 	}
386 
387 	if (header[0] == ~header[1]) {
388 		fw_notify("A%c %s, %s, %08x\n",
389 		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
390 		return;
391 	}
392 
393 	switch (tcode) {
394 	case 0x0: case 0x6: case 0x8:
395 		snprintf(specific, sizeof(specific), " = %08x",
396 			 be32_to_cpu((__force __be32)header[3]));
397 		break;
398 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
399 		snprintf(specific, sizeof(specific), " %x,%x",
400 			 header[3] >> 16, header[3] & 0xffff);
401 		break;
402 	default:
403 		specific[0] = '\0';
404 	}
405 
406 	switch (tcode) {
407 	case 0xe: case 0xa:
408 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
409 		break;
410 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
411 		fw_notify("A%c spd %x tl %02x, "
412 		    "%04x -> %04x, %s, "
413 		    "%s, %04x%08x%s\n",
414 		    dir, speed, header[0] >> 10 & 0x3f,
415 		    header[1] >> 16, header[0] >> 16, evts[evt],
416 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
417 		break;
418 	default:
419 		fw_notify("A%c spd %x tl %02x, "
420 		    "%04x -> %04x, %s, "
421 		    "%s%s\n",
422 		    dir, speed, header[0] >> 10 & 0x3f,
423 		    header[1] >> 16, header[0] >> 16, evts[evt],
424 		    tcodes[tcode], specific);
425 	}
426 }
427 
428 #else
429 
430 #define log_irqs(evt)
431 #define log_selfids(node_id, generation, self_id_count, sid)
432 #define log_ar_at_event(dir, speed, header, evt)
433 
434 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
435 
436 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
437 {
438 	writel(data, ohci->registers + offset);
439 }
440 
441 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
442 {
443 	return readl(ohci->registers + offset);
444 }
445 
446 static inline void flush_writes(const struct fw_ohci *ohci)
447 {
448 	/* Do a dummy read to flush writes. */
449 	reg_read(ohci, OHCI1394_Version);
450 }
451 
452 static int ohci_update_phy_reg(struct fw_card *card, int addr,
453 			       int clear_bits, int set_bits)
454 {
455 	struct fw_ohci *ohci = fw_ohci(card);
456 	u32 val, old;
457 
458 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
459 	flush_writes(ohci);
460 	msleep(2);
461 	val = reg_read(ohci, OHCI1394_PhyControl);
462 	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
463 		fw_error("failed to set phy reg bits.\n");
464 		return -EBUSY;
465 	}
466 
467 	old = OHCI1394_PhyControl_ReadData(val);
468 	old = (old & ~clear_bits) | set_bits;
469 	reg_write(ohci, OHCI1394_PhyControl,
470 		  OHCI1394_PhyControl_Write(addr, old));
471 
472 	return 0;
473 }
474 
475 static int ar_context_add_page(struct ar_context *ctx)
476 {
477 	struct device *dev = ctx->ohci->card.device;
478 	struct ar_buffer *ab;
479 	dma_addr_t uninitialized_var(ab_bus);
480 	size_t offset;
481 
482 	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
483 	if (ab == NULL)
484 		return -ENOMEM;
485 
486 	ab->next = NULL;
487 	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
488 	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
489 						    DESCRIPTOR_STATUS |
490 						    DESCRIPTOR_BRANCH_ALWAYS);
491 	offset = offsetof(struct ar_buffer, data);
492 	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
493 	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
494 	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
495 	ab->descriptor.branch_address = 0;
496 
497 	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
498 	ctx->last_buffer->next = ab;
499 	ctx->last_buffer = ab;
500 
501 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
502 	flush_writes(ctx->ohci);
503 
504 	return 0;
505 }
506 
507 static void ar_context_release(struct ar_context *ctx)
508 {
509 	struct ar_buffer *ab, *ab_next;
510 	size_t offset;
511 	dma_addr_t ab_bus;
512 
513 	for (ab = ctx->current_buffer; ab; ab = ab_next) {
514 		ab_next = ab->next;
515 		offset = offsetof(struct ar_buffer, data);
516 		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
517 		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
518 				  ab, ab_bus);
519 	}
520 }
521 
522 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
523 #define cond_le32_to_cpu(v) \
524 	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
525 #else
526 #define cond_le32_to_cpu(v) le32_to_cpu(v)
527 #endif
528 
529 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
530 {
531 	struct fw_ohci *ohci = ctx->ohci;
532 	struct fw_packet p;
533 	u32 status, length, tcode;
534 	int evt;
535 
536 	p.header[0] = cond_le32_to_cpu(buffer[0]);
537 	p.header[1] = cond_le32_to_cpu(buffer[1]);
538 	p.header[2] = cond_le32_to_cpu(buffer[2]);
539 
540 	tcode = (p.header[0] >> 4) & 0x0f;
541 	switch (tcode) {
542 	case TCODE_WRITE_QUADLET_REQUEST:
543 	case TCODE_READ_QUADLET_RESPONSE:
544 		p.header[3] = (__force __u32) buffer[3];
545 		p.header_length = 16;
546 		p.payload_length = 0;
547 		break;
548 
549 	case TCODE_READ_BLOCK_REQUEST :
550 		p.header[3] = cond_le32_to_cpu(buffer[3]);
551 		p.header_length = 16;
552 		p.payload_length = 0;
553 		break;
554 
555 	case TCODE_WRITE_BLOCK_REQUEST:
556 	case TCODE_READ_BLOCK_RESPONSE:
557 	case TCODE_LOCK_REQUEST:
558 	case TCODE_LOCK_RESPONSE:
559 		p.header[3] = cond_le32_to_cpu(buffer[3]);
560 		p.header_length = 16;
561 		p.payload_length = p.header[3] >> 16;
562 		break;
563 
564 	case TCODE_WRITE_RESPONSE:
565 	case TCODE_READ_QUADLET_REQUEST:
566 	case OHCI_TCODE_PHY_PACKET:
567 		p.header_length = 12;
568 		p.payload_length = 0;
569 		break;
570 
571 	default:
572 		/* FIXME: Stop context, discard everything, and restart? */
573 		p.header_length = 0;
574 		p.payload_length = 0;
575 	}
576 
577 	p.payload = (void *) buffer + p.header_length;
578 
579 	/* FIXME: What to do about evt_* errors? */
580 	length = (p.header_length + p.payload_length + 3) / 4;
581 	status = cond_le32_to_cpu(buffer[length]);
582 	evt    = (status >> 16) & 0x1f;
583 
584 	p.ack        = evt - 16;
585 	p.speed      = (status >> 21) & 0x7;
586 	p.timestamp  = status & 0xffff;
587 	p.generation = ohci->request_generation;
588 
589 	log_ar_at_event('R', p.speed, p.header, evt);
590 
591 	/*
592 	 * The OHCI bus reset handler synthesizes a phy packet with
593 	 * the new generation number when a bus reset happens (see
594 	 * section 8.4.2.3).  This helps us determine when a request
595 	 * was received and make sure we send the response in the same
596 	 * generation.  We only need this for requests; for responses
597 	 * we use the unique tlabel for finding the matching
598 	 * request.
599 	 *
600 	 * Alas some chips sometimes emit bus reset packets with a
601 	 * wrong generation.  We set the correct generation for these
602 	 * at a slightly incorrect time (in bus_reset_tasklet).
603 	 */
604 	if (evt == OHCI1394_evt_bus_reset) {
605 		if (!ohci->bus_reset_packet_quirk)
606 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
607 	} else if (ctx == &ohci->ar_request_ctx) {
608 		fw_core_handle_request(&ohci->card, &p);
609 	} else {
610 		fw_core_handle_response(&ohci->card, &p);
611 	}
612 
613 	return buffer + length + 1;
614 }
615 
616 static void ar_context_tasklet(unsigned long data)
617 {
618 	struct ar_context *ctx = (struct ar_context *)data;
619 	struct fw_ohci *ohci = ctx->ohci;
620 	struct ar_buffer *ab;
621 	struct descriptor *d;
622 	void *buffer, *end;
623 
624 	ab = ctx->current_buffer;
625 	d = &ab->descriptor;
626 
627 	if (d->res_count == 0) {
628 		size_t size, rest, offset;
629 		dma_addr_t start_bus;
630 		void *start;
631 
632 		/*
633 		 * This descriptor is finished and we may have a
634 		 * packet split across this and the next buffer. We
635 		 * reuse the page for reassembling the split packet.
636 		 */
637 
638 		offset = offsetof(struct ar_buffer, data);
639 		start = buffer = ab;
640 		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
641 
642 		ab = ab->next;
643 		d = &ab->descriptor;
644 		size = buffer + PAGE_SIZE - ctx->pointer;
645 		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
646 		memmove(buffer, ctx->pointer, size);
647 		memcpy(buffer + size, ab->data, rest);
648 		ctx->current_buffer = ab;
649 		ctx->pointer = (void *) ab->data + rest;
650 		end = buffer + size + rest;
651 
652 		while (buffer < end)
653 			buffer = handle_ar_packet(ctx, buffer);
654 
655 		dma_free_coherent(ohci->card.device, PAGE_SIZE,
656 				  start, start_bus);
657 		ar_context_add_page(ctx);
658 	} else {
659 		buffer = ctx->pointer;
660 		ctx->pointer = end =
661 			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
662 
663 		while (buffer < end)
664 			buffer = handle_ar_packet(ctx, buffer);
665 	}
666 }
667 
668 static int ar_context_init(struct ar_context *ctx,
669 			   struct fw_ohci *ohci, u32 regs)
670 {
671 	struct ar_buffer ab;
672 
673 	ctx->regs        = regs;
674 	ctx->ohci        = ohci;
675 	ctx->last_buffer = &ab;
676 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
677 
678 	ar_context_add_page(ctx);
679 	ar_context_add_page(ctx);
680 	ctx->current_buffer = ab.next;
681 	ctx->pointer = ctx->current_buffer->data;
682 
683 	return 0;
684 }
685 
686 static void ar_context_run(struct ar_context *ctx)
687 {
688 	struct ar_buffer *ab = ctx->current_buffer;
689 	dma_addr_t ab_bus;
690 	size_t offset;
691 
692 	offset = offsetof(struct ar_buffer, data);
693 	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
694 
695 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
696 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
697 	flush_writes(ctx->ohci);
698 }
699 
700 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
701 {
702 	int b, key;
703 
704 	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
705 	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
706 
707 	/* figure out which descriptor the branch address goes in */
708 	if (z == 2 && (b == 3 || key == 2))
709 		return d;
710 	else
711 		return d + z - 1;
712 }
713 
714 static void context_tasklet(unsigned long data)
715 {
716 	struct context *ctx = (struct context *) data;
717 	struct descriptor *d, *last;
718 	u32 address;
719 	int z;
720 	struct descriptor_buffer *desc;
721 
722 	desc = list_entry(ctx->buffer_list.next,
723 			struct descriptor_buffer, list);
724 	last = ctx->last;
725 	while (last->branch_address != 0) {
726 		struct descriptor_buffer *old_desc = desc;
727 		address = le32_to_cpu(last->branch_address);
728 		z = address & 0xf;
729 		address &= ~0xf;
730 
731 		/* If the branch address points to a buffer outside of the
732 		 * current buffer, advance to the next buffer. */
733 		if (address < desc->buffer_bus ||
734 				address >= desc->buffer_bus + desc->used)
735 			desc = list_entry(desc->list.next,
736 					struct descriptor_buffer, list);
737 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
738 		last = find_branch_descriptor(d, z);
739 
740 		if (!ctx->callback(ctx, d, last))
741 			break;
742 
743 		if (old_desc != desc) {
744 			/* If we've advanced to the next buffer, move the
745 			 * previous buffer to the free list. */
746 			unsigned long flags;
747 			old_desc->used = 0;
748 			spin_lock_irqsave(&ctx->ohci->lock, flags);
749 			list_move_tail(&old_desc->list, &ctx->buffer_list);
750 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
751 		}
752 		ctx->last = last;
753 	}
754 }
755 
756 /*
757  * Allocate a new buffer and add it to the list of free buffers for this
758  * context.  Must be called with ohci->lock held.
759  */
760 static int context_add_buffer(struct context *ctx)
761 {
762 	struct descriptor_buffer *desc;
763 	dma_addr_t uninitialized_var(bus_addr);
764 	int offset;
765 
766 	/*
767 	 * 16MB of descriptors should be far more than enough for any DMA
768 	 * program.  This will catch run-away userspace or DoS attacks.
769 	 */
770 	if (ctx->total_allocation >= 16*1024*1024)
771 		return -ENOMEM;
772 
773 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
774 			&bus_addr, GFP_ATOMIC);
775 	if (!desc)
776 		return -ENOMEM;
777 
778 	offset = (void *)&desc->buffer - (void *)desc;
779 	desc->buffer_size = PAGE_SIZE - offset;
780 	desc->buffer_bus = bus_addr + offset;
781 	desc->used = 0;
782 
783 	list_add_tail(&desc->list, &ctx->buffer_list);
784 	ctx->total_allocation += PAGE_SIZE;
785 
786 	return 0;
787 }
788 
789 static int context_init(struct context *ctx, struct fw_ohci *ohci,
790 			u32 regs, descriptor_callback_t callback)
791 {
792 	ctx->ohci = ohci;
793 	ctx->regs = regs;
794 	ctx->total_allocation = 0;
795 
796 	INIT_LIST_HEAD(&ctx->buffer_list);
797 	if (context_add_buffer(ctx) < 0)
798 		return -ENOMEM;
799 
800 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
801 			struct descriptor_buffer, list);
802 
803 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
804 	ctx->callback = callback;
805 
806 	/*
807 	 * We put a dummy descriptor in the buffer that has a NULL
808 	 * branch address and looks like it's been sent.  That way we
809 	 * have a descriptor to append DMA programs to.
810 	 */
811 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
812 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
813 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
814 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
815 	ctx->last = ctx->buffer_tail->buffer;
816 	ctx->prev = ctx->buffer_tail->buffer;
817 
818 	return 0;
819 }
820 
821 static void context_release(struct context *ctx)
822 {
823 	struct fw_card *card = &ctx->ohci->card;
824 	struct descriptor_buffer *desc, *tmp;
825 
826 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
827 		dma_free_coherent(card->device, PAGE_SIZE, desc,
828 			desc->buffer_bus -
829 			((void *)&desc->buffer - (void *)desc));
830 }
831 
832 /* Must be called with ohci->lock held */
833 static struct descriptor *context_get_descriptors(struct context *ctx,
834 						  int z, dma_addr_t *d_bus)
835 {
836 	struct descriptor *d = NULL;
837 	struct descriptor_buffer *desc = ctx->buffer_tail;
838 
839 	if (z * sizeof(*d) > desc->buffer_size)
840 		return NULL;
841 
842 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
843 		/* No room for the descriptor in this buffer, so advance to the
844 		 * next one. */
845 
846 		if (desc->list.next == &ctx->buffer_list) {
847 			/* If there is no free buffer next in the list,
848 			 * allocate one. */
849 			if (context_add_buffer(ctx) < 0)
850 				return NULL;
851 		}
852 		desc = list_entry(desc->list.next,
853 				struct descriptor_buffer, list);
854 		ctx->buffer_tail = desc;
855 	}
856 
857 	d = desc->buffer + desc->used / sizeof(*d);
858 	memset(d, 0, z * sizeof(*d));
859 	*d_bus = desc->buffer_bus + desc->used;
860 
861 	return d;
862 }
863 
864 static void context_run(struct context *ctx, u32 extra)
865 {
866 	struct fw_ohci *ohci = ctx->ohci;
867 
868 	reg_write(ohci, COMMAND_PTR(ctx->regs),
869 		  le32_to_cpu(ctx->last->branch_address));
870 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
871 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
872 	flush_writes(ohci);
873 }
874 
875 static void context_append(struct context *ctx,
876 			   struct descriptor *d, int z, int extra)
877 {
878 	dma_addr_t d_bus;
879 	struct descriptor_buffer *desc = ctx->buffer_tail;
880 
881 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
882 
883 	desc->used += (z + extra) * sizeof(*d);
884 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
885 	ctx->prev = find_branch_descriptor(d, z);
886 
887 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
888 	flush_writes(ctx->ohci);
889 }
890 
891 static void context_stop(struct context *ctx)
892 {
893 	u32 reg;
894 	int i;
895 
896 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
897 	flush_writes(ctx->ohci);
898 
899 	for (i = 0; i < 10; i++) {
900 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
901 		if ((reg & CONTEXT_ACTIVE) == 0)
902 			return;
903 
904 		mdelay(1);
905 	}
906 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
907 }
908 
909 struct driver_data {
910 	struct fw_packet *packet;
911 };
912 
913 /*
914  * This function apppends a packet to the DMA queue for transmission.
915  * Must always be called with the ochi->lock held to ensure proper
916  * generation handling and locking around packet queue manipulation.
917  */
918 static int at_context_queue_packet(struct context *ctx,
919 				   struct fw_packet *packet)
920 {
921 	struct fw_ohci *ohci = ctx->ohci;
922 	dma_addr_t d_bus, uninitialized_var(payload_bus);
923 	struct driver_data *driver_data;
924 	struct descriptor *d, *last;
925 	__le32 *header;
926 	int z, tcode;
927 	u32 reg;
928 
929 	d = context_get_descriptors(ctx, 4, &d_bus);
930 	if (d == NULL) {
931 		packet->ack = RCODE_SEND_ERROR;
932 		return -1;
933 	}
934 
935 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
936 	d[0].res_count = cpu_to_le16(packet->timestamp);
937 
938 	/*
939 	 * The DMA format for asyncronous link packets is different
940 	 * from the IEEE1394 layout, so shift the fields around
941 	 * accordingly.  If header_length is 8, it's a PHY packet, to
942 	 * which we need to prepend an extra quadlet.
943 	 */
944 
945 	header = (__le32 *) &d[1];
946 	switch (packet->header_length) {
947 	case 16:
948 	case 12:
949 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
950 					(packet->speed << 16));
951 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
952 					(packet->header[0] & 0xffff0000));
953 		header[2] = cpu_to_le32(packet->header[2]);
954 
955 		tcode = (packet->header[0] >> 4) & 0x0f;
956 		if (TCODE_IS_BLOCK_PACKET(tcode))
957 			header[3] = cpu_to_le32(packet->header[3]);
958 		else
959 			header[3] = (__force __le32) packet->header[3];
960 
961 		d[0].req_count = cpu_to_le16(packet->header_length);
962 		break;
963 
964 	case 8:
965 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
966 					(packet->speed << 16));
967 		header[1] = cpu_to_le32(packet->header[0]);
968 		header[2] = cpu_to_le32(packet->header[1]);
969 		d[0].req_count = cpu_to_le16(12);
970 		break;
971 
972 	case 4:
973 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
974 					(packet->speed << 16));
975 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
976 		d[0].req_count = cpu_to_le16(8);
977 		break;
978 
979 	default:
980 		/* BUG(); */
981 		packet->ack = RCODE_SEND_ERROR;
982 		return -1;
983 	}
984 
985 	driver_data = (struct driver_data *) &d[3];
986 	driver_data->packet = packet;
987 	packet->driver_data = driver_data;
988 
989 	if (packet->payload_length > 0) {
990 		payload_bus =
991 			dma_map_single(ohci->card.device, packet->payload,
992 				       packet->payload_length, DMA_TO_DEVICE);
993 		if (dma_mapping_error(ohci->card.device, payload_bus)) {
994 			packet->ack = RCODE_SEND_ERROR;
995 			return -1;
996 		}
997 		packet->payload_bus = payload_bus;
998 
999 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1000 		d[2].data_address = cpu_to_le32(payload_bus);
1001 		last = &d[2];
1002 		z = 3;
1003 	} else {
1004 		last = &d[0];
1005 		z = 2;
1006 	}
1007 
1008 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1009 				     DESCRIPTOR_IRQ_ALWAYS |
1010 				     DESCRIPTOR_BRANCH_ALWAYS);
1011 
1012 	/*
1013 	 * If the controller and packet generations don't match, we need to
1014 	 * bail out and try again.  If IntEvent.busReset is set, the AT context
1015 	 * is halted, so appending to the context and trying to run it is
1016 	 * futile.  Most controllers do the right thing and just flush the AT
1017 	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1018 	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1019 	 * up stalling out.  So we just bail out in software and try again
1020 	 * later, and everyone is happy.
1021 	 * FIXME: Document how the locking works.
1022 	 */
1023 	if (ohci->generation != packet->generation ||
1024 	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1025 		if (packet->payload_length > 0)
1026 			dma_unmap_single(ohci->card.device, payload_bus,
1027 					 packet->payload_length, DMA_TO_DEVICE);
1028 		packet->ack = RCODE_GENERATION;
1029 		return -1;
1030 	}
1031 
1032 	context_append(ctx, d, z, 4 - z);
1033 
1034 	/* If the context isn't already running, start it up. */
1035 	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1036 	if ((reg & CONTEXT_RUN) == 0)
1037 		context_run(ctx, 0);
1038 
1039 	return 0;
1040 }
1041 
1042 static int handle_at_packet(struct context *context,
1043 			    struct descriptor *d,
1044 			    struct descriptor *last)
1045 {
1046 	struct driver_data *driver_data;
1047 	struct fw_packet *packet;
1048 	struct fw_ohci *ohci = context->ohci;
1049 	int evt;
1050 
1051 	if (last->transfer_status == 0)
1052 		/* This descriptor isn't done yet, stop iteration. */
1053 		return 0;
1054 
1055 	driver_data = (struct driver_data *) &d[3];
1056 	packet = driver_data->packet;
1057 	if (packet == NULL)
1058 		/* This packet was cancelled, just continue. */
1059 		return 1;
1060 
1061 	if (packet->payload_bus)
1062 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1063 				 packet->payload_length, DMA_TO_DEVICE);
1064 
1065 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1066 	packet->timestamp = le16_to_cpu(last->res_count);
1067 
1068 	log_ar_at_event('T', packet->speed, packet->header, evt);
1069 
1070 	switch (evt) {
1071 	case OHCI1394_evt_timeout:
1072 		/* Async response transmit timed out. */
1073 		packet->ack = RCODE_CANCELLED;
1074 		break;
1075 
1076 	case OHCI1394_evt_flushed:
1077 		/*
1078 		 * The packet was flushed should give same error as
1079 		 * when we try to use a stale generation count.
1080 		 */
1081 		packet->ack = RCODE_GENERATION;
1082 		break;
1083 
1084 	case OHCI1394_evt_missing_ack:
1085 		/*
1086 		 * Using a valid (current) generation count, but the
1087 		 * node is not on the bus or not sending acks.
1088 		 */
1089 		packet->ack = RCODE_NO_ACK;
1090 		break;
1091 
1092 	case ACK_COMPLETE + 0x10:
1093 	case ACK_PENDING + 0x10:
1094 	case ACK_BUSY_X + 0x10:
1095 	case ACK_BUSY_A + 0x10:
1096 	case ACK_BUSY_B + 0x10:
1097 	case ACK_DATA_ERROR + 0x10:
1098 	case ACK_TYPE_ERROR + 0x10:
1099 		packet->ack = evt - 0x10;
1100 		break;
1101 
1102 	default:
1103 		packet->ack = RCODE_SEND_ERROR;
1104 		break;
1105 	}
1106 
1107 	packet->callback(packet, &ohci->card, packet->ack);
1108 
1109 	return 1;
1110 }
1111 
1112 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1113 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1114 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1115 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1116 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1117 
1118 static void handle_local_rom(struct fw_ohci *ohci,
1119 			     struct fw_packet *packet, u32 csr)
1120 {
1121 	struct fw_packet response;
1122 	int tcode, length, i;
1123 
1124 	tcode = HEADER_GET_TCODE(packet->header[0]);
1125 	if (TCODE_IS_BLOCK_PACKET(tcode))
1126 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1127 	else
1128 		length = 4;
1129 
1130 	i = csr - CSR_CONFIG_ROM;
1131 	if (i + length > CONFIG_ROM_SIZE) {
1132 		fw_fill_response(&response, packet->header,
1133 				 RCODE_ADDRESS_ERROR, NULL, 0);
1134 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1135 		fw_fill_response(&response, packet->header,
1136 				 RCODE_TYPE_ERROR, NULL, 0);
1137 	} else {
1138 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1139 				 (void *) ohci->config_rom + i, length);
1140 	}
1141 
1142 	fw_core_handle_response(&ohci->card, &response);
1143 }
1144 
1145 static void handle_local_lock(struct fw_ohci *ohci,
1146 			      struct fw_packet *packet, u32 csr)
1147 {
1148 	struct fw_packet response;
1149 	int tcode, length, ext_tcode, sel;
1150 	__be32 *payload, lock_old;
1151 	u32 lock_arg, lock_data;
1152 
1153 	tcode = HEADER_GET_TCODE(packet->header[0]);
1154 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1155 	payload = packet->payload;
1156 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1157 
1158 	if (tcode == TCODE_LOCK_REQUEST &&
1159 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1160 		lock_arg = be32_to_cpu(payload[0]);
1161 		lock_data = be32_to_cpu(payload[1]);
1162 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1163 		lock_arg = 0;
1164 		lock_data = 0;
1165 	} else {
1166 		fw_fill_response(&response, packet->header,
1167 				 RCODE_TYPE_ERROR, NULL, 0);
1168 		goto out;
1169 	}
1170 
1171 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1172 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1173 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1174 	reg_write(ohci, OHCI1394_CSRControl, sel);
1175 
1176 	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1177 		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1178 	else
1179 		fw_notify("swap not done yet\n");
1180 
1181 	fw_fill_response(&response, packet->header,
1182 			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1183  out:
1184 	fw_core_handle_response(&ohci->card, &response);
1185 }
1186 
1187 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1188 {
1189 	u64 offset;
1190 	u32 csr;
1191 
1192 	if (ctx == &ctx->ohci->at_request_ctx) {
1193 		packet->ack = ACK_PENDING;
1194 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1195 	}
1196 
1197 	offset =
1198 		((unsigned long long)
1199 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1200 		packet->header[2];
1201 	csr = offset - CSR_REGISTER_BASE;
1202 
1203 	/* Handle config rom reads. */
1204 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1205 		handle_local_rom(ctx->ohci, packet, csr);
1206 	else switch (csr) {
1207 	case CSR_BUS_MANAGER_ID:
1208 	case CSR_BANDWIDTH_AVAILABLE:
1209 	case CSR_CHANNELS_AVAILABLE_HI:
1210 	case CSR_CHANNELS_AVAILABLE_LO:
1211 		handle_local_lock(ctx->ohci, packet, csr);
1212 		break;
1213 	default:
1214 		if (ctx == &ctx->ohci->at_request_ctx)
1215 			fw_core_handle_request(&ctx->ohci->card, packet);
1216 		else
1217 			fw_core_handle_response(&ctx->ohci->card, packet);
1218 		break;
1219 	}
1220 
1221 	if (ctx == &ctx->ohci->at_response_ctx) {
1222 		packet->ack = ACK_COMPLETE;
1223 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1224 	}
1225 }
1226 
1227 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1228 {
1229 	unsigned long flags;
1230 	int ret;
1231 
1232 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1233 
1234 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1235 	    ctx->ohci->generation == packet->generation) {
1236 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1237 		handle_local_request(ctx, packet);
1238 		return;
1239 	}
1240 
1241 	ret = at_context_queue_packet(ctx, packet);
1242 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1243 
1244 	if (ret < 0)
1245 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1246 
1247 }
1248 
1249 static void bus_reset_tasklet(unsigned long data)
1250 {
1251 	struct fw_ohci *ohci = (struct fw_ohci *)data;
1252 	int self_id_count, i, j, reg;
1253 	int generation, new_generation;
1254 	unsigned long flags;
1255 	void *free_rom = NULL;
1256 	dma_addr_t free_rom_bus = 0;
1257 
1258 	reg = reg_read(ohci, OHCI1394_NodeID);
1259 	if (!(reg & OHCI1394_NodeID_idValid)) {
1260 		fw_notify("node ID not valid, new bus reset in progress\n");
1261 		return;
1262 	}
1263 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1264 		fw_notify("malconfigured bus\n");
1265 		return;
1266 	}
1267 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1268 			       OHCI1394_NodeID_nodeNumber);
1269 
1270 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1271 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1272 		fw_notify("inconsistent self IDs\n");
1273 		return;
1274 	}
1275 	/*
1276 	 * The count in the SelfIDCount register is the number of
1277 	 * bytes in the self ID receive buffer.  Since we also receive
1278 	 * the inverted quadlets and a header quadlet, we shift one
1279 	 * bit extra to get the actual number of self IDs.
1280 	 */
1281 	self_id_count = (reg >> 3) & 0x3ff;
1282 	if (self_id_count == 0) {
1283 		fw_notify("inconsistent self IDs\n");
1284 		return;
1285 	}
1286 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1287 	rmb();
1288 
1289 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1290 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1291 			fw_notify("inconsistent self IDs\n");
1292 			return;
1293 		}
1294 		ohci->self_id_buffer[j] =
1295 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1296 	}
1297 	rmb();
1298 
1299 	/*
1300 	 * Check the consistency of the self IDs we just read.  The
1301 	 * problem we face is that a new bus reset can start while we
1302 	 * read out the self IDs from the DMA buffer. If this happens,
1303 	 * the DMA buffer will be overwritten with new self IDs and we
1304 	 * will read out inconsistent data.  The OHCI specification
1305 	 * (section 11.2) recommends a technique similar to
1306 	 * linux/seqlock.h, where we remember the generation of the
1307 	 * self IDs in the buffer before reading them out and compare
1308 	 * it to the current generation after reading them out.  If
1309 	 * the two generations match we know we have a consistent set
1310 	 * of self IDs.
1311 	 */
1312 
1313 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1314 	if (new_generation != generation) {
1315 		fw_notify("recursive bus reset detected, "
1316 			  "discarding self ids\n");
1317 		return;
1318 	}
1319 
1320 	/* FIXME: Document how the locking works. */
1321 	spin_lock_irqsave(&ohci->lock, flags);
1322 
1323 	ohci->generation = generation;
1324 	context_stop(&ohci->at_request_ctx);
1325 	context_stop(&ohci->at_response_ctx);
1326 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1327 
1328 	if (ohci->bus_reset_packet_quirk)
1329 		ohci->request_generation = generation;
1330 
1331 	/*
1332 	 * This next bit is unrelated to the AT context stuff but we
1333 	 * have to do it under the spinlock also.  If a new config rom
1334 	 * was set up before this reset, the old one is now no longer
1335 	 * in use and we can free it. Update the config rom pointers
1336 	 * to point to the current config rom and clear the
1337 	 * next_config_rom pointer so a new udpate can take place.
1338 	 */
1339 
1340 	if (ohci->next_config_rom != NULL) {
1341 		if (ohci->next_config_rom != ohci->config_rom) {
1342 			free_rom      = ohci->config_rom;
1343 			free_rom_bus  = ohci->config_rom_bus;
1344 		}
1345 		ohci->config_rom      = ohci->next_config_rom;
1346 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1347 		ohci->next_config_rom = NULL;
1348 
1349 		/*
1350 		 * Restore config_rom image and manually update
1351 		 * config_rom registers.  Writing the header quadlet
1352 		 * will indicate that the config rom is ready, so we
1353 		 * do that last.
1354 		 */
1355 		reg_write(ohci, OHCI1394_BusOptions,
1356 			  be32_to_cpu(ohci->config_rom[2]));
1357 		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1358 		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1359 	}
1360 
1361 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1362 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1363 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1364 #endif
1365 
1366 	spin_unlock_irqrestore(&ohci->lock, flags);
1367 
1368 	if (free_rom)
1369 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1370 				  free_rom, free_rom_bus);
1371 
1372 	log_selfids(ohci->node_id, generation,
1373 		    self_id_count, ohci->self_id_buffer);
1374 
1375 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1376 				 self_id_count, ohci->self_id_buffer);
1377 }
1378 
1379 static irqreturn_t irq_handler(int irq, void *data)
1380 {
1381 	struct fw_ohci *ohci = data;
1382 	u32 event, iso_event, cycle_time;
1383 	int i;
1384 
1385 	event = reg_read(ohci, OHCI1394_IntEventClear);
1386 
1387 	if (!event || !~event)
1388 		return IRQ_NONE;
1389 
1390 	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1391 	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1392 	log_irqs(event);
1393 
1394 	if (event & OHCI1394_selfIDComplete)
1395 		tasklet_schedule(&ohci->bus_reset_tasklet);
1396 
1397 	if (event & OHCI1394_RQPkt)
1398 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1399 
1400 	if (event & OHCI1394_RSPkt)
1401 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1402 
1403 	if (event & OHCI1394_reqTxComplete)
1404 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1405 
1406 	if (event & OHCI1394_respTxComplete)
1407 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1408 
1409 	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1410 	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1411 
1412 	while (iso_event) {
1413 		i = ffs(iso_event) - 1;
1414 		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1415 		iso_event &= ~(1 << i);
1416 	}
1417 
1418 	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1419 	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1420 
1421 	while (iso_event) {
1422 		i = ffs(iso_event) - 1;
1423 		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1424 		iso_event &= ~(1 << i);
1425 	}
1426 
1427 	if (unlikely(event & OHCI1394_regAccessFail))
1428 		fw_error("Register access failure - "
1429 			 "please notify linux1394-devel@lists.sf.net\n");
1430 
1431 	if (unlikely(event & OHCI1394_postedWriteErr))
1432 		fw_error("PCI posted write error\n");
1433 
1434 	if (unlikely(event & OHCI1394_cycleTooLong)) {
1435 		if (printk_ratelimit())
1436 			fw_notify("isochronous cycle too long\n");
1437 		reg_write(ohci, OHCI1394_LinkControlSet,
1438 			  OHCI1394_LinkControl_cycleMaster);
1439 	}
1440 
1441 	if (event & OHCI1394_cycle64Seconds) {
1442 		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1443 		if ((cycle_time & 0x80000000) == 0)
1444 			atomic_inc(&ohci->bus_seconds);
1445 	}
1446 
1447 	return IRQ_HANDLED;
1448 }
1449 
1450 static int software_reset(struct fw_ohci *ohci)
1451 {
1452 	int i;
1453 
1454 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1455 
1456 	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1457 		if ((reg_read(ohci, OHCI1394_HCControlSet) &
1458 		     OHCI1394_HCControl_softReset) == 0)
1459 			return 0;
1460 		msleep(1);
1461 	}
1462 
1463 	return -EBUSY;
1464 }
1465 
1466 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1467 {
1468 	struct fw_ohci *ohci = fw_ohci(card);
1469 	struct pci_dev *dev = to_pci_dev(card->device);
1470 	u32 lps;
1471 	int i;
1472 
1473 	if (software_reset(ohci)) {
1474 		fw_error("Failed to reset ohci card.\n");
1475 		return -EBUSY;
1476 	}
1477 
1478 	/*
1479 	 * Now enable LPS, which we need in order to start accessing
1480 	 * most of the registers.  In fact, on some cards (ALI M5251),
1481 	 * accessing registers in the SClk domain without LPS enabled
1482 	 * will lock up the machine.  Wait 50msec to make sure we have
1483 	 * full link enabled.  However, with some cards (well, at least
1484 	 * a JMicron PCIe card), we have to try again sometimes.
1485 	 */
1486 	reg_write(ohci, OHCI1394_HCControlSet,
1487 		  OHCI1394_HCControl_LPS |
1488 		  OHCI1394_HCControl_postedWriteEnable);
1489 	flush_writes(ohci);
1490 
1491 	for (lps = 0, i = 0; !lps && i < 3; i++) {
1492 		msleep(50);
1493 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
1494 		      OHCI1394_HCControl_LPS;
1495 	}
1496 
1497 	if (!lps) {
1498 		fw_error("Failed to set Link Power Status\n");
1499 		return -EIO;
1500 	}
1501 
1502 	reg_write(ohci, OHCI1394_HCControlClear,
1503 		  OHCI1394_HCControl_noByteSwapData);
1504 
1505 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1506 	reg_write(ohci, OHCI1394_LinkControlClear,
1507 		  OHCI1394_LinkControl_rcvPhyPkt);
1508 	reg_write(ohci, OHCI1394_LinkControlSet,
1509 		  OHCI1394_LinkControl_rcvSelfID |
1510 		  OHCI1394_LinkControl_cycleTimerEnable |
1511 		  OHCI1394_LinkControl_cycleMaster);
1512 
1513 	reg_write(ohci, OHCI1394_ATRetries,
1514 		  OHCI1394_MAX_AT_REQ_RETRIES |
1515 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1516 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1517 
1518 	ar_context_run(&ohci->ar_request_ctx);
1519 	ar_context_run(&ohci->ar_response_ctx);
1520 
1521 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1522 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
1523 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1524 	reg_write(ohci, OHCI1394_IntMaskSet,
1525 		  OHCI1394_selfIDComplete |
1526 		  OHCI1394_RQPkt | OHCI1394_RSPkt |
1527 		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1528 		  OHCI1394_isochRx | OHCI1394_isochTx |
1529 		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1530 		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1531 		  OHCI1394_masterIntEnable);
1532 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1533 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1534 
1535 	/* Activate link_on bit and contender bit in our self ID packets.*/
1536 	if (ohci_update_phy_reg(card, 4, 0,
1537 				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1538 		return -EIO;
1539 
1540 	/*
1541 	 * When the link is not yet enabled, the atomic config rom
1542 	 * update mechanism described below in ohci_set_config_rom()
1543 	 * is not active.  We have to update ConfigRomHeader and
1544 	 * BusOptions manually, and the write to ConfigROMmap takes
1545 	 * effect immediately.  We tie this to the enabling of the
1546 	 * link, so we have a valid config rom before enabling - the
1547 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
1548 	 * values before enabling.
1549 	 *
1550 	 * However, when the ConfigROMmap is written, some controllers
1551 	 * always read back quadlets 0 and 2 from the config rom to
1552 	 * the ConfigRomHeader and BusOptions registers on bus reset.
1553 	 * They shouldn't do that in this initial case where the link
1554 	 * isn't enabled.  This means we have to use the same
1555 	 * workaround here, setting the bus header to 0 and then write
1556 	 * the right values in the bus reset tasklet.
1557 	 */
1558 
1559 	if (config_rom) {
1560 		ohci->next_config_rom =
1561 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1562 					   &ohci->next_config_rom_bus,
1563 					   GFP_KERNEL);
1564 		if (ohci->next_config_rom == NULL)
1565 			return -ENOMEM;
1566 
1567 		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1568 		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1569 	} else {
1570 		/*
1571 		 * In the suspend case, config_rom is NULL, which
1572 		 * means that we just reuse the old config rom.
1573 		 */
1574 		ohci->next_config_rom = ohci->config_rom;
1575 		ohci->next_config_rom_bus = ohci->config_rom_bus;
1576 	}
1577 
1578 	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1579 	ohci->next_config_rom[0] = 0;
1580 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1581 	reg_write(ohci, OHCI1394_BusOptions,
1582 		  be32_to_cpu(ohci->next_config_rom[2]));
1583 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1584 
1585 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1586 
1587 	if (request_irq(dev->irq, irq_handler,
1588 			IRQF_SHARED, ohci_driver_name, ohci)) {
1589 		fw_error("Failed to allocate shared interrupt %d.\n",
1590 			 dev->irq);
1591 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1592 				  ohci->config_rom, ohci->config_rom_bus);
1593 		return -EIO;
1594 	}
1595 
1596 	reg_write(ohci, OHCI1394_HCControlSet,
1597 		  OHCI1394_HCControl_linkEnable |
1598 		  OHCI1394_HCControl_BIBimageValid);
1599 	flush_writes(ohci);
1600 
1601 	/*
1602 	 * We are ready to go, initiate bus reset to finish the
1603 	 * initialization.
1604 	 */
1605 
1606 	fw_core_initiate_bus_reset(&ohci->card, 1);
1607 
1608 	return 0;
1609 }
1610 
1611 static int ohci_set_config_rom(struct fw_card *card,
1612 			       u32 *config_rom, size_t length)
1613 {
1614 	struct fw_ohci *ohci;
1615 	unsigned long flags;
1616 	int ret = -EBUSY;
1617 	__be32 *next_config_rom;
1618 	dma_addr_t uninitialized_var(next_config_rom_bus);
1619 
1620 	ohci = fw_ohci(card);
1621 
1622 	/*
1623 	 * When the OHCI controller is enabled, the config rom update
1624 	 * mechanism is a bit tricky, but easy enough to use.  See
1625 	 * section 5.5.6 in the OHCI specification.
1626 	 *
1627 	 * The OHCI controller caches the new config rom address in a
1628 	 * shadow register (ConfigROMmapNext) and needs a bus reset
1629 	 * for the changes to take place.  When the bus reset is
1630 	 * detected, the controller loads the new values for the
1631 	 * ConfigRomHeader and BusOptions registers from the specified
1632 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1633 	 * shadow register. All automatically and atomically.
1634 	 *
1635 	 * Now, there's a twist to this story.  The automatic load of
1636 	 * ConfigRomHeader and BusOptions doesn't honor the
1637 	 * noByteSwapData bit, so with a be32 config rom, the
1638 	 * controller will load be32 values in to these registers
1639 	 * during the atomic update, even on litte endian
1640 	 * architectures.  The workaround we use is to put a 0 in the
1641 	 * header quadlet; 0 is endian agnostic and means that the
1642 	 * config rom isn't ready yet.  In the bus reset tasklet we
1643 	 * then set up the real values for the two registers.
1644 	 *
1645 	 * We use ohci->lock to avoid racing with the code that sets
1646 	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1647 	 */
1648 
1649 	next_config_rom =
1650 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1651 				   &next_config_rom_bus, GFP_KERNEL);
1652 	if (next_config_rom == NULL)
1653 		return -ENOMEM;
1654 
1655 	spin_lock_irqsave(&ohci->lock, flags);
1656 
1657 	if (ohci->next_config_rom == NULL) {
1658 		ohci->next_config_rom = next_config_rom;
1659 		ohci->next_config_rom_bus = next_config_rom_bus;
1660 
1661 		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1662 		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1663 				  length * 4);
1664 
1665 		ohci->next_header = config_rom[0];
1666 		ohci->next_config_rom[0] = 0;
1667 
1668 		reg_write(ohci, OHCI1394_ConfigROMmap,
1669 			  ohci->next_config_rom_bus);
1670 		ret = 0;
1671 	}
1672 
1673 	spin_unlock_irqrestore(&ohci->lock, flags);
1674 
1675 	/*
1676 	 * Now initiate a bus reset to have the changes take
1677 	 * effect. We clean up the old config rom memory and DMA
1678 	 * mappings in the bus reset tasklet, since the OHCI
1679 	 * controller could need to access it before the bus reset
1680 	 * takes effect.
1681 	 */
1682 	if (ret == 0)
1683 		fw_core_initiate_bus_reset(&ohci->card, 1);
1684 	else
1685 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1686 				  next_config_rom, next_config_rom_bus);
1687 
1688 	return ret;
1689 }
1690 
1691 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1692 {
1693 	struct fw_ohci *ohci = fw_ohci(card);
1694 
1695 	at_context_transmit(&ohci->at_request_ctx, packet);
1696 }
1697 
1698 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1699 {
1700 	struct fw_ohci *ohci = fw_ohci(card);
1701 
1702 	at_context_transmit(&ohci->at_response_ctx, packet);
1703 }
1704 
1705 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1706 {
1707 	struct fw_ohci *ohci = fw_ohci(card);
1708 	struct context *ctx = &ohci->at_request_ctx;
1709 	struct driver_data *driver_data = packet->driver_data;
1710 	int ret = -ENOENT;
1711 
1712 	tasklet_disable(&ctx->tasklet);
1713 
1714 	if (packet->ack != 0)
1715 		goto out;
1716 
1717 	if (packet->payload_bus)
1718 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1719 				 packet->payload_length, DMA_TO_DEVICE);
1720 
1721 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1722 	driver_data->packet = NULL;
1723 	packet->ack = RCODE_CANCELLED;
1724 	packet->callback(packet, &ohci->card, packet->ack);
1725 	ret = 0;
1726  out:
1727 	tasklet_enable(&ctx->tasklet);
1728 
1729 	return ret;
1730 }
1731 
1732 static int ohci_enable_phys_dma(struct fw_card *card,
1733 				int node_id, int generation)
1734 {
1735 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1736 	return 0;
1737 #else
1738 	struct fw_ohci *ohci = fw_ohci(card);
1739 	unsigned long flags;
1740 	int n, ret = 0;
1741 
1742 	/*
1743 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1744 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1745 	 */
1746 
1747 	spin_lock_irqsave(&ohci->lock, flags);
1748 
1749 	if (ohci->generation != generation) {
1750 		ret = -ESTALE;
1751 		goto out;
1752 	}
1753 
1754 	/*
1755 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
1756 	 * enabled for _all_ nodes on remote buses.
1757 	 */
1758 
1759 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1760 	if (n < 32)
1761 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1762 	else
1763 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1764 
1765 	flush_writes(ohci);
1766  out:
1767 	spin_unlock_irqrestore(&ohci->lock, flags);
1768 
1769 	return ret;
1770 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1771 }
1772 
1773 static u64 ohci_get_bus_time(struct fw_card *card)
1774 {
1775 	struct fw_ohci *ohci = fw_ohci(card);
1776 	u32 cycle_time;
1777 	u64 bus_time;
1778 
1779 	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780 	bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1781 
1782 	return bus_time;
1783 }
1784 
1785 static void copy_iso_headers(struct iso_context *ctx, void *p)
1786 {
1787 	int i = ctx->header_length;
1788 
1789 	if (i + ctx->base.header_size > PAGE_SIZE)
1790 		return;
1791 
1792 	/*
1793 	 * The iso header is byteswapped to little endian by
1794 	 * the controller, but the remaining header quadlets
1795 	 * are big endian.  We want to present all the headers
1796 	 * as big endian, so we have to swap the first quadlet.
1797 	 */
1798 	if (ctx->base.header_size > 0)
1799 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1800 	if (ctx->base.header_size > 4)
1801 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1802 	if (ctx->base.header_size > 8)
1803 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1804 	ctx->header_length += ctx->base.header_size;
1805 }
1806 
1807 static int handle_ir_dualbuffer_packet(struct context *context,
1808 				       struct descriptor *d,
1809 				       struct descriptor *last)
1810 {
1811 	struct iso_context *ctx =
1812 		container_of(context, struct iso_context, context);
1813 	struct db_descriptor *db = (struct db_descriptor *) d;
1814 	__le32 *ir_header;
1815 	size_t header_length;
1816 	void *p, *end;
1817 
1818 	if (db->first_res_count != 0 && db->second_res_count != 0) {
1819 		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1820 			/* This descriptor isn't done yet, stop iteration. */
1821 			return 0;
1822 		}
1823 		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1824 	}
1825 
1826 	header_length = le16_to_cpu(db->first_req_count) -
1827 		le16_to_cpu(db->first_res_count);
1828 
1829 	p = db + 1;
1830 	end = p + header_length;
1831 	while (p < end) {
1832 		copy_iso_headers(ctx, p);
1833 		ctx->excess_bytes +=
1834 			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1835 		p += max(ctx->base.header_size, (size_t)8);
1836 	}
1837 
1838 	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1839 		le16_to_cpu(db->second_res_count);
1840 
1841 	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1842 		ir_header = (__le32 *) (db + 1);
1843 		ctx->base.callback(&ctx->base,
1844 				   le32_to_cpu(ir_header[0]) & 0xffff,
1845 				   ctx->header_length, ctx->header,
1846 				   ctx->base.callback_data);
1847 		ctx->header_length = 0;
1848 	}
1849 
1850 	return 1;
1851 }
1852 
1853 static int handle_ir_packet_per_buffer(struct context *context,
1854 				       struct descriptor *d,
1855 				       struct descriptor *last)
1856 {
1857 	struct iso_context *ctx =
1858 		container_of(context, struct iso_context, context);
1859 	struct descriptor *pd;
1860 	__le32 *ir_header;
1861 	void *p;
1862 
1863 	for (pd = d; pd <= last; pd++) {
1864 		if (pd->transfer_status)
1865 			break;
1866 	}
1867 	if (pd > last)
1868 		/* Descriptor(s) not done yet, stop iteration */
1869 		return 0;
1870 
1871 	p = last + 1;
1872 	copy_iso_headers(ctx, p);
1873 
1874 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1875 		ir_header = (__le32 *) p;
1876 		ctx->base.callback(&ctx->base,
1877 				   le32_to_cpu(ir_header[0]) & 0xffff,
1878 				   ctx->header_length, ctx->header,
1879 				   ctx->base.callback_data);
1880 		ctx->header_length = 0;
1881 	}
1882 
1883 	return 1;
1884 }
1885 
1886 static int handle_it_packet(struct context *context,
1887 			    struct descriptor *d,
1888 			    struct descriptor *last)
1889 {
1890 	struct iso_context *ctx =
1891 		container_of(context, struct iso_context, context);
1892 
1893 	if (last->transfer_status == 0)
1894 		/* This descriptor isn't done yet, stop iteration. */
1895 		return 0;
1896 
1897 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1898 		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1899 				   0, NULL, ctx->base.callback_data);
1900 
1901 	return 1;
1902 }
1903 
1904 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1905 				int type, int channel, size_t header_size)
1906 {
1907 	struct fw_ohci *ohci = fw_ohci(card);
1908 	struct iso_context *ctx, *list;
1909 	descriptor_callback_t callback;
1910 	u64 *channels, dont_care = ~0ULL;
1911 	u32 *mask, regs;
1912 	unsigned long flags;
1913 	int index, ret = -ENOMEM;
1914 
1915 	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1916 		channels = &dont_care;
1917 		mask = &ohci->it_context_mask;
1918 		list = ohci->it_context_list;
1919 		callback = handle_it_packet;
1920 	} else {
1921 		channels = &ohci->ir_context_channels;
1922 		mask = &ohci->ir_context_mask;
1923 		list = ohci->ir_context_list;
1924 		if (ohci->use_dualbuffer)
1925 			callback = handle_ir_dualbuffer_packet;
1926 		else
1927 			callback = handle_ir_packet_per_buffer;
1928 	}
1929 
1930 	spin_lock_irqsave(&ohci->lock, flags);
1931 	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1932 	if (index >= 0) {
1933 		*channels &= ~(1ULL << channel);
1934 		*mask &= ~(1 << index);
1935 	}
1936 	spin_unlock_irqrestore(&ohci->lock, flags);
1937 
1938 	if (index < 0)
1939 		return ERR_PTR(-EBUSY);
1940 
1941 	if (type == FW_ISO_CONTEXT_TRANSMIT)
1942 		regs = OHCI1394_IsoXmitContextBase(index);
1943 	else
1944 		regs = OHCI1394_IsoRcvContextBase(index);
1945 
1946 	ctx = &list[index];
1947 	memset(ctx, 0, sizeof(*ctx));
1948 	ctx->header_length = 0;
1949 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
1950 	if (ctx->header == NULL)
1951 		goto out;
1952 
1953 	ret = context_init(&ctx->context, ohci, regs, callback);
1954 	if (ret < 0)
1955 		goto out_with_header;
1956 
1957 	return &ctx->base;
1958 
1959  out_with_header:
1960 	free_page((unsigned long)ctx->header);
1961  out:
1962 	spin_lock_irqsave(&ohci->lock, flags);
1963 	*mask |= 1 << index;
1964 	spin_unlock_irqrestore(&ohci->lock, flags);
1965 
1966 	return ERR_PTR(ret);
1967 }
1968 
1969 static int ohci_start_iso(struct fw_iso_context *base,
1970 			  s32 cycle, u32 sync, u32 tags)
1971 {
1972 	struct iso_context *ctx = container_of(base, struct iso_context, base);
1973 	struct fw_ohci *ohci = ctx->context.ohci;
1974 	u32 control, match;
1975 	int index;
1976 
1977 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1978 		index = ctx - ohci->it_context_list;
1979 		match = 0;
1980 		if (cycle >= 0)
1981 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1982 				(cycle & 0x7fff) << 16;
1983 
1984 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1985 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1986 		context_run(&ctx->context, match);
1987 	} else {
1988 		index = ctx - ohci->ir_context_list;
1989 		control = IR_CONTEXT_ISOCH_HEADER;
1990 		if (ohci->use_dualbuffer)
1991 			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1992 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
1993 		if (cycle >= 0) {
1994 			match |= (cycle & 0x07fff) << 12;
1995 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1996 		}
1997 
1998 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1999 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2000 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2001 		context_run(&ctx->context, control);
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static int ohci_stop_iso(struct fw_iso_context *base)
2008 {
2009 	struct fw_ohci *ohci = fw_ohci(base->card);
2010 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2011 	int index;
2012 
2013 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2014 		index = ctx - ohci->it_context_list;
2015 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2016 	} else {
2017 		index = ctx - ohci->ir_context_list;
2018 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2019 	}
2020 	flush_writes(ohci);
2021 	context_stop(&ctx->context);
2022 
2023 	return 0;
2024 }
2025 
2026 static void ohci_free_iso_context(struct fw_iso_context *base)
2027 {
2028 	struct fw_ohci *ohci = fw_ohci(base->card);
2029 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2030 	unsigned long flags;
2031 	int index;
2032 
2033 	ohci_stop_iso(base);
2034 	context_release(&ctx->context);
2035 	free_page((unsigned long)ctx->header);
2036 
2037 	spin_lock_irqsave(&ohci->lock, flags);
2038 
2039 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2040 		index = ctx - ohci->it_context_list;
2041 		ohci->it_context_mask |= 1 << index;
2042 	} else {
2043 		index = ctx - ohci->ir_context_list;
2044 		ohci->ir_context_mask |= 1 << index;
2045 		ohci->ir_context_channels |= 1ULL << base->channel;
2046 	}
2047 
2048 	spin_unlock_irqrestore(&ohci->lock, flags);
2049 }
2050 
2051 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2052 				   struct fw_iso_packet *packet,
2053 				   struct fw_iso_buffer *buffer,
2054 				   unsigned long payload)
2055 {
2056 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2057 	struct descriptor *d, *last, *pd;
2058 	struct fw_iso_packet *p;
2059 	__le32 *header;
2060 	dma_addr_t d_bus, page_bus;
2061 	u32 z, header_z, payload_z, irq;
2062 	u32 payload_index, payload_end_index, next_page_index;
2063 	int page, end_page, i, length, offset;
2064 
2065 	/*
2066 	 * FIXME: Cycle lost behavior should be configurable: lose
2067 	 * packet, retransmit or terminate..
2068 	 */
2069 
2070 	p = packet;
2071 	payload_index = payload;
2072 
2073 	if (p->skip)
2074 		z = 1;
2075 	else
2076 		z = 2;
2077 	if (p->header_length > 0)
2078 		z++;
2079 
2080 	/* Determine the first page the payload isn't contained in. */
2081 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2082 	if (p->payload_length > 0)
2083 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2084 	else
2085 		payload_z = 0;
2086 
2087 	z += payload_z;
2088 
2089 	/* Get header size in number of descriptors. */
2090 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2091 
2092 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2093 	if (d == NULL)
2094 		return -ENOMEM;
2095 
2096 	if (!p->skip) {
2097 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2098 		d[0].req_count = cpu_to_le16(8);
2099 
2100 		header = (__le32 *) &d[1];
2101 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2102 					IT_HEADER_TAG(p->tag) |
2103 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2104 					IT_HEADER_CHANNEL(ctx->base.channel) |
2105 					IT_HEADER_SPEED(ctx->base.speed));
2106 		header[1] =
2107 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2108 							  p->payload_length));
2109 	}
2110 
2111 	if (p->header_length > 0) {
2112 		d[2].req_count    = cpu_to_le16(p->header_length);
2113 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2114 		memcpy(&d[z], p->header, p->header_length);
2115 	}
2116 
2117 	pd = d + z - payload_z;
2118 	payload_end_index = payload_index + p->payload_length;
2119 	for (i = 0; i < payload_z; i++) {
2120 		page               = payload_index >> PAGE_SHIFT;
2121 		offset             = payload_index & ~PAGE_MASK;
2122 		next_page_index    = (page + 1) << PAGE_SHIFT;
2123 		length             =
2124 			min(next_page_index, payload_end_index) - payload_index;
2125 		pd[i].req_count    = cpu_to_le16(length);
2126 
2127 		page_bus = page_private(buffer->pages[page]);
2128 		pd[i].data_address = cpu_to_le32(page_bus + offset);
2129 
2130 		payload_index += length;
2131 	}
2132 
2133 	if (p->interrupt)
2134 		irq = DESCRIPTOR_IRQ_ALWAYS;
2135 	else
2136 		irq = DESCRIPTOR_NO_IRQ;
2137 
2138 	last = z == 2 ? d : d + z - 1;
2139 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2140 				     DESCRIPTOR_STATUS |
2141 				     DESCRIPTOR_BRANCH_ALWAYS |
2142 				     irq);
2143 
2144 	context_append(&ctx->context, d, z, header_z);
2145 
2146 	return 0;
2147 }
2148 
2149 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2150 					     struct fw_iso_packet *packet,
2151 					     struct fw_iso_buffer *buffer,
2152 					     unsigned long payload)
2153 {
2154 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2155 	struct db_descriptor *db = NULL;
2156 	struct descriptor *d;
2157 	struct fw_iso_packet *p;
2158 	dma_addr_t d_bus, page_bus;
2159 	u32 z, header_z, length, rest;
2160 	int page, offset, packet_count, header_size;
2161 
2162 	/*
2163 	 * FIXME: Cycle lost behavior should be configurable: lose
2164 	 * packet, retransmit or terminate..
2165 	 */
2166 
2167 	p = packet;
2168 	z = 2;
2169 
2170 	/*
2171 	 * The OHCI controller puts the isochronous header and trailer in the
2172 	 * buffer, so we need at least 8 bytes.
2173 	 */
2174 	packet_count = p->header_length / ctx->base.header_size;
2175 	header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2176 
2177 	/* Get header size in number of descriptors. */
2178 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2179 	page     = payload >> PAGE_SHIFT;
2180 	offset   = payload & ~PAGE_MASK;
2181 	rest     = p->payload_length;
2182 
2183 	/* FIXME: make packet-per-buffer/dual-buffer a context option */
2184 	while (rest > 0) {
2185 		d = context_get_descriptors(&ctx->context,
2186 					    z + header_z, &d_bus);
2187 		if (d == NULL)
2188 			return -ENOMEM;
2189 
2190 		db = (struct db_descriptor *) d;
2191 		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2192 					  DESCRIPTOR_BRANCH_ALWAYS);
2193 		db->first_size =
2194 		    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2195 		if (p->skip && rest == p->payload_length) {
2196 			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2197 			db->first_req_count = db->first_size;
2198 		} else {
2199 			db->first_req_count = cpu_to_le16(header_size);
2200 		}
2201 		db->first_res_count = db->first_req_count;
2202 		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2203 
2204 		if (p->skip && rest == p->payload_length)
2205 			length = 4;
2206 		else if (offset + rest < PAGE_SIZE)
2207 			length = rest;
2208 		else
2209 			length = PAGE_SIZE - offset;
2210 
2211 		db->second_req_count = cpu_to_le16(length);
2212 		db->second_res_count = db->second_req_count;
2213 		page_bus = page_private(buffer->pages[page]);
2214 		db->second_buffer = cpu_to_le32(page_bus + offset);
2215 
2216 		if (p->interrupt && length == rest)
2217 			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2218 
2219 		context_append(&ctx->context, d, z, header_z);
2220 		offset = (offset + length) & ~PAGE_MASK;
2221 		rest -= length;
2222 		if (offset == 0)
2223 			page++;
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2230 					struct fw_iso_packet *packet,
2231 					struct fw_iso_buffer *buffer,
2232 					unsigned long payload)
2233 {
2234 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2235 	struct descriptor *d = NULL, *pd = NULL;
2236 	struct fw_iso_packet *p = packet;
2237 	dma_addr_t d_bus, page_bus;
2238 	u32 z, header_z, rest;
2239 	int i, j, length;
2240 	int page, offset, packet_count, header_size, payload_per_buffer;
2241 
2242 	/*
2243 	 * The OHCI controller puts the isochronous header and trailer in the
2244 	 * buffer, so we need at least 8 bytes.
2245 	 */
2246 	packet_count = p->header_length / ctx->base.header_size;
2247 	header_size  = max(ctx->base.header_size, (size_t)8);
2248 
2249 	/* Get header size in number of descriptors. */
2250 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2251 	page     = payload >> PAGE_SHIFT;
2252 	offset   = payload & ~PAGE_MASK;
2253 	payload_per_buffer = p->payload_length / packet_count;
2254 
2255 	for (i = 0; i < packet_count; i++) {
2256 		/* d points to the header descriptor */
2257 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2258 		d = context_get_descriptors(&ctx->context,
2259 				z + header_z, &d_bus);
2260 		if (d == NULL)
2261 			return -ENOMEM;
2262 
2263 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2264 					      DESCRIPTOR_INPUT_MORE);
2265 		if (p->skip && i == 0)
2266 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2267 		d->req_count    = cpu_to_le16(header_size);
2268 		d->res_count    = d->req_count;
2269 		d->transfer_status = 0;
2270 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2271 
2272 		rest = payload_per_buffer;
2273 		for (j = 1; j < z; j++) {
2274 			pd = d + j;
2275 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2276 						  DESCRIPTOR_INPUT_MORE);
2277 
2278 			if (offset + rest < PAGE_SIZE)
2279 				length = rest;
2280 			else
2281 				length = PAGE_SIZE - offset;
2282 			pd->req_count = cpu_to_le16(length);
2283 			pd->res_count = pd->req_count;
2284 			pd->transfer_status = 0;
2285 
2286 			page_bus = page_private(buffer->pages[page]);
2287 			pd->data_address = cpu_to_le32(page_bus + offset);
2288 
2289 			offset = (offset + length) & ~PAGE_MASK;
2290 			rest -= length;
2291 			if (offset == 0)
2292 				page++;
2293 		}
2294 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2295 					  DESCRIPTOR_INPUT_LAST |
2296 					  DESCRIPTOR_BRANCH_ALWAYS);
2297 		if (p->interrupt && i == packet_count - 1)
2298 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2299 
2300 		context_append(&ctx->context, d, z, header_z);
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 static int ohci_queue_iso(struct fw_iso_context *base,
2307 			  struct fw_iso_packet *packet,
2308 			  struct fw_iso_buffer *buffer,
2309 			  unsigned long payload)
2310 {
2311 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2312 	unsigned long flags;
2313 	int ret;
2314 
2315 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2316 	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2317 		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2318 	else if (ctx->context.ohci->use_dualbuffer)
2319 		ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2320 							buffer, payload);
2321 	else
2322 		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2323 							buffer, payload);
2324 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2325 
2326 	return ret;
2327 }
2328 
2329 static const struct fw_card_driver ohci_driver = {
2330 	.enable			= ohci_enable,
2331 	.update_phy_reg		= ohci_update_phy_reg,
2332 	.set_config_rom		= ohci_set_config_rom,
2333 	.send_request		= ohci_send_request,
2334 	.send_response		= ohci_send_response,
2335 	.cancel_packet		= ohci_cancel_packet,
2336 	.enable_phys_dma	= ohci_enable_phys_dma,
2337 	.get_bus_time		= ohci_get_bus_time,
2338 
2339 	.allocate_iso_context	= ohci_allocate_iso_context,
2340 	.free_iso_context	= ohci_free_iso_context,
2341 	.queue_iso		= ohci_queue_iso,
2342 	.start_iso		= ohci_start_iso,
2343 	.stop_iso		= ohci_stop_iso,
2344 };
2345 
2346 #ifdef CONFIG_PPC_PMAC
2347 static void ohci_pmac_on(struct pci_dev *dev)
2348 {
2349 	if (machine_is(powermac)) {
2350 		struct device_node *ofn = pci_device_to_OF_node(dev);
2351 
2352 		if (ofn) {
2353 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2354 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2355 		}
2356 	}
2357 }
2358 
2359 static void ohci_pmac_off(struct pci_dev *dev)
2360 {
2361 	if (machine_is(powermac)) {
2362 		struct device_node *ofn = pci_device_to_OF_node(dev);
2363 
2364 		if (ofn) {
2365 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2366 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2367 		}
2368 	}
2369 }
2370 #else
2371 #define ohci_pmac_on(dev)
2372 #define ohci_pmac_off(dev)
2373 #endif /* CONFIG_PPC_PMAC */
2374 
2375 static int __devinit pci_probe(struct pci_dev *dev,
2376 			       const struct pci_device_id *ent)
2377 {
2378 	struct fw_ohci *ohci;
2379 	u32 bus_options, max_receive, link_speed, version;
2380 	u64 guid;
2381 	int err;
2382 	size_t size;
2383 
2384 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2385 	if (ohci == NULL) {
2386 		err = -ENOMEM;
2387 		goto fail;
2388 	}
2389 
2390 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2391 
2392 	ohci_pmac_on(dev);
2393 
2394 	err = pci_enable_device(dev);
2395 	if (err) {
2396 		fw_error("Failed to enable OHCI hardware\n");
2397 		goto fail_free;
2398 	}
2399 
2400 	pci_set_master(dev);
2401 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2402 	pci_set_drvdata(dev, ohci);
2403 
2404 	spin_lock_init(&ohci->lock);
2405 
2406 	tasklet_init(&ohci->bus_reset_tasklet,
2407 		     bus_reset_tasklet, (unsigned long)ohci);
2408 
2409 	err = pci_request_region(dev, 0, ohci_driver_name);
2410 	if (err) {
2411 		fw_error("MMIO resource unavailable\n");
2412 		goto fail_disable;
2413 	}
2414 
2415 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2416 	if (ohci->registers == NULL) {
2417 		fw_error("Failed to remap registers\n");
2418 		err = -ENXIO;
2419 		goto fail_iomem;
2420 	}
2421 
2422 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2423 	ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2424 
2425 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2426 #if !defined(CONFIG_X86_32)
2427 	/* dual-buffer mode is broken with descriptor addresses above 2G */
2428 	if (dev->vendor == PCI_VENDOR_ID_TI &&
2429 	    dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2430 		ohci->use_dualbuffer = false;
2431 #endif
2432 
2433 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2434 	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2435 			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2436 #endif
2437 	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2438 
2439 	ar_context_init(&ohci->ar_request_ctx, ohci,
2440 			OHCI1394_AsReqRcvContextControlSet);
2441 
2442 	ar_context_init(&ohci->ar_response_ctx, ohci,
2443 			OHCI1394_AsRspRcvContextControlSet);
2444 
2445 	context_init(&ohci->at_request_ctx, ohci,
2446 		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2447 
2448 	context_init(&ohci->at_response_ctx, ohci,
2449 		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2450 
2451 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2452 	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2453 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2454 	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2455 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2456 
2457 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2458 	ohci->ir_context_channels = ~0ULL;
2459 	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2460 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2461 	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2462 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2463 
2464 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2465 		err = -ENOMEM;
2466 		goto fail_contexts;
2467 	}
2468 
2469 	/* self-id dma buffer allocation */
2470 	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2471 					       SELF_ID_BUF_SIZE,
2472 					       &ohci->self_id_bus,
2473 					       GFP_KERNEL);
2474 	if (ohci->self_id_cpu == NULL) {
2475 		err = -ENOMEM;
2476 		goto fail_contexts;
2477 	}
2478 
2479 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
2480 	max_receive = (bus_options >> 12) & 0xf;
2481 	link_speed = bus_options & 0x7;
2482 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2483 		reg_read(ohci, OHCI1394_GUIDLo);
2484 
2485 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2486 	if (err)
2487 		goto fail_self_id;
2488 
2489 	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2490 		  dev_name(&dev->dev), version >> 16, version & 0xff);
2491 
2492 	return 0;
2493 
2494  fail_self_id:
2495 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2496 			  ohci->self_id_cpu, ohci->self_id_bus);
2497  fail_contexts:
2498 	kfree(ohci->ir_context_list);
2499 	kfree(ohci->it_context_list);
2500 	context_release(&ohci->at_response_ctx);
2501 	context_release(&ohci->at_request_ctx);
2502 	ar_context_release(&ohci->ar_response_ctx);
2503 	ar_context_release(&ohci->ar_request_ctx);
2504 	pci_iounmap(dev, ohci->registers);
2505  fail_iomem:
2506 	pci_release_region(dev, 0);
2507  fail_disable:
2508 	pci_disable_device(dev);
2509  fail_free:
2510 	kfree(&ohci->card);
2511 	ohci_pmac_off(dev);
2512  fail:
2513 	if (err == -ENOMEM)
2514 		fw_error("Out of memory\n");
2515 
2516 	return err;
2517 }
2518 
2519 static void pci_remove(struct pci_dev *dev)
2520 {
2521 	struct fw_ohci *ohci;
2522 
2523 	ohci = pci_get_drvdata(dev);
2524 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2525 	flush_writes(ohci);
2526 	fw_core_remove_card(&ohci->card);
2527 
2528 	/*
2529 	 * FIXME: Fail all pending packets here, now that the upper
2530 	 * layers can't queue any more.
2531 	 */
2532 
2533 	software_reset(ohci);
2534 	free_irq(dev->irq, ohci);
2535 
2536 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2537 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2538 				  ohci->next_config_rom, ohci->next_config_rom_bus);
2539 	if (ohci->config_rom)
2540 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2541 				  ohci->config_rom, ohci->config_rom_bus);
2542 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2543 			  ohci->self_id_cpu, ohci->self_id_bus);
2544 	ar_context_release(&ohci->ar_request_ctx);
2545 	ar_context_release(&ohci->ar_response_ctx);
2546 	context_release(&ohci->at_request_ctx);
2547 	context_release(&ohci->at_response_ctx);
2548 	kfree(ohci->it_context_list);
2549 	kfree(ohci->ir_context_list);
2550 	pci_iounmap(dev, ohci->registers);
2551 	pci_release_region(dev, 0);
2552 	pci_disable_device(dev);
2553 	kfree(&ohci->card);
2554 	ohci_pmac_off(dev);
2555 
2556 	fw_notify("Removed fw-ohci device.\n");
2557 }
2558 
2559 #ifdef CONFIG_PM
2560 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2561 {
2562 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2563 	int err;
2564 
2565 	software_reset(ohci);
2566 	free_irq(dev->irq, ohci);
2567 	err = pci_save_state(dev);
2568 	if (err) {
2569 		fw_error("pci_save_state failed\n");
2570 		return err;
2571 	}
2572 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2573 	if (err)
2574 		fw_error("pci_set_power_state failed with %d\n", err);
2575 	ohci_pmac_off(dev);
2576 
2577 	return 0;
2578 }
2579 
2580 static int pci_resume(struct pci_dev *dev)
2581 {
2582 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2583 	int err;
2584 
2585 	ohci_pmac_on(dev);
2586 	pci_set_power_state(dev, PCI_D0);
2587 	pci_restore_state(dev);
2588 	err = pci_enable_device(dev);
2589 	if (err) {
2590 		fw_error("pci_enable_device failed\n");
2591 		return err;
2592 	}
2593 
2594 	return ohci_enable(&ohci->card, NULL, 0);
2595 }
2596 #endif
2597 
2598 static struct pci_device_id pci_table[] = {
2599 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2600 	{ }
2601 };
2602 
2603 MODULE_DEVICE_TABLE(pci, pci_table);
2604 
2605 static struct pci_driver fw_ohci_pci_driver = {
2606 	.name		= ohci_driver_name,
2607 	.id_table	= pci_table,
2608 	.probe		= pci_probe,
2609 	.remove		= pci_remove,
2610 #ifdef CONFIG_PM
2611 	.resume		= pci_resume,
2612 	.suspend	= pci_suspend,
2613 #endif
2614 };
2615 
2616 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2617 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2618 MODULE_LICENSE("GPL");
2619 
2620 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2621 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2622 MODULE_ALIAS("ohci1394");
2623 #endif
2624 
2625 static int __init fw_ohci_init(void)
2626 {
2627 	return pci_register_driver(&fw_ohci_pci_driver);
2628 }
2629 
2630 static void __exit fw_ohci_cleanup(void)
2631 {
2632 	pci_unregister_driver(&fw_ohci_pci_driver);
2633 }
2634 
2635 module_init(fw_ohci_init);
2636 module_exit(fw_ohci_cleanup);
2637