xref: /linux/drivers/firewire/ohci.c (revision 2504075d383fcefd746dac42a0cd1c3bdc006bd1)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
43 
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
47 
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
51 
52 #include "core.h"
53 #include "ohci.h"
54 
55 #define DESCRIPTOR_OUTPUT_MORE		0
56 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
57 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
58 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
59 #define DESCRIPTOR_STATUS		(1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
61 #define DESCRIPTOR_PING			(1 << 7)
62 #define DESCRIPTOR_YY			(1 << 6)
63 #define DESCRIPTOR_NO_IRQ		(0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
67 #define DESCRIPTOR_WAIT			(3 << 0)
68 
69 struct descriptor {
70 	__le16 req_count;
71 	__le16 control;
72 	__le32 data_address;
73 	__le32 branch_address;
74 	__le16 res_count;
75 	__le16 transfer_status;
76 } __attribute__((aligned(16)));
77 
78 #define CONTROL_SET(regs)	(regs)
79 #define CONTROL_CLEAR(regs)	((regs) + 4)
80 #define COMMAND_PTR(regs)	((regs) + 12)
81 #define CONTEXT_MATCH(regs)	((regs) + 16)
82 
83 struct ar_buffer {
84 	struct descriptor descriptor;
85 	struct ar_buffer *next;
86 	__le32 data[0];
87 };
88 
89 struct ar_context {
90 	struct fw_ohci *ohci;
91 	struct ar_buffer *current_buffer;
92 	struct ar_buffer *last_buffer;
93 	void *pointer;
94 	u32 regs;
95 	struct tasklet_struct tasklet;
96 };
97 
98 struct context;
99 
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101 				     struct descriptor *d,
102 				     struct descriptor *last);
103 
104 /*
105  * A buffer that contains a block of DMA-able coherent memory used for
106  * storing a portion of a DMA descriptor program.
107  */
108 struct descriptor_buffer {
109 	struct list_head list;
110 	dma_addr_t buffer_bus;
111 	size_t buffer_size;
112 	size_t used;
113 	struct descriptor buffer[0];
114 };
115 
116 struct context {
117 	struct fw_ohci *ohci;
118 	u32 regs;
119 	int total_allocation;
120 
121 	/*
122 	 * List of page-sized buffers for storing DMA descriptors.
123 	 * Head of list contains buffers in use and tail of list contains
124 	 * free buffers.
125 	 */
126 	struct list_head buffer_list;
127 
128 	/*
129 	 * Pointer to a buffer inside buffer_list that contains the tail
130 	 * end of the current DMA program.
131 	 */
132 	struct descriptor_buffer *buffer_tail;
133 
134 	/*
135 	 * The descriptor containing the branch address of the first
136 	 * descriptor that has not yet been filled by the device.
137 	 */
138 	struct descriptor *last;
139 
140 	/*
141 	 * The last descriptor in the DMA program.  It contains the branch
142 	 * address that must be updated upon appending a new descriptor.
143 	 */
144 	struct descriptor *prev;
145 
146 	descriptor_callback_t callback;
147 
148 	struct tasklet_struct tasklet;
149 };
150 
151 #define IT_HEADER_SY(v)          ((v) <<  0)
152 #define IT_HEADER_TCODE(v)       ((v) <<  4)
153 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
154 #define IT_HEADER_TAG(v)         ((v) << 14)
155 #define IT_HEADER_SPEED(v)       ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157 
158 struct iso_context {
159 	struct fw_iso_context base;
160 	struct context context;
161 	int excess_bytes;
162 	void *header;
163 	size_t header_length;
164 };
165 
166 #define CONFIG_ROM_SIZE 1024
167 
168 struct fw_ohci {
169 	struct fw_card card;
170 
171 	__iomem char *registers;
172 	int node_id;
173 	int generation;
174 	int request_generation;	/* for timestamping incoming requests */
175 	unsigned quirks;
176 	unsigned int pri_req_max;
177 	u32 bus_time;
178 	bool is_root;
179 	bool csr_state_setclear_abdicate;
180 
181 	/*
182 	 * Spinlock for accessing fw_ohci data.  Never call out of
183 	 * this driver with this lock held.
184 	 */
185 	spinlock_t lock;
186 
187 	struct mutex phy_reg_mutex;
188 
189 	struct ar_context ar_request_ctx;
190 	struct ar_context ar_response_ctx;
191 	struct context at_request_ctx;
192 	struct context at_response_ctx;
193 
194 	u32 it_context_mask;     /* unoccupied IT contexts */
195 	struct iso_context *it_context_list;
196 	u64 ir_context_channels; /* unoccupied channels */
197 	u32 ir_context_mask;     /* unoccupied IR contexts */
198 	struct iso_context *ir_context_list;
199 	u64 mc_channels; /* channels in use by the multichannel IR context */
200 	bool mc_allocated;
201 
202 	__be32    *config_rom;
203 	dma_addr_t config_rom_bus;
204 	__be32    *next_config_rom;
205 	dma_addr_t next_config_rom_bus;
206 	__be32     next_header;
207 
208 	__le32    *self_id_cpu;
209 	dma_addr_t self_id_bus;
210 	struct tasklet_struct bus_reset_tasklet;
211 
212 	u32 self_id_buffer[512];
213 };
214 
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 {
217 	return container_of(card, struct fw_ohci, card);
218 }
219 
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
221 #define IR_CONTEXT_BUFFER_FILL		0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
226 
227 #define CONTEXT_RUN	0x8000
228 #define CONTEXT_WAKE	0x1000
229 #define CONTEXT_DEAD	0x0800
230 #define CONTEXT_ACTIVE	0x0400
231 
232 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
235 
236 #define OHCI1394_REGISTER_SIZE		0x800
237 #define OHCI_LOOP_COUNT			500
238 #define OHCI1394_PCI_HCI_Control	0x40
239 #define SELF_ID_BUF_SIZE		0x800
240 #define OHCI_TCODE_PHY_PACKET		0x0e
241 #define OHCI_VERSION_1_1		0x010010
242 
243 static char ohci_driver_name[] = KBUILD_MODNAME;
244 
245 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
246 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
247 
248 #define QUIRK_CYCLE_TIMER		1
249 #define QUIRK_RESET_PACKET		2
250 #define QUIRK_BE_HEADERS		4
251 #define QUIRK_NO_1394A			8
252 #define QUIRK_NO_MSI			16
253 
254 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
255 static const struct {
256 	unsigned short vendor, device, flags;
257 } ohci_quirks[] = {
258 	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259 							    QUIRK_RESET_PACKET |
260 							    QUIRK_NO_1394A},
261 	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
262 	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
263 	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264 	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
265 	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
266 	{PCI_VENDOR_ID_RICOH,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
267 	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
268 };
269 
270 /* This overrides anything that was found in ohci_quirks[]. */
271 static int param_quirks;
272 module_param_named(quirks, param_quirks, int, 0644);
273 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
274 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
275 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
276 	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
277 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
278 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
279 	")");
280 
281 #define OHCI_PARAM_DEBUG_AT_AR		1
282 #define OHCI_PARAM_DEBUG_SELFIDS	2
283 #define OHCI_PARAM_DEBUG_IRQS		4
284 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
285 
286 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
287 
288 static int param_debug;
289 module_param_named(debug, param_debug, int, 0644);
290 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
291 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
292 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
293 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
294 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
295 	", or a combination, or all = -1)");
296 
297 static void log_irqs(u32 evt)
298 {
299 	if (likely(!(param_debug &
300 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
301 		return;
302 
303 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
304 	    !(evt & OHCI1394_busReset))
305 		return;
306 
307 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
308 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
309 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
310 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
311 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
312 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
313 	    evt & OHCI1394_isochRx		? " IR"			: "",
314 	    evt & OHCI1394_isochTx		? " IT"			: "",
315 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
316 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
317 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
318 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
319 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
320 	    evt & OHCI1394_busReset		? " busReset"		: "",
321 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
322 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
323 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
324 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
325 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
326 		    OHCI1394_cycleInconsistent |
327 		    OHCI1394_regAccessFail | OHCI1394_busReset)
328 						? " ?"			: "");
329 }
330 
331 static const char *speed[] = {
332 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
333 };
334 static const char *power[] = {
335 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
336 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
337 };
338 static const char port[] = { '.', '-', 'p', 'c', };
339 
340 static char _p(u32 *s, int shift)
341 {
342 	return port[*s >> shift & 3];
343 }
344 
345 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
346 {
347 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
348 		return;
349 
350 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
351 		  self_id_count, generation, node_id);
352 
353 	for (; self_id_count--; ++s)
354 		if ((*s & 1 << 23) == 0)
355 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
356 			    "%s gc=%d %s %s%s%s\n",
357 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
358 			    speed[*s >> 14 & 3], *s >> 16 & 63,
359 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
360 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
361 		else
362 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
363 			    *s, *s >> 24 & 63,
364 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
365 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
366 }
367 
368 static const char *evts[] = {
369 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
370 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
371 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
372 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
373 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
374 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
375 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
376 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
377 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
378 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
379 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
380 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
381 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
382 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
383 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
384 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
385 	[0x20] = "pending/cancelled",
386 };
387 static const char *tcodes[] = {
388 	[0x0] = "QW req",		[0x1] = "BW req",
389 	[0x2] = "W resp",		[0x3] = "-reserved-",
390 	[0x4] = "QR req",		[0x5] = "BR req",
391 	[0x6] = "QR resp",		[0x7] = "BR resp",
392 	[0x8] = "cycle start",		[0x9] = "Lk req",
393 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
394 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
395 	[0xe] = "link internal",	[0xf] = "-reserved-",
396 };
397 static const char *phys[] = {
398 	[0x0] = "phy config packet",	[0x1] = "link-on packet",
399 	[0x2] = "self-id packet",	[0x3] = "-reserved-",
400 };
401 
402 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
403 {
404 	int tcode = header[0] >> 4 & 0xf;
405 	char specific[12];
406 
407 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
408 		return;
409 
410 	if (unlikely(evt >= ARRAY_SIZE(evts)))
411 			evt = 0x1f;
412 
413 	if (evt == OHCI1394_evt_bus_reset) {
414 		fw_notify("A%c evt_bus_reset, generation %d\n",
415 		    dir, (header[2] >> 16) & 0xff);
416 		return;
417 	}
418 
419 	if (header[0] == ~header[1]) {
420 		fw_notify("A%c %s, %s, %08x\n",
421 		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
422 		return;
423 	}
424 
425 	switch (tcode) {
426 	case 0x0: case 0x6: case 0x8:
427 		snprintf(specific, sizeof(specific), " = %08x",
428 			 be32_to_cpu((__force __be32)header[3]));
429 		break;
430 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
431 		snprintf(specific, sizeof(specific), " %x,%x",
432 			 header[3] >> 16, header[3] & 0xffff);
433 		break;
434 	default:
435 		specific[0] = '\0';
436 	}
437 
438 	switch (tcode) {
439 	case 0xe: case 0xa:
440 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
441 		break;
442 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
443 		fw_notify("A%c spd %x tl %02x, "
444 		    "%04x -> %04x, %s, "
445 		    "%s, %04x%08x%s\n",
446 		    dir, speed, header[0] >> 10 & 0x3f,
447 		    header[1] >> 16, header[0] >> 16, evts[evt],
448 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
449 		break;
450 	default:
451 		fw_notify("A%c spd %x tl %02x, "
452 		    "%04x -> %04x, %s, "
453 		    "%s%s\n",
454 		    dir, speed, header[0] >> 10 & 0x3f,
455 		    header[1] >> 16, header[0] >> 16, evts[evt],
456 		    tcodes[tcode], specific);
457 	}
458 }
459 
460 #else
461 
462 #define param_debug 0
463 static inline void log_irqs(u32 evt) {}
464 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
465 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
466 
467 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
468 
469 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
470 {
471 	writel(data, ohci->registers + offset);
472 }
473 
474 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
475 {
476 	return readl(ohci->registers + offset);
477 }
478 
479 static inline void flush_writes(const struct fw_ohci *ohci)
480 {
481 	/* Do a dummy read to flush writes. */
482 	reg_read(ohci, OHCI1394_Version);
483 }
484 
485 static int read_phy_reg(struct fw_ohci *ohci, int addr)
486 {
487 	u32 val;
488 	int i;
489 
490 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
491 	for (i = 0; i < 3 + 100; i++) {
492 		val = reg_read(ohci, OHCI1394_PhyControl);
493 		if (val & OHCI1394_PhyControl_ReadDone)
494 			return OHCI1394_PhyControl_ReadData(val);
495 
496 		/*
497 		 * Try a few times without waiting.  Sleeping is necessary
498 		 * only when the link/PHY interface is busy.
499 		 */
500 		if (i >= 3)
501 			msleep(1);
502 	}
503 	fw_error("failed to read phy reg\n");
504 
505 	return -EBUSY;
506 }
507 
508 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
509 {
510 	int i;
511 
512 	reg_write(ohci, OHCI1394_PhyControl,
513 		  OHCI1394_PhyControl_Write(addr, val));
514 	for (i = 0; i < 3 + 100; i++) {
515 		val = reg_read(ohci, OHCI1394_PhyControl);
516 		if (!(val & OHCI1394_PhyControl_WritePending))
517 			return 0;
518 
519 		if (i >= 3)
520 			msleep(1);
521 	}
522 	fw_error("failed to write phy reg\n");
523 
524 	return -EBUSY;
525 }
526 
527 static int update_phy_reg(struct fw_ohci *ohci, int addr,
528 			  int clear_bits, int set_bits)
529 {
530 	int ret = read_phy_reg(ohci, addr);
531 	if (ret < 0)
532 		return ret;
533 
534 	/*
535 	 * The interrupt status bits are cleared by writing a one bit.
536 	 * Avoid clearing them unless explicitly requested in set_bits.
537 	 */
538 	if (addr == 5)
539 		clear_bits |= PHY_INT_STATUS_BITS;
540 
541 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
542 }
543 
544 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
545 {
546 	int ret;
547 
548 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
549 	if (ret < 0)
550 		return ret;
551 
552 	return read_phy_reg(ohci, addr);
553 }
554 
555 static int ohci_read_phy_reg(struct fw_card *card, int addr)
556 {
557 	struct fw_ohci *ohci = fw_ohci(card);
558 	int ret;
559 
560 	mutex_lock(&ohci->phy_reg_mutex);
561 	ret = read_phy_reg(ohci, addr);
562 	mutex_unlock(&ohci->phy_reg_mutex);
563 
564 	return ret;
565 }
566 
567 static int ohci_update_phy_reg(struct fw_card *card, int addr,
568 			       int clear_bits, int set_bits)
569 {
570 	struct fw_ohci *ohci = fw_ohci(card);
571 	int ret;
572 
573 	mutex_lock(&ohci->phy_reg_mutex);
574 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
575 	mutex_unlock(&ohci->phy_reg_mutex);
576 
577 	return ret;
578 }
579 
580 static int ar_context_add_page(struct ar_context *ctx)
581 {
582 	struct device *dev = ctx->ohci->card.device;
583 	struct ar_buffer *ab;
584 	dma_addr_t uninitialized_var(ab_bus);
585 	size_t offset;
586 
587 	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
588 	if (ab == NULL)
589 		return -ENOMEM;
590 
591 	ab->next = NULL;
592 	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
593 	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
594 						    DESCRIPTOR_STATUS |
595 						    DESCRIPTOR_BRANCH_ALWAYS);
596 	offset = offsetof(struct ar_buffer, data);
597 	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
598 	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
599 	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
600 	ab->descriptor.branch_address = 0;
601 
602 	wmb(); /* finish init of new descriptors before branch_address update */
603 	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
604 	ctx->last_buffer->next = ab;
605 	ctx->last_buffer = ab;
606 
607 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
608 	flush_writes(ctx->ohci);
609 
610 	return 0;
611 }
612 
613 static void ar_context_release(struct ar_context *ctx)
614 {
615 	struct ar_buffer *ab, *ab_next;
616 	size_t offset;
617 	dma_addr_t ab_bus;
618 
619 	for (ab = ctx->current_buffer; ab; ab = ab_next) {
620 		ab_next = ab->next;
621 		offset = offsetof(struct ar_buffer, data);
622 		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
623 		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
624 				  ab, ab_bus);
625 	}
626 }
627 
628 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
629 #define cond_le32_to_cpu(v) \
630 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
631 #else
632 #define cond_le32_to_cpu(v) le32_to_cpu(v)
633 #endif
634 
635 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
636 {
637 	struct fw_ohci *ohci = ctx->ohci;
638 	struct fw_packet p;
639 	u32 status, length, tcode;
640 	int evt;
641 
642 	p.header[0] = cond_le32_to_cpu(buffer[0]);
643 	p.header[1] = cond_le32_to_cpu(buffer[1]);
644 	p.header[2] = cond_le32_to_cpu(buffer[2]);
645 
646 	tcode = (p.header[0] >> 4) & 0x0f;
647 	switch (tcode) {
648 	case TCODE_WRITE_QUADLET_REQUEST:
649 	case TCODE_READ_QUADLET_RESPONSE:
650 		p.header[3] = (__force __u32) buffer[3];
651 		p.header_length = 16;
652 		p.payload_length = 0;
653 		break;
654 
655 	case TCODE_READ_BLOCK_REQUEST :
656 		p.header[3] = cond_le32_to_cpu(buffer[3]);
657 		p.header_length = 16;
658 		p.payload_length = 0;
659 		break;
660 
661 	case TCODE_WRITE_BLOCK_REQUEST:
662 	case TCODE_READ_BLOCK_RESPONSE:
663 	case TCODE_LOCK_REQUEST:
664 	case TCODE_LOCK_RESPONSE:
665 		p.header[3] = cond_le32_to_cpu(buffer[3]);
666 		p.header_length = 16;
667 		p.payload_length = p.header[3] >> 16;
668 		break;
669 
670 	case TCODE_WRITE_RESPONSE:
671 	case TCODE_READ_QUADLET_REQUEST:
672 	case OHCI_TCODE_PHY_PACKET:
673 		p.header_length = 12;
674 		p.payload_length = 0;
675 		break;
676 
677 	default:
678 		/* FIXME: Stop context, discard everything, and restart? */
679 		p.header_length = 0;
680 		p.payload_length = 0;
681 	}
682 
683 	p.payload = (void *) buffer + p.header_length;
684 
685 	/* FIXME: What to do about evt_* errors? */
686 	length = (p.header_length + p.payload_length + 3) / 4;
687 	status = cond_le32_to_cpu(buffer[length]);
688 	evt    = (status >> 16) & 0x1f;
689 
690 	p.ack        = evt - 16;
691 	p.speed      = (status >> 21) & 0x7;
692 	p.timestamp  = status & 0xffff;
693 	p.generation = ohci->request_generation;
694 
695 	log_ar_at_event('R', p.speed, p.header, evt);
696 
697 	/*
698 	 * Several controllers, notably from NEC and VIA, forget to
699 	 * write ack_complete status at PHY packet reception.
700 	 */
701 	if (evt == OHCI1394_evt_no_status &&
702 	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
703 		p.ack = ACK_COMPLETE;
704 
705 	/*
706 	 * The OHCI bus reset handler synthesizes a PHY packet with
707 	 * the new generation number when a bus reset happens (see
708 	 * section 8.4.2.3).  This helps us determine when a request
709 	 * was received and make sure we send the response in the same
710 	 * generation.  We only need this for requests; for responses
711 	 * we use the unique tlabel for finding the matching
712 	 * request.
713 	 *
714 	 * Alas some chips sometimes emit bus reset packets with a
715 	 * wrong generation.  We set the correct generation for these
716 	 * at a slightly incorrect time (in bus_reset_tasklet).
717 	 */
718 	if (evt == OHCI1394_evt_bus_reset) {
719 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
720 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
721 	} else if (ctx == &ohci->ar_request_ctx) {
722 		fw_core_handle_request(&ohci->card, &p);
723 	} else {
724 		fw_core_handle_response(&ohci->card, &p);
725 	}
726 
727 	return buffer + length + 1;
728 }
729 
730 static void ar_context_tasklet(unsigned long data)
731 {
732 	struct ar_context *ctx = (struct ar_context *)data;
733 	struct fw_ohci *ohci = ctx->ohci;
734 	struct ar_buffer *ab;
735 	struct descriptor *d;
736 	void *buffer, *end;
737 
738 	ab = ctx->current_buffer;
739 	d = &ab->descriptor;
740 
741 	if (d->res_count == 0) {
742 		size_t size, rest, offset;
743 		dma_addr_t start_bus;
744 		void *start;
745 
746 		/*
747 		 * This descriptor is finished and we may have a
748 		 * packet split across this and the next buffer. We
749 		 * reuse the page for reassembling the split packet.
750 		 */
751 
752 		offset = offsetof(struct ar_buffer, data);
753 		start = buffer = ab;
754 		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
755 
756 		ab = ab->next;
757 		d = &ab->descriptor;
758 		size = buffer + PAGE_SIZE - ctx->pointer;
759 		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
760 		memmove(buffer, ctx->pointer, size);
761 		memcpy(buffer + size, ab->data, rest);
762 		ctx->current_buffer = ab;
763 		ctx->pointer = (void *) ab->data + rest;
764 		end = buffer + size + rest;
765 
766 		while (buffer < end)
767 			buffer = handle_ar_packet(ctx, buffer);
768 
769 		dma_free_coherent(ohci->card.device, PAGE_SIZE,
770 				  start, start_bus);
771 		ar_context_add_page(ctx);
772 	} else {
773 		buffer = ctx->pointer;
774 		ctx->pointer = end =
775 			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
776 
777 		while (buffer < end)
778 			buffer = handle_ar_packet(ctx, buffer);
779 	}
780 }
781 
782 static int ar_context_init(struct ar_context *ctx,
783 			   struct fw_ohci *ohci, u32 regs)
784 {
785 	struct ar_buffer ab;
786 
787 	ctx->regs        = regs;
788 	ctx->ohci        = ohci;
789 	ctx->last_buffer = &ab;
790 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
791 
792 	ar_context_add_page(ctx);
793 	ar_context_add_page(ctx);
794 	ctx->current_buffer = ab.next;
795 	ctx->pointer = ctx->current_buffer->data;
796 
797 	return 0;
798 }
799 
800 static void ar_context_run(struct ar_context *ctx)
801 {
802 	struct ar_buffer *ab = ctx->current_buffer;
803 	dma_addr_t ab_bus;
804 	size_t offset;
805 
806 	offset = offsetof(struct ar_buffer, data);
807 	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
808 
809 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
810 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
811 	flush_writes(ctx->ohci);
812 }
813 
814 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
815 {
816 	int b, key;
817 
818 	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
819 	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
820 
821 	/* figure out which descriptor the branch address goes in */
822 	if (z == 2 && (b == 3 || key == 2))
823 		return d;
824 	else
825 		return d + z - 1;
826 }
827 
828 static void context_tasklet(unsigned long data)
829 {
830 	struct context *ctx = (struct context *) data;
831 	struct descriptor *d, *last;
832 	u32 address;
833 	int z;
834 	struct descriptor_buffer *desc;
835 
836 	desc = list_entry(ctx->buffer_list.next,
837 			struct descriptor_buffer, list);
838 	last = ctx->last;
839 	while (last->branch_address != 0) {
840 		struct descriptor_buffer *old_desc = desc;
841 		address = le32_to_cpu(last->branch_address);
842 		z = address & 0xf;
843 		address &= ~0xf;
844 
845 		/* If the branch address points to a buffer outside of the
846 		 * current buffer, advance to the next buffer. */
847 		if (address < desc->buffer_bus ||
848 				address >= desc->buffer_bus + desc->used)
849 			desc = list_entry(desc->list.next,
850 					struct descriptor_buffer, list);
851 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
852 		last = find_branch_descriptor(d, z);
853 
854 		if (!ctx->callback(ctx, d, last))
855 			break;
856 
857 		if (old_desc != desc) {
858 			/* If we've advanced to the next buffer, move the
859 			 * previous buffer to the free list. */
860 			unsigned long flags;
861 			old_desc->used = 0;
862 			spin_lock_irqsave(&ctx->ohci->lock, flags);
863 			list_move_tail(&old_desc->list, &ctx->buffer_list);
864 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
865 		}
866 		ctx->last = last;
867 	}
868 }
869 
870 /*
871  * Allocate a new buffer and add it to the list of free buffers for this
872  * context.  Must be called with ohci->lock held.
873  */
874 static int context_add_buffer(struct context *ctx)
875 {
876 	struct descriptor_buffer *desc;
877 	dma_addr_t uninitialized_var(bus_addr);
878 	int offset;
879 
880 	/*
881 	 * 16MB of descriptors should be far more than enough for any DMA
882 	 * program.  This will catch run-away userspace or DoS attacks.
883 	 */
884 	if (ctx->total_allocation >= 16*1024*1024)
885 		return -ENOMEM;
886 
887 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
888 			&bus_addr, GFP_ATOMIC);
889 	if (!desc)
890 		return -ENOMEM;
891 
892 	offset = (void *)&desc->buffer - (void *)desc;
893 	desc->buffer_size = PAGE_SIZE - offset;
894 	desc->buffer_bus = bus_addr + offset;
895 	desc->used = 0;
896 
897 	list_add_tail(&desc->list, &ctx->buffer_list);
898 	ctx->total_allocation += PAGE_SIZE;
899 
900 	return 0;
901 }
902 
903 static int context_init(struct context *ctx, struct fw_ohci *ohci,
904 			u32 regs, descriptor_callback_t callback)
905 {
906 	ctx->ohci = ohci;
907 	ctx->regs = regs;
908 	ctx->total_allocation = 0;
909 
910 	INIT_LIST_HEAD(&ctx->buffer_list);
911 	if (context_add_buffer(ctx) < 0)
912 		return -ENOMEM;
913 
914 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
915 			struct descriptor_buffer, list);
916 
917 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
918 	ctx->callback = callback;
919 
920 	/*
921 	 * We put a dummy descriptor in the buffer that has a NULL
922 	 * branch address and looks like it's been sent.  That way we
923 	 * have a descriptor to append DMA programs to.
924 	 */
925 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
926 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
927 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
928 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
929 	ctx->last = ctx->buffer_tail->buffer;
930 	ctx->prev = ctx->buffer_tail->buffer;
931 
932 	return 0;
933 }
934 
935 static void context_release(struct context *ctx)
936 {
937 	struct fw_card *card = &ctx->ohci->card;
938 	struct descriptor_buffer *desc, *tmp;
939 
940 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
941 		dma_free_coherent(card->device, PAGE_SIZE, desc,
942 			desc->buffer_bus -
943 			((void *)&desc->buffer - (void *)desc));
944 }
945 
946 /* Must be called with ohci->lock held */
947 static struct descriptor *context_get_descriptors(struct context *ctx,
948 						  int z, dma_addr_t *d_bus)
949 {
950 	struct descriptor *d = NULL;
951 	struct descriptor_buffer *desc = ctx->buffer_tail;
952 
953 	if (z * sizeof(*d) > desc->buffer_size)
954 		return NULL;
955 
956 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
957 		/* No room for the descriptor in this buffer, so advance to the
958 		 * next one. */
959 
960 		if (desc->list.next == &ctx->buffer_list) {
961 			/* If there is no free buffer next in the list,
962 			 * allocate one. */
963 			if (context_add_buffer(ctx) < 0)
964 				return NULL;
965 		}
966 		desc = list_entry(desc->list.next,
967 				struct descriptor_buffer, list);
968 		ctx->buffer_tail = desc;
969 	}
970 
971 	d = desc->buffer + desc->used / sizeof(*d);
972 	memset(d, 0, z * sizeof(*d));
973 	*d_bus = desc->buffer_bus + desc->used;
974 
975 	return d;
976 }
977 
978 static void context_run(struct context *ctx, u32 extra)
979 {
980 	struct fw_ohci *ohci = ctx->ohci;
981 
982 	reg_write(ohci, COMMAND_PTR(ctx->regs),
983 		  le32_to_cpu(ctx->last->branch_address));
984 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
985 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
986 	flush_writes(ohci);
987 }
988 
989 static void context_append(struct context *ctx,
990 			   struct descriptor *d, int z, int extra)
991 {
992 	dma_addr_t d_bus;
993 	struct descriptor_buffer *desc = ctx->buffer_tail;
994 
995 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
996 
997 	desc->used += (z + extra) * sizeof(*d);
998 
999 	wmb(); /* finish init of new descriptors before branch_address update */
1000 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1001 	ctx->prev = find_branch_descriptor(d, z);
1002 
1003 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1004 	flush_writes(ctx->ohci);
1005 }
1006 
1007 static void context_stop(struct context *ctx)
1008 {
1009 	u32 reg;
1010 	int i;
1011 
1012 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1013 	flush_writes(ctx->ohci);
1014 
1015 	for (i = 0; i < 10; i++) {
1016 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1017 		if ((reg & CONTEXT_ACTIVE) == 0)
1018 			return;
1019 
1020 		mdelay(1);
1021 	}
1022 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1023 }
1024 
1025 struct driver_data {
1026 	struct fw_packet *packet;
1027 };
1028 
1029 /*
1030  * This function apppends a packet to the DMA queue for transmission.
1031  * Must always be called with the ochi->lock held to ensure proper
1032  * generation handling and locking around packet queue manipulation.
1033  */
1034 static int at_context_queue_packet(struct context *ctx,
1035 				   struct fw_packet *packet)
1036 {
1037 	struct fw_ohci *ohci = ctx->ohci;
1038 	dma_addr_t d_bus, uninitialized_var(payload_bus);
1039 	struct driver_data *driver_data;
1040 	struct descriptor *d, *last;
1041 	__le32 *header;
1042 	int z, tcode;
1043 	u32 reg;
1044 
1045 	d = context_get_descriptors(ctx, 4, &d_bus);
1046 	if (d == NULL) {
1047 		packet->ack = RCODE_SEND_ERROR;
1048 		return -1;
1049 	}
1050 
1051 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1052 	d[0].res_count = cpu_to_le16(packet->timestamp);
1053 
1054 	/*
1055 	 * The DMA format for asyncronous link packets is different
1056 	 * from the IEEE1394 layout, so shift the fields around
1057 	 * accordingly.  If header_length is 8, it's a PHY packet, to
1058 	 * which we need to prepend an extra quadlet.
1059 	 */
1060 
1061 	header = (__le32 *) &d[1];
1062 	switch (packet->header_length) {
1063 	case 16:
1064 	case 12:
1065 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1066 					(packet->speed << 16));
1067 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1068 					(packet->header[0] & 0xffff0000));
1069 		header[2] = cpu_to_le32(packet->header[2]);
1070 
1071 		tcode = (packet->header[0] >> 4) & 0x0f;
1072 		if (TCODE_IS_BLOCK_PACKET(tcode))
1073 			header[3] = cpu_to_le32(packet->header[3]);
1074 		else
1075 			header[3] = (__force __le32) packet->header[3];
1076 
1077 		d[0].req_count = cpu_to_le16(packet->header_length);
1078 		break;
1079 
1080 	case 8:
1081 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1082 					(packet->speed << 16));
1083 		header[1] = cpu_to_le32(packet->header[0]);
1084 		header[2] = cpu_to_le32(packet->header[1]);
1085 		d[0].req_count = cpu_to_le16(12);
1086 
1087 		if (is_ping_packet(packet->header))
1088 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1089 		break;
1090 
1091 	case 4:
1092 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1093 					(packet->speed << 16));
1094 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1095 		d[0].req_count = cpu_to_le16(8);
1096 		break;
1097 
1098 	default:
1099 		/* BUG(); */
1100 		packet->ack = RCODE_SEND_ERROR;
1101 		return -1;
1102 	}
1103 
1104 	driver_data = (struct driver_data *) &d[3];
1105 	driver_data->packet = packet;
1106 	packet->driver_data = driver_data;
1107 
1108 	if (packet->payload_length > 0) {
1109 		payload_bus =
1110 			dma_map_single(ohci->card.device, packet->payload,
1111 				       packet->payload_length, DMA_TO_DEVICE);
1112 		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1113 			packet->ack = RCODE_SEND_ERROR;
1114 			return -1;
1115 		}
1116 		packet->payload_bus	= payload_bus;
1117 		packet->payload_mapped	= true;
1118 
1119 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1120 		d[2].data_address = cpu_to_le32(payload_bus);
1121 		last = &d[2];
1122 		z = 3;
1123 	} else {
1124 		last = &d[0];
1125 		z = 2;
1126 	}
1127 
1128 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1129 				     DESCRIPTOR_IRQ_ALWAYS |
1130 				     DESCRIPTOR_BRANCH_ALWAYS);
1131 
1132 	/*
1133 	 * If the controller and packet generations don't match, we need to
1134 	 * bail out and try again.  If IntEvent.busReset is set, the AT context
1135 	 * is halted, so appending to the context and trying to run it is
1136 	 * futile.  Most controllers do the right thing and just flush the AT
1137 	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1138 	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1139 	 * up stalling out.  So we just bail out in software and try again
1140 	 * later, and everyone is happy.
1141 	 * FIXME: Document how the locking works.
1142 	 */
1143 	if (ohci->generation != packet->generation ||
1144 	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1145 		if (packet->payload_mapped)
1146 			dma_unmap_single(ohci->card.device, payload_bus,
1147 					 packet->payload_length, DMA_TO_DEVICE);
1148 		packet->ack = RCODE_GENERATION;
1149 		return -1;
1150 	}
1151 
1152 	context_append(ctx, d, z, 4 - z);
1153 
1154 	/* If the context isn't already running, start it up. */
1155 	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1156 	if ((reg & CONTEXT_RUN) == 0)
1157 		context_run(ctx, 0);
1158 
1159 	return 0;
1160 }
1161 
1162 static int handle_at_packet(struct context *context,
1163 			    struct descriptor *d,
1164 			    struct descriptor *last)
1165 {
1166 	struct driver_data *driver_data;
1167 	struct fw_packet *packet;
1168 	struct fw_ohci *ohci = context->ohci;
1169 	int evt;
1170 
1171 	if (last->transfer_status == 0)
1172 		/* This descriptor isn't done yet, stop iteration. */
1173 		return 0;
1174 
1175 	driver_data = (struct driver_data *) &d[3];
1176 	packet = driver_data->packet;
1177 	if (packet == NULL)
1178 		/* This packet was cancelled, just continue. */
1179 		return 1;
1180 
1181 	if (packet->payload_mapped)
1182 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1183 				 packet->payload_length, DMA_TO_DEVICE);
1184 
1185 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1186 	packet->timestamp = le16_to_cpu(last->res_count);
1187 
1188 	log_ar_at_event('T', packet->speed, packet->header, evt);
1189 
1190 	switch (evt) {
1191 	case OHCI1394_evt_timeout:
1192 		/* Async response transmit timed out. */
1193 		packet->ack = RCODE_CANCELLED;
1194 		break;
1195 
1196 	case OHCI1394_evt_flushed:
1197 		/*
1198 		 * The packet was flushed should give same error as
1199 		 * when we try to use a stale generation count.
1200 		 */
1201 		packet->ack = RCODE_GENERATION;
1202 		break;
1203 
1204 	case OHCI1394_evt_missing_ack:
1205 		/*
1206 		 * Using a valid (current) generation count, but the
1207 		 * node is not on the bus or not sending acks.
1208 		 */
1209 		packet->ack = RCODE_NO_ACK;
1210 		break;
1211 
1212 	case ACK_COMPLETE + 0x10:
1213 	case ACK_PENDING + 0x10:
1214 	case ACK_BUSY_X + 0x10:
1215 	case ACK_BUSY_A + 0x10:
1216 	case ACK_BUSY_B + 0x10:
1217 	case ACK_DATA_ERROR + 0x10:
1218 	case ACK_TYPE_ERROR + 0x10:
1219 		packet->ack = evt - 0x10;
1220 		break;
1221 
1222 	default:
1223 		packet->ack = RCODE_SEND_ERROR;
1224 		break;
1225 	}
1226 
1227 	packet->callback(packet, &ohci->card, packet->ack);
1228 
1229 	return 1;
1230 }
1231 
1232 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1233 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1234 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1235 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1236 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1237 
1238 static void handle_local_rom(struct fw_ohci *ohci,
1239 			     struct fw_packet *packet, u32 csr)
1240 {
1241 	struct fw_packet response;
1242 	int tcode, length, i;
1243 
1244 	tcode = HEADER_GET_TCODE(packet->header[0]);
1245 	if (TCODE_IS_BLOCK_PACKET(tcode))
1246 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1247 	else
1248 		length = 4;
1249 
1250 	i = csr - CSR_CONFIG_ROM;
1251 	if (i + length > CONFIG_ROM_SIZE) {
1252 		fw_fill_response(&response, packet->header,
1253 				 RCODE_ADDRESS_ERROR, NULL, 0);
1254 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1255 		fw_fill_response(&response, packet->header,
1256 				 RCODE_TYPE_ERROR, NULL, 0);
1257 	} else {
1258 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1259 				 (void *) ohci->config_rom + i, length);
1260 	}
1261 
1262 	fw_core_handle_response(&ohci->card, &response);
1263 }
1264 
1265 static void handle_local_lock(struct fw_ohci *ohci,
1266 			      struct fw_packet *packet, u32 csr)
1267 {
1268 	struct fw_packet response;
1269 	int tcode, length, ext_tcode, sel, try;
1270 	__be32 *payload, lock_old;
1271 	u32 lock_arg, lock_data;
1272 
1273 	tcode = HEADER_GET_TCODE(packet->header[0]);
1274 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1275 	payload = packet->payload;
1276 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1277 
1278 	if (tcode == TCODE_LOCK_REQUEST &&
1279 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1280 		lock_arg = be32_to_cpu(payload[0]);
1281 		lock_data = be32_to_cpu(payload[1]);
1282 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1283 		lock_arg = 0;
1284 		lock_data = 0;
1285 	} else {
1286 		fw_fill_response(&response, packet->header,
1287 				 RCODE_TYPE_ERROR, NULL, 0);
1288 		goto out;
1289 	}
1290 
1291 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1292 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1293 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1294 	reg_write(ohci, OHCI1394_CSRControl, sel);
1295 
1296 	for (try = 0; try < 20; try++)
1297 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1298 			lock_old = cpu_to_be32(reg_read(ohci,
1299 							OHCI1394_CSRData));
1300 			fw_fill_response(&response, packet->header,
1301 					 RCODE_COMPLETE,
1302 					 &lock_old, sizeof(lock_old));
1303 			goto out;
1304 		}
1305 
1306 	fw_error("swap not done (CSR lock timeout)\n");
1307 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1308 
1309  out:
1310 	fw_core_handle_response(&ohci->card, &response);
1311 }
1312 
1313 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1314 {
1315 	u64 offset, csr;
1316 
1317 	if (ctx == &ctx->ohci->at_request_ctx) {
1318 		packet->ack = ACK_PENDING;
1319 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1320 	}
1321 
1322 	offset =
1323 		((unsigned long long)
1324 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1325 		packet->header[2];
1326 	csr = offset - CSR_REGISTER_BASE;
1327 
1328 	/* Handle config rom reads. */
1329 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1330 		handle_local_rom(ctx->ohci, packet, csr);
1331 	else switch (csr) {
1332 	case CSR_BUS_MANAGER_ID:
1333 	case CSR_BANDWIDTH_AVAILABLE:
1334 	case CSR_CHANNELS_AVAILABLE_HI:
1335 	case CSR_CHANNELS_AVAILABLE_LO:
1336 		handle_local_lock(ctx->ohci, packet, csr);
1337 		break;
1338 	default:
1339 		if (ctx == &ctx->ohci->at_request_ctx)
1340 			fw_core_handle_request(&ctx->ohci->card, packet);
1341 		else
1342 			fw_core_handle_response(&ctx->ohci->card, packet);
1343 		break;
1344 	}
1345 
1346 	if (ctx == &ctx->ohci->at_response_ctx) {
1347 		packet->ack = ACK_COMPLETE;
1348 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1349 	}
1350 }
1351 
1352 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1353 {
1354 	unsigned long flags;
1355 	int ret;
1356 
1357 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1358 
1359 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1360 	    ctx->ohci->generation == packet->generation) {
1361 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1362 		handle_local_request(ctx, packet);
1363 		return;
1364 	}
1365 
1366 	ret = at_context_queue_packet(ctx, packet);
1367 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1368 
1369 	if (ret < 0)
1370 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1371 
1372 }
1373 
1374 static u32 cycle_timer_ticks(u32 cycle_timer)
1375 {
1376 	u32 ticks;
1377 
1378 	ticks = cycle_timer & 0xfff;
1379 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1380 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1381 
1382 	return ticks;
1383 }
1384 
1385 /*
1386  * Some controllers exhibit one or more of the following bugs when updating the
1387  * iso cycle timer register:
1388  *  - When the lowest six bits are wrapping around to zero, a read that happens
1389  *    at the same time will return garbage in the lowest ten bits.
1390  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1391  *    not incremented for about 60 ns.
1392  *  - Occasionally, the entire register reads zero.
1393  *
1394  * To catch these, we read the register three times and ensure that the
1395  * difference between each two consecutive reads is approximately the same, i.e.
1396  * less than twice the other.  Furthermore, any negative difference indicates an
1397  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1398  * execute, so we have enough precision to compute the ratio of the differences.)
1399  */
1400 static u32 get_cycle_time(struct fw_ohci *ohci)
1401 {
1402 	u32 c0, c1, c2;
1403 	u32 t0, t1, t2;
1404 	s32 diff01, diff12;
1405 	int i;
1406 
1407 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1408 
1409 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1410 		i = 0;
1411 		c1 = c2;
1412 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1413 		do {
1414 			c0 = c1;
1415 			c1 = c2;
1416 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1417 			t0 = cycle_timer_ticks(c0);
1418 			t1 = cycle_timer_ticks(c1);
1419 			t2 = cycle_timer_ticks(c2);
1420 			diff01 = t1 - t0;
1421 			diff12 = t2 - t1;
1422 		} while ((diff01 <= 0 || diff12 <= 0 ||
1423 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1424 			 && i++ < 20);
1425 	}
1426 
1427 	return c2;
1428 }
1429 
1430 /*
1431  * This function has to be called at least every 64 seconds.  The bus_time
1432  * field stores not only the upper 25 bits of the BUS_TIME register but also
1433  * the most significant bit of the cycle timer in bit 6 so that we can detect
1434  * changes in this bit.
1435  */
1436 static u32 update_bus_time(struct fw_ohci *ohci)
1437 {
1438 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1439 
1440 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1441 		ohci->bus_time += 0x40;
1442 
1443 	return ohci->bus_time | cycle_time_seconds;
1444 }
1445 
1446 static void bus_reset_tasklet(unsigned long data)
1447 {
1448 	struct fw_ohci *ohci = (struct fw_ohci *)data;
1449 	int self_id_count, i, j, reg;
1450 	int generation, new_generation;
1451 	unsigned long flags;
1452 	void *free_rom = NULL;
1453 	dma_addr_t free_rom_bus = 0;
1454 	bool is_new_root;
1455 
1456 	reg = reg_read(ohci, OHCI1394_NodeID);
1457 	if (!(reg & OHCI1394_NodeID_idValid)) {
1458 		fw_notify("node ID not valid, new bus reset in progress\n");
1459 		return;
1460 	}
1461 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1462 		fw_notify("malconfigured bus\n");
1463 		return;
1464 	}
1465 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1466 			       OHCI1394_NodeID_nodeNumber);
1467 
1468 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1469 	if (!(ohci->is_root && is_new_root))
1470 		reg_write(ohci, OHCI1394_LinkControlSet,
1471 			  OHCI1394_LinkControl_cycleMaster);
1472 	ohci->is_root = is_new_root;
1473 
1474 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1475 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1476 		fw_notify("inconsistent self IDs\n");
1477 		return;
1478 	}
1479 	/*
1480 	 * The count in the SelfIDCount register is the number of
1481 	 * bytes in the self ID receive buffer.  Since we also receive
1482 	 * the inverted quadlets and a header quadlet, we shift one
1483 	 * bit extra to get the actual number of self IDs.
1484 	 */
1485 	self_id_count = (reg >> 3) & 0xff;
1486 	if (self_id_count == 0 || self_id_count > 252) {
1487 		fw_notify("inconsistent self IDs\n");
1488 		return;
1489 	}
1490 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1491 	rmb();
1492 
1493 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1494 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1495 			fw_notify("inconsistent self IDs\n");
1496 			return;
1497 		}
1498 		ohci->self_id_buffer[j] =
1499 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1500 	}
1501 	rmb();
1502 
1503 	/*
1504 	 * Check the consistency of the self IDs we just read.  The
1505 	 * problem we face is that a new bus reset can start while we
1506 	 * read out the self IDs from the DMA buffer. If this happens,
1507 	 * the DMA buffer will be overwritten with new self IDs and we
1508 	 * will read out inconsistent data.  The OHCI specification
1509 	 * (section 11.2) recommends a technique similar to
1510 	 * linux/seqlock.h, where we remember the generation of the
1511 	 * self IDs in the buffer before reading them out and compare
1512 	 * it to the current generation after reading them out.  If
1513 	 * the two generations match we know we have a consistent set
1514 	 * of self IDs.
1515 	 */
1516 
1517 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1518 	if (new_generation != generation) {
1519 		fw_notify("recursive bus reset detected, "
1520 			  "discarding self ids\n");
1521 		return;
1522 	}
1523 
1524 	/* FIXME: Document how the locking works. */
1525 	spin_lock_irqsave(&ohci->lock, flags);
1526 
1527 	ohci->generation = generation;
1528 	context_stop(&ohci->at_request_ctx);
1529 	context_stop(&ohci->at_response_ctx);
1530 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1531 
1532 	if (ohci->quirks & QUIRK_RESET_PACKET)
1533 		ohci->request_generation = generation;
1534 
1535 	/*
1536 	 * This next bit is unrelated to the AT context stuff but we
1537 	 * have to do it under the spinlock also.  If a new config rom
1538 	 * was set up before this reset, the old one is now no longer
1539 	 * in use and we can free it. Update the config rom pointers
1540 	 * to point to the current config rom and clear the
1541 	 * next_config_rom pointer so a new update can take place.
1542 	 */
1543 
1544 	if (ohci->next_config_rom != NULL) {
1545 		if (ohci->next_config_rom != ohci->config_rom) {
1546 			free_rom      = ohci->config_rom;
1547 			free_rom_bus  = ohci->config_rom_bus;
1548 		}
1549 		ohci->config_rom      = ohci->next_config_rom;
1550 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1551 		ohci->next_config_rom = NULL;
1552 
1553 		/*
1554 		 * Restore config_rom image and manually update
1555 		 * config_rom registers.  Writing the header quadlet
1556 		 * will indicate that the config rom is ready, so we
1557 		 * do that last.
1558 		 */
1559 		reg_write(ohci, OHCI1394_BusOptions,
1560 			  be32_to_cpu(ohci->config_rom[2]));
1561 		ohci->config_rom[0] = ohci->next_header;
1562 		reg_write(ohci, OHCI1394_ConfigROMhdr,
1563 			  be32_to_cpu(ohci->next_header));
1564 	}
1565 
1566 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1567 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1568 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1569 #endif
1570 
1571 	spin_unlock_irqrestore(&ohci->lock, flags);
1572 
1573 	if (free_rom)
1574 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1575 				  free_rom, free_rom_bus);
1576 
1577 	log_selfids(ohci->node_id, generation,
1578 		    self_id_count, ohci->self_id_buffer);
1579 
1580 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1581 				 self_id_count, ohci->self_id_buffer,
1582 				 ohci->csr_state_setclear_abdicate);
1583 	ohci->csr_state_setclear_abdicate = false;
1584 }
1585 
1586 static irqreturn_t irq_handler(int irq, void *data)
1587 {
1588 	struct fw_ohci *ohci = data;
1589 	u32 event, iso_event;
1590 	int i;
1591 
1592 	event = reg_read(ohci, OHCI1394_IntEventClear);
1593 
1594 	if (!event || !~event)
1595 		return IRQ_NONE;
1596 
1597 	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1598 	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1599 	log_irqs(event);
1600 
1601 	if (event & OHCI1394_selfIDComplete)
1602 		tasklet_schedule(&ohci->bus_reset_tasklet);
1603 
1604 	if (event & OHCI1394_RQPkt)
1605 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1606 
1607 	if (event & OHCI1394_RSPkt)
1608 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1609 
1610 	if (event & OHCI1394_reqTxComplete)
1611 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1612 
1613 	if (event & OHCI1394_respTxComplete)
1614 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1615 
1616 	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1617 	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1618 
1619 	while (iso_event) {
1620 		i = ffs(iso_event) - 1;
1621 		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1622 		iso_event &= ~(1 << i);
1623 	}
1624 
1625 	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1626 	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1627 
1628 	while (iso_event) {
1629 		i = ffs(iso_event) - 1;
1630 		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1631 		iso_event &= ~(1 << i);
1632 	}
1633 
1634 	if (unlikely(event & OHCI1394_regAccessFail))
1635 		fw_error("Register access failure - "
1636 			 "please notify linux1394-devel@lists.sf.net\n");
1637 
1638 	if (unlikely(event & OHCI1394_postedWriteErr))
1639 		fw_error("PCI posted write error\n");
1640 
1641 	if (unlikely(event & OHCI1394_cycleTooLong)) {
1642 		if (printk_ratelimit())
1643 			fw_notify("isochronous cycle too long\n");
1644 		reg_write(ohci, OHCI1394_LinkControlSet,
1645 			  OHCI1394_LinkControl_cycleMaster);
1646 	}
1647 
1648 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
1649 		/*
1650 		 * We need to clear this event bit in order to make
1651 		 * cycleMatch isochronous I/O work.  In theory we should
1652 		 * stop active cycleMatch iso contexts now and restart
1653 		 * them at least two cycles later.  (FIXME?)
1654 		 */
1655 		if (printk_ratelimit())
1656 			fw_notify("isochronous cycle inconsistent\n");
1657 	}
1658 
1659 	if (event & OHCI1394_cycle64Seconds) {
1660 		spin_lock(&ohci->lock);
1661 		update_bus_time(ohci);
1662 		spin_unlock(&ohci->lock);
1663 	}
1664 
1665 	return IRQ_HANDLED;
1666 }
1667 
1668 static int software_reset(struct fw_ohci *ohci)
1669 {
1670 	int i;
1671 
1672 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1673 
1674 	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1675 		if ((reg_read(ohci, OHCI1394_HCControlSet) &
1676 		     OHCI1394_HCControl_softReset) == 0)
1677 			return 0;
1678 		msleep(1);
1679 	}
1680 
1681 	return -EBUSY;
1682 }
1683 
1684 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1685 {
1686 	size_t size = length * 4;
1687 
1688 	memcpy(dest, src, size);
1689 	if (size < CONFIG_ROM_SIZE)
1690 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1691 }
1692 
1693 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1694 {
1695 	bool enable_1394a;
1696 	int ret, clear, set, offset;
1697 
1698 	/* Check if the driver should configure link and PHY. */
1699 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1700 	      OHCI1394_HCControl_programPhyEnable))
1701 		return 0;
1702 
1703 	/* Paranoia: check whether the PHY supports 1394a, too. */
1704 	enable_1394a = false;
1705 	ret = read_phy_reg(ohci, 2);
1706 	if (ret < 0)
1707 		return ret;
1708 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1709 		ret = read_paged_phy_reg(ohci, 1, 8);
1710 		if (ret < 0)
1711 			return ret;
1712 		if (ret >= 1)
1713 			enable_1394a = true;
1714 	}
1715 
1716 	if (ohci->quirks & QUIRK_NO_1394A)
1717 		enable_1394a = false;
1718 
1719 	/* Configure PHY and link consistently. */
1720 	if (enable_1394a) {
1721 		clear = 0;
1722 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1723 	} else {
1724 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1725 		set = 0;
1726 	}
1727 	ret = update_phy_reg(ohci, 5, clear, set);
1728 	if (ret < 0)
1729 		return ret;
1730 
1731 	if (enable_1394a)
1732 		offset = OHCI1394_HCControlSet;
1733 	else
1734 		offset = OHCI1394_HCControlClear;
1735 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1736 
1737 	/* Clean up: configuration has been taken care of. */
1738 	reg_write(ohci, OHCI1394_HCControlClear,
1739 		  OHCI1394_HCControl_programPhyEnable);
1740 
1741 	return 0;
1742 }
1743 
1744 static int ohci_enable(struct fw_card *card,
1745 		       const __be32 *config_rom, size_t length)
1746 {
1747 	struct fw_ohci *ohci = fw_ohci(card);
1748 	struct pci_dev *dev = to_pci_dev(card->device);
1749 	u32 lps, seconds, version, irqs;
1750 	int i, ret;
1751 
1752 	if (software_reset(ohci)) {
1753 		fw_error("Failed to reset ohci card.\n");
1754 		return -EBUSY;
1755 	}
1756 
1757 	/*
1758 	 * Now enable LPS, which we need in order to start accessing
1759 	 * most of the registers.  In fact, on some cards (ALI M5251),
1760 	 * accessing registers in the SClk domain without LPS enabled
1761 	 * will lock up the machine.  Wait 50msec to make sure we have
1762 	 * full link enabled.  However, with some cards (well, at least
1763 	 * a JMicron PCIe card), we have to try again sometimes.
1764 	 */
1765 	reg_write(ohci, OHCI1394_HCControlSet,
1766 		  OHCI1394_HCControl_LPS |
1767 		  OHCI1394_HCControl_postedWriteEnable);
1768 	flush_writes(ohci);
1769 
1770 	for (lps = 0, i = 0; !lps && i < 3; i++) {
1771 		msleep(50);
1772 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
1773 		      OHCI1394_HCControl_LPS;
1774 	}
1775 
1776 	if (!lps) {
1777 		fw_error("Failed to set Link Power Status\n");
1778 		return -EIO;
1779 	}
1780 
1781 	reg_write(ohci, OHCI1394_HCControlClear,
1782 		  OHCI1394_HCControl_noByteSwapData);
1783 
1784 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1785 	reg_write(ohci, OHCI1394_LinkControlSet,
1786 		  OHCI1394_LinkControl_rcvSelfID |
1787 		  OHCI1394_LinkControl_rcvPhyPkt |
1788 		  OHCI1394_LinkControl_cycleTimerEnable |
1789 		  OHCI1394_LinkControl_cycleMaster);
1790 
1791 	reg_write(ohci, OHCI1394_ATRetries,
1792 		  OHCI1394_MAX_AT_REQ_RETRIES |
1793 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1794 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1795 		  (200 << 16));
1796 
1797 	seconds = lower_32_bits(get_seconds());
1798 	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1799 	ohci->bus_time = seconds & ~0x3f;
1800 
1801 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1802 	if (version >= OHCI_VERSION_1_1) {
1803 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1804 			  0xfffffffe);
1805 		card->broadcast_channel_auto_allocated = true;
1806 	}
1807 
1808 	/* Get implemented bits of the priority arbitration request counter. */
1809 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1810 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1811 	reg_write(ohci, OHCI1394_FairnessControl, 0);
1812 	card->priority_budget_implemented = ohci->pri_req_max != 0;
1813 
1814 	ar_context_run(&ohci->ar_request_ctx);
1815 	ar_context_run(&ohci->ar_response_ctx);
1816 
1817 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1818 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
1819 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1820 
1821 	ret = configure_1394a_enhancements(ohci);
1822 	if (ret < 0)
1823 		return ret;
1824 
1825 	/* Activate link_on bit and contender bit in our self ID packets.*/
1826 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1827 	if (ret < 0)
1828 		return ret;
1829 
1830 	/*
1831 	 * When the link is not yet enabled, the atomic config rom
1832 	 * update mechanism described below in ohci_set_config_rom()
1833 	 * is not active.  We have to update ConfigRomHeader and
1834 	 * BusOptions manually, and the write to ConfigROMmap takes
1835 	 * effect immediately.  We tie this to the enabling of the
1836 	 * link, so we have a valid config rom before enabling - the
1837 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
1838 	 * values before enabling.
1839 	 *
1840 	 * However, when the ConfigROMmap is written, some controllers
1841 	 * always read back quadlets 0 and 2 from the config rom to
1842 	 * the ConfigRomHeader and BusOptions registers on bus reset.
1843 	 * They shouldn't do that in this initial case where the link
1844 	 * isn't enabled.  This means we have to use the same
1845 	 * workaround here, setting the bus header to 0 and then write
1846 	 * the right values in the bus reset tasklet.
1847 	 */
1848 
1849 	if (config_rom) {
1850 		ohci->next_config_rom =
1851 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1852 					   &ohci->next_config_rom_bus,
1853 					   GFP_KERNEL);
1854 		if (ohci->next_config_rom == NULL)
1855 			return -ENOMEM;
1856 
1857 		copy_config_rom(ohci->next_config_rom, config_rom, length);
1858 	} else {
1859 		/*
1860 		 * In the suspend case, config_rom is NULL, which
1861 		 * means that we just reuse the old config rom.
1862 		 */
1863 		ohci->next_config_rom = ohci->config_rom;
1864 		ohci->next_config_rom_bus = ohci->config_rom_bus;
1865 	}
1866 
1867 	ohci->next_header = ohci->next_config_rom[0];
1868 	ohci->next_config_rom[0] = 0;
1869 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1870 	reg_write(ohci, OHCI1394_BusOptions,
1871 		  be32_to_cpu(ohci->next_config_rom[2]));
1872 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1873 
1874 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1875 
1876 	if (!(ohci->quirks & QUIRK_NO_MSI))
1877 		pci_enable_msi(dev);
1878 	if (request_irq(dev->irq, irq_handler,
1879 			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1880 			ohci_driver_name, ohci)) {
1881 		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1882 		pci_disable_msi(dev);
1883 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1884 				  ohci->config_rom, ohci->config_rom_bus);
1885 		return -EIO;
1886 	}
1887 
1888 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1889 		OHCI1394_RQPkt | OHCI1394_RSPkt |
1890 		OHCI1394_isochTx | OHCI1394_isochRx |
1891 		OHCI1394_postedWriteErr |
1892 		OHCI1394_selfIDComplete |
1893 		OHCI1394_regAccessFail |
1894 		OHCI1394_cycle64Seconds |
1895 		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1896 		OHCI1394_masterIntEnable;
1897 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1898 		irqs |= OHCI1394_busReset;
1899 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1900 
1901 	reg_write(ohci, OHCI1394_HCControlSet,
1902 		  OHCI1394_HCControl_linkEnable |
1903 		  OHCI1394_HCControl_BIBimageValid);
1904 	flush_writes(ohci);
1905 
1906 	/* We are ready to go, reset bus to finish initialization. */
1907 	fw_schedule_bus_reset(&ohci->card, false, true);
1908 
1909 	return 0;
1910 }
1911 
1912 static int ohci_set_config_rom(struct fw_card *card,
1913 			       const __be32 *config_rom, size_t length)
1914 {
1915 	struct fw_ohci *ohci;
1916 	unsigned long flags;
1917 	int ret = -EBUSY;
1918 	__be32 *next_config_rom;
1919 	dma_addr_t uninitialized_var(next_config_rom_bus);
1920 
1921 	ohci = fw_ohci(card);
1922 
1923 	/*
1924 	 * When the OHCI controller is enabled, the config rom update
1925 	 * mechanism is a bit tricky, but easy enough to use.  See
1926 	 * section 5.5.6 in the OHCI specification.
1927 	 *
1928 	 * The OHCI controller caches the new config rom address in a
1929 	 * shadow register (ConfigROMmapNext) and needs a bus reset
1930 	 * for the changes to take place.  When the bus reset is
1931 	 * detected, the controller loads the new values for the
1932 	 * ConfigRomHeader and BusOptions registers from the specified
1933 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1934 	 * shadow register. All automatically and atomically.
1935 	 *
1936 	 * Now, there's a twist to this story.  The automatic load of
1937 	 * ConfigRomHeader and BusOptions doesn't honor the
1938 	 * noByteSwapData bit, so with a be32 config rom, the
1939 	 * controller will load be32 values in to these registers
1940 	 * during the atomic update, even on litte endian
1941 	 * architectures.  The workaround we use is to put a 0 in the
1942 	 * header quadlet; 0 is endian agnostic and means that the
1943 	 * config rom isn't ready yet.  In the bus reset tasklet we
1944 	 * then set up the real values for the two registers.
1945 	 *
1946 	 * We use ohci->lock to avoid racing with the code that sets
1947 	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1948 	 */
1949 
1950 	next_config_rom =
1951 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1952 				   &next_config_rom_bus, GFP_KERNEL);
1953 	if (next_config_rom == NULL)
1954 		return -ENOMEM;
1955 
1956 	spin_lock_irqsave(&ohci->lock, flags);
1957 
1958 	if (ohci->next_config_rom == NULL) {
1959 		ohci->next_config_rom = next_config_rom;
1960 		ohci->next_config_rom_bus = next_config_rom_bus;
1961 
1962 		copy_config_rom(ohci->next_config_rom, config_rom, length);
1963 
1964 		ohci->next_header = config_rom[0];
1965 		ohci->next_config_rom[0] = 0;
1966 
1967 		reg_write(ohci, OHCI1394_ConfigROMmap,
1968 			  ohci->next_config_rom_bus);
1969 		ret = 0;
1970 	}
1971 
1972 	spin_unlock_irqrestore(&ohci->lock, flags);
1973 
1974 	/*
1975 	 * Now initiate a bus reset to have the changes take
1976 	 * effect. We clean up the old config rom memory and DMA
1977 	 * mappings in the bus reset tasklet, since the OHCI
1978 	 * controller could need to access it before the bus reset
1979 	 * takes effect.
1980 	 */
1981 	if (ret == 0)
1982 		fw_schedule_bus_reset(&ohci->card, true, true);
1983 	else
1984 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1985 				  next_config_rom, next_config_rom_bus);
1986 
1987 	return ret;
1988 }
1989 
1990 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1991 {
1992 	struct fw_ohci *ohci = fw_ohci(card);
1993 
1994 	at_context_transmit(&ohci->at_request_ctx, packet);
1995 }
1996 
1997 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1998 {
1999 	struct fw_ohci *ohci = fw_ohci(card);
2000 
2001 	at_context_transmit(&ohci->at_response_ctx, packet);
2002 }
2003 
2004 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2005 {
2006 	struct fw_ohci *ohci = fw_ohci(card);
2007 	struct context *ctx = &ohci->at_request_ctx;
2008 	struct driver_data *driver_data = packet->driver_data;
2009 	int ret = -ENOENT;
2010 
2011 	tasklet_disable(&ctx->tasklet);
2012 
2013 	if (packet->ack != 0)
2014 		goto out;
2015 
2016 	if (packet->payload_mapped)
2017 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2018 				 packet->payload_length, DMA_TO_DEVICE);
2019 
2020 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2021 	driver_data->packet = NULL;
2022 	packet->ack = RCODE_CANCELLED;
2023 	packet->callback(packet, &ohci->card, packet->ack);
2024 	ret = 0;
2025  out:
2026 	tasklet_enable(&ctx->tasklet);
2027 
2028 	return ret;
2029 }
2030 
2031 static int ohci_enable_phys_dma(struct fw_card *card,
2032 				int node_id, int generation)
2033 {
2034 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2035 	return 0;
2036 #else
2037 	struct fw_ohci *ohci = fw_ohci(card);
2038 	unsigned long flags;
2039 	int n, ret = 0;
2040 
2041 	/*
2042 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2043 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2044 	 */
2045 
2046 	spin_lock_irqsave(&ohci->lock, flags);
2047 
2048 	if (ohci->generation != generation) {
2049 		ret = -ESTALE;
2050 		goto out;
2051 	}
2052 
2053 	/*
2054 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2055 	 * enabled for _all_ nodes on remote buses.
2056 	 */
2057 
2058 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2059 	if (n < 32)
2060 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2061 	else
2062 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2063 
2064 	flush_writes(ohci);
2065  out:
2066 	spin_unlock_irqrestore(&ohci->lock, flags);
2067 
2068 	return ret;
2069 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2070 }
2071 
2072 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2073 {
2074 	struct fw_ohci *ohci = fw_ohci(card);
2075 	unsigned long flags;
2076 	u32 value;
2077 
2078 	switch (csr_offset) {
2079 	case CSR_STATE_CLEAR:
2080 	case CSR_STATE_SET:
2081 		if (ohci->is_root &&
2082 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2083 		     OHCI1394_LinkControl_cycleMaster))
2084 			value = CSR_STATE_BIT_CMSTR;
2085 		else
2086 			value = 0;
2087 		if (ohci->csr_state_setclear_abdicate)
2088 			value |= CSR_STATE_BIT_ABDICATE;
2089 
2090 		return value;
2091 
2092 	case CSR_NODE_IDS:
2093 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2094 
2095 	case CSR_CYCLE_TIME:
2096 		return get_cycle_time(ohci);
2097 
2098 	case CSR_BUS_TIME:
2099 		/*
2100 		 * We might be called just after the cycle timer has wrapped
2101 		 * around but just before the cycle64Seconds handler, so we
2102 		 * better check here, too, if the bus time needs to be updated.
2103 		 */
2104 		spin_lock_irqsave(&ohci->lock, flags);
2105 		value = update_bus_time(ohci);
2106 		spin_unlock_irqrestore(&ohci->lock, flags);
2107 		return value;
2108 
2109 	case CSR_BUSY_TIMEOUT:
2110 		value = reg_read(ohci, OHCI1394_ATRetries);
2111 		return (value >> 4) & 0x0ffff00f;
2112 
2113 	case CSR_PRIORITY_BUDGET:
2114 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2115 			(ohci->pri_req_max << 8);
2116 
2117 	default:
2118 		WARN_ON(1);
2119 		return 0;
2120 	}
2121 }
2122 
2123 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2124 {
2125 	struct fw_ohci *ohci = fw_ohci(card);
2126 	unsigned long flags;
2127 
2128 	switch (csr_offset) {
2129 	case CSR_STATE_CLEAR:
2130 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2131 			reg_write(ohci, OHCI1394_LinkControlClear,
2132 				  OHCI1394_LinkControl_cycleMaster);
2133 			flush_writes(ohci);
2134 		}
2135 		if (value & CSR_STATE_BIT_ABDICATE)
2136 			ohci->csr_state_setclear_abdicate = false;
2137 		break;
2138 
2139 	case CSR_STATE_SET:
2140 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2141 			reg_write(ohci, OHCI1394_LinkControlSet,
2142 				  OHCI1394_LinkControl_cycleMaster);
2143 			flush_writes(ohci);
2144 		}
2145 		if (value & CSR_STATE_BIT_ABDICATE)
2146 			ohci->csr_state_setclear_abdicate = true;
2147 		break;
2148 
2149 	case CSR_NODE_IDS:
2150 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2151 		flush_writes(ohci);
2152 		break;
2153 
2154 	case CSR_CYCLE_TIME:
2155 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2156 		reg_write(ohci, OHCI1394_IntEventSet,
2157 			  OHCI1394_cycleInconsistent);
2158 		flush_writes(ohci);
2159 		break;
2160 
2161 	case CSR_BUS_TIME:
2162 		spin_lock_irqsave(&ohci->lock, flags);
2163 		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2164 		spin_unlock_irqrestore(&ohci->lock, flags);
2165 		break;
2166 
2167 	case CSR_BUSY_TIMEOUT:
2168 		value = (value & 0xf) | ((value & 0xf) << 4) |
2169 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2170 		reg_write(ohci, OHCI1394_ATRetries, value);
2171 		flush_writes(ohci);
2172 		break;
2173 
2174 	case CSR_PRIORITY_BUDGET:
2175 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2176 		flush_writes(ohci);
2177 		break;
2178 
2179 	default:
2180 		WARN_ON(1);
2181 		break;
2182 	}
2183 }
2184 
2185 static void copy_iso_headers(struct iso_context *ctx, void *p)
2186 {
2187 	int i = ctx->header_length;
2188 
2189 	if (i + ctx->base.header_size > PAGE_SIZE)
2190 		return;
2191 
2192 	/*
2193 	 * The iso header is byteswapped to little endian by
2194 	 * the controller, but the remaining header quadlets
2195 	 * are big endian.  We want to present all the headers
2196 	 * as big endian, so we have to swap the first quadlet.
2197 	 */
2198 	if (ctx->base.header_size > 0)
2199 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2200 	if (ctx->base.header_size > 4)
2201 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2202 	if (ctx->base.header_size > 8)
2203 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2204 	ctx->header_length += ctx->base.header_size;
2205 }
2206 
2207 static int handle_ir_packet_per_buffer(struct context *context,
2208 				       struct descriptor *d,
2209 				       struct descriptor *last)
2210 {
2211 	struct iso_context *ctx =
2212 		container_of(context, struct iso_context, context);
2213 	struct descriptor *pd;
2214 	__le32 *ir_header;
2215 	void *p;
2216 
2217 	for (pd = d; pd <= last; pd++)
2218 		if (pd->transfer_status)
2219 			break;
2220 	if (pd > last)
2221 		/* Descriptor(s) not done yet, stop iteration */
2222 		return 0;
2223 
2224 	p = last + 1;
2225 	copy_iso_headers(ctx, p);
2226 
2227 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2228 		ir_header = (__le32 *) p;
2229 		ctx->base.callback.sc(&ctx->base,
2230 				      le32_to_cpu(ir_header[0]) & 0xffff,
2231 				      ctx->header_length, ctx->header,
2232 				      ctx->base.callback_data);
2233 		ctx->header_length = 0;
2234 	}
2235 
2236 	return 1;
2237 }
2238 
2239 /* d == last because each descriptor block is only a single descriptor. */
2240 static int handle_ir_buffer_fill(struct context *context,
2241 				 struct descriptor *d,
2242 				 struct descriptor *last)
2243 {
2244 	struct iso_context *ctx =
2245 		container_of(context, struct iso_context, context);
2246 
2247 	if (!last->transfer_status)
2248 		/* Descriptor(s) not done yet, stop iteration */
2249 		return 0;
2250 
2251 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2252 		ctx->base.callback.mc(&ctx->base,
2253 				      le32_to_cpu(last->data_address) +
2254 				      le16_to_cpu(last->req_count) -
2255 				      le16_to_cpu(last->res_count),
2256 				      ctx->base.callback_data);
2257 
2258 	return 1;
2259 }
2260 
2261 static int handle_it_packet(struct context *context,
2262 			    struct descriptor *d,
2263 			    struct descriptor *last)
2264 {
2265 	struct iso_context *ctx =
2266 		container_of(context, struct iso_context, context);
2267 	int i;
2268 	struct descriptor *pd;
2269 
2270 	for (pd = d; pd <= last; pd++)
2271 		if (pd->transfer_status)
2272 			break;
2273 	if (pd > last)
2274 		/* Descriptor(s) not done yet, stop iteration */
2275 		return 0;
2276 
2277 	i = ctx->header_length;
2278 	if (i + 4 < PAGE_SIZE) {
2279 		/* Present this value as big-endian to match the receive code */
2280 		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2281 				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2282 				le16_to_cpu(pd->res_count));
2283 		ctx->header_length += 4;
2284 	}
2285 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2286 		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2287 				      ctx->header_length, ctx->header,
2288 				      ctx->base.callback_data);
2289 		ctx->header_length = 0;
2290 	}
2291 	return 1;
2292 }
2293 
2294 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2295 {
2296 	u32 hi = channels >> 32, lo = channels;
2297 
2298 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2299 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2300 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2301 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2302 	mmiowb();
2303 	ohci->mc_channels = channels;
2304 }
2305 
2306 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2307 				int type, int channel, size_t header_size)
2308 {
2309 	struct fw_ohci *ohci = fw_ohci(card);
2310 	struct iso_context *uninitialized_var(ctx);
2311 	descriptor_callback_t uninitialized_var(callback);
2312 	u64 *uninitialized_var(channels);
2313 	u32 *uninitialized_var(mask), uninitialized_var(regs);
2314 	unsigned long flags;
2315 	int index, ret = -EBUSY;
2316 
2317 	spin_lock_irqsave(&ohci->lock, flags);
2318 
2319 	switch (type) {
2320 	case FW_ISO_CONTEXT_TRANSMIT:
2321 		mask     = &ohci->it_context_mask;
2322 		callback = handle_it_packet;
2323 		index    = ffs(*mask) - 1;
2324 		if (index >= 0) {
2325 			*mask &= ~(1 << index);
2326 			regs = OHCI1394_IsoXmitContextBase(index);
2327 			ctx  = &ohci->it_context_list[index];
2328 		}
2329 		break;
2330 
2331 	case FW_ISO_CONTEXT_RECEIVE:
2332 		channels = &ohci->ir_context_channels;
2333 		mask     = &ohci->ir_context_mask;
2334 		callback = handle_ir_packet_per_buffer;
2335 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2336 		if (index >= 0) {
2337 			*channels &= ~(1ULL << channel);
2338 			*mask     &= ~(1 << index);
2339 			regs = OHCI1394_IsoRcvContextBase(index);
2340 			ctx  = &ohci->ir_context_list[index];
2341 		}
2342 		break;
2343 
2344 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2345 		mask     = &ohci->ir_context_mask;
2346 		callback = handle_ir_buffer_fill;
2347 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2348 		if (index >= 0) {
2349 			ohci->mc_allocated = true;
2350 			*mask &= ~(1 << index);
2351 			regs = OHCI1394_IsoRcvContextBase(index);
2352 			ctx  = &ohci->ir_context_list[index];
2353 		}
2354 		break;
2355 
2356 	default:
2357 		index = -1;
2358 		ret = -ENOSYS;
2359 	}
2360 
2361 	spin_unlock_irqrestore(&ohci->lock, flags);
2362 
2363 	if (index < 0)
2364 		return ERR_PTR(ret);
2365 
2366 	memset(ctx, 0, sizeof(*ctx));
2367 	ctx->header_length = 0;
2368 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2369 	if (ctx->header == NULL) {
2370 		ret = -ENOMEM;
2371 		goto out;
2372 	}
2373 	ret = context_init(&ctx->context, ohci, regs, callback);
2374 	if (ret < 0)
2375 		goto out_with_header;
2376 
2377 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2378 		set_multichannel_mask(ohci, 0);
2379 
2380 	return &ctx->base;
2381 
2382  out_with_header:
2383 	free_page((unsigned long)ctx->header);
2384  out:
2385 	spin_lock_irqsave(&ohci->lock, flags);
2386 
2387 	switch (type) {
2388 	case FW_ISO_CONTEXT_RECEIVE:
2389 		*channels |= 1ULL << channel;
2390 		break;
2391 
2392 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2393 		ohci->mc_allocated = false;
2394 		break;
2395 	}
2396 	*mask |= 1 << index;
2397 
2398 	spin_unlock_irqrestore(&ohci->lock, flags);
2399 
2400 	return ERR_PTR(ret);
2401 }
2402 
2403 static int ohci_start_iso(struct fw_iso_context *base,
2404 			  s32 cycle, u32 sync, u32 tags)
2405 {
2406 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2407 	struct fw_ohci *ohci = ctx->context.ohci;
2408 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2409 	int index;
2410 
2411 	switch (ctx->base.type) {
2412 	case FW_ISO_CONTEXT_TRANSMIT:
2413 		index = ctx - ohci->it_context_list;
2414 		match = 0;
2415 		if (cycle >= 0)
2416 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2417 				(cycle & 0x7fff) << 16;
2418 
2419 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2420 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2421 		context_run(&ctx->context, match);
2422 		break;
2423 
2424 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2425 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2426 		/* fall through */
2427 	case FW_ISO_CONTEXT_RECEIVE:
2428 		index = ctx - ohci->ir_context_list;
2429 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2430 		if (cycle >= 0) {
2431 			match |= (cycle & 0x07fff) << 12;
2432 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2433 		}
2434 
2435 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2436 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2437 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2438 		context_run(&ctx->context, control);
2439 		break;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static int ohci_stop_iso(struct fw_iso_context *base)
2446 {
2447 	struct fw_ohci *ohci = fw_ohci(base->card);
2448 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2449 	int index;
2450 
2451 	switch (ctx->base.type) {
2452 	case FW_ISO_CONTEXT_TRANSMIT:
2453 		index = ctx - ohci->it_context_list;
2454 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2455 		break;
2456 
2457 	case FW_ISO_CONTEXT_RECEIVE:
2458 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2459 		index = ctx - ohci->ir_context_list;
2460 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2461 		break;
2462 	}
2463 	flush_writes(ohci);
2464 	context_stop(&ctx->context);
2465 
2466 	return 0;
2467 }
2468 
2469 static void ohci_free_iso_context(struct fw_iso_context *base)
2470 {
2471 	struct fw_ohci *ohci = fw_ohci(base->card);
2472 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2473 	unsigned long flags;
2474 	int index;
2475 
2476 	ohci_stop_iso(base);
2477 	context_release(&ctx->context);
2478 	free_page((unsigned long)ctx->header);
2479 
2480 	spin_lock_irqsave(&ohci->lock, flags);
2481 
2482 	switch (base->type) {
2483 	case FW_ISO_CONTEXT_TRANSMIT:
2484 		index = ctx - ohci->it_context_list;
2485 		ohci->it_context_mask |= 1 << index;
2486 		break;
2487 
2488 	case FW_ISO_CONTEXT_RECEIVE:
2489 		index = ctx - ohci->ir_context_list;
2490 		ohci->ir_context_mask |= 1 << index;
2491 		ohci->ir_context_channels |= 1ULL << base->channel;
2492 		break;
2493 
2494 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2495 		index = ctx - ohci->ir_context_list;
2496 		ohci->ir_context_mask |= 1 << index;
2497 		ohci->ir_context_channels |= ohci->mc_channels;
2498 		ohci->mc_channels = 0;
2499 		ohci->mc_allocated = false;
2500 		break;
2501 	}
2502 
2503 	spin_unlock_irqrestore(&ohci->lock, flags);
2504 }
2505 
2506 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2507 {
2508 	struct fw_ohci *ohci = fw_ohci(base->card);
2509 	unsigned long flags;
2510 	int ret;
2511 
2512 	switch (base->type) {
2513 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2514 
2515 		spin_lock_irqsave(&ohci->lock, flags);
2516 
2517 		/* Don't allow multichannel to grab other contexts' channels. */
2518 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2519 			*channels = ohci->ir_context_channels;
2520 			ret = -EBUSY;
2521 		} else {
2522 			set_multichannel_mask(ohci, *channels);
2523 			ret = 0;
2524 		}
2525 
2526 		spin_unlock_irqrestore(&ohci->lock, flags);
2527 
2528 		break;
2529 	default:
2530 		ret = -EINVAL;
2531 	}
2532 
2533 	return ret;
2534 }
2535 
2536 static int queue_iso_transmit(struct iso_context *ctx,
2537 			      struct fw_iso_packet *packet,
2538 			      struct fw_iso_buffer *buffer,
2539 			      unsigned long payload)
2540 {
2541 	struct descriptor *d, *last, *pd;
2542 	struct fw_iso_packet *p;
2543 	__le32 *header;
2544 	dma_addr_t d_bus, page_bus;
2545 	u32 z, header_z, payload_z, irq;
2546 	u32 payload_index, payload_end_index, next_page_index;
2547 	int page, end_page, i, length, offset;
2548 
2549 	p = packet;
2550 	payload_index = payload;
2551 
2552 	if (p->skip)
2553 		z = 1;
2554 	else
2555 		z = 2;
2556 	if (p->header_length > 0)
2557 		z++;
2558 
2559 	/* Determine the first page the payload isn't contained in. */
2560 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2561 	if (p->payload_length > 0)
2562 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2563 	else
2564 		payload_z = 0;
2565 
2566 	z += payload_z;
2567 
2568 	/* Get header size in number of descriptors. */
2569 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2570 
2571 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2572 	if (d == NULL)
2573 		return -ENOMEM;
2574 
2575 	if (!p->skip) {
2576 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2577 		d[0].req_count = cpu_to_le16(8);
2578 		/*
2579 		 * Link the skip address to this descriptor itself.  This causes
2580 		 * a context to skip a cycle whenever lost cycles or FIFO
2581 		 * overruns occur, without dropping the data.  The application
2582 		 * should then decide whether this is an error condition or not.
2583 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
2584 		 */
2585 		d[0].branch_address = cpu_to_le32(d_bus | z);
2586 
2587 		header = (__le32 *) &d[1];
2588 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2589 					IT_HEADER_TAG(p->tag) |
2590 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2591 					IT_HEADER_CHANNEL(ctx->base.channel) |
2592 					IT_HEADER_SPEED(ctx->base.speed));
2593 		header[1] =
2594 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2595 							  p->payload_length));
2596 	}
2597 
2598 	if (p->header_length > 0) {
2599 		d[2].req_count    = cpu_to_le16(p->header_length);
2600 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2601 		memcpy(&d[z], p->header, p->header_length);
2602 	}
2603 
2604 	pd = d + z - payload_z;
2605 	payload_end_index = payload_index + p->payload_length;
2606 	for (i = 0; i < payload_z; i++) {
2607 		page               = payload_index >> PAGE_SHIFT;
2608 		offset             = payload_index & ~PAGE_MASK;
2609 		next_page_index    = (page + 1) << PAGE_SHIFT;
2610 		length             =
2611 			min(next_page_index, payload_end_index) - payload_index;
2612 		pd[i].req_count    = cpu_to_le16(length);
2613 
2614 		page_bus = page_private(buffer->pages[page]);
2615 		pd[i].data_address = cpu_to_le32(page_bus + offset);
2616 
2617 		payload_index += length;
2618 	}
2619 
2620 	if (p->interrupt)
2621 		irq = DESCRIPTOR_IRQ_ALWAYS;
2622 	else
2623 		irq = DESCRIPTOR_NO_IRQ;
2624 
2625 	last = z == 2 ? d : d + z - 1;
2626 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2627 				     DESCRIPTOR_STATUS |
2628 				     DESCRIPTOR_BRANCH_ALWAYS |
2629 				     irq);
2630 
2631 	context_append(&ctx->context, d, z, header_z);
2632 
2633 	return 0;
2634 }
2635 
2636 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2637 				       struct fw_iso_packet *packet,
2638 				       struct fw_iso_buffer *buffer,
2639 				       unsigned long payload)
2640 {
2641 	struct descriptor *d, *pd;
2642 	dma_addr_t d_bus, page_bus;
2643 	u32 z, header_z, rest;
2644 	int i, j, length;
2645 	int page, offset, packet_count, header_size, payload_per_buffer;
2646 
2647 	/*
2648 	 * The OHCI controller puts the isochronous header and trailer in the
2649 	 * buffer, so we need at least 8 bytes.
2650 	 */
2651 	packet_count = packet->header_length / ctx->base.header_size;
2652 	header_size  = max(ctx->base.header_size, (size_t)8);
2653 
2654 	/* Get header size in number of descriptors. */
2655 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2656 	page     = payload >> PAGE_SHIFT;
2657 	offset   = payload & ~PAGE_MASK;
2658 	payload_per_buffer = packet->payload_length / packet_count;
2659 
2660 	for (i = 0; i < packet_count; i++) {
2661 		/* d points to the header descriptor */
2662 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2663 		d = context_get_descriptors(&ctx->context,
2664 				z + header_z, &d_bus);
2665 		if (d == NULL)
2666 			return -ENOMEM;
2667 
2668 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2669 					      DESCRIPTOR_INPUT_MORE);
2670 		if (packet->skip && i == 0)
2671 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2672 		d->req_count    = cpu_to_le16(header_size);
2673 		d->res_count    = d->req_count;
2674 		d->transfer_status = 0;
2675 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2676 
2677 		rest = payload_per_buffer;
2678 		pd = d;
2679 		for (j = 1; j < z; j++) {
2680 			pd++;
2681 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2682 						  DESCRIPTOR_INPUT_MORE);
2683 
2684 			if (offset + rest < PAGE_SIZE)
2685 				length = rest;
2686 			else
2687 				length = PAGE_SIZE - offset;
2688 			pd->req_count = cpu_to_le16(length);
2689 			pd->res_count = pd->req_count;
2690 			pd->transfer_status = 0;
2691 
2692 			page_bus = page_private(buffer->pages[page]);
2693 			pd->data_address = cpu_to_le32(page_bus + offset);
2694 
2695 			offset = (offset + length) & ~PAGE_MASK;
2696 			rest -= length;
2697 			if (offset == 0)
2698 				page++;
2699 		}
2700 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2701 					  DESCRIPTOR_INPUT_LAST |
2702 					  DESCRIPTOR_BRANCH_ALWAYS);
2703 		if (packet->interrupt && i == packet_count - 1)
2704 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2705 
2706 		context_append(&ctx->context, d, z, header_z);
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 static int queue_iso_buffer_fill(struct iso_context *ctx,
2713 				 struct fw_iso_packet *packet,
2714 				 struct fw_iso_buffer *buffer,
2715 				 unsigned long payload)
2716 {
2717 	struct descriptor *d;
2718 	dma_addr_t d_bus, page_bus;
2719 	int page, offset, rest, z, i, length;
2720 
2721 	page   = payload >> PAGE_SHIFT;
2722 	offset = payload & ~PAGE_MASK;
2723 	rest   = packet->payload_length;
2724 
2725 	/* We need one descriptor for each page in the buffer. */
2726 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2727 
2728 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2729 		return -EFAULT;
2730 
2731 	for (i = 0; i < z; i++) {
2732 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
2733 		if (d == NULL)
2734 			return -ENOMEM;
2735 
2736 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2737 					 DESCRIPTOR_BRANCH_ALWAYS);
2738 		if (packet->skip && i == 0)
2739 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2740 		if (packet->interrupt && i == z - 1)
2741 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2742 
2743 		if (offset + rest < PAGE_SIZE)
2744 			length = rest;
2745 		else
2746 			length = PAGE_SIZE - offset;
2747 		d->req_count = cpu_to_le16(length);
2748 		d->res_count = d->req_count;
2749 		d->transfer_status = 0;
2750 
2751 		page_bus = page_private(buffer->pages[page]);
2752 		d->data_address = cpu_to_le32(page_bus + offset);
2753 
2754 		rest -= length;
2755 		offset = 0;
2756 		page++;
2757 
2758 		context_append(&ctx->context, d, 1, 0);
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static int ohci_queue_iso(struct fw_iso_context *base,
2765 			  struct fw_iso_packet *packet,
2766 			  struct fw_iso_buffer *buffer,
2767 			  unsigned long payload)
2768 {
2769 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2770 	unsigned long flags;
2771 	int ret = -ENOSYS;
2772 
2773 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2774 	switch (base->type) {
2775 	case FW_ISO_CONTEXT_TRANSMIT:
2776 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
2777 		break;
2778 	case FW_ISO_CONTEXT_RECEIVE:
2779 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2780 		break;
2781 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2782 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2783 		break;
2784 	}
2785 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2786 
2787 	return ret;
2788 }
2789 
2790 static const struct fw_card_driver ohci_driver = {
2791 	.enable			= ohci_enable,
2792 	.read_phy_reg		= ohci_read_phy_reg,
2793 	.update_phy_reg		= ohci_update_phy_reg,
2794 	.set_config_rom		= ohci_set_config_rom,
2795 	.send_request		= ohci_send_request,
2796 	.send_response		= ohci_send_response,
2797 	.cancel_packet		= ohci_cancel_packet,
2798 	.enable_phys_dma	= ohci_enable_phys_dma,
2799 	.read_csr		= ohci_read_csr,
2800 	.write_csr		= ohci_write_csr,
2801 
2802 	.allocate_iso_context	= ohci_allocate_iso_context,
2803 	.free_iso_context	= ohci_free_iso_context,
2804 	.set_iso_channels	= ohci_set_iso_channels,
2805 	.queue_iso		= ohci_queue_iso,
2806 	.start_iso		= ohci_start_iso,
2807 	.stop_iso		= ohci_stop_iso,
2808 };
2809 
2810 #ifdef CONFIG_PPC_PMAC
2811 static void pmac_ohci_on(struct pci_dev *dev)
2812 {
2813 	if (machine_is(powermac)) {
2814 		struct device_node *ofn = pci_device_to_OF_node(dev);
2815 
2816 		if (ofn) {
2817 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2818 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2819 		}
2820 	}
2821 }
2822 
2823 static void pmac_ohci_off(struct pci_dev *dev)
2824 {
2825 	if (machine_is(powermac)) {
2826 		struct device_node *ofn = pci_device_to_OF_node(dev);
2827 
2828 		if (ofn) {
2829 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2830 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2831 		}
2832 	}
2833 }
2834 #else
2835 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2836 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2837 #endif /* CONFIG_PPC_PMAC */
2838 
2839 static int __devinit pci_probe(struct pci_dev *dev,
2840 			       const struct pci_device_id *ent)
2841 {
2842 	struct fw_ohci *ohci;
2843 	u32 bus_options, max_receive, link_speed, version;
2844 	u64 guid;
2845 	int i, err, n_ir, n_it;
2846 	size_t size;
2847 
2848 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2849 	if (ohci == NULL) {
2850 		err = -ENOMEM;
2851 		goto fail;
2852 	}
2853 
2854 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2855 
2856 	pmac_ohci_on(dev);
2857 
2858 	err = pci_enable_device(dev);
2859 	if (err) {
2860 		fw_error("Failed to enable OHCI hardware\n");
2861 		goto fail_free;
2862 	}
2863 
2864 	pci_set_master(dev);
2865 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2866 	pci_set_drvdata(dev, ohci);
2867 
2868 	spin_lock_init(&ohci->lock);
2869 	mutex_init(&ohci->phy_reg_mutex);
2870 
2871 	tasklet_init(&ohci->bus_reset_tasklet,
2872 		     bus_reset_tasklet, (unsigned long)ohci);
2873 
2874 	err = pci_request_region(dev, 0, ohci_driver_name);
2875 	if (err) {
2876 		fw_error("MMIO resource unavailable\n");
2877 		goto fail_disable;
2878 	}
2879 
2880 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2881 	if (ohci->registers == NULL) {
2882 		fw_error("Failed to remap registers\n");
2883 		err = -ENXIO;
2884 		goto fail_iomem;
2885 	}
2886 
2887 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2888 		if (ohci_quirks[i].vendor == dev->vendor &&
2889 		    (ohci_quirks[i].device == dev->device ||
2890 		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2891 			ohci->quirks = ohci_quirks[i].flags;
2892 			break;
2893 		}
2894 	if (param_quirks)
2895 		ohci->quirks = param_quirks;
2896 
2897 	ar_context_init(&ohci->ar_request_ctx, ohci,
2898 			OHCI1394_AsReqRcvContextControlSet);
2899 
2900 	ar_context_init(&ohci->ar_response_ctx, ohci,
2901 			OHCI1394_AsRspRcvContextControlSet);
2902 
2903 	context_init(&ohci->at_request_ctx, ohci,
2904 		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2905 
2906 	context_init(&ohci->at_response_ctx, ohci,
2907 		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2908 
2909 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2910 	ohci->ir_context_channels = ~0ULL;
2911 	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2912 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2913 	n_ir = hweight32(ohci->ir_context_mask);
2914 	size = sizeof(struct iso_context) * n_ir;
2915 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2916 
2917 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2918 	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2919 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2920 	n_it = hweight32(ohci->it_context_mask);
2921 	size = sizeof(struct iso_context) * n_it;
2922 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2923 
2924 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2925 		err = -ENOMEM;
2926 		goto fail_contexts;
2927 	}
2928 
2929 	/* self-id dma buffer allocation */
2930 	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2931 					       SELF_ID_BUF_SIZE,
2932 					       &ohci->self_id_bus,
2933 					       GFP_KERNEL);
2934 	if (ohci->self_id_cpu == NULL) {
2935 		err = -ENOMEM;
2936 		goto fail_contexts;
2937 	}
2938 
2939 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
2940 	max_receive = (bus_options >> 12) & 0xf;
2941 	link_speed = bus_options & 0x7;
2942 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2943 		reg_read(ohci, OHCI1394_GUIDLo);
2944 
2945 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2946 	if (err)
2947 		goto fail_self_id;
2948 
2949 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2950 	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2951 		  "%d IR + %d IT contexts, quirks 0x%x\n",
2952 		  dev_name(&dev->dev), version >> 16, version & 0xff,
2953 		  n_ir, n_it, ohci->quirks);
2954 
2955 	return 0;
2956 
2957  fail_self_id:
2958 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2959 			  ohci->self_id_cpu, ohci->self_id_bus);
2960  fail_contexts:
2961 	kfree(ohci->ir_context_list);
2962 	kfree(ohci->it_context_list);
2963 	context_release(&ohci->at_response_ctx);
2964 	context_release(&ohci->at_request_ctx);
2965 	ar_context_release(&ohci->ar_response_ctx);
2966 	ar_context_release(&ohci->ar_request_ctx);
2967 	pci_iounmap(dev, ohci->registers);
2968  fail_iomem:
2969 	pci_release_region(dev, 0);
2970  fail_disable:
2971 	pci_disable_device(dev);
2972  fail_free:
2973 	kfree(&ohci->card);
2974 	pmac_ohci_off(dev);
2975  fail:
2976 	if (err == -ENOMEM)
2977 		fw_error("Out of memory\n");
2978 
2979 	return err;
2980 }
2981 
2982 static void pci_remove(struct pci_dev *dev)
2983 {
2984 	struct fw_ohci *ohci;
2985 
2986 	ohci = pci_get_drvdata(dev);
2987 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2988 	flush_writes(ohci);
2989 	fw_core_remove_card(&ohci->card);
2990 
2991 	/*
2992 	 * FIXME: Fail all pending packets here, now that the upper
2993 	 * layers can't queue any more.
2994 	 */
2995 
2996 	software_reset(ohci);
2997 	free_irq(dev->irq, ohci);
2998 
2999 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3000 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3001 				  ohci->next_config_rom, ohci->next_config_rom_bus);
3002 	if (ohci->config_rom)
3003 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3004 				  ohci->config_rom, ohci->config_rom_bus);
3005 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3006 			  ohci->self_id_cpu, ohci->self_id_bus);
3007 	ar_context_release(&ohci->ar_request_ctx);
3008 	ar_context_release(&ohci->ar_response_ctx);
3009 	context_release(&ohci->at_request_ctx);
3010 	context_release(&ohci->at_response_ctx);
3011 	kfree(ohci->it_context_list);
3012 	kfree(ohci->ir_context_list);
3013 	pci_disable_msi(dev);
3014 	pci_iounmap(dev, ohci->registers);
3015 	pci_release_region(dev, 0);
3016 	pci_disable_device(dev);
3017 	kfree(&ohci->card);
3018 	pmac_ohci_off(dev);
3019 
3020 	fw_notify("Removed fw-ohci device.\n");
3021 }
3022 
3023 #ifdef CONFIG_PM
3024 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3025 {
3026 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3027 	int err;
3028 
3029 	software_reset(ohci);
3030 	free_irq(dev->irq, ohci);
3031 	pci_disable_msi(dev);
3032 	err = pci_save_state(dev);
3033 	if (err) {
3034 		fw_error("pci_save_state failed\n");
3035 		return err;
3036 	}
3037 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3038 	if (err)
3039 		fw_error("pci_set_power_state failed with %d\n", err);
3040 	pmac_ohci_off(dev);
3041 
3042 	return 0;
3043 }
3044 
3045 static int pci_resume(struct pci_dev *dev)
3046 {
3047 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3048 	int err;
3049 
3050 	pmac_ohci_on(dev);
3051 	pci_set_power_state(dev, PCI_D0);
3052 	pci_restore_state(dev);
3053 	err = pci_enable_device(dev);
3054 	if (err) {
3055 		fw_error("pci_enable_device failed\n");
3056 		return err;
3057 	}
3058 
3059 	return ohci_enable(&ohci->card, NULL, 0);
3060 }
3061 #endif
3062 
3063 static const struct pci_device_id pci_table[] = {
3064 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3065 	{ }
3066 };
3067 
3068 MODULE_DEVICE_TABLE(pci, pci_table);
3069 
3070 static struct pci_driver fw_ohci_pci_driver = {
3071 	.name		= ohci_driver_name,
3072 	.id_table	= pci_table,
3073 	.probe		= pci_probe,
3074 	.remove		= pci_remove,
3075 #ifdef CONFIG_PM
3076 	.resume		= pci_resume,
3077 	.suspend	= pci_suspend,
3078 #endif
3079 };
3080 
3081 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3082 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3083 MODULE_LICENSE("GPL");
3084 
3085 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3086 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3087 MODULE_ALIAS("ohci1394");
3088 #endif
3089 
3090 static int __init fw_ohci_init(void)
3091 {
3092 	return pci_register_driver(&fw_ohci_pci_driver);
3093 }
3094 
3095 static void __exit fw_ohci_cleanup(void)
3096 {
3097 	pci_unregister_driver(&fw_ohci_pci_driver);
3098 }
3099 
3100 module_init(fw_ohci_init);
3101 module_exit(fw_ohci_cleanup);
3102