1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for OHCI 1394 controllers 4 * 5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/bug.h> 10 #include <linux/compiler.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/firewire.h> 15 #include <linux/firewire-constants.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/mutex.h> 25 #include <linux/pci.h> 26 #include <linux/pci_ids.h> 27 #include <linux/slab.h> 28 #include <linux/spinlock.h> 29 #include <linux/string.h> 30 #include <linux/time.h> 31 #include <linux/vmalloc.h> 32 #include <linux/workqueue.h> 33 34 #include <asm/byteorder.h> 35 #include <asm/page.h> 36 37 #ifdef CONFIG_PPC_PMAC 38 #include <asm/pmac_feature.h> 39 #endif 40 41 #include "core.h" 42 #include "ohci.h" 43 #include "packet-header-definitions.h" 44 #include "phy-packet-definitions.h" 45 46 #include <trace/events/firewire.h> 47 48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk); 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/firewire_ohci.h> 52 53 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args) 54 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args) 55 56 #define DESCRIPTOR_OUTPUT_MORE 0 57 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) 58 #define DESCRIPTOR_INPUT_MORE (2 << 12) 59 #define DESCRIPTOR_INPUT_LAST (3 << 12) 60 #define DESCRIPTOR_STATUS (1 << 11) 61 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) 62 #define DESCRIPTOR_PING (1 << 7) 63 #define DESCRIPTOR_YY (1 << 6) 64 #define DESCRIPTOR_NO_IRQ (0 << 4) 65 #define DESCRIPTOR_IRQ_ERROR (1 << 4) 66 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) 67 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) 68 #define DESCRIPTOR_WAIT (3 << 0) 69 70 #define DESCRIPTOR_CMD (0xf << 12) 71 72 struct descriptor { 73 __le16 req_count; 74 __le16 control; 75 __le32 data_address; 76 __le32 branch_address; 77 __le16 res_count; 78 __le16 transfer_status; 79 } __aligned(16); 80 81 #define CONTROL_SET(regs) (regs) 82 #define CONTROL_CLEAR(regs) ((regs) + 4) 83 #define COMMAND_PTR(regs) ((regs) + 12) 84 #define CONTEXT_MATCH(regs) ((regs) + 16) 85 86 #define AR_BUFFER_SIZE (32*1024) 87 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE) 88 /* we need at least two pages for proper list management */ 89 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2) 90 91 #define MAX_ASYNC_PAYLOAD 4096 92 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4) 93 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE) 94 95 struct ar_context { 96 struct fw_ohci *ohci; 97 struct page *pages[AR_BUFFERS]; 98 void *buffer; 99 struct descriptor *descriptors; 100 dma_addr_t descriptors_bus; 101 void *pointer; 102 unsigned int last_buffer_index; 103 u32 regs; 104 struct work_struct work; 105 }; 106 107 struct context; 108 109 typedef int (*descriptor_callback_t)(struct context *ctx, 110 struct descriptor *d, 111 struct descriptor *last); 112 113 /* 114 * A buffer that contains a block of DMA-able coherent memory used for 115 * storing a portion of a DMA descriptor program. 116 */ 117 struct descriptor_buffer { 118 struct list_head list; 119 dma_addr_t buffer_bus; 120 size_t buffer_size; 121 size_t used; 122 struct descriptor buffer[]; 123 }; 124 125 struct context { 126 struct fw_ohci *ohci; 127 u32 regs; 128 int total_allocation; 129 u32 current_bus; 130 bool running; 131 132 /* 133 * List of page-sized buffers for storing DMA descriptors. 134 * Head of list contains buffers in use and tail of list contains 135 * free buffers. 136 */ 137 struct list_head buffer_list; 138 139 /* 140 * Pointer to a buffer inside buffer_list that contains the tail 141 * end of the current DMA program. 142 */ 143 struct descriptor_buffer *buffer_tail; 144 145 /* 146 * The descriptor containing the branch address of the first 147 * descriptor that has not yet been filled by the device. 148 */ 149 struct descriptor *last; 150 151 /* 152 * The last descriptor block in the DMA program. It contains the branch 153 * address that must be updated upon appending a new descriptor. 154 */ 155 struct descriptor *prev; 156 int prev_z; 157 158 descriptor_callback_t callback; 159 }; 160 161 struct at_context { 162 struct context context; 163 struct work_struct work; 164 bool flushing; 165 }; 166 167 struct iso_context { 168 struct fw_iso_context base; 169 struct context context; 170 void *header; 171 size_t header_length; 172 unsigned long flushing_completions; 173 u32 mc_buffer_bus; 174 u16 mc_completed; 175 u16 last_timestamp; 176 u8 sync; 177 u8 tags; 178 }; 179 180 #define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) 181 182 struct fw_ohci { 183 struct fw_card card; 184 185 __iomem char *registers; 186 int node_id; 187 int generation; 188 int request_generation; /* for timestamping incoming requests */ 189 unsigned quirks; 190 unsigned int pri_req_max; 191 u32 bus_time; 192 bool bus_time_running; 193 bool is_root; 194 bool csr_state_setclear_abdicate; 195 int n_ir; 196 int n_it; 197 /* 198 * Spinlock for accessing fw_ohci data. Never call out of 199 * this driver with this lock held. 200 */ 201 spinlock_t lock; 202 203 struct mutex phy_reg_mutex; 204 205 void *misc_buffer; 206 dma_addr_t misc_buffer_bus; 207 208 struct ar_context ar_request_ctx; 209 struct ar_context ar_response_ctx; 210 struct at_context at_request_ctx; 211 struct at_context at_response_ctx; 212 213 u32 it_context_support; 214 u32 it_context_mask; /* unoccupied IT contexts */ 215 struct iso_context *it_context_list; 216 u64 ir_context_channels; /* unoccupied channels */ 217 u32 ir_context_support; 218 u32 ir_context_mask; /* unoccupied IR contexts */ 219 struct iso_context *ir_context_list; 220 u64 mc_channels; /* channels in use by the multichannel IR context */ 221 bool mc_allocated; 222 223 __be32 *config_rom; 224 dma_addr_t config_rom_bus; 225 __be32 *next_config_rom; 226 dma_addr_t next_config_rom_bus; 227 __be32 next_header; 228 229 __le32 *self_id; 230 dma_addr_t self_id_bus; 231 232 u32 self_id_buffer[512]; 233 }; 234 235 static inline struct fw_ohci *fw_ohci(struct fw_card *card) 236 { 237 return container_of(card, struct fw_ohci, card); 238 } 239 240 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 241 #define IR_CONTEXT_BUFFER_FILL 0x80000000 242 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 243 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 244 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 245 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 246 247 #define CONTEXT_RUN 0x8000 248 #define CONTEXT_WAKE 0x1000 249 #define CONTEXT_DEAD 0x0800 250 #define CONTEXT_ACTIVE 0x0400 251 252 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf 253 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 254 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 255 256 #define OHCI1394_REGISTER_SIZE 0x800 257 #define OHCI1394_PCI_HCI_Control 0x40 258 #define SELF_ID_BUF_SIZE 0x800 259 #define OHCI_VERSION_1_1 0x010010 260 261 static char ohci_driver_name[] = KBUILD_MODNAME; 262 263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd 264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901 265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001 266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380 267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009 268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020 269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025 270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044 271 #define PCI_REV_ID_VIA_VT6306 0x46 272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403 273 274 #define QUIRK_CYCLE_TIMER 0x1 275 #define QUIRK_RESET_PACKET 0x2 276 #define QUIRK_BE_HEADERS 0x4 277 #define QUIRK_NO_1394A 0x8 278 #define QUIRK_NO_MSI 0x10 279 #define QUIRK_TI_SLLZ059 0x20 280 #define QUIRK_IR_WAKE 0x40 281 282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia 283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register 284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not 285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register, 286 // while it is probable due to detection of any type of PCIe error. 287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000 288 289 #if IS_ENABLED(CONFIG_X86) 290 291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci) 292 { 293 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ); 294 } 295 296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080 297 298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev) 299 { 300 const struct pci_dev *pcie_to_pci_bridge; 301 302 // Detect any type of AMD Ryzen machine. 303 if (!static_cpu_has(X86_FEATURE_ZEN)) 304 return false; 305 306 // Detect VIA VT6306/6307/6308. 307 if (pdev->vendor != PCI_VENDOR_ID_VIA) 308 return false; 309 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X) 310 return false; 311 312 // Detect Asmedia ASM1083/1085. 313 pcie_to_pci_bridge = pdev->bus->self; 314 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA) 315 return false; 316 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X) 317 return false; 318 319 return true; 320 } 321 322 #else 323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false 324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false 325 #endif 326 327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */ 328 static const struct { 329 unsigned short vendor, device, revision, flags; 330 } ohci_quirks[] = { 331 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID, 332 QUIRK_CYCLE_TIMER}, 333 334 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID, 335 QUIRK_BE_HEADERS}, 336 337 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6, 338 QUIRK_NO_MSI}, 339 340 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID, 341 QUIRK_RESET_PACKET}, 342 343 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID, 344 QUIRK_NO_MSI}, 345 346 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID, 347 QUIRK_CYCLE_TIMER}, 348 349 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID, 350 QUIRK_NO_MSI}, 351 352 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID, 353 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 354 355 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID, 356 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A}, 357 358 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID, 359 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 360 361 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID, 362 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 363 364 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID, 365 QUIRK_RESET_PACKET}, 366 367 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306, 368 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE}, 369 370 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0, 371 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI}, 372 373 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID, 374 QUIRK_NO_MSI}, 375 376 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID, 377 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 378 }; 379 380 /* This overrides anything that was found in ohci_quirks[]. */ 381 static int param_quirks; 382 module_param_named(quirks, param_quirks, int, 0644); 383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0" 384 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER) 385 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET) 386 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS) 387 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A) 388 ", disable MSI = " __stringify(QUIRK_NO_MSI) 389 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059) 390 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE) 391 ")"); 392 393 static bool param_remote_dma; 394 module_param_named(remote_dma, param_remote_dma, bool, 0444); 395 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)"); 396 397 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) 398 { 399 writel(data, ohci->registers + offset); 400 } 401 402 static inline u32 reg_read(const struct fw_ohci *ohci, int offset) 403 { 404 return readl(ohci->registers + offset); 405 } 406 407 static inline void flush_writes(const struct fw_ohci *ohci) 408 { 409 /* Do a dummy read to flush writes. */ 410 reg_read(ohci, OHCI1394_Version); 411 } 412 413 /* 414 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and 415 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex. 416 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg() 417 * directly. Exceptions are intrinsically serialized contexts like pci_probe. 418 */ 419 static int read_phy_reg(struct fw_ohci *ohci, int addr) 420 { 421 u32 val; 422 int i; 423 424 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); 425 for (i = 0; i < 3 + 100; i++) { 426 val = reg_read(ohci, OHCI1394_PhyControl); 427 if (!~val) 428 return -ENODEV; /* Card was ejected. */ 429 430 if (val & OHCI1394_PhyControl_ReadDone) 431 return OHCI1394_PhyControl_ReadData(val); 432 433 /* 434 * Try a few times without waiting. Sleeping is necessary 435 * only when the link/PHY interface is busy. 436 */ 437 if (i >= 3) 438 msleep(1); 439 } 440 ohci_err(ohci, "failed to read phy reg %d\n", addr); 441 dump_stack(); 442 443 return -EBUSY; 444 } 445 446 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val) 447 { 448 int i; 449 450 reg_write(ohci, OHCI1394_PhyControl, 451 OHCI1394_PhyControl_Write(addr, val)); 452 for (i = 0; i < 3 + 100; i++) { 453 val = reg_read(ohci, OHCI1394_PhyControl); 454 if (!~val) 455 return -ENODEV; /* Card was ejected. */ 456 457 if (!(val & OHCI1394_PhyControl_WritePending)) 458 return 0; 459 460 if (i >= 3) 461 msleep(1); 462 } 463 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val); 464 dump_stack(); 465 466 return -EBUSY; 467 } 468 469 static int update_phy_reg(struct fw_ohci *ohci, int addr, 470 int clear_bits, int set_bits) 471 { 472 int ret = read_phy_reg(ohci, addr); 473 if (ret < 0) 474 return ret; 475 476 /* 477 * The interrupt status bits are cleared by writing a one bit. 478 * Avoid clearing them unless explicitly requested in set_bits. 479 */ 480 if (addr == 5) 481 clear_bits |= PHY_INT_STATUS_BITS; 482 483 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits); 484 } 485 486 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr) 487 { 488 int ret; 489 490 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5); 491 if (ret < 0) 492 return ret; 493 494 return read_phy_reg(ohci, addr); 495 } 496 497 static int ohci_read_phy_reg(struct fw_card *card, int addr) 498 { 499 struct fw_ohci *ohci = fw_ohci(card); 500 501 guard(mutex)(&ohci->phy_reg_mutex); 502 503 return read_phy_reg(ohci, addr); 504 } 505 506 static int ohci_update_phy_reg(struct fw_card *card, int addr, 507 int clear_bits, int set_bits) 508 { 509 struct fw_ohci *ohci = fw_ohci(card); 510 511 guard(mutex)(&ohci->phy_reg_mutex); 512 513 return update_phy_reg(ohci, addr, clear_bits, set_bits); 514 } 515 516 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i) 517 { 518 return page_private(ctx->pages[i]); 519 } 520 521 static void ar_context_link_page(struct ar_context *ctx, unsigned int index) 522 { 523 struct descriptor *d; 524 525 d = &ctx->descriptors[index]; 526 d->branch_address &= cpu_to_le32(~0xf); 527 d->res_count = cpu_to_le16(PAGE_SIZE); 528 d->transfer_status = 0; 529 530 wmb(); /* finish init of new descriptors before branch_address update */ 531 d = &ctx->descriptors[ctx->last_buffer_index]; 532 d->branch_address |= cpu_to_le32(1); 533 534 ctx->last_buffer_index = index; 535 536 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 537 } 538 539 static void ar_context_release(struct ar_context *ctx) 540 { 541 struct device *dev = ctx->ohci->card.device; 542 unsigned int i; 543 544 if (!ctx->buffer) 545 return; 546 547 vunmap(ctx->buffer); 548 549 for (i = 0; i < AR_BUFFERS; i++) { 550 if (ctx->pages[i]) 551 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i], 552 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE); 553 } 554 } 555 556 static void ar_context_abort(struct ar_context *ctx, const char *error_msg) 557 { 558 struct fw_ohci *ohci = ctx->ohci; 559 560 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) { 561 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 562 flush_writes(ohci); 563 564 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg); 565 } 566 /* FIXME: restart? */ 567 } 568 569 static inline unsigned int ar_next_buffer_index(unsigned int index) 570 { 571 return (index + 1) % AR_BUFFERS; 572 } 573 574 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx) 575 { 576 return ar_next_buffer_index(ctx->last_buffer_index); 577 } 578 579 /* 580 * We search for the buffer that contains the last AR packet DMA data written 581 * by the controller. 582 */ 583 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx, 584 unsigned int *buffer_offset) 585 { 586 unsigned int i, next_i, last = ctx->last_buffer_index; 587 __le16 res_count, next_res_count; 588 589 i = ar_first_buffer_index(ctx); 590 res_count = READ_ONCE(ctx->descriptors[i].res_count); 591 592 /* A buffer that is not yet completely filled must be the last one. */ 593 while (i != last && res_count == 0) { 594 595 /* Peek at the next descriptor. */ 596 next_i = ar_next_buffer_index(i); 597 rmb(); /* read descriptors in order */ 598 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 599 /* 600 * If the next descriptor is still empty, we must stop at this 601 * descriptor. 602 */ 603 if (next_res_count == cpu_to_le16(PAGE_SIZE)) { 604 /* 605 * The exception is when the DMA data for one packet is 606 * split over three buffers; in this case, the middle 607 * buffer's descriptor might be never updated by the 608 * controller and look still empty, and we have to peek 609 * at the third one. 610 */ 611 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) { 612 next_i = ar_next_buffer_index(next_i); 613 rmb(); 614 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 615 if (next_res_count != cpu_to_le16(PAGE_SIZE)) 616 goto next_buffer_is_active; 617 } 618 619 break; 620 } 621 622 next_buffer_is_active: 623 i = next_i; 624 res_count = next_res_count; 625 } 626 627 rmb(); /* read res_count before the DMA data */ 628 629 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count); 630 if (*buffer_offset > PAGE_SIZE) { 631 *buffer_offset = 0; 632 ar_context_abort(ctx, "corrupted descriptor"); 633 } 634 635 return i; 636 } 637 638 static void ar_sync_buffers_for_cpu(struct ar_context *ctx, 639 unsigned int end_buffer_index, 640 unsigned int end_buffer_offset) 641 { 642 unsigned int i; 643 644 i = ar_first_buffer_index(ctx); 645 while (i != end_buffer_index) { 646 dma_sync_single_for_cpu(ctx->ohci->card.device, 647 ar_buffer_bus(ctx, i), 648 PAGE_SIZE, DMA_FROM_DEVICE); 649 i = ar_next_buffer_index(i); 650 } 651 if (end_buffer_offset > 0) 652 dma_sync_single_for_cpu(ctx->ohci->card.device, 653 ar_buffer_bus(ctx, i), 654 end_buffer_offset, DMA_FROM_DEVICE); 655 } 656 657 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 658 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk) 659 { 660 return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value); 661 } 662 663 static bool has_be_header_quirk(const struct fw_ohci *ohci) 664 { 665 return !!(ohci->quirks & QUIRK_BE_HEADERS); 666 } 667 #else 668 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused) 669 { 670 return le32_to_cpu(value); 671 } 672 673 static bool has_be_header_quirk(const struct fw_ohci *ohci) 674 { 675 return false; 676 } 677 #endif 678 679 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) 680 { 681 struct fw_ohci *ohci = ctx->ohci; 682 struct fw_packet p; 683 u32 status, length, tcode; 684 int evt; 685 686 p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci)); 687 p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci)); 688 p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci)); 689 690 tcode = async_header_get_tcode(p.header); 691 switch (tcode) { 692 case TCODE_WRITE_QUADLET_REQUEST: 693 case TCODE_READ_QUADLET_RESPONSE: 694 p.header[3] = (__force __u32) buffer[3]; 695 p.header_length = 16; 696 p.payload_length = 0; 697 break; 698 699 case TCODE_READ_BLOCK_REQUEST : 700 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci)); 701 p.header_length = 16; 702 p.payload_length = 0; 703 break; 704 705 case TCODE_WRITE_BLOCK_REQUEST: 706 case TCODE_READ_BLOCK_RESPONSE: 707 case TCODE_LOCK_REQUEST: 708 case TCODE_LOCK_RESPONSE: 709 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci)); 710 p.header_length = 16; 711 p.payload_length = async_header_get_data_length(p.header); 712 if (p.payload_length > MAX_ASYNC_PAYLOAD) { 713 ar_context_abort(ctx, "invalid packet length"); 714 return NULL; 715 } 716 break; 717 718 case TCODE_WRITE_RESPONSE: 719 case TCODE_READ_QUADLET_REQUEST: 720 case TCODE_LINK_INTERNAL: 721 p.header_length = 12; 722 p.payload_length = 0; 723 break; 724 725 default: 726 ar_context_abort(ctx, "invalid tcode"); 727 return NULL; 728 } 729 730 p.payload = (void *) buffer + p.header_length; 731 732 /* FIXME: What to do about evt_* errors? */ 733 length = (p.header_length + p.payload_length + 3) / 4; 734 status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci)); 735 evt = (status >> 16) & 0x1f; 736 737 p.ack = evt - 16; 738 p.speed = (status >> 21) & 0x7; 739 p.timestamp = status & 0xffff; 740 p.generation = ohci->request_generation; 741 742 /* 743 * Several controllers, notably from NEC and VIA, forget to 744 * write ack_complete status at PHY packet reception. 745 */ 746 if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL) 747 p.ack = ACK_COMPLETE; 748 749 /* 750 * The OHCI bus reset handler synthesizes a PHY packet with 751 * the new generation number when a bus reset happens (see 752 * section 8.4.2.3). This helps us determine when a request 753 * was received and make sure we send the response in the same 754 * generation. We only need this for requests; for responses 755 * we use the unique tlabel for finding the matching 756 * request. 757 * 758 * Alas some chips sometimes emit bus reset packets with a 759 * wrong generation. We set the correct generation for these 760 * at a slightly incorrect time (in handle_selfid_complete_event). 761 */ 762 if (evt == OHCI1394_evt_bus_reset) { 763 if (!(ohci->quirks & QUIRK_RESET_PACKET)) 764 ohci->request_generation = (p.header[2] >> 16) & 0xff; 765 } else if (ctx == &ohci->ar_request_ctx) { 766 fw_core_handle_request(&ohci->card, &p); 767 } else { 768 fw_core_handle_response(&ohci->card, &p); 769 } 770 771 return buffer + length + 1; 772 } 773 774 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end) 775 { 776 void *next; 777 778 while (p < end) { 779 next = handle_ar_packet(ctx, p); 780 if (!next) 781 return p; 782 p = next; 783 } 784 785 return p; 786 } 787 788 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer) 789 { 790 unsigned int i; 791 792 i = ar_first_buffer_index(ctx); 793 while (i != end_buffer) { 794 dma_sync_single_for_device(ctx->ohci->card.device, 795 ar_buffer_bus(ctx, i), 796 PAGE_SIZE, DMA_FROM_DEVICE); 797 ar_context_link_page(ctx, i); 798 i = ar_next_buffer_index(i); 799 } 800 } 801 802 static void ohci_ar_context_work(struct work_struct *work) 803 { 804 struct ar_context *ctx = from_work(ctx, work, work); 805 unsigned int end_buffer_index, end_buffer_offset; 806 void *p, *end; 807 808 p = ctx->pointer; 809 if (!p) 810 return; 811 812 end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset); 813 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset); 814 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset; 815 816 if (end_buffer_index < ar_first_buffer_index(ctx)) { 817 // The filled part of the overall buffer wraps around; handle all packets up to the 818 // buffer end here. If the last packet wraps around, its tail will be visible after 819 // the buffer end because the buffer start pages are mapped there again. 820 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE; 821 p = handle_ar_packets(ctx, p, buffer_end); 822 if (p < buffer_end) 823 goto error; 824 // adjust p to point back into the actual buffer 825 p -= AR_BUFFERS * PAGE_SIZE; 826 } 827 828 p = handle_ar_packets(ctx, p, end); 829 if (p != end) { 830 if (p > end) 831 ar_context_abort(ctx, "inconsistent descriptor"); 832 goto error; 833 } 834 835 ctx->pointer = p; 836 ar_recycle_buffers(ctx, end_buffer_index); 837 838 return; 839 error: 840 ctx->pointer = NULL; 841 } 842 843 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, 844 unsigned int descriptors_offset, u32 regs) 845 { 846 struct device *dev = ohci->card.device; 847 unsigned int i; 848 dma_addr_t dma_addr; 849 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES]; 850 struct descriptor *d; 851 852 ctx->regs = regs; 853 ctx->ohci = ohci; 854 INIT_WORK(&ctx->work, ohci_ar_context_work); 855 856 for (i = 0; i < AR_BUFFERS; i++) { 857 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr, 858 DMA_FROM_DEVICE, GFP_KERNEL); 859 if (!ctx->pages[i]) 860 goto out_of_memory; 861 set_page_private(ctx->pages[i], dma_addr); 862 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE, 863 DMA_FROM_DEVICE); 864 } 865 866 for (i = 0; i < AR_BUFFERS; i++) 867 pages[i] = ctx->pages[i]; 868 for (i = 0; i < AR_WRAPAROUND_PAGES; i++) 869 pages[AR_BUFFERS + i] = ctx->pages[i]; 870 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL); 871 if (!ctx->buffer) 872 goto out_of_memory; 873 874 ctx->descriptors = ohci->misc_buffer + descriptors_offset; 875 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset; 876 877 for (i = 0; i < AR_BUFFERS; i++) { 878 d = &ctx->descriptors[i]; 879 d->req_count = cpu_to_le16(PAGE_SIZE); 880 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 881 DESCRIPTOR_STATUS | 882 DESCRIPTOR_BRANCH_ALWAYS); 883 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i)); 884 d->branch_address = cpu_to_le32(ctx->descriptors_bus + 885 ar_next_buffer_index(i) * sizeof(struct descriptor)); 886 } 887 888 return 0; 889 890 out_of_memory: 891 ar_context_release(ctx); 892 893 return -ENOMEM; 894 } 895 896 static void ar_context_run(struct ar_context *ctx) 897 { 898 unsigned int i; 899 900 for (i = 0; i < AR_BUFFERS; i++) 901 ar_context_link_page(ctx, i); 902 903 ctx->pointer = ctx->buffer; 904 905 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1); 906 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); 907 } 908 909 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z) 910 { 911 __le16 branch; 912 913 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS); 914 915 /* figure out which descriptor the branch address goes in */ 916 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 917 return d; 918 else 919 return d + z - 1; 920 } 921 922 static void context_retire_descriptors(struct context *ctx) 923 { 924 struct descriptor *d, *last; 925 u32 address; 926 int z; 927 struct descriptor_buffer *desc; 928 929 desc = list_entry(ctx->buffer_list.next, 930 struct descriptor_buffer, list); 931 last = ctx->last; 932 while (last->branch_address != 0) { 933 struct descriptor_buffer *old_desc = desc; 934 address = le32_to_cpu(last->branch_address); 935 z = address & 0xf; 936 address &= ~0xf; 937 ctx->current_bus = address; 938 939 /* If the branch address points to a buffer outside of the 940 * current buffer, advance to the next buffer. */ 941 if (address < desc->buffer_bus || 942 address >= desc->buffer_bus + desc->used) 943 desc = list_entry(desc->list.next, 944 struct descriptor_buffer, list); 945 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); 946 last = find_branch_descriptor(d, z); 947 948 if (!ctx->callback(ctx, d, last)) 949 break; 950 951 if (old_desc != desc) { 952 // If we've advanced to the next buffer, move the previous buffer to the 953 // free list. 954 old_desc->used = 0; 955 guard(spinlock_irqsave)(&ctx->ohci->lock); 956 list_move_tail(&old_desc->list, &ctx->buffer_list); 957 } 958 ctx->last = last; 959 } 960 } 961 962 static void ohci_at_context_work(struct work_struct *work) 963 { 964 struct at_context *ctx = from_work(ctx, work, work); 965 966 context_retire_descriptors(&ctx->context); 967 } 968 969 static void ohci_isoc_context_work(struct work_struct *work) 970 { 971 struct fw_iso_context *base = from_work(base, work, work); 972 struct iso_context *isoc_ctx = container_of(base, struct iso_context, base); 973 974 context_retire_descriptors(&isoc_ctx->context); 975 } 976 977 /* 978 * Allocate a new buffer and add it to the list of free buffers for this 979 * context. Must be called with ohci->lock held. 980 */ 981 static int context_add_buffer(struct context *ctx) 982 { 983 struct descriptor_buffer *desc; 984 dma_addr_t bus_addr; 985 int offset; 986 987 /* 988 * 16MB of descriptors should be far more than enough for any DMA 989 * program. This will catch run-away userspace or DoS attacks. 990 */ 991 if (ctx->total_allocation >= 16*1024*1024) 992 return -ENOMEM; 993 994 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC); 995 if (!desc) 996 return -ENOMEM; 997 998 offset = (void *)&desc->buffer - (void *)desc; 999 /* 1000 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads 1001 * for descriptors, even 0x10-byte ones. This can cause page faults when 1002 * an IOMMU is in use and the oversized read crosses a page boundary. 1003 * Work around this by always leaving at least 0x10 bytes of padding. 1004 */ 1005 desc->buffer_size = PAGE_SIZE - offset - 0x10; 1006 desc->buffer_bus = bus_addr + offset; 1007 desc->used = 0; 1008 1009 list_add_tail(&desc->list, &ctx->buffer_list); 1010 ctx->total_allocation += PAGE_SIZE; 1011 1012 return 0; 1013 } 1014 1015 static int context_init(struct context *ctx, struct fw_ohci *ohci, 1016 u32 regs, descriptor_callback_t callback) 1017 { 1018 ctx->ohci = ohci; 1019 ctx->regs = regs; 1020 ctx->total_allocation = 0; 1021 1022 INIT_LIST_HEAD(&ctx->buffer_list); 1023 if (context_add_buffer(ctx) < 0) 1024 return -ENOMEM; 1025 1026 ctx->buffer_tail = list_entry(ctx->buffer_list.next, 1027 struct descriptor_buffer, list); 1028 1029 ctx->callback = callback; 1030 1031 /* 1032 * We put a dummy descriptor in the buffer that has a NULL 1033 * branch address and looks like it's been sent. That way we 1034 * have a descriptor to append DMA programs to. 1035 */ 1036 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); 1037 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); 1038 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); 1039 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); 1040 ctx->last = ctx->buffer_tail->buffer; 1041 ctx->prev = ctx->buffer_tail->buffer; 1042 ctx->prev_z = 1; 1043 1044 return 0; 1045 } 1046 1047 static void context_release(struct context *ctx) 1048 { 1049 struct fw_card *card = &ctx->ohci->card; 1050 struct descriptor_buffer *desc, *tmp; 1051 1052 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) { 1053 dmam_free_coherent(card->device, PAGE_SIZE, desc, 1054 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc)); 1055 } 1056 } 1057 1058 /* Must be called with ohci->lock held */ 1059 static struct descriptor *context_get_descriptors(struct context *ctx, 1060 int z, dma_addr_t *d_bus) 1061 { 1062 struct descriptor *d = NULL; 1063 struct descriptor_buffer *desc = ctx->buffer_tail; 1064 1065 if (z * sizeof(*d) > desc->buffer_size) 1066 return NULL; 1067 1068 if (z * sizeof(*d) > desc->buffer_size - desc->used) { 1069 /* No room for the descriptor in this buffer, so advance to the 1070 * next one. */ 1071 1072 if (desc->list.next == &ctx->buffer_list) { 1073 /* If there is no free buffer next in the list, 1074 * allocate one. */ 1075 if (context_add_buffer(ctx) < 0) 1076 return NULL; 1077 } 1078 desc = list_entry(desc->list.next, 1079 struct descriptor_buffer, list); 1080 ctx->buffer_tail = desc; 1081 } 1082 1083 d = desc->buffer + desc->used / sizeof(*d); 1084 memset(d, 0, z * sizeof(*d)); 1085 *d_bus = desc->buffer_bus + desc->used; 1086 1087 return d; 1088 } 1089 1090 static void context_run(struct context *ctx, u32 extra) 1091 { 1092 struct fw_ohci *ohci = ctx->ohci; 1093 1094 reg_write(ohci, COMMAND_PTR(ctx->regs), 1095 le32_to_cpu(ctx->last->branch_address)); 1096 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); 1097 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); 1098 ctx->running = true; 1099 flush_writes(ohci); 1100 } 1101 1102 static void context_append(struct context *ctx, 1103 struct descriptor *d, int z, int extra) 1104 { 1105 dma_addr_t d_bus; 1106 struct descriptor_buffer *desc = ctx->buffer_tail; 1107 struct descriptor *d_branch; 1108 1109 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); 1110 1111 desc->used += (z + extra) * sizeof(*d); 1112 1113 wmb(); /* finish init of new descriptors before branch_address update */ 1114 1115 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z); 1116 d_branch->branch_address = cpu_to_le32(d_bus | z); 1117 1118 /* 1119 * VT6306 incorrectly checks only the single descriptor at the 1120 * CommandPtr when the wake bit is written, so if it's a 1121 * multi-descriptor block starting with an INPUT_MORE, put a copy of 1122 * the branch address in the first descriptor. 1123 * 1124 * Not doing this for transmit contexts since not sure how it interacts 1125 * with skip addresses. 1126 */ 1127 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) && 1128 d_branch != ctx->prev && 1129 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) == 1130 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) { 1131 ctx->prev->branch_address = cpu_to_le32(d_bus | z); 1132 } 1133 1134 ctx->prev = d; 1135 ctx->prev_z = z; 1136 } 1137 1138 static void context_stop(struct context *ctx) 1139 { 1140 struct fw_ohci *ohci = ctx->ohci; 1141 u32 reg; 1142 int i; 1143 1144 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 1145 ctx->running = false; 1146 1147 for (i = 0; i < 1000; i++) { 1148 reg = reg_read(ohci, CONTROL_SET(ctx->regs)); 1149 if ((reg & CONTEXT_ACTIVE) == 0) 1150 return; 1151 1152 if (i) 1153 udelay(10); 1154 } 1155 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg); 1156 } 1157 1158 struct driver_data { 1159 u8 inline_data[8]; 1160 struct fw_packet *packet; 1161 }; 1162 1163 /* 1164 * This function appends a packet to the DMA queue for transmission. 1165 * Must always be called with the ochi->lock held to ensure proper 1166 * generation handling and locking around packet queue manipulation. 1167 */ 1168 static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet) 1169 { 1170 struct context *context = &ctx->context; 1171 struct fw_ohci *ohci = context->ohci; 1172 dma_addr_t d_bus, payload_bus; 1173 struct driver_data *driver_data; 1174 struct descriptor *d, *last; 1175 __le32 *header; 1176 int z, tcode; 1177 1178 d = context_get_descriptors(context, 4, &d_bus); 1179 if (d == NULL) { 1180 packet->ack = RCODE_SEND_ERROR; 1181 return -1; 1182 } 1183 1184 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 1185 d[0].res_count = cpu_to_le16(packet->timestamp); 1186 1187 tcode = async_header_get_tcode(packet->header); 1188 header = (__le32 *) &d[1]; 1189 switch (tcode) { 1190 case TCODE_WRITE_QUADLET_REQUEST: 1191 case TCODE_WRITE_BLOCK_REQUEST: 1192 case TCODE_WRITE_RESPONSE: 1193 case TCODE_READ_QUADLET_REQUEST: 1194 case TCODE_READ_BLOCK_REQUEST: 1195 case TCODE_READ_QUADLET_RESPONSE: 1196 case TCODE_READ_BLOCK_RESPONSE: 1197 case TCODE_LOCK_REQUEST: 1198 case TCODE_LOCK_RESPONSE: 1199 ohci1394_at_data_set_src_bus_id(header, false); 1200 ohci1394_at_data_set_speed(header, packet->speed); 1201 ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header)); 1202 ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header)); 1203 ohci1394_at_data_set_tcode(header, tcode); 1204 1205 ohci1394_at_data_set_destination_id(header, 1206 async_header_get_destination(packet->header)); 1207 1208 if (ctx == &ohci->at_response_ctx) { 1209 ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header)); 1210 } else { 1211 ohci1394_at_data_set_destination_offset(header, 1212 async_header_get_offset(packet->header)); 1213 } 1214 1215 if (tcode_is_block_packet(tcode)) 1216 header[3] = cpu_to_le32(packet->header[3]); 1217 else 1218 header[3] = (__force __le32) packet->header[3]; 1219 1220 d[0].req_count = cpu_to_le16(packet->header_length); 1221 break; 1222 case TCODE_LINK_INTERNAL: 1223 ohci1394_at_data_set_speed(header, packet->speed); 1224 ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL); 1225 1226 header[1] = cpu_to_le32(packet->header[1]); 1227 header[2] = cpu_to_le32(packet->header[2]); 1228 d[0].req_count = cpu_to_le16(12); 1229 1230 if (is_ping_packet(&packet->header[1])) 1231 d[0].control |= cpu_to_le16(DESCRIPTOR_PING); 1232 break; 1233 1234 case TCODE_STREAM_DATA: 1235 ohci1394_it_data_set_speed(header, packet->speed); 1236 ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0])); 1237 ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0])); 1238 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA); 1239 ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0])); 1240 1241 ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0])); 1242 1243 d[0].req_count = cpu_to_le16(8); 1244 break; 1245 1246 default: 1247 /* BUG(); */ 1248 packet->ack = RCODE_SEND_ERROR; 1249 return -1; 1250 } 1251 1252 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor)); 1253 driver_data = (struct driver_data *) &d[3]; 1254 driver_data->packet = packet; 1255 packet->driver_data = driver_data; 1256 1257 if (packet->payload_length > 0) { 1258 if (packet->payload_length > sizeof(driver_data->inline_data)) { 1259 payload_bus = dma_map_single(ohci->card.device, 1260 packet->payload, 1261 packet->payload_length, 1262 DMA_TO_DEVICE); 1263 if (dma_mapping_error(ohci->card.device, payload_bus)) { 1264 packet->ack = RCODE_SEND_ERROR; 1265 return -1; 1266 } 1267 packet->payload_bus = payload_bus; 1268 packet->payload_mapped = true; 1269 } else { 1270 memcpy(driver_data->inline_data, packet->payload, 1271 packet->payload_length); 1272 payload_bus = d_bus + 3 * sizeof(*d); 1273 } 1274 1275 d[2].req_count = cpu_to_le16(packet->payload_length); 1276 d[2].data_address = cpu_to_le32(payload_bus); 1277 last = &d[2]; 1278 z = 3; 1279 } else { 1280 last = &d[0]; 1281 z = 2; 1282 } 1283 1284 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 1285 DESCRIPTOR_IRQ_ALWAYS | 1286 DESCRIPTOR_BRANCH_ALWAYS); 1287 1288 /* FIXME: Document how the locking works. */ 1289 if (ohci->generation != packet->generation) { 1290 if (packet->payload_mapped) 1291 dma_unmap_single(ohci->card.device, payload_bus, 1292 packet->payload_length, DMA_TO_DEVICE); 1293 packet->ack = RCODE_GENERATION; 1294 return -1; 1295 } 1296 1297 context_append(context, d, z, 4 - z); 1298 1299 if (context->running) 1300 reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE); 1301 else 1302 context_run(context, 0); 1303 1304 return 0; 1305 } 1306 1307 static void at_context_flush(struct at_context *ctx) 1308 { 1309 // Avoid dead lock due to programming mistake. 1310 if (WARN_ON_ONCE(current_work() == &ctx->work)) 1311 return; 1312 1313 disable_work_sync(&ctx->work); 1314 1315 WRITE_ONCE(ctx->flushing, true); 1316 ohci_at_context_work(&ctx->work); 1317 WRITE_ONCE(ctx->flushing, false); 1318 1319 enable_work(&ctx->work); 1320 } 1321 1322 static int handle_at_packet(struct context *context, 1323 struct descriptor *d, 1324 struct descriptor *last) 1325 { 1326 struct at_context *ctx = container_of(context, struct at_context, context); 1327 struct fw_ohci *ohci = ctx->context.ohci; 1328 struct driver_data *driver_data; 1329 struct fw_packet *packet; 1330 int evt; 1331 1332 if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing)) 1333 /* This descriptor isn't done yet, stop iteration. */ 1334 return 0; 1335 1336 driver_data = (struct driver_data *) &d[3]; 1337 packet = driver_data->packet; 1338 if (packet == NULL) 1339 /* This packet was cancelled, just continue. */ 1340 return 1; 1341 1342 if (packet->payload_mapped) 1343 dma_unmap_single(ohci->card.device, packet->payload_bus, 1344 packet->payload_length, DMA_TO_DEVICE); 1345 1346 evt = le16_to_cpu(last->transfer_status) & 0x1f; 1347 packet->timestamp = le16_to_cpu(last->res_count); 1348 1349 switch (evt) { 1350 case OHCI1394_evt_timeout: 1351 /* Async response transmit timed out. */ 1352 packet->ack = RCODE_CANCELLED; 1353 break; 1354 1355 case OHCI1394_evt_flushed: 1356 /* 1357 * The packet was flushed should give same error as 1358 * when we try to use a stale generation count. 1359 */ 1360 packet->ack = RCODE_GENERATION; 1361 break; 1362 1363 case OHCI1394_evt_missing_ack: 1364 if (READ_ONCE(ctx->flushing)) 1365 packet->ack = RCODE_GENERATION; 1366 else { 1367 /* 1368 * Using a valid (current) generation count, but the 1369 * node is not on the bus or not sending acks. 1370 */ 1371 packet->ack = RCODE_NO_ACK; 1372 } 1373 break; 1374 1375 case ACK_COMPLETE + 0x10: 1376 case ACK_PENDING + 0x10: 1377 case ACK_BUSY_X + 0x10: 1378 case ACK_BUSY_A + 0x10: 1379 case ACK_BUSY_B + 0x10: 1380 case ACK_DATA_ERROR + 0x10: 1381 case ACK_TYPE_ERROR + 0x10: 1382 packet->ack = evt - 0x10; 1383 break; 1384 1385 case OHCI1394_evt_no_status: 1386 if (READ_ONCE(ctx->flushing)) { 1387 packet->ack = RCODE_GENERATION; 1388 break; 1389 } 1390 fallthrough; 1391 1392 default: 1393 packet->ack = RCODE_SEND_ERROR; 1394 break; 1395 } 1396 1397 packet->callback(packet, &ohci->card, packet->ack); 1398 1399 return 1; 1400 } 1401 1402 static u32 get_cycle_time(struct fw_ohci *ohci); 1403 1404 static void handle_local_rom(struct fw_ohci *ohci, 1405 struct fw_packet *packet, u32 csr) 1406 { 1407 struct fw_packet response; 1408 int tcode, length, i; 1409 1410 tcode = async_header_get_tcode(packet->header); 1411 if (tcode_is_block_packet(tcode)) 1412 length = async_header_get_data_length(packet->header); 1413 else 1414 length = 4; 1415 1416 i = csr - CSR_CONFIG_ROM; 1417 if (i + length > CONFIG_ROM_SIZE) { 1418 fw_fill_response(&response, packet->header, 1419 RCODE_ADDRESS_ERROR, NULL, 0); 1420 } else if (!tcode_is_read_request(tcode)) { 1421 fw_fill_response(&response, packet->header, 1422 RCODE_TYPE_ERROR, NULL, 0); 1423 } else { 1424 fw_fill_response(&response, packet->header, RCODE_COMPLETE, 1425 (void *) ohci->config_rom + i, length); 1426 } 1427 1428 // Timestamping on behalf of the hardware. 1429 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 1430 fw_core_handle_response(&ohci->card, &response); 1431 } 1432 1433 static void handle_local_lock(struct fw_ohci *ohci, 1434 struct fw_packet *packet, u32 csr) 1435 { 1436 struct fw_packet response; 1437 int tcode, length, ext_tcode, sel, try; 1438 __be32 *payload, lock_old; 1439 u32 lock_arg, lock_data; 1440 1441 tcode = async_header_get_tcode(packet->header); 1442 length = async_header_get_data_length(packet->header); 1443 payload = packet->payload; 1444 ext_tcode = async_header_get_extended_tcode(packet->header); 1445 1446 if (tcode == TCODE_LOCK_REQUEST && 1447 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { 1448 lock_arg = be32_to_cpu(payload[0]); 1449 lock_data = be32_to_cpu(payload[1]); 1450 } else if (tcode == TCODE_READ_QUADLET_REQUEST) { 1451 lock_arg = 0; 1452 lock_data = 0; 1453 } else { 1454 fw_fill_response(&response, packet->header, 1455 RCODE_TYPE_ERROR, NULL, 0); 1456 goto out; 1457 } 1458 1459 sel = (csr - CSR_BUS_MANAGER_ID) / 4; 1460 reg_write(ohci, OHCI1394_CSRData, lock_data); 1461 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); 1462 reg_write(ohci, OHCI1394_CSRControl, sel); 1463 1464 for (try = 0; try < 20; try++) 1465 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) { 1466 lock_old = cpu_to_be32(reg_read(ohci, 1467 OHCI1394_CSRData)); 1468 fw_fill_response(&response, packet->header, 1469 RCODE_COMPLETE, 1470 &lock_old, sizeof(lock_old)); 1471 goto out; 1472 } 1473 1474 ohci_err(ohci, "swap not done (CSR lock timeout)\n"); 1475 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0); 1476 1477 out: 1478 // Timestamping on behalf of the hardware. 1479 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 1480 fw_core_handle_response(&ohci->card, &response); 1481 } 1482 1483 static void handle_local_request(struct at_context *ctx, struct fw_packet *packet) 1484 { 1485 struct fw_ohci *ohci = ctx->context.ohci; 1486 u64 offset, csr; 1487 1488 if (ctx == &ohci->at_request_ctx) { 1489 packet->ack = ACK_PENDING; 1490 packet->callback(packet, &ohci->card, packet->ack); 1491 } 1492 1493 offset = async_header_get_offset(packet->header); 1494 csr = offset - CSR_REGISTER_BASE; 1495 1496 /* Handle config rom reads. */ 1497 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) 1498 handle_local_rom(ohci, packet, csr); 1499 else switch (csr) { 1500 case CSR_BUS_MANAGER_ID: 1501 case CSR_BANDWIDTH_AVAILABLE: 1502 case CSR_CHANNELS_AVAILABLE_HI: 1503 case CSR_CHANNELS_AVAILABLE_LO: 1504 handle_local_lock(ohci, packet, csr); 1505 break; 1506 default: 1507 if (ctx == &ohci->at_request_ctx) 1508 fw_core_handle_request(&ohci->card, packet); 1509 else 1510 fw_core_handle_response(&ohci->card, packet); 1511 break; 1512 } 1513 1514 if (ctx == &ohci->at_response_ctx) { 1515 packet->ack = ACK_COMPLETE; 1516 packet->callback(packet, &ohci->card, packet->ack); 1517 } 1518 } 1519 1520 static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet) 1521 { 1522 struct fw_ohci *ohci = ctx->context.ohci; 1523 unsigned long flags; 1524 int ret; 1525 1526 spin_lock_irqsave(&ohci->lock, flags); 1527 1528 if (async_header_get_destination(packet->header) == ohci->node_id && 1529 ohci->generation == packet->generation) { 1530 spin_unlock_irqrestore(&ohci->lock, flags); 1531 1532 // Timestamping on behalf of the hardware. 1533 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 1534 1535 handle_local_request(ctx, packet); 1536 return; 1537 } 1538 1539 ret = at_context_queue_packet(ctx, packet); 1540 spin_unlock_irqrestore(&ohci->lock, flags); 1541 1542 if (ret < 0) { 1543 // Timestamping on behalf of the hardware. 1544 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 1545 1546 packet->callback(packet, &ohci->card, packet->ack); 1547 } 1548 } 1549 1550 static void detect_dead_context(struct fw_ohci *ohci, 1551 const char *name, unsigned int regs) 1552 { 1553 static const char *const evts[] = { 1554 [0x00] = "evt_no_status", [0x01] = "-reserved-", 1555 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", 1556 [0x04] = "evt_underrun", [0x05] = "evt_overrun", 1557 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", 1558 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", 1559 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", 1560 [0x0c] = "-reserved-", [0x0d] = "-reserved-", 1561 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", 1562 [0x10] = "-reserved-", [0x11] = "ack_complete", 1563 [0x12] = "ack_pending ", [0x13] = "-reserved-", 1564 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", 1565 [0x16] = "ack_busy_B", [0x17] = "-reserved-", 1566 [0x18] = "-reserved-", [0x19] = "-reserved-", 1567 [0x1a] = "-reserved-", [0x1b] = "ack_tardy", 1568 [0x1c] = "-reserved-", [0x1d] = "ack_data_error", 1569 [0x1e] = "ack_type_error", [0x1f] = "-reserved-", 1570 [0x20] = "pending/cancelled", 1571 }; 1572 u32 ctl; 1573 1574 ctl = reg_read(ohci, CONTROL_SET(regs)); 1575 if (ctl & CONTEXT_DEAD) 1576 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n", 1577 name, evts[ctl & 0x1f]); 1578 } 1579 1580 static void handle_dead_contexts(struct fw_ohci *ohci) 1581 { 1582 unsigned int i; 1583 char name[8]; 1584 1585 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase); 1586 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase); 1587 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase); 1588 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase); 1589 for (i = 0; i < 32; ++i) { 1590 if (!(ohci->it_context_support & (1 << i))) 1591 continue; 1592 sprintf(name, "IT%u", i); 1593 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i)); 1594 } 1595 for (i = 0; i < 32; ++i) { 1596 if (!(ohci->ir_context_support & (1 << i))) 1597 continue; 1598 sprintf(name, "IR%u", i); 1599 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i)); 1600 } 1601 /* TODO: maybe try to flush and restart the dead contexts */ 1602 } 1603 1604 static u32 cycle_timer_ticks(u32 cycle_timer) 1605 { 1606 u32 ticks; 1607 1608 ticks = cycle_timer & 0xfff; 1609 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff); 1610 ticks += (3072 * 8000) * (cycle_timer >> 25); 1611 1612 return ticks; 1613 } 1614 1615 /* 1616 * Some controllers exhibit one or more of the following bugs when updating the 1617 * iso cycle timer register: 1618 * - When the lowest six bits are wrapping around to zero, a read that happens 1619 * at the same time will return garbage in the lowest ten bits. 1620 * - When the cycleOffset field wraps around to zero, the cycleCount field is 1621 * not incremented for about 60 ns. 1622 * - Occasionally, the entire register reads zero. 1623 * 1624 * To catch these, we read the register three times and ensure that the 1625 * difference between each two consecutive reads is approximately the same, i.e. 1626 * less than twice the other. Furthermore, any negative difference indicates an 1627 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to 1628 * execute, so we have enough precision to compute the ratio of the differences.) 1629 */ 1630 static u32 get_cycle_time(struct fw_ohci *ohci) 1631 { 1632 u32 c0, c1, c2; 1633 u32 t0, t1, t2; 1634 s32 diff01, diff12; 1635 int i; 1636 1637 if (has_reboot_by_cycle_timer_read_quirk(ohci)) 1638 return 0; 1639 1640 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1641 1642 if (ohci->quirks & QUIRK_CYCLE_TIMER) { 1643 i = 0; 1644 c1 = c2; 1645 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1646 do { 1647 c0 = c1; 1648 c1 = c2; 1649 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1650 t0 = cycle_timer_ticks(c0); 1651 t1 = cycle_timer_ticks(c1); 1652 t2 = cycle_timer_ticks(c2); 1653 diff01 = t1 - t0; 1654 diff12 = t2 - t1; 1655 } while ((diff01 <= 0 || diff12 <= 0 || 1656 diff01 / diff12 >= 2 || diff12 / diff01 >= 2) 1657 && i++ < 20); 1658 } 1659 1660 return c2; 1661 } 1662 1663 /* 1664 * This function has to be called at least every 64 seconds. The bus_time 1665 * field stores not only the upper 25 bits of the BUS_TIME register but also 1666 * the most significant bit of the cycle timer in bit 6 so that we can detect 1667 * changes in this bit. 1668 */ 1669 static u32 update_bus_time(struct fw_ohci *ohci) 1670 { 1671 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25; 1672 1673 if (unlikely(!ohci->bus_time_running)) { 1674 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds); 1675 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) | 1676 (cycle_time_seconds & 0x40); 1677 ohci->bus_time_running = true; 1678 } 1679 1680 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40)) 1681 ohci->bus_time += 0x40; 1682 1683 return ohci->bus_time | cycle_time_seconds; 1684 } 1685 1686 static int get_status_for_port(struct fw_ohci *ohci, int port_index, 1687 enum phy_packet_self_id_port_status *status) 1688 { 1689 int reg; 1690 1691 scoped_guard(mutex, &ohci->phy_reg_mutex) { 1692 reg = write_phy_reg(ohci, 7, port_index); 1693 if (reg < 0) 1694 return reg; 1695 1696 reg = read_phy_reg(ohci, 8); 1697 if (reg < 0) 1698 return reg; 1699 } 1700 1701 switch (reg & 0x0f) { 1702 case 0x06: 1703 // is child node (connected to parent node) 1704 *status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT; 1705 break; 1706 case 0x0e: 1707 // is parent node (connected to child node) 1708 *status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD; 1709 break; 1710 default: 1711 // not connected 1712 *status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN; 1713 break; 1714 } 1715 1716 return 0; 1717 } 1718 1719 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id, 1720 int self_id_count) 1721 { 1722 unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id); 1723 int i; 1724 1725 for (i = 0; i < self_id_count; i++) { 1726 u32 entry = ohci->self_id_buffer[i]; 1727 unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry); 1728 1729 if (left_phy_id == right_phy_id) 1730 return -1; 1731 if (left_phy_id < right_phy_id) 1732 return i; 1733 } 1734 return i; 1735 } 1736 1737 static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset) 1738 { 1739 int reg; 1740 1741 guard(mutex)(&ohci->phy_reg_mutex); 1742 1743 // Select page 7 1744 reg = write_phy_reg(ohci, 7, 0xe0); 1745 if (reg < 0) 1746 return reg; 1747 1748 reg = read_phy_reg(ohci, 8); 1749 if (reg < 0) 1750 return reg; 1751 1752 // set PMODE bit 1753 reg |= 0x40; 1754 reg = write_phy_reg(ohci, 8, reg); 1755 if (reg < 0) 1756 return reg; 1757 1758 // read register 12 1759 reg = read_phy_reg(ohci, 12); 1760 if (reg < 0) 1761 return reg; 1762 1763 // bit 3 indicates "initiated reset" 1764 *is_initiated_reset = !!((reg & 0x08) == 0x08); 1765 1766 return 0; 1767 } 1768 1769 /* 1770 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally 1771 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059. 1772 * Construct the selfID from phy register contents. 1773 */ 1774 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count) 1775 { 1776 int reg, i, pos, err; 1777 bool is_initiated_reset; 1778 u32 self_id = 0; 1779 1780 // link active 1, speed 3, bridge 0, contender 1, more packets 0. 1781 phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID); 1782 phy_packet_self_id_zero_set_link_active(&self_id, true); 1783 phy_packet_self_id_zero_set_scode(&self_id, SCODE_800); 1784 phy_packet_self_id_zero_set_contender(&self_id, true); 1785 1786 reg = reg_read(ohci, OHCI1394_NodeID); 1787 if (!(reg & OHCI1394_NodeID_idValid)) { 1788 ohci_notice(ohci, 1789 "node ID not valid, new bus reset in progress\n"); 1790 return -EBUSY; 1791 } 1792 phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f); 1793 1794 reg = ohci_read_phy_reg(&ohci->card, 4); 1795 if (reg < 0) 1796 return reg; 1797 phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07); 1798 1799 reg = ohci_read_phy_reg(&ohci->card, 1); 1800 if (reg < 0) 1801 return reg; 1802 phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f); 1803 1804 for (i = 0; i < 3; i++) { 1805 enum phy_packet_self_id_port_status status; 1806 1807 err = get_status_for_port(ohci, i, &status); 1808 if (err < 0) 1809 return err; 1810 1811 self_id_sequence_set_port_status(&self_id, 1, i, status); 1812 } 1813 1814 err = detect_initiated_reset(ohci, &is_initiated_reset); 1815 if (err < 0) 1816 return err; 1817 phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset); 1818 1819 pos = get_self_id_pos(ohci, self_id, self_id_count); 1820 if (pos >= 0) { 1821 memmove(&(ohci->self_id_buffer[pos+1]), 1822 &(ohci->self_id_buffer[pos]), 1823 (self_id_count - pos) * sizeof(*ohci->self_id_buffer)); 1824 ohci->self_id_buffer[pos] = self_id; 1825 self_id_count++; 1826 } 1827 return self_id_count; 1828 } 1829 1830 static irqreturn_t handle_selfid_complete_event(int irq, void *data) 1831 { 1832 struct fw_ohci *ohci = data; 1833 int self_id_count, generation, new_generation, i, j; 1834 u32 reg, quadlet; 1835 void *free_rom = NULL; 1836 dma_addr_t free_rom_bus = 0; 1837 bool is_new_root; 1838 1839 reg = reg_read(ohci, OHCI1394_NodeID); 1840 if (!(reg & OHCI1394_NodeID_idValid)) { 1841 ohci_notice(ohci, 1842 "node ID not valid, new bus reset in progress\n"); 1843 goto end; 1844 } 1845 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { 1846 ohci_notice(ohci, "malconfigured bus\n"); 1847 goto end; 1848 } 1849 ohci->node_id = reg & (OHCI1394_NodeID_busNumber | 1850 OHCI1394_NodeID_nodeNumber); 1851 1852 is_new_root = (reg & OHCI1394_NodeID_root) != 0; 1853 if (!(ohci->is_root && is_new_root)) 1854 reg_write(ohci, OHCI1394_LinkControlSet, 1855 OHCI1394_LinkControl_cycleMaster); 1856 ohci->is_root = is_new_root; 1857 1858 reg = reg_read(ohci, OHCI1394_SelfIDCount); 1859 if (ohci1394_self_id_count_is_error(reg)) { 1860 ohci_notice(ohci, "self ID receive error\n"); 1861 goto end; 1862 } 1863 1864 trace_self_id_complete(ohci->card.index, reg, ohci->self_id, has_be_header_quirk(ohci)); 1865 1866 /* 1867 * The count in the SelfIDCount register is the number of 1868 * bytes in the self ID receive buffer. Since we also receive 1869 * the inverted quadlets and a header quadlet, we shift one 1870 * bit extra to get the actual number of self IDs. 1871 */ 1872 self_id_count = ohci1394_self_id_count_get_size(reg) >> 1; 1873 1874 if (self_id_count > 252) { 1875 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg); 1876 goto end; 1877 } 1878 1879 quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci)); 1880 generation = ohci1394_self_id_receive_q0_get_generation(quadlet); 1881 rmb(); 1882 1883 for (i = 1, j = 0; j < self_id_count; i += 2, j++) { 1884 u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci)); 1885 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci)); 1886 1887 if (id != ~id2) { 1888 /* 1889 * If the invalid data looks like a cycle start packet, 1890 * it's likely to be the result of the cycle master 1891 * having a wrong gap count. In this case, the self IDs 1892 * so far are valid and should be processed so that the 1893 * bus manager can then correct the gap count. 1894 */ 1895 if (id == 0xffff008f) { 1896 ohci_notice(ohci, "ignoring spurious self IDs\n"); 1897 self_id_count = j; 1898 break; 1899 } 1900 1901 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n", 1902 j, self_id_count, id, id2); 1903 goto end; 1904 } 1905 ohci->self_id_buffer[j] = id; 1906 } 1907 1908 if (ohci->quirks & QUIRK_TI_SLLZ059) { 1909 self_id_count = find_and_insert_self_id(ohci, self_id_count); 1910 if (self_id_count < 0) { 1911 ohci_notice(ohci, 1912 "could not construct local self ID\n"); 1913 goto end; 1914 } 1915 } 1916 1917 if (self_id_count == 0) { 1918 ohci_notice(ohci, "no self IDs\n"); 1919 goto end; 1920 } 1921 rmb(); 1922 1923 /* 1924 * Check the consistency of the self IDs we just read. The 1925 * problem we face is that a new bus reset can start while we 1926 * read out the self IDs from the DMA buffer. If this happens, 1927 * the DMA buffer will be overwritten with new self IDs and we 1928 * will read out inconsistent data. The OHCI specification 1929 * (section 11.2) recommends a technique similar to 1930 * linux/seqlock.h, where we remember the generation of the 1931 * self IDs in the buffer before reading them out and compare 1932 * it to the current generation after reading them out. If 1933 * the two generations match we know we have a consistent set 1934 * of self IDs. 1935 */ 1936 1937 reg = reg_read(ohci, OHCI1394_SelfIDCount); 1938 new_generation = ohci1394_self_id_count_get_generation(reg); 1939 if (new_generation != generation) { 1940 ohci_notice(ohci, "new bus reset, discarding self ids\n"); 1941 goto end; 1942 } 1943 1944 // FIXME: Document how the locking works. 1945 scoped_guard(spinlock_irq, &ohci->lock) { 1946 ohci->generation = -1; // prevent AT packet queueing 1947 context_stop(&ohci->at_request_ctx.context); 1948 context_stop(&ohci->at_response_ctx.context); 1949 } 1950 1951 /* 1952 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent 1953 * packets in the AT queues and software needs to drain them. 1954 * Some OHCI 1.1 controllers (JMicron) apparently require this too. 1955 */ 1956 at_context_flush(&ohci->at_request_ctx); 1957 at_context_flush(&ohci->at_response_ctx); 1958 1959 scoped_guard(spinlock_irq, &ohci->lock) { 1960 ohci->generation = generation; 1961 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); 1962 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset); 1963 1964 if (ohci->quirks & QUIRK_RESET_PACKET) 1965 ohci->request_generation = generation; 1966 1967 // This next bit is unrelated to the AT context stuff but we have to do it under the 1968 // spinlock also. If a new config rom was set up before this reset, the old one is 1969 // now no longer in use and we can free it. Update the config rom pointers to point 1970 // to the current config rom and clear the next_config_rom pointer so a new update 1971 // can take place. 1972 if (ohci->next_config_rom != NULL) { 1973 if (ohci->next_config_rom != ohci->config_rom) { 1974 free_rom = ohci->config_rom; 1975 free_rom_bus = ohci->config_rom_bus; 1976 } 1977 ohci->config_rom = ohci->next_config_rom; 1978 ohci->config_rom_bus = ohci->next_config_rom_bus; 1979 ohci->next_config_rom = NULL; 1980 1981 // Restore config_rom image and manually update config_rom registers. 1982 // Writing the header quadlet will indicate that the config rom is ready, 1983 // so we do that last. 1984 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2])); 1985 ohci->config_rom[0] = ohci->next_header; 1986 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header)); 1987 } 1988 1989 if (param_remote_dma) { 1990 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); 1991 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); 1992 } 1993 } 1994 1995 if (free_rom) 1996 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus); 1997 1998 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, 1999 self_id_count, ohci->self_id_buffer, 2000 ohci->csr_state_setclear_abdicate); 2001 ohci->csr_state_setclear_abdicate = false; 2002 end: 2003 return IRQ_HANDLED; 2004 } 2005 2006 static irqreturn_t irq_handler(int irq, void *data) 2007 { 2008 struct fw_ohci *ohci = data; 2009 u32 event, iso_event; 2010 int i; 2011 2012 event = reg_read(ohci, OHCI1394_IntEventClear); 2013 2014 if (!event || !~event) 2015 return IRQ_NONE; 2016 2017 /* 2018 * busReset and postedWriteErr events must not be cleared yet 2019 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1) 2020 */ 2021 reg_write(ohci, OHCI1394_IntEventClear, 2022 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr)); 2023 trace_irqs(ohci->card.index, event); 2024 2025 // The flag is masked again at handle_selfid_complete_event() scheduled by selfID event. 2026 if (event & OHCI1394_busReset) 2027 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset); 2028 2029 if (event & OHCI1394_RQPkt) 2030 queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work); 2031 2032 if (event & OHCI1394_RSPkt) 2033 queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work); 2034 2035 if (event & OHCI1394_reqTxComplete) 2036 queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work); 2037 2038 if (event & OHCI1394_respTxComplete) 2039 queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work); 2040 2041 if (event & OHCI1394_isochRx) { 2042 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); 2043 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); 2044 2045 while (iso_event) { 2046 i = ffs(iso_event) - 1; 2047 fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base); 2048 iso_event &= ~(1 << i); 2049 } 2050 } 2051 2052 if (event & OHCI1394_isochTx) { 2053 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); 2054 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); 2055 2056 while (iso_event) { 2057 i = ffs(iso_event) - 1; 2058 fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base); 2059 iso_event &= ~(1 << i); 2060 } 2061 } 2062 2063 if (unlikely(event & OHCI1394_regAccessFail)) 2064 ohci_err(ohci, "register access failure\n"); 2065 2066 if (unlikely(event & OHCI1394_postedWriteErr)) { 2067 reg_read(ohci, OHCI1394_PostedWriteAddressHi); 2068 reg_read(ohci, OHCI1394_PostedWriteAddressLo); 2069 reg_write(ohci, OHCI1394_IntEventClear, 2070 OHCI1394_postedWriteErr); 2071 dev_err_ratelimited(ohci->card.device, "PCI posted write error\n"); 2072 } 2073 2074 if (unlikely(event & OHCI1394_cycleTooLong)) { 2075 dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n"); 2076 reg_write(ohci, OHCI1394_LinkControlSet, 2077 OHCI1394_LinkControl_cycleMaster); 2078 } 2079 2080 if (unlikely(event & OHCI1394_cycleInconsistent)) { 2081 /* 2082 * We need to clear this event bit in order to make 2083 * cycleMatch isochronous I/O work. In theory we should 2084 * stop active cycleMatch iso contexts now and restart 2085 * them at least two cycles later. (FIXME?) 2086 */ 2087 dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n"); 2088 } 2089 2090 if (unlikely(event & OHCI1394_unrecoverableError)) 2091 handle_dead_contexts(ohci); 2092 2093 if (event & OHCI1394_cycle64Seconds) { 2094 guard(spinlock)(&ohci->lock); 2095 update_bus_time(ohci); 2096 } else 2097 flush_writes(ohci); 2098 2099 if (event & OHCI1394_selfIDComplete) 2100 return IRQ_WAKE_THREAD; 2101 else 2102 return IRQ_HANDLED; 2103 } 2104 2105 static int software_reset(struct fw_ohci *ohci) 2106 { 2107 u32 val; 2108 int i; 2109 2110 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); 2111 for (i = 0; i < 500; i++) { 2112 val = reg_read(ohci, OHCI1394_HCControlSet); 2113 if (!~val) 2114 return -ENODEV; /* Card was ejected. */ 2115 2116 if (!(val & OHCI1394_HCControl_softReset)) 2117 return 0; 2118 2119 msleep(1); 2120 } 2121 2122 return -EBUSY; 2123 } 2124 2125 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length) 2126 { 2127 size_t size = length * 4; 2128 2129 memcpy(dest, src, size); 2130 if (size < CONFIG_ROM_SIZE) 2131 memset(&dest[length], 0, CONFIG_ROM_SIZE - size); 2132 } 2133 2134 static int configure_1394a_enhancements(struct fw_ohci *ohci) 2135 { 2136 bool enable_1394a; 2137 int ret, clear, set, offset; 2138 2139 /* Check if the driver should configure link and PHY. */ 2140 if (!(reg_read(ohci, OHCI1394_HCControlSet) & 2141 OHCI1394_HCControl_programPhyEnable)) 2142 return 0; 2143 2144 /* Paranoia: check whether the PHY supports 1394a, too. */ 2145 enable_1394a = false; 2146 ret = read_phy_reg(ohci, 2); 2147 if (ret < 0) 2148 return ret; 2149 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) { 2150 ret = read_paged_phy_reg(ohci, 1, 8); 2151 if (ret < 0) 2152 return ret; 2153 if (ret >= 1) 2154 enable_1394a = true; 2155 } 2156 2157 if (ohci->quirks & QUIRK_NO_1394A) 2158 enable_1394a = false; 2159 2160 /* Configure PHY and link consistently. */ 2161 if (enable_1394a) { 2162 clear = 0; 2163 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2164 } else { 2165 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2166 set = 0; 2167 } 2168 ret = update_phy_reg(ohci, 5, clear, set); 2169 if (ret < 0) 2170 return ret; 2171 2172 if (enable_1394a) 2173 offset = OHCI1394_HCControlSet; 2174 else 2175 offset = OHCI1394_HCControlClear; 2176 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable); 2177 2178 /* Clean up: configuration has been taken care of. */ 2179 reg_write(ohci, OHCI1394_HCControlClear, 2180 OHCI1394_HCControl_programPhyEnable); 2181 2182 return 0; 2183 } 2184 2185 static int probe_tsb41ba3d(struct fw_ohci *ohci) 2186 { 2187 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */ 2188 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, }; 2189 int reg, i; 2190 2191 reg = read_phy_reg(ohci, 2); 2192 if (reg < 0) 2193 return reg; 2194 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS) 2195 return 0; 2196 2197 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) { 2198 reg = read_paged_phy_reg(ohci, 1, i + 10); 2199 if (reg < 0) 2200 return reg; 2201 if (reg != id[i]) 2202 return 0; 2203 } 2204 return 1; 2205 } 2206 2207 static int ohci_enable(struct fw_card *card, 2208 const __be32 *config_rom, size_t length) 2209 { 2210 struct fw_ohci *ohci = fw_ohci(card); 2211 u32 lps, version, irqs; 2212 int i, ret; 2213 2214 ret = software_reset(ohci); 2215 if (ret < 0) { 2216 ohci_err(ohci, "failed to reset ohci card\n"); 2217 return ret; 2218 } 2219 2220 /* 2221 * Now enable LPS, which we need in order to start accessing 2222 * most of the registers. In fact, on some cards (ALI M5251), 2223 * accessing registers in the SClk domain without LPS enabled 2224 * will lock up the machine. Wait 50msec to make sure we have 2225 * full link enabled. However, with some cards (well, at least 2226 * a JMicron PCIe card), we have to try again sometimes. 2227 * 2228 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but 2229 * cannot actually use the phy at that time. These need tens of 2230 * millisecods pause between LPS write and first phy access too. 2231 */ 2232 2233 reg_write(ohci, OHCI1394_HCControlSet, 2234 OHCI1394_HCControl_LPS | 2235 OHCI1394_HCControl_postedWriteEnable); 2236 flush_writes(ohci); 2237 2238 for (lps = 0, i = 0; !lps && i < 3; i++) { 2239 msleep(50); 2240 lps = reg_read(ohci, OHCI1394_HCControlSet) & 2241 OHCI1394_HCControl_LPS; 2242 } 2243 2244 if (!lps) { 2245 ohci_err(ohci, "failed to set Link Power Status\n"); 2246 return -EIO; 2247 } 2248 2249 if (ohci->quirks & QUIRK_TI_SLLZ059) { 2250 ret = probe_tsb41ba3d(ohci); 2251 if (ret < 0) 2252 return ret; 2253 if (ret) 2254 ohci_notice(ohci, "local TSB41BA3D phy\n"); 2255 else 2256 ohci->quirks &= ~QUIRK_TI_SLLZ059; 2257 } 2258 2259 reg_write(ohci, OHCI1394_HCControlClear, 2260 OHCI1394_HCControl_noByteSwapData); 2261 2262 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); 2263 reg_write(ohci, OHCI1394_LinkControlSet, 2264 OHCI1394_LinkControl_cycleTimerEnable | 2265 OHCI1394_LinkControl_cycleMaster); 2266 2267 reg_write(ohci, OHCI1394_ATRetries, 2268 OHCI1394_MAX_AT_REQ_RETRIES | 2269 (OHCI1394_MAX_AT_RESP_RETRIES << 4) | 2270 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) | 2271 (200 << 16)); 2272 2273 ohci->bus_time_running = false; 2274 2275 for (i = 0; i < 32; i++) 2276 if (ohci->ir_context_support & (1 << i)) 2277 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i), 2278 IR_CONTEXT_MULTI_CHANNEL_MODE); 2279 2280 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 2281 if (version >= OHCI_VERSION_1_1) { 2282 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi, 2283 0xfffffffe); 2284 card->broadcast_channel_auto_allocated = true; 2285 } 2286 2287 /* Get implemented bits of the priority arbitration request counter. */ 2288 reg_write(ohci, OHCI1394_FairnessControl, 0x3f); 2289 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f; 2290 reg_write(ohci, OHCI1394_FairnessControl, 0); 2291 card->priority_budget_implemented = ohci->pri_req_max != 0; 2292 2293 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16); 2294 reg_write(ohci, OHCI1394_IntEventClear, ~0); 2295 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 2296 2297 ret = configure_1394a_enhancements(ohci); 2298 if (ret < 0) 2299 return ret; 2300 2301 /* Activate link_on bit and contender bit in our self ID packets.*/ 2302 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER); 2303 if (ret < 0) 2304 return ret; 2305 2306 /* 2307 * When the link is not yet enabled, the atomic config rom 2308 * update mechanism described below in ohci_set_config_rom() 2309 * is not active. We have to update ConfigRomHeader and 2310 * BusOptions manually, and the write to ConfigROMmap takes 2311 * effect immediately. We tie this to the enabling of the 2312 * link, so we have a valid config rom before enabling - the 2313 * OHCI requires that ConfigROMhdr and BusOptions have valid 2314 * values before enabling. 2315 * 2316 * However, when the ConfigROMmap is written, some controllers 2317 * always read back quadlets 0 and 2 from the config rom to 2318 * the ConfigRomHeader and BusOptions registers on bus reset. 2319 * They shouldn't do that in this initial case where the link 2320 * isn't enabled. This means we have to use the same 2321 * workaround here, setting the bus header to 0 and then write 2322 * the right values in the bus reset work item. 2323 */ 2324 2325 if (config_rom) { 2326 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2327 &ohci->next_config_rom_bus, GFP_KERNEL); 2328 if (ohci->next_config_rom == NULL) 2329 return -ENOMEM; 2330 2331 copy_config_rom(ohci->next_config_rom, config_rom, length); 2332 } else { 2333 /* 2334 * In the suspend case, config_rom is NULL, which 2335 * means that we just reuse the old config rom. 2336 */ 2337 ohci->next_config_rom = ohci->config_rom; 2338 ohci->next_config_rom_bus = ohci->config_rom_bus; 2339 } 2340 2341 ohci->next_header = ohci->next_config_rom[0]; 2342 ohci->next_config_rom[0] = 0; 2343 reg_write(ohci, OHCI1394_ConfigROMhdr, 0); 2344 reg_write(ohci, OHCI1394_BusOptions, 2345 be32_to_cpu(ohci->next_config_rom[2])); 2346 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2347 2348 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); 2349 2350 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete | 2351 OHCI1394_RQPkt | OHCI1394_RSPkt | 2352 OHCI1394_isochTx | OHCI1394_isochRx | 2353 OHCI1394_postedWriteErr | 2354 OHCI1394_selfIDComplete | 2355 OHCI1394_regAccessFail | 2356 OHCI1394_cycleInconsistent | 2357 OHCI1394_unrecoverableError | 2358 OHCI1394_cycleTooLong | 2359 OHCI1394_masterIntEnable | 2360 OHCI1394_busReset; 2361 reg_write(ohci, OHCI1394_IntMaskSet, irqs); 2362 2363 reg_write(ohci, OHCI1394_HCControlSet, 2364 OHCI1394_HCControl_linkEnable | 2365 OHCI1394_HCControl_BIBimageValid); 2366 2367 reg_write(ohci, OHCI1394_LinkControlSet, 2368 OHCI1394_LinkControl_rcvSelfID | 2369 OHCI1394_LinkControl_rcvPhyPkt); 2370 2371 ar_context_run(&ohci->ar_request_ctx); 2372 ar_context_run(&ohci->ar_response_ctx); 2373 2374 flush_writes(ohci); 2375 2376 /* We are ready to go, reset bus to finish initialization. */ 2377 fw_schedule_bus_reset(&ohci->card, false, true); 2378 2379 return 0; 2380 } 2381 2382 static int ohci_set_config_rom(struct fw_card *card, 2383 const __be32 *config_rom, size_t length) 2384 { 2385 struct fw_ohci *ohci; 2386 __be32 *next_config_rom; 2387 dma_addr_t next_config_rom_bus; 2388 2389 ohci = fw_ohci(card); 2390 2391 /* 2392 * When the OHCI controller is enabled, the config rom update 2393 * mechanism is a bit tricky, but easy enough to use. See 2394 * section 5.5.6 in the OHCI specification. 2395 * 2396 * The OHCI controller caches the new config rom address in a 2397 * shadow register (ConfigROMmapNext) and needs a bus reset 2398 * for the changes to take place. When the bus reset is 2399 * detected, the controller loads the new values for the 2400 * ConfigRomHeader and BusOptions registers from the specified 2401 * config rom and loads ConfigROMmap from the ConfigROMmapNext 2402 * shadow register. All automatically and atomically. 2403 * 2404 * Now, there's a twist to this story. The automatic load of 2405 * ConfigRomHeader and BusOptions doesn't honor the 2406 * noByteSwapData bit, so with a be32 config rom, the 2407 * controller will load be32 values in to these registers 2408 * during the atomic update, even on little endian 2409 * architectures. The workaround we use is to put a 0 in the 2410 * header quadlet; 0 is endian agnostic and means that the 2411 * config rom isn't ready yet. In the bus reset work item we 2412 * then set up the real values for the two registers. 2413 * 2414 * We use ohci->lock to avoid racing with the code that sets 2415 * ohci->next_config_rom to NULL (see handle_selfid_complete_event). 2416 */ 2417 2418 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2419 &next_config_rom_bus, GFP_KERNEL); 2420 if (next_config_rom == NULL) 2421 return -ENOMEM; 2422 2423 scoped_guard(spinlock_irq, &ohci->lock) { 2424 // If there is not an already pending config_rom update, push our new allocation 2425 // into the ohci->next_config_rom and then mark the local variable as null so that 2426 // we won't deallocate the new buffer. 2427 // 2428 // OTOH, if there is a pending config_rom update, just use that buffer with the new 2429 // config_rom data, and let this routine free the unused DMA allocation. 2430 if (ohci->next_config_rom == NULL) { 2431 ohci->next_config_rom = next_config_rom; 2432 ohci->next_config_rom_bus = next_config_rom_bus; 2433 next_config_rom = NULL; 2434 } 2435 2436 copy_config_rom(ohci->next_config_rom, config_rom, length); 2437 2438 ohci->next_header = config_rom[0]; 2439 ohci->next_config_rom[0] = 0; 2440 2441 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2442 } 2443 2444 /* If we didn't use the DMA allocation, delete it. */ 2445 if (next_config_rom != NULL) { 2446 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom, 2447 next_config_rom_bus); 2448 } 2449 2450 /* 2451 * Now initiate a bus reset to have the changes take 2452 * effect. We clean up the old config rom memory and DMA 2453 * mappings in the bus reset work item, since the OHCI 2454 * controller could need to access it before the bus reset 2455 * takes effect. 2456 */ 2457 2458 fw_schedule_bus_reset(&ohci->card, true, true); 2459 2460 return 0; 2461 } 2462 2463 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) 2464 { 2465 struct fw_ohci *ohci = fw_ohci(card); 2466 2467 at_context_transmit(&ohci->at_request_ctx, packet); 2468 } 2469 2470 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) 2471 { 2472 struct fw_ohci *ohci = fw_ohci(card); 2473 2474 at_context_transmit(&ohci->at_response_ctx, packet); 2475 } 2476 2477 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) 2478 { 2479 struct fw_ohci *ohci = fw_ohci(card); 2480 struct at_context *ctx = &ohci->at_request_ctx; 2481 struct driver_data *driver_data = packet->driver_data; 2482 int ret = -ENOENT; 2483 2484 // Avoid dead lock due to programming mistake. 2485 if (WARN_ON_ONCE(current_work() == &ctx->work)) 2486 return 0; 2487 disable_work_sync(&ctx->work); 2488 2489 if (packet->ack != 0) 2490 goto out; 2491 2492 if (packet->payload_mapped) 2493 dma_unmap_single(ohci->card.device, packet->payload_bus, 2494 packet->payload_length, DMA_TO_DEVICE); 2495 2496 driver_data->packet = NULL; 2497 packet->ack = RCODE_CANCELLED; 2498 2499 // Timestamping on behalf of the hardware. 2500 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); 2501 2502 packet->callback(packet, &ohci->card, packet->ack); 2503 ret = 0; 2504 out: 2505 enable_work(&ctx->work); 2506 2507 return ret; 2508 } 2509 2510 static int ohci_enable_phys_dma(struct fw_card *card, 2511 int node_id, int generation) 2512 { 2513 struct fw_ohci *ohci = fw_ohci(card); 2514 int n, ret = 0; 2515 2516 if (param_remote_dma) 2517 return 0; 2518 2519 /* 2520 * FIXME: Make sure this bitmask is cleared when we clear the busReset 2521 * interrupt bit. Clear physReqResourceAllBuses on bus reset. 2522 */ 2523 2524 guard(spinlock_irqsave)(&ohci->lock); 2525 2526 if (ohci->generation != generation) 2527 return -ESTALE; 2528 2529 /* 2530 * Note, if the node ID contains a non-local bus ID, physical DMA is 2531 * enabled for _all_ nodes on remote buses. 2532 */ 2533 2534 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; 2535 if (n < 32) 2536 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); 2537 else 2538 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); 2539 2540 flush_writes(ohci); 2541 2542 return ret; 2543 } 2544 2545 static u32 ohci_read_csr(struct fw_card *card, int csr_offset) 2546 { 2547 struct fw_ohci *ohci = fw_ohci(card); 2548 u32 value; 2549 2550 switch (csr_offset) { 2551 case CSR_STATE_CLEAR: 2552 case CSR_STATE_SET: 2553 if (ohci->is_root && 2554 (reg_read(ohci, OHCI1394_LinkControlSet) & 2555 OHCI1394_LinkControl_cycleMaster)) 2556 value = CSR_STATE_BIT_CMSTR; 2557 else 2558 value = 0; 2559 if (ohci->csr_state_setclear_abdicate) 2560 value |= CSR_STATE_BIT_ABDICATE; 2561 2562 return value; 2563 2564 case CSR_NODE_IDS: 2565 return reg_read(ohci, OHCI1394_NodeID) << 16; 2566 2567 case CSR_CYCLE_TIME: 2568 return get_cycle_time(ohci); 2569 2570 case CSR_BUS_TIME: 2571 { 2572 // We might be called just after the cycle timer has wrapped around but just before 2573 // the cycle64Seconds handler, so we better check here, too, if the bus time needs 2574 // to be updated. 2575 2576 guard(spinlock_irqsave)(&ohci->lock); 2577 return update_bus_time(ohci); 2578 } 2579 case CSR_BUSY_TIMEOUT: 2580 value = reg_read(ohci, OHCI1394_ATRetries); 2581 return (value >> 4) & 0x0ffff00f; 2582 2583 case CSR_PRIORITY_BUDGET: 2584 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) | 2585 (ohci->pri_req_max << 8); 2586 2587 default: 2588 WARN_ON(1); 2589 return 0; 2590 } 2591 } 2592 2593 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value) 2594 { 2595 struct fw_ohci *ohci = fw_ohci(card); 2596 2597 switch (csr_offset) { 2598 case CSR_STATE_CLEAR: 2599 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2600 reg_write(ohci, OHCI1394_LinkControlClear, 2601 OHCI1394_LinkControl_cycleMaster); 2602 flush_writes(ohci); 2603 } 2604 if (value & CSR_STATE_BIT_ABDICATE) 2605 ohci->csr_state_setclear_abdicate = false; 2606 break; 2607 2608 case CSR_STATE_SET: 2609 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2610 reg_write(ohci, OHCI1394_LinkControlSet, 2611 OHCI1394_LinkControl_cycleMaster); 2612 flush_writes(ohci); 2613 } 2614 if (value & CSR_STATE_BIT_ABDICATE) 2615 ohci->csr_state_setclear_abdicate = true; 2616 break; 2617 2618 case CSR_NODE_IDS: 2619 reg_write(ohci, OHCI1394_NodeID, value >> 16); 2620 flush_writes(ohci); 2621 break; 2622 2623 case CSR_CYCLE_TIME: 2624 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value); 2625 reg_write(ohci, OHCI1394_IntEventSet, 2626 OHCI1394_cycleInconsistent); 2627 flush_writes(ohci); 2628 break; 2629 2630 case CSR_BUS_TIME: 2631 { 2632 guard(spinlock_irqsave)(&ohci->lock); 2633 ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f); 2634 break; 2635 } 2636 case CSR_BUSY_TIMEOUT: 2637 value = (value & 0xf) | ((value & 0xf) << 4) | 2638 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4); 2639 reg_write(ohci, OHCI1394_ATRetries, value); 2640 flush_writes(ohci); 2641 break; 2642 2643 case CSR_PRIORITY_BUDGET: 2644 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f); 2645 flush_writes(ohci); 2646 break; 2647 2648 default: 2649 WARN_ON(1); 2650 break; 2651 } 2652 } 2653 2654 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause) 2655 { 2656 trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header, 2657 ctx->header_length); 2658 trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header, 2659 ctx->header_length); 2660 2661 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp, 2662 ctx->header_length, ctx->header, 2663 ctx->base.callback_data); 2664 ctx->header_length = 0; 2665 } 2666 2667 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr) 2668 { 2669 u32 *ctx_hdr; 2670 2671 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) { 2672 if (ctx->base.drop_overflow_headers) 2673 return; 2674 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW); 2675 } 2676 2677 ctx_hdr = ctx->header + ctx->header_length; 2678 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]); 2679 2680 /* 2681 * The two iso header quadlets are byteswapped to little 2682 * endian by the controller, but we want to present them 2683 * as big endian for consistency with the bus endianness. 2684 */ 2685 if (ctx->base.header_size > 0) 2686 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */ 2687 if (ctx->base.header_size > 4) 2688 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */ 2689 if (ctx->base.header_size > 8) 2690 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8); 2691 ctx->header_length += ctx->base.header_size; 2692 } 2693 2694 static int handle_ir_packet_per_buffer(struct context *context, 2695 struct descriptor *d, 2696 struct descriptor *last) 2697 { 2698 struct iso_context *ctx = 2699 container_of(context, struct iso_context, context); 2700 struct descriptor *pd; 2701 u32 buffer_dma; 2702 2703 for (pd = d; pd <= last; pd++) 2704 if (pd->transfer_status) 2705 break; 2706 if (pd > last) 2707 /* Descriptor(s) not done yet, stop iteration */ 2708 return 0; 2709 2710 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) { 2711 d++; 2712 buffer_dma = le32_to_cpu(d->data_address); 2713 dma_sync_single_range_for_cpu(context->ohci->card.device, 2714 buffer_dma & PAGE_MASK, 2715 buffer_dma & ~PAGE_MASK, 2716 le16_to_cpu(d->req_count), 2717 DMA_FROM_DEVICE); 2718 } 2719 2720 copy_iso_headers(ctx, (u32 *) (last + 1)); 2721 2722 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2723 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT); 2724 2725 return 1; 2726 } 2727 2728 /* d == last because each descriptor block is only a single descriptor. */ 2729 static int handle_ir_buffer_fill(struct context *context, 2730 struct descriptor *d, 2731 struct descriptor *last) 2732 { 2733 struct iso_context *ctx = 2734 container_of(context, struct iso_context, context); 2735 unsigned int req_count, res_count, completed; 2736 u32 buffer_dma; 2737 2738 req_count = le16_to_cpu(last->req_count); 2739 res_count = le16_to_cpu(READ_ONCE(last->res_count)); 2740 completed = req_count - res_count; 2741 buffer_dma = le32_to_cpu(last->data_address); 2742 2743 if (completed > 0) { 2744 ctx->mc_buffer_bus = buffer_dma; 2745 ctx->mc_completed = completed; 2746 } 2747 2748 if (res_count != 0) 2749 /* Descriptor(s) not done yet, stop iteration */ 2750 return 0; 2751 2752 dma_sync_single_range_for_cpu(context->ohci->card.device, 2753 buffer_dma & PAGE_MASK, 2754 buffer_dma & ~PAGE_MASK, 2755 completed, DMA_FROM_DEVICE); 2756 2757 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) { 2758 trace_isoc_inbound_multiple_completions(&ctx->base, completed, 2759 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT); 2760 2761 ctx->base.callback.mc(&ctx->base, 2762 buffer_dma + completed, 2763 ctx->base.callback_data); 2764 ctx->mc_completed = 0; 2765 } 2766 2767 return 1; 2768 } 2769 2770 static void flush_ir_buffer_fill(struct iso_context *ctx) 2771 { 2772 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device, 2773 ctx->mc_buffer_bus & PAGE_MASK, 2774 ctx->mc_buffer_bus & ~PAGE_MASK, 2775 ctx->mc_completed, DMA_FROM_DEVICE); 2776 2777 trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed, 2778 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH); 2779 2780 ctx->base.callback.mc(&ctx->base, 2781 ctx->mc_buffer_bus + ctx->mc_completed, 2782 ctx->base.callback_data); 2783 ctx->mc_completed = 0; 2784 } 2785 2786 static inline void sync_it_packet_for_cpu(struct context *context, 2787 struct descriptor *pd) 2788 { 2789 __le16 control; 2790 u32 buffer_dma; 2791 2792 /* only packets beginning with OUTPUT_MORE* have data buffers */ 2793 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2794 return; 2795 2796 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */ 2797 pd += 2; 2798 2799 /* 2800 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's 2801 * data buffer is in the context program's coherent page and must not 2802 * be synced. 2803 */ 2804 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) == 2805 (context->current_bus & PAGE_MASK)) { 2806 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2807 return; 2808 pd++; 2809 } 2810 2811 do { 2812 buffer_dma = le32_to_cpu(pd->data_address); 2813 dma_sync_single_range_for_cpu(context->ohci->card.device, 2814 buffer_dma & PAGE_MASK, 2815 buffer_dma & ~PAGE_MASK, 2816 le16_to_cpu(pd->req_count), 2817 DMA_TO_DEVICE); 2818 control = pd->control; 2819 pd++; 2820 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))); 2821 } 2822 2823 static int handle_it_packet(struct context *context, 2824 struct descriptor *d, 2825 struct descriptor *last) 2826 { 2827 struct iso_context *ctx = 2828 container_of(context, struct iso_context, context); 2829 struct descriptor *pd; 2830 __be32 *ctx_hdr; 2831 2832 for (pd = d; pd <= last; pd++) 2833 if (pd->transfer_status) 2834 break; 2835 if (pd > last) 2836 /* Descriptor(s) not done yet, stop iteration */ 2837 return 0; 2838 2839 sync_it_packet_for_cpu(context, d); 2840 2841 if (ctx->header_length + 4 > PAGE_SIZE) { 2842 if (ctx->base.drop_overflow_headers) 2843 return 1; 2844 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW); 2845 } 2846 2847 ctx_hdr = ctx->header + ctx->header_length; 2848 ctx->last_timestamp = le16_to_cpu(last->res_count); 2849 /* Present this value as big-endian to match the receive code */ 2850 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) | 2851 le16_to_cpu(pd->res_count)); 2852 ctx->header_length += 4; 2853 2854 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2855 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT); 2856 2857 return 1; 2858 } 2859 2860 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels) 2861 { 2862 u32 hi = channels >> 32, lo = channels; 2863 2864 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi); 2865 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo); 2866 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi); 2867 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo); 2868 ohci->mc_channels = channels; 2869 } 2870 2871 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, 2872 int type, int channel, size_t header_size) 2873 { 2874 struct fw_ohci *ohci = fw_ohci(card); 2875 struct iso_context *ctx; 2876 descriptor_callback_t callback; 2877 u64 *channels; 2878 u32 *mask, regs; 2879 int index, ret = -EBUSY; 2880 2881 scoped_guard(spinlock_irq, &ohci->lock) { 2882 switch (type) { 2883 case FW_ISO_CONTEXT_TRANSMIT: 2884 mask = &ohci->it_context_mask; 2885 callback = handle_it_packet; 2886 index = ffs(*mask) - 1; 2887 if (index >= 0) { 2888 *mask &= ~(1 << index); 2889 regs = OHCI1394_IsoXmitContextBase(index); 2890 ctx = &ohci->it_context_list[index]; 2891 } 2892 break; 2893 2894 case FW_ISO_CONTEXT_RECEIVE: 2895 channels = &ohci->ir_context_channels; 2896 mask = &ohci->ir_context_mask; 2897 callback = handle_ir_packet_per_buffer; 2898 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1; 2899 if (index >= 0) { 2900 *channels &= ~(1ULL << channel); 2901 *mask &= ~(1 << index); 2902 regs = OHCI1394_IsoRcvContextBase(index); 2903 ctx = &ohci->ir_context_list[index]; 2904 } 2905 break; 2906 2907 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 2908 mask = &ohci->ir_context_mask; 2909 callback = handle_ir_buffer_fill; 2910 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1; 2911 if (index >= 0) { 2912 ohci->mc_allocated = true; 2913 *mask &= ~(1 << index); 2914 regs = OHCI1394_IsoRcvContextBase(index); 2915 ctx = &ohci->ir_context_list[index]; 2916 } 2917 break; 2918 2919 default: 2920 index = -1; 2921 ret = -ENOSYS; 2922 } 2923 2924 if (index < 0) 2925 return ERR_PTR(ret); 2926 } 2927 2928 memset(ctx, 0, sizeof(*ctx)); 2929 ctx->header_length = 0; 2930 ctx->header = (void *) __get_free_page(GFP_KERNEL); 2931 if (ctx->header == NULL) { 2932 ret = -ENOMEM; 2933 goto out; 2934 } 2935 ret = context_init(&ctx->context, ohci, regs, callback); 2936 if (ret < 0) 2937 goto out_with_header; 2938 fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work); 2939 2940 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) { 2941 set_multichannel_mask(ohci, 0); 2942 ctx->mc_completed = 0; 2943 } 2944 2945 return &ctx->base; 2946 2947 out_with_header: 2948 free_page((unsigned long)ctx->header); 2949 out: 2950 scoped_guard(spinlock_irq, &ohci->lock) { 2951 switch (type) { 2952 case FW_ISO_CONTEXT_RECEIVE: 2953 *channels |= 1ULL << channel; 2954 break; 2955 2956 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 2957 ohci->mc_allocated = false; 2958 break; 2959 } 2960 *mask |= 1 << index; 2961 } 2962 2963 return ERR_PTR(ret); 2964 } 2965 2966 static int ohci_start_iso(struct fw_iso_context *base, 2967 s32 cycle, u32 sync, u32 tags) 2968 { 2969 struct iso_context *ctx = container_of(base, struct iso_context, base); 2970 struct fw_ohci *ohci = ctx->context.ohci; 2971 u32 control = IR_CONTEXT_ISOCH_HEADER, match; 2972 int index; 2973 2974 /* the controller cannot start without any queued packets */ 2975 if (ctx->context.last->branch_address == 0) 2976 return -ENODATA; 2977 2978 switch (ctx->base.type) { 2979 case FW_ISO_CONTEXT_TRANSMIT: 2980 index = ctx - ohci->it_context_list; 2981 match = 0; 2982 if (cycle >= 0) 2983 match = IT_CONTEXT_CYCLE_MATCH_ENABLE | 2984 (cycle & 0x7fff) << 16; 2985 2986 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); 2987 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); 2988 context_run(&ctx->context, match); 2989 break; 2990 2991 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 2992 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE; 2993 fallthrough; 2994 case FW_ISO_CONTEXT_RECEIVE: 2995 index = ctx - ohci->ir_context_list; 2996 match = (tags << 28) | (sync << 8) | ctx->base.channel; 2997 if (cycle >= 0) { 2998 match |= (cycle & 0x07fff) << 12; 2999 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; 3000 } 3001 3002 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); 3003 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); 3004 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); 3005 context_run(&ctx->context, control); 3006 3007 ctx->sync = sync; 3008 ctx->tags = tags; 3009 3010 break; 3011 } 3012 3013 return 0; 3014 } 3015 3016 static int ohci_stop_iso(struct fw_iso_context *base) 3017 { 3018 struct fw_ohci *ohci = fw_ohci(base->card); 3019 struct iso_context *ctx = container_of(base, struct iso_context, base); 3020 int index; 3021 3022 switch (ctx->base.type) { 3023 case FW_ISO_CONTEXT_TRANSMIT: 3024 index = ctx - ohci->it_context_list; 3025 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); 3026 break; 3027 3028 case FW_ISO_CONTEXT_RECEIVE: 3029 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3030 index = ctx - ohci->ir_context_list; 3031 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); 3032 break; 3033 } 3034 flush_writes(ohci); 3035 context_stop(&ctx->context); 3036 3037 return 0; 3038 } 3039 3040 static void ohci_free_iso_context(struct fw_iso_context *base) 3041 { 3042 struct fw_ohci *ohci = fw_ohci(base->card); 3043 struct iso_context *ctx = container_of(base, struct iso_context, base); 3044 int index; 3045 3046 ohci_stop_iso(base); 3047 context_release(&ctx->context); 3048 free_page((unsigned long)ctx->header); 3049 3050 guard(spinlock_irqsave)(&ohci->lock); 3051 3052 switch (base->type) { 3053 case FW_ISO_CONTEXT_TRANSMIT: 3054 index = ctx - ohci->it_context_list; 3055 ohci->it_context_mask |= 1 << index; 3056 break; 3057 3058 case FW_ISO_CONTEXT_RECEIVE: 3059 index = ctx - ohci->ir_context_list; 3060 ohci->ir_context_mask |= 1 << index; 3061 ohci->ir_context_channels |= 1ULL << base->channel; 3062 break; 3063 3064 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3065 index = ctx - ohci->ir_context_list; 3066 ohci->ir_context_mask |= 1 << index; 3067 ohci->ir_context_channels |= ohci->mc_channels; 3068 ohci->mc_channels = 0; 3069 ohci->mc_allocated = false; 3070 break; 3071 } 3072 } 3073 3074 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels) 3075 { 3076 struct fw_ohci *ohci = fw_ohci(base->card); 3077 3078 switch (base->type) { 3079 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3080 { 3081 guard(spinlock_irqsave)(&ohci->lock); 3082 3083 // Don't allow multichannel to grab other contexts' channels. 3084 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) { 3085 *channels = ohci->ir_context_channels; 3086 return -EBUSY; 3087 } else { 3088 set_multichannel_mask(ohci, *channels); 3089 return 0; 3090 } 3091 } 3092 default: 3093 return -EINVAL; 3094 } 3095 } 3096 3097 static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci) 3098 { 3099 int i; 3100 struct iso_context *ctx; 3101 3102 for (i = 0 ; i < ohci->n_ir ; i++) { 3103 ctx = &ohci->ir_context_list[i]; 3104 if (ctx->context.running) 3105 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3106 } 3107 3108 for (i = 0 ; i < ohci->n_it ; i++) { 3109 ctx = &ohci->it_context_list[i]; 3110 if (ctx->context.running) 3111 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3112 } 3113 } 3114 3115 static int queue_iso_transmit(struct iso_context *ctx, 3116 struct fw_iso_packet *packet, 3117 struct fw_iso_buffer *buffer, 3118 unsigned long payload) 3119 { 3120 struct descriptor *d, *last, *pd; 3121 struct fw_iso_packet *p; 3122 __le32 *header; 3123 dma_addr_t d_bus, page_bus; 3124 u32 z, header_z, payload_z, irq; 3125 u32 payload_index, payload_end_index, next_page_index; 3126 int page, end_page, i, length, offset; 3127 3128 p = packet; 3129 payload_index = payload; 3130 3131 if (p->skip) 3132 z = 1; 3133 else 3134 z = 2; 3135 if (p->header_length > 0) 3136 z++; 3137 3138 /* Determine the first page the payload isn't contained in. */ 3139 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; 3140 if (p->payload_length > 0) 3141 payload_z = end_page - (payload_index >> PAGE_SHIFT); 3142 else 3143 payload_z = 0; 3144 3145 z += payload_z; 3146 3147 /* Get header size in number of descriptors. */ 3148 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); 3149 3150 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); 3151 if (d == NULL) 3152 return -ENOMEM; 3153 3154 if (!p->skip) { 3155 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 3156 d[0].req_count = cpu_to_le16(8); 3157 /* 3158 * Link the skip address to this descriptor itself. This causes 3159 * a context to skip a cycle whenever lost cycles or FIFO 3160 * overruns occur, without dropping the data. The application 3161 * should then decide whether this is an error condition or not. 3162 * FIXME: Make the context's cycle-lost behaviour configurable? 3163 */ 3164 d[0].branch_address = cpu_to_le32(d_bus | z); 3165 3166 header = (__le32 *) &d[1]; 3167 3168 ohci1394_it_data_set_speed(header, ctx->base.speed); 3169 ohci1394_it_data_set_tag(header, p->tag); 3170 ohci1394_it_data_set_channel(header, ctx->base.channel); 3171 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA); 3172 ohci1394_it_data_set_sync(header, p->sy); 3173 3174 ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length); 3175 } 3176 3177 if (p->header_length > 0) { 3178 d[2].req_count = cpu_to_le16(p->header_length); 3179 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); 3180 memcpy(&d[z], p->header, p->header_length); 3181 } 3182 3183 pd = d + z - payload_z; 3184 payload_end_index = payload_index + p->payload_length; 3185 for (i = 0; i < payload_z; i++) { 3186 page = payload_index >> PAGE_SHIFT; 3187 offset = payload_index & ~PAGE_MASK; 3188 next_page_index = (page + 1) << PAGE_SHIFT; 3189 length = 3190 min(next_page_index, payload_end_index) - payload_index; 3191 pd[i].req_count = cpu_to_le16(length); 3192 3193 page_bus = page_private(buffer->pages[page]); 3194 pd[i].data_address = cpu_to_le32(page_bus + offset); 3195 3196 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3197 page_bus, offset, length, 3198 DMA_TO_DEVICE); 3199 3200 payload_index += length; 3201 } 3202 3203 if (p->interrupt) 3204 irq = DESCRIPTOR_IRQ_ALWAYS; 3205 else 3206 irq = DESCRIPTOR_NO_IRQ; 3207 3208 last = z == 2 ? d : d + z - 1; 3209 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 3210 DESCRIPTOR_STATUS | 3211 DESCRIPTOR_BRANCH_ALWAYS | 3212 irq); 3213 3214 context_append(&ctx->context, d, z, header_z); 3215 3216 return 0; 3217 } 3218 3219 static int queue_iso_packet_per_buffer(struct iso_context *ctx, 3220 struct fw_iso_packet *packet, 3221 struct fw_iso_buffer *buffer, 3222 unsigned long payload) 3223 { 3224 struct device *device = ctx->context.ohci->card.device; 3225 struct descriptor *d, *pd; 3226 dma_addr_t d_bus, page_bus; 3227 u32 z, header_z, rest; 3228 int i, j, length; 3229 int page, offset, packet_count, header_size, payload_per_buffer; 3230 3231 /* 3232 * The OHCI controller puts the isochronous header and trailer in the 3233 * buffer, so we need at least 8 bytes. 3234 */ 3235 packet_count = packet->header_length / ctx->base.header_size; 3236 header_size = max(ctx->base.header_size, (size_t)8); 3237 3238 /* Get header size in number of descriptors. */ 3239 header_z = DIV_ROUND_UP(header_size, sizeof(*d)); 3240 page = payload >> PAGE_SHIFT; 3241 offset = payload & ~PAGE_MASK; 3242 payload_per_buffer = packet->payload_length / packet_count; 3243 3244 for (i = 0; i < packet_count; i++) { 3245 /* d points to the header descriptor */ 3246 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; 3247 d = context_get_descriptors(&ctx->context, 3248 z + header_z, &d_bus); 3249 if (d == NULL) 3250 return -ENOMEM; 3251 3252 d->control = cpu_to_le16(DESCRIPTOR_STATUS | 3253 DESCRIPTOR_INPUT_MORE); 3254 if (packet->skip && i == 0) 3255 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3256 d->req_count = cpu_to_le16(header_size); 3257 d->res_count = d->req_count; 3258 d->transfer_status = 0; 3259 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); 3260 3261 rest = payload_per_buffer; 3262 pd = d; 3263 for (j = 1; j < z; j++) { 3264 pd++; 3265 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3266 DESCRIPTOR_INPUT_MORE); 3267 3268 if (offset + rest < PAGE_SIZE) 3269 length = rest; 3270 else 3271 length = PAGE_SIZE - offset; 3272 pd->req_count = cpu_to_le16(length); 3273 pd->res_count = pd->req_count; 3274 pd->transfer_status = 0; 3275 3276 page_bus = page_private(buffer->pages[page]); 3277 pd->data_address = cpu_to_le32(page_bus + offset); 3278 3279 dma_sync_single_range_for_device(device, page_bus, 3280 offset, length, 3281 DMA_FROM_DEVICE); 3282 3283 offset = (offset + length) & ~PAGE_MASK; 3284 rest -= length; 3285 if (offset == 0) 3286 page++; 3287 } 3288 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3289 DESCRIPTOR_INPUT_LAST | 3290 DESCRIPTOR_BRANCH_ALWAYS); 3291 if (packet->interrupt && i == packet_count - 1) 3292 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3293 3294 context_append(&ctx->context, d, z, header_z); 3295 } 3296 3297 return 0; 3298 } 3299 3300 static int queue_iso_buffer_fill(struct iso_context *ctx, 3301 struct fw_iso_packet *packet, 3302 struct fw_iso_buffer *buffer, 3303 unsigned long payload) 3304 { 3305 struct descriptor *d; 3306 dma_addr_t d_bus, page_bus; 3307 int page, offset, rest, z, i, length; 3308 3309 page = payload >> PAGE_SHIFT; 3310 offset = payload & ~PAGE_MASK; 3311 rest = packet->payload_length; 3312 3313 /* We need one descriptor for each page in the buffer. */ 3314 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE); 3315 3316 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count)) 3317 return -EFAULT; 3318 3319 for (i = 0; i < z; i++) { 3320 d = context_get_descriptors(&ctx->context, 1, &d_bus); 3321 if (d == NULL) 3322 return -ENOMEM; 3323 3324 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 3325 DESCRIPTOR_BRANCH_ALWAYS); 3326 if (packet->skip && i == 0) 3327 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3328 if (packet->interrupt && i == z - 1) 3329 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3330 3331 if (offset + rest < PAGE_SIZE) 3332 length = rest; 3333 else 3334 length = PAGE_SIZE - offset; 3335 d->req_count = cpu_to_le16(length); 3336 d->res_count = d->req_count; 3337 d->transfer_status = 0; 3338 3339 page_bus = page_private(buffer->pages[page]); 3340 d->data_address = cpu_to_le32(page_bus + offset); 3341 3342 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3343 page_bus, offset, length, 3344 DMA_FROM_DEVICE); 3345 3346 rest -= length; 3347 offset = 0; 3348 page++; 3349 3350 context_append(&ctx->context, d, 1, 0); 3351 } 3352 3353 return 0; 3354 } 3355 3356 static int ohci_queue_iso(struct fw_iso_context *base, 3357 struct fw_iso_packet *packet, 3358 struct fw_iso_buffer *buffer, 3359 unsigned long payload) 3360 { 3361 struct iso_context *ctx = container_of(base, struct iso_context, base); 3362 3363 guard(spinlock_irqsave)(&ctx->context.ohci->lock); 3364 3365 switch (base->type) { 3366 case FW_ISO_CONTEXT_TRANSMIT: 3367 return queue_iso_transmit(ctx, packet, buffer, payload); 3368 case FW_ISO_CONTEXT_RECEIVE: 3369 return queue_iso_packet_per_buffer(ctx, packet, buffer, payload); 3370 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3371 return queue_iso_buffer_fill(ctx, packet, buffer, payload); 3372 default: 3373 return -ENOSYS; 3374 } 3375 } 3376 3377 static void ohci_flush_queue_iso(struct fw_iso_context *base) 3378 { 3379 struct context *ctx = 3380 &container_of(base, struct iso_context, base)->context; 3381 3382 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 3383 } 3384 3385 static int ohci_flush_iso_completions(struct fw_iso_context *base) 3386 { 3387 struct iso_context *ctx = container_of(base, struct iso_context, base); 3388 int ret = 0; 3389 3390 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) { 3391 ohci_isoc_context_work(&base->work); 3392 3393 switch (base->type) { 3394 case FW_ISO_CONTEXT_TRANSMIT: 3395 case FW_ISO_CONTEXT_RECEIVE: 3396 if (ctx->header_length != 0) 3397 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH); 3398 break; 3399 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3400 if (ctx->mc_completed != 0) 3401 flush_ir_buffer_fill(ctx); 3402 break; 3403 default: 3404 ret = -ENOSYS; 3405 } 3406 3407 clear_bit_unlock(0, &ctx->flushing_completions); 3408 smp_mb__after_atomic(); 3409 } 3410 3411 return ret; 3412 } 3413 3414 static const struct fw_card_driver ohci_driver = { 3415 .enable = ohci_enable, 3416 .read_phy_reg = ohci_read_phy_reg, 3417 .update_phy_reg = ohci_update_phy_reg, 3418 .set_config_rom = ohci_set_config_rom, 3419 .send_request = ohci_send_request, 3420 .send_response = ohci_send_response, 3421 .cancel_packet = ohci_cancel_packet, 3422 .enable_phys_dma = ohci_enable_phys_dma, 3423 .read_csr = ohci_read_csr, 3424 .write_csr = ohci_write_csr, 3425 3426 .allocate_iso_context = ohci_allocate_iso_context, 3427 .free_iso_context = ohci_free_iso_context, 3428 .set_iso_channels = ohci_set_iso_channels, 3429 .queue_iso = ohci_queue_iso, 3430 .flush_queue_iso = ohci_flush_queue_iso, 3431 .flush_iso_completions = ohci_flush_iso_completions, 3432 .start_iso = ohci_start_iso, 3433 .stop_iso = ohci_stop_iso, 3434 }; 3435 3436 #ifdef CONFIG_PPC_PMAC 3437 static void pmac_ohci_on(struct pci_dev *dev) 3438 { 3439 if (machine_is(powermac)) { 3440 struct device_node *ofn = pci_device_to_OF_node(dev); 3441 3442 if (ofn) { 3443 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); 3444 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); 3445 } 3446 } 3447 } 3448 3449 static void pmac_ohci_off(struct pci_dev *dev) 3450 { 3451 if (machine_is(powermac)) { 3452 struct device_node *ofn = pci_device_to_OF_node(dev); 3453 3454 if (ofn) { 3455 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); 3456 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); 3457 } 3458 } 3459 } 3460 #else 3461 static inline void pmac_ohci_on(struct pci_dev *dev) {} 3462 static inline void pmac_ohci_off(struct pci_dev *dev) {} 3463 #endif /* CONFIG_PPC_PMAC */ 3464 3465 static void release_ohci(struct device *dev, void *data) 3466 { 3467 struct pci_dev *pdev = to_pci_dev(dev); 3468 struct fw_ohci *ohci = pci_get_drvdata(pdev); 3469 3470 pmac_ohci_off(pdev); 3471 3472 ar_context_release(&ohci->ar_response_ctx); 3473 ar_context_release(&ohci->ar_request_ctx); 3474 3475 dev_notice(dev, "removed fw-ohci device\n"); 3476 } 3477 3478 static int pci_probe(struct pci_dev *dev, 3479 const struct pci_device_id *ent) 3480 { 3481 struct fw_ohci *ohci; 3482 u32 bus_options, max_receive, link_speed, version; 3483 u64 guid; 3484 int i, flags, irq, err; 3485 3486 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) { 3487 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n"); 3488 return -ENOSYS; 3489 } 3490 3491 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL); 3492 if (ohci == NULL) 3493 return -ENOMEM; 3494 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); 3495 pci_set_drvdata(dev, ohci); 3496 pmac_ohci_on(dev); 3497 devres_add(&dev->dev, ohci); 3498 3499 err = pcim_enable_device(dev); 3500 if (err) { 3501 dev_err(&dev->dev, "failed to enable OHCI hardware\n"); 3502 return err; 3503 } 3504 3505 pci_set_master(dev); 3506 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); 3507 3508 spin_lock_init(&ohci->lock); 3509 mutex_init(&ohci->phy_reg_mutex); 3510 3511 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) || 3512 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) { 3513 ohci_err(ohci, "invalid MMIO resource\n"); 3514 return -ENXIO; 3515 } 3516 3517 ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name); 3518 if (IS_ERR(ohci->registers)) { 3519 ohci_err(ohci, "request and map MMIO resource unavailable\n"); 3520 return -ENXIO; 3521 } 3522 3523 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++) 3524 if ((ohci_quirks[i].vendor == dev->vendor) && 3525 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID || 3526 ohci_quirks[i].device == dev->device) && 3527 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID || 3528 ohci_quirks[i].revision >= dev->revision)) { 3529 ohci->quirks = ohci_quirks[i].flags; 3530 break; 3531 } 3532 if (param_quirks) 3533 ohci->quirks = param_quirks; 3534 3535 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev)) 3536 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ; 3537 3538 /* 3539 * Because dma_alloc_coherent() allocates at least one page, 3540 * we save space by using a common buffer for the AR request/ 3541 * response descriptors and the self IDs buffer. 3542 */ 3543 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4); 3544 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2); 3545 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus, 3546 GFP_KERNEL); 3547 if (!ohci->misc_buffer) 3548 return -ENOMEM; 3549 3550 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0, 3551 OHCI1394_AsReqRcvContextControlSet); 3552 if (err < 0) 3553 return err; 3554 3555 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4, 3556 OHCI1394_AsRspRcvContextControlSet); 3557 if (err < 0) 3558 return err; 3559 3560 err = context_init(&ohci->at_request_ctx.context, ohci, 3561 OHCI1394_AsReqTrContextControlSet, handle_at_packet); 3562 if (err < 0) 3563 return err; 3564 INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work); 3565 3566 err = context_init(&ohci->at_response_ctx.context, ohci, 3567 OHCI1394_AsRspTrContextControlSet, handle_at_packet); 3568 if (err < 0) 3569 return err; 3570 INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work); 3571 3572 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); 3573 ohci->ir_context_channels = ~0ULL; 3574 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); 3575 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); 3576 ohci->ir_context_mask = ohci->ir_context_support; 3577 ohci->n_ir = hweight32(ohci->ir_context_mask); 3578 ohci->ir_context_list = devm_kcalloc(&dev->dev, ohci->n_ir, sizeof(struct iso_context), GFP_KERNEL); 3579 if (!ohci->ir_context_list) 3580 return -ENOMEM; 3581 3582 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); 3583 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); 3584 /* JMicron JMB38x often shows 0 at first read, just ignore it */ 3585 if (!ohci->it_context_support) { 3586 ohci_notice(ohci, "overriding IsoXmitIntMask\n"); 3587 ohci->it_context_support = 0xf; 3588 } 3589 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); 3590 ohci->it_context_mask = ohci->it_context_support; 3591 ohci->n_it = hweight32(ohci->it_context_mask); 3592 ohci->it_context_list = devm_kcalloc(&dev->dev, ohci->n_it, sizeof(struct iso_context), GFP_KERNEL); 3593 if (!ohci->it_context_list) 3594 return -ENOMEM; 3595 3596 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2; 3597 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2; 3598 3599 bus_options = reg_read(ohci, OHCI1394_BusOptions); 3600 max_receive = (bus_options >> 12) & 0xf; 3601 link_speed = bus_options & 0x7; 3602 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | 3603 reg_read(ohci, OHCI1394_GUIDLo); 3604 3605 flags = PCI_IRQ_INTX; 3606 if (!(ohci->quirks & QUIRK_NO_MSI)) 3607 flags |= PCI_IRQ_MSI; 3608 err = pci_alloc_irq_vectors(dev, 1, 1, flags); 3609 if (err < 0) 3610 return err; 3611 irq = pci_irq_vector(dev, 0); 3612 if (irq < 0) { 3613 err = irq; 3614 goto fail_msi; 3615 } 3616 3617 // IRQF_ONESHOT is not applied so that any events are handled in the hardIRQ handler during 3618 // invoking the threaded IRQ handler for SelfIDComplete event. 3619 err = request_threaded_irq(irq, irq_handler, handle_selfid_complete_event, 3620 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, 3621 ohci); 3622 if (err < 0) { 3623 ohci_err(ohci, "failed to allocate interrupt %d\n", irq); 3624 goto fail_msi; 3625 } 3626 3627 err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir); 3628 if (err) 3629 goto fail_irq; 3630 3631 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 3632 ohci_notice(ohci, 3633 "added OHCI v%x.%x device as card %d, " 3634 "%d IR + %d IT contexts, quirks 0x%x%s\n", 3635 version >> 16, version & 0xff, ohci->card.index, 3636 ohci->n_ir, ohci->n_it, ohci->quirks, 3637 reg_read(ohci, OHCI1394_PhyUpperBound) ? 3638 ", physUB" : ""); 3639 3640 return 0; 3641 3642 fail_irq: 3643 free_irq(irq, ohci); 3644 fail_msi: 3645 pci_free_irq_vectors(dev); 3646 3647 return err; 3648 } 3649 3650 static void pci_remove(struct pci_dev *dev) 3651 { 3652 struct fw_ohci *ohci = pci_get_drvdata(dev); 3653 int irq; 3654 3655 /* 3656 * If the removal is happening from the suspend state, LPS won't be 3657 * enabled and host registers (eg., IntMaskClear) won't be accessible. 3658 */ 3659 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) { 3660 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 3661 flush_writes(ohci); 3662 } 3663 fw_core_remove_card(&ohci->card); 3664 3665 /* 3666 * FIXME: Fail all pending packets here, now that the upper 3667 * layers can't queue any more. 3668 */ 3669 3670 software_reset(ohci); 3671 3672 irq = pci_irq_vector(dev, 0); 3673 if (irq >= 0) 3674 free_irq(irq, ohci); 3675 pci_free_irq_vectors(dev); 3676 3677 dev_notice(&dev->dev, "removing fw-ohci device\n"); 3678 } 3679 3680 static int __maybe_unused pci_suspend(struct device *dev) 3681 { 3682 struct pci_dev *pdev = to_pci_dev(dev); 3683 struct fw_ohci *ohci = pci_get_drvdata(pdev); 3684 3685 software_reset(ohci); 3686 pmac_ohci_off(pdev); 3687 3688 return 0; 3689 } 3690 3691 3692 static int __maybe_unused pci_resume(struct device *dev) 3693 { 3694 struct pci_dev *pdev = to_pci_dev(dev); 3695 struct fw_ohci *ohci = pci_get_drvdata(pdev); 3696 int err; 3697 3698 pmac_ohci_on(pdev); 3699 3700 /* Some systems don't setup GUID register on resume from ram */ 3701 if (!reg_read(ohci, OHCI1394_GUIDLo) && 3702 !reg_read(ohci, OHCI1394_GUIDHi)) { 3703 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid); 3704 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32)); 3705 } 3706 3707 err = ohci_enable(&ohci->card, NULL, 0); 3708 if (err) 3709 return err; 3710 3711 ohci_resume_iso_dma(ohci); 3712 3713 return 0; 3714 } 3715 3716 static const struct pci_device_id pci_table[] = { 3717 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, 3718 { } 3719 }; 3720 3721 MODULE_DEVICE_TABLE(pci, pci_table); 3722 3723 static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume); 3724 3725 static struct pci_driver fw_ohci_pci_driver = { 3726 .name = ohci_driver_name, 3727 .id_table = pci_table, 3728 .probe = pci_probe, 3729 .remove = pci_remove, 3730 .driver.pm = &pci_pm_ops, 3731 }; 3732 3733 static int __init fw_ohci_init(void) 3734 { 3735 return pci_register_driver(&fw_ohci_pci_driver); 3736 } 3737 3738 static void __exit fw_ohci_cleanup(void) 3739 { 3740 pci_unregister_driver(&fw_ohci_pci_driver); 3741 } 3742 3743 module_init(fw_ohci_init); 3744 module_exit(fw_ohci_cleanup); 3745 3746 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 3747 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); 3748 MODULE_LICENSE("GPL"); 3749 3750 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 3751 MODULE_ALIAS("ohci1394"); 3752