1 /* 2 * AMD64 class Memory Controller kernel module 3 * 4 * Copyright (c) 2009 SoftwareBitMaker. 5 * Copyright (c) 2009 Advanced Micro Devices, Inc. 6 * 7 * This file may be distributed under the terms of the 8 * GNU General Public License. 9 * 10 * Originally Written by Thayne Harbaugh 11 * 12 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: 13 * - K8 CPU Revision D and greater support 14 * 15 * Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>: 16 * - Module largely rewritten, with new (and hopefully correct) 17 * code for dealing with node and chip select interleaving, 18 * various code cleanup, and bug fixes 19 * - Added support for memory hoisting using DRAM hole address 20 * register 21 * 22 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: 23 * -K8 Rev (1207) revision support added, required Revision 24 * specific mini-driver code to support Rev F as well as 25 * prior revisions 26 * 27 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: 28 * -Family 10h revision support added. New PCI Device IDs, 29 * indicating new changes. Actual registers modified 30 * were slight, less than the Rev E to Rev F transition 31 * but changing the PCI Device ID was the proper thing to 32 * do, as it provides for almost automactic family 33 * detection. The mods to Rev F required more family 34 * information detection. 35 * 36 * Changes/Fixes by Borislav Petkov <bp@alien8.de>: 37 * - misc fixes and code cleanups 38 * 39 * This module is based on the following documents 40 * (available from http://www.amd.com/): 41 * 42 * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD 43 * Opteron Processors 44 * AMD publication #: 26094 45 *` Revision: 3.26 46 * 47 * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh 48 * Processors 49 * AMD publication #: 32559 50 * Revision: 3.00 51 * Issue Date: May 2006 52 * 53 * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h 54 * Processors 55 * AMD publication #: 31116 56 * Revision: 3.00 57 * Issue Date: September 07, 2007 58 * 59 * Sections in the first 2 documents are no longer in sync with each other. 60 * The Family 10h BKDG was totally re-written from scratch with a new 61 * presentation model. 62 * Therefore, comments that refer to a Document section might be off. 63 */ 64 65 #include <linux/module.h> 66 #include <linux/ctype.h> 67 #include <linux/init.h> 68 #include <linux/pci.h> 69 #include <linux/pci_ids.h> 70 #include <linux/slab.h> 71 #include <linux/mmzone.h> 72 #include <linux/edac.h> 73 #include <asm/msr.h> 74 #include "edac_core.h" 75 #include "mce_amd.h" 76 77 #define amd64_debug(fmt, arg...) \ 78 edac_printk(KERN_DEBUG, "amd64", fmt, ##arg) 79 80 #define amd64_info(fmt, arg...) \ 81 edac_printk(KERN_INFO, "amd64", fmt, ##arg) 82 83 #define amd64_notice(fmt, arg...) \ 84 edac_printk(KERN_NOTICE, "amd64", fmt, ##arg) 85 86 #define amd64_warn(fmt, arg...) \ 87 edac_printk(KERN_WARNING, "amd64", fmt, ##arg) 88 89 #define amd64_err(fmt, arg...) \ 90 edac_printk(KERN_ERR, "amd64", fmt, ##arg) 91 92 #define amd64_mc_warn(mci, fmt, arg...) \ 93 edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg) 94 95 #define amd64_mc_err(mci, fmt, arg...) \ 96 edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg) 97 98 /* 99 * Throughout the comments in this code, the following terms are used: 100 * 101 * SysAddr, DramAddr, and InputAddr 102 * 103 * These terms come directly from the amd64 documentation 104 * (AMD publication #26094). They are defined as follows: 105 * 106 * SysAddr: 107 * This is a physical address generated by a CPU core or a device 108 * doing DMA. If generated by a CPU core, a SysAddr is the result of 109 * a virtual to physical address translation by the CPU core's address 110 * translation mechanism (MMU). 111 * 112 * DramAddr: 113 * A DramAddr is derived from a SysAddr by subtracting an offset that 114 * depends on which node the SysAddr maps to and whether the SysAddr 115 * is within a range affected by memory hoisting. The DRAM Base 116 * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers 117 * determine which node a SysAddr maps to. 118 * 119 * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr 120 * is within the range of addresses specified by this register, then 121 * a value x from the DHAR is subtracted from the SysAddr to produce a 122 * DramAddr. Here, x represents the base address for the node that 123 * the SysAddr maps to plus an offset due to memory hoisting. See 124 * section 3.4.8 and the comments in amd64_get_dram_hole_info() and 125 * sys_addr_to_dram_addr() below for more information. 126 * 127 * If the SysAddr is not affected by the DHAR then a value y is 128 * subtracted from the SysAddr to produce a DramAddr. Here, y is the 129 * base address for the node that the SysAddr maps to. See section 130 * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more 131 * information. 132 * 133 * InputAddr: 134 * A DramAddr is translated to an InputAddr before being passed to the 135 * memory controller for the node that the DramAddr is associated 136 * with. The memory controller then maps the InputAddr to a csrow. 137 * If node interleaving is not in use, then the InputAddr has the same 138 * value as the DramAddr. Otherwise, the InputAddr is produced by 139 * discarding the bits used for node interleaving from the DramAddr. 140 * See section 3.4.4 for more information. 141 * 142 * The memory controller for a given node uses its DRAM CS Base and 143 * DRAM CS Mask registers to map an InputAddr to a csrow. See 144 * sections 3.5.4 and 3.5.5 for more information. 145 */ 146 147 #define EDAC_AMD64_VERSION "3.4.0" 148 #define EDAC_MOD_STR "amd64_edac" 149 150 /* Extended Model from CPUID, for CPU Revision numbers */ 151 #define K8_REV_D 1 152 #define K8_REV_E 2 153 #define K8_REV_F 4 154 155 /* Hardware limit on ChipSelect rows per MC and processors per system */ 156 #define NUM_CHIPSELECTS 8 157 #define DRAM_RANGES 8 158 159 #define ON true 160 #define OFF false 161 162 /* 163 * Create a contiguous bitmask starting at bit position @lo and ending at 164 * position @hi. For example 165 * 166 * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000. 167 */ 168 #define GENMASK(lo, hi) (((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) 169 170 /* 171 * PCI-defined configuration space registers 172 */ 173 #define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601 174 #define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602 175 #define PCI_DEVICE_ID_AMD_16H_NB_F1 0x1531 176 #define PCI_DEVICE_ID_AMD_16H_NB_F2 0x1532 177 178 /* 179 * Function 1 - Address Map 180 */ 181 #define DRAM_BASE_LO 0x40 182 #define DRAM_LIMIT_LO 0x44 183 184 #define dram_intlv_en(pvt, i) ((u8)((pvt->ranges[i].base.lo >> 8) & 0x7)) 185 #define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3)) 186 #define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7)) 187 #define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7)) 188 189 #define DHAR 0xf0 190 #define dhar_valid(pvt) ((pvt)->dhar & BIT(0)) 191 #define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1)) 192 #define dhar_base(pvt) ((pvt)->dhar & 0xff000000) 193 #define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16) 194 195 /* NOTE: Extra mask bit vs K8 */ 196 #define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16) 197 198 #define DCT_CFG_SEL 0x10C 199 200 #define DRAM_LOCAL_NODE_BASE 0x120 201 #define DRAM_LOCAL_NODE_LIM 0x124 202 203 #define DRAM_BASE_HI 0x140 204 #define DRAM_LIMIT_HI 0x144 205 206 207 /* 208 * Function 2 - DRAM controller 209 */ 210 #define DCSB0 0x40 211 #define DCSB1 0x140 212 #define DCSB_CS_ENABLE BIT(0) 213 214 #define DCSM0 0x60 215 #define DCSM1 0x160 216 217 #define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE) 218 219 #define DBAM0 0x80 220 #define DBAM1 0x180 221 222 /* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */ 223 #define DBAM_DIMM(i, reg) ((((reg) >> (4*(i)))) & 0xF) 224 225 #define DBAM_MAX_VALUE 11 226 227 #define DCLR0 0x90 228 #define DCLR1 0x190 229 #define REVE_WIDTH_128 BIT(16) 230 #define WIDTH_128 BIT(11) 231 232 #define DCHR0 0x94 233 #define DCHR1 0x194 234 #define DDR3_MODE BIT(8) 235 236 #define DCT_SEL_LO 0x110 237 #define dct_sel_baseaddr(pvt) ((pvt)->dct_sel_lo & 0xFFFFF800) 238 #define dct_sel_interleave_addr(pvt) (((pvt)->dct_sel_lo >> 6) & 0x3) 239 #define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0)) 240 #define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2)) 241 242 #define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4))) 243 244 #define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5)) 245 #define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10)) 246 247 #define SWAP_INTLV_REG 0x10c 248 249 #define DCT_SEL_HI 0x114 250 251 /* 252 * Function 3 - Misc Control 253 */ 254 #define NBCTL 0x40 255 256 #define NBCFG 0x44 257 #define NBCFG_CHIPKILL BIT(23) 258 #define NBCFG_ECC_ENABLE BIT(22) 259 260 /* F3x48: NBSL */ 261 #define F10_NBSL_EXT_ERR_ECC 0x8 262 #define NBSL_PP_OBS 0x2 263 264 #define SCRCTRL 0x58 265 266 #define F10_ONLINE_SPARE 0xB0 267 #define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1) 268 #define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7) 269 270 #define F10_NB_ARRAY_ADDR 0xB8 271 #define F10_NB_ARRAY_DRAM BIT(31) 272 273 /* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */ 274 #define SET_NB_ARRAY_ADDR(section) (((section) & 0x3) << 1) 275 276 #define F10_NB_ARRAY_DATA 0xBC 277 #define F10_NB_ARR_ECC_WR_REQ BIT(17) 278 #define SET_NB_DRAM_INJECTION_WRITE(inj) \ 279 (BIT(((inj.word) & 0xF) + 20) | \ 280 F10_NB_ARR_ECC_WR_REQ | inj.bit_map) 281 #define SET_NB_DRAM_INJECTION_READ(inj) \ 282 (BIT(((inj.word) & 0xF) + 20) | \ 283 BIT(16) | inj.bit_map) 284 285 286 #define NBCAP 0xE8 287 #define NBCAP_CHIPKILL BIT(4) 288 #define NBCAP_SECDED BIT(3) 289 #define NBCAP_DCT_DUAL BIT(0) 290 291 #define EXT_NB_MCA_CFG 0x180 292 293 /* MSRs */ 294 #define MSR_MCGCTL_NBE BIT(4) 295 296 enum amd_families { 297 K8_CPUS = 0, 298 F10_CPUS, 299 F15_CPUS, 300 F16_CPUS, 301 NUM_FAMILIES, 302 }; 303 304 /* Error injection control structure */ 305 struct error_injection { 306 u32 section; 307 u32 word; 308 u32 bit_map; 309 }; 310 311 /* low and high part of PCI config space regs */ 312 struct reg_pair { 313 u32 lo, hi; 314 }; 315 316 /* 317 * See F1x[1, 0][7C:40] DRAM Base/Limit Registers 318 */ 319 struct dram_range { 320 struct reg_pair base; 321 struct reg_pair lim; 322 }; 323 324 /* A DCT chip selects collection */ 325 struct chip_select { 326 u32 csbases[NUM_CHIPSELECTS]; 327 u8 b_cnt; 328 329 u32 csmasks[NUM_CHIPSELECTS]; 330 u8 m_cnt; 331 }; 332 333 struct amd64_pvt { 334 struct low_ops *ops; 335 336 /* pci_device handles which we utilize */ 337 struct pci_dev *F1, *F2, *F3; 338 339 u16 mc_node_id; /* MC index of this MC node */ 340 int ext_model; /* extended model value of this node */ 341 int channel_count; 342 343 /* Raw registers */ 344 u32 dclr0; /* DRAM Configuration Low DCT0 reg */ 345 u32 dclr1; /* DRAM Configuration Low DCT1 reg */ 346 u32 dchr0; /* DRAM Configuration High DCT0 reg */ 347 u32 dchr1; /* DRAM Configuration High DCT1 reg */ 348 u32 nbcap; /* North Bridge Capabilities */ 349 u32 nbcfg; /* F10 North Bridge Configuration */ 350 u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */ 351 u32 dhar; /* DRAM Hoist reg */ 352 u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */ 353 u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */ 354 355 /* one for each DCT */ 356 struct chip_select csels[2]; 357 358 /* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */ 359 struct dram_range ranges[DRAM_RANGES]; 360 361 u64 top_mem; /* top of memory below 4GB */ 362 u64 top_mem2; /* top of memory above 4GB */ 363 364 u32 dct_sel_lo; /* DRAM Controller Select Low */ 365 u32 dct_sel_hi; /* DRAM Controller Select High */ 366 u32 online_spare; /* On-Line spare Reg */ 367 368 /* x4 or x8 syndromes in use */ 369 u8 ecc_sym_sz; 370 371 /* place to store error injection parameters prior to issue */ 372 struct error_injection injection; 373 }; 374 375 enum err_codes { 376 DECODE_OK = 0, 377 ERR_NODE = -1, 378 ERR_CSROW = -2, 379 ERR_CHANNEL = -3, 380 }; 381 382 struct err_info { 383 int err_code; 384 struct mem_ctl_info *src_mci; 385 int csrow; 386 int channel; 387 u16 syndrome; 388 u32 page; 389 u32 offset; 390 }; 391 392 static inline u64 get_dram_base(struct amd64_pvt *pvt, u8 i) 393 { 394 u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8; 395 396 if (boot_cpu_data.x86 == 0xf) 397 return addr; 398 399 return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr; 400 } 401 402 static inline u64 get_dram_limit(struct amd64_pvt *pvt, u8 i) 403 { 404 u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff; 405 406 if (boot_cpu_data.x86 == 0xf) 407 return lim; 408 409 return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim; 410 } 411 412 static inline u16 extract_syndrome(u64 status) 413 { 414 return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00); 415 } 416 417 /* 418 * per-node ECC settings descriptor 419 */ 420 struct ecc_settings { 421 u32 old_nbctl; 422 bool nbctl_valid; 423 424 struct flags { 425 unsigned long nb_mce_enable:1; 426 unsigned long nb_ecc_prev:1; 427 } flags; 428 }; 429 430 #ifdef CONFIG_EDAC_DEBUG 431 int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci); 432 void amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci); 433 434 #else 435 static inline int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci) 436 { 437 return 0; 438 } 439 static void inline amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci) 440 { 441 } 442 #endif 443 444 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION 445 int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci); 446 void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci); 447 448 #else 449 static inline int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci) 450 { 451 return 0; 452 } 453 static inline void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci) 454 { 455 } 456 #endif 457 458 /* 459 * Each of the PCI Device IDs types have their own set of hardware accessor 460 * functions and per device encoding/decoding logic. 461 */ 462 struct low_ops { 463 int (*early_channel_count) (struct amd64_pvt *pvt); 464 void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr, 465 struct err_info *); 466 int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct, unsigned cs_mode); 467 int (*read_dct_pci_cfg) (struct amd64_pvt *pvt, int offset, 468 u32 *val, const char *func); 469 }; 470 471 struct amd64_family_type { 472 const char *ctl_name; 473 u16 f1_id, f3_id; 474 struct low_ops ops; 475 }; 476 477 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 478 u32 *val, const char *func); 479 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 480 u32 val, const char *func); 481 482 #define amd64_read_pci_cfg(pdev, offset, val) \ 483 __amd64_read_pci_cfg_dword(pdev, offset, val, __func__) 484 485 #define amd64_write_pci_cfg(pdev, offset, val) \ 486 __amd64_write_pci_cfg_dword(pdev, offset, val, __func__) 487 488 #define amd64_read_dct_pci_cfg(pvt, offset, val) \ 489 pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__) 490 491 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 492 u64 *hole_offset, u64 *hole_size); 493 494 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 495 496 /* Injection helpers */ 497 static inline void disable_caches(void *dummy) 498 { 499 write_cr0(read_cr0() | X86_CR0_CD); 500 wbinvd(); 501 } 502 503 static inline void enable_caches(void *dummy) 504 { 505 write_cr0(read_cr0() & ~X86_CR0_CD); 506 } 507