xref: /linux/drivers/cpufreq/acpi-cpufreq.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/sched.h>
35 #include <linux/cpufreq.h>
36 #include <linux/compiler.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39 
40 #include <linux/acpi.h>
41 #include <linux/io.h>
42 #include <linux/delay.h>
43 #include <linux/uaccess.h>
44 
45 #include <acpi/processor.h>
46 
47 #include <asm/msr.h>
48 #include <asm/processor.h>
49 #include <asm/cpufeature.h>
50 
51 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
52 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
53 MODULE_LICENSE("GPL");
54 
55 enum {
56 	UNDEFINED_CAPABLE = 0,
57 	SYSTEM_INTEL_MSR_CAPABLE,
58 	SYSTEM_AMD_MSR_CAPABLE,
59 	SYSTEM_IO_CAPABLE,
60 };
61 
62 #define INTEL_MSR_RANGE		(0xffff)
63 #define AMD_MSR_RANGE		(0x7)
64 #define HYGON_MSR_RANGE		(0x7)
65 
66 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
67 
68 struct acpi_cpufreq_data {
69 	unsigned int resume;
70 	unsigned int cpu_feature;
71 	unsigned int acpi_perf_cpu;
72 	cpumask_var_t freqdomain_cpus;
73 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
74 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
75 };
76 
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79 
80 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
81 {
82 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83 }
84 
85 static struct cpufreq_driver acpi_cpufreq_driver;
86 
87 static unsigned int acpi_pstate_strict;
88 
89 static bool boost_state(unsigned int cpu)
90 {
91 	u32 lo, hi;
92 	u64 msr;
93 
94 	switch (boot_cpu_data.x86_vendor) {
95 	case X86_VENDOR_INTEL:
96 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
97 		msr = lo | ((u64)hi << 32);
98 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
99 	case X86_VENDOR_HYGON:
100 	case X86_VENDOR_AMD:
101 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102 		msr = lo | ((u64)hi << 32);
103 		return !(msr & MSR_K7_HWCR_CPB_DIS);
104 	}
105 	return false;
106 }
107 
108 static int boost_set_msr(bool enable)
109 {
110 	u32 msr_addr;
111 	u64 msr_mask, val;
112 
113 	switch (boot_cpu_data.x86_vendor) {
114 	case X86_VENDOR_INTEL:
115 		msr_addr = MSR_IA32_MISC_ENABLE;
116 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
117 		break;
118 	case X86_VENDOR_HYGON:
119 	case X86_VENDOR_AMD:
120 		msr_addr = MSR_K7_HWCR;
121 		msr_mask = MSR_K7_HWCR_CPB_DIS;
122 		break;
123 	default:
124 		return -EINVAL;
125 	}
126 
127 	rdmsrl(msr_addr, val);
128 
129 	if (enable)
130 		val &= ~msr_mask;
131 	else
132 		val |= msr_mask;
133 
134 	wrmsrl(msr_addr, val);
135 	return 0;
136 }
137 
138 static void boost_set_msr_each(void *p_en)
139 {
140 	bool enable = (bool) p_en;
141 
142 	boost_set_msr(enable);
143 }
144 
145 static int set_boost(int val)
146 {
147 	get_online_cpus();
148 	on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
149 	put_online_cpus();
150 	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
151 
152 	return 0;
153 }
154 
155 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
156 {
157 	struct acpi_cpufreq_data *data = policy->driver_data;
158 
159 	if (unlikely(!data))
160 		return -ENODEV;
161 
162 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
163 }
164 
165 cpufreq_freq_attr_ro(freqdomain_cpus);
166 
167 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
168 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
169 			 size_t count)
170 {
171 	int ret;
172 	unsigned int val = 0;
173 
174 	if (!acpi_cpufreq_driver.set_boost)
175 		return -EINVAL;
176 
177 	ret = kstrtouint(buf, 10, &val);
178 	if (ret || val > 1)
179 		return -EINVAL;
180 
181 	set_boost(val);
182 
183 	return count;
184 }
185 
186 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
187 {
188 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
189 }
190 
191 cpufreq_freq_attr_rw(cpb);
192 #endif
193 
194 static int check_est_cpu(unsigned int cpuid)
195 {
196 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197 
198 	return cpu_has(cpu, X86_FEATURE_EST);
199 }
200 
201 static int check_amd_hwpstate_cpu(unsigned int cpuid)
202 {
203 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
204 
205 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
206 }
207 
208 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
209 {
210 	struct acpi_cpufreq_data *data = policy->driver_data;
211 	struct acpi_processor_performance *perf;
212 	int i;
213 
214 	perf = to_perf_data(data);
215 
216 	for (i = 0; i < perf->state_count; i++) {
217 		if (value == perf->states[i].status)
218 			return policy->freq_table[i].frequency;
219 	}
220 	return 0;
221 }
222 
223 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
224 {
225 	struct acpi_cpufreq_data *data = policy->driver_data;
226 	struct cpufreq_frequency_table *pos;
227 	struct acpi_processor_performance *perf;
228 
229 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
230 		msr &= AMD_MSR_RANGE;
231 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
232 		msr &= HYGON_MSR_RANGE;
233 	else
234 		msr &= INTEL_MSR_RANGE;
235 
236 	perf = to_perf_data(data);
237 
238 	cpufreq_for_each_entry(pos, policy->freq_table)
239 		if (msr == perf->states[pos->driver_data].status)
240 			return pos->frequency;
241 	return policy->freq_table[0].frequency;
242 }
243 
244 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
245 {
246 	struct acpi_cpufreq_data *data = policy->driver_data;
247 
248 	switch (data->cpu_feature) {
249 	case SYSTEM_INTEL_MSR_CAPABLE:
250 	case SYSTEM_AMD_MSR_CAPABLE:
251 		return extract_msr(policy, val);
252 	case SYSTEM_IO_CAPABLE:
253 		return extract_io(policy, val);
254 	default:
255 		return 0;
256 	}
257 }
258 
259 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
260 {
261 	u32 val, dummy;
262 
263 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
264 	return val;
265 }
266 
267 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
268 {
269 	u32 lo, hi;
270 
271 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
272 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
273 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
274 }
275 
276 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
277 {
278 	u32 val, dummy;
279 
280 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
281 	return val;
282 }
283 
284 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
285 {
286 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
287 }
288 
289 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
290 {
291 	u32 val;
292 
293 	acpi_os_read_port(reg->address, &val, reg->bit_width);
294 	return val;
295 }
296 
297 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
298 {
299 	acpi_os_write_port(reg->address, val, reg->bit_width);
300 }
301 
302 struct drv_cmd {
303 	struct acpi_pct_register *reg;
304 	u32 val;
305 	union {
306 		void (*write)(struct acpi_pct_register *reg, u32 val);
307 		u32 (*read)(struct acpi_pct_register *reg);
308 	} func;
309 };
310 
311 /* Called via smp_call_function_single(), on the target CPU */
312 static void do_drv_read(void *_cmd)
313 {
314 	struct drv_cmd *cmd = _cmd;
315 
316 	cmd->val = cmd->func.read(cmd->reg);
317 }
318 
319 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
320 {
321 	struct acpi_processor_performance *perf = to_perf_data(data);
322 	struct drv_cmd cmd = {
323 		.reg = &perf->control_register,
324 		.func.read = data->cpu_freq_read,
325 	};
326 	int err;
327 
328 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
329 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
330 	return cmd.val;
331 }
332 
333 /* Called via smp_call_function_many(), on the target CPUs */
334 static void do_drv_write(void *_cmd)
335 {
336 	struct drv_cmd *cmd = _cmd;
337 
338 	cmd->func.write(cmd->reg, cmd->val);
339 }
340 
341 static void drv_write(struct acpi_cpufreq_data *data,
342 		      const struct cpumask *mask, u32 val)
343 {
344 	struct acpi_processor_performance *perf = to_perf_data(data);
345 	struct drv_cmd cmd = {
346 		.reg = &perf->control_register,
347 		.val = val,
348 		.func.write = data->cpu_freq_write,
349 	};
350 	int this_cpu;
351 
352 	this_cpu = get_cpu();
353 	if (cpumask_test_cpu(this_cpu, mask))
354 		do_drv_write(&cmd);
355 
356 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
357 	put_cpu();
358 }
359 
360 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
361 {
362 	u32 val;
363 
364 	if (unlikely(cpumask_empty(mask)))
365 		return 0;
366 
367 	val = drv_read(data, mask);
368 
369 	pr_debug("get_cur_val = %u\n", val);
370 
371 	return val;
372 }
373 
374 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
375 {
376 	struct acpi_cpufreq_data *data;
377 	struct cpufreq_policy *policy;
378 	unsigned int freq;
379 	unsigned int cached_freq;
380 
381 	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
382 
383 	policy = cpufreq_cpu_get_raw(cpu);
384 	if (unlikely(!policy))
385 		return 0;
386 
387 	data = policy->driver_data;
388 	if (unlikely(!data || !policy->freq_table))
389 		return 0;
390 
391 	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
392 	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
393 	if (freq != cached_freq) {
394 		/*
395 		 * The dreaded BIOS frequency change behind our back.
396 		 * Force set the frequency on next target call.
397 		 */
398 		data->resume = 1;
399 	}
400 
401 	pr_debug("cur freq = %u\n", freq);
402 
403 	return freq;
404 }
405 
406 static unsigned int check_freqs(struct cpufreq_policy *policy,
407 				const struct cpumask *mask, unsigned int freq)
408 {
409 	struct acpi_cpufreq_data *data = policy->driver_data;
410 	unsigned int cur_freq;
411 	unsigned int i;
412 
413 	for (i = 0; i < 100; i++) {
414 		cur_freq = extract_freq(policy, get_cur_val(mask, data));
415 		if (cur_freq == freq)
416 			return 1;
417 		udelay(10);
418 	}
419 	return 0;
420 }
421 
422 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
423 			       unsigned int index)
424 {
425 	struct acpi_cpufreq_data *data = policy->driver_data;
426 	struct acpi_processor_performance *perf;
427 	const struct cpumask *mask;
428 	unsigned int next_perf_state = 0; /* Index into perf table */
429 	int result = 0;
430 
431 	if (unlikely(!data)) {
432 		return -ENODEV;
433 	}
434 
435 	perf = to_perf_data(data);
436 	next_perf_state = policy->freq_table[index].driver_data;
437 	if (perf->state == next_perf_state) {
438 		if (unlikely(data->resume)) {
439 			pr_debug("Called after resume, resetting to P%d\n",
440 				next_perf_state);
441 			data->resume = 0;
442 		} else {
443 			pr_debug("Already at target state (P%d)\n",
444 				next_perf_state);
445 			return 0;
446 		}
447 	}
448 
449 	/*
450 	 * The core won't allow CPUs to go away until the governor has been
451 	 * stopped, so we can rely on the stability of policy->cpus.
452 	 */
453 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
454 		cpumask_of(policy->cpu) : policy->cpus;
455 
456 	drv_write(data, mask, perf->states[next_perf_state].control);
457 
458 	if (acpi_pstate_strict) {
459 		if (!check_freqs(policy, mask,
460 				 policy->freq_table[index].frequency)) {
461 			pr_debug("acpi_cpufreq_target failed (%d)\n",
462 				policy->cpu);
463 			result = -EAGAIN;
464 		}
465 	}
466 
467 	if (!result)
468 		perf->state = next_perf_state;
469 
470 	return result;
471 }
472 
473 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
474 					     unsigned int target_freq)
475 {
476 	struct acpi_cpufreq_data *data = policy->driver_data;
477 	struct acpi_processor_performance *perf;
478 	struct cpufreq_frequency_table *entry;
479 	unsigned int next_perf_state, next_freq, index;
480 
481 	/*
482 	 * Find the closest frequency above target_freq.
483 	 */
484 	if (policy->cached_target_freq == target_freq)
485 		index = policy->cached_resolved_idx;
486 	else
487 		index = cpufreq_table_find_index_dl(policy, target_freq);
488 
489 	entry = &policy->freq_table[index];
490 	next_freq = entry->frequency;
491 	next_perf_state = entry->driver_data;
492 
493 	perf = to_perf_data(data);
494 	if (perf->state == next_perf_state) {
495 		if (unlikely(data->resume))
496 			data->resume = 0;
497 		else
498 			return next_freq;
499 	}
500 
501 	data->cpu_freq_write(&perf->control_register,
502 			     perf->states[next_perf_state].control);
503 	perf->state = next_perf_state;
504 	return next_freq;
505 }
506 
507 static unsigned long
508 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
509 {
510 	struct acpi_processor_performance *perf;
511 
512 	perf = to_perf_data(data);
513 	if (cpu_khz) {
514 		/* search the closest match to cpu_khz */
515 		unsigned int i;
516 		unsigned long freq;
517 		unsigned long freqn = perf->states[0].core_frequency * 1000;
518 
519 		for (i = 0; i < (perf->state_count-1); i++) {
520 			freq = freqn;
521 			freqn = perf->states[i+1].core_frequency * 1000;
522 			if ((2 * cpu_khz) > (freqn + freq)) {
523 				perf->state = i;
524 				return freq;
525 			}
526 		}
527 		perf->state = perf->state_count-1;
528 		return freqn;
529 	} else {
530 		/* assume CPU is at P0... */
531 		perf->state = 0;
532 		return perf->states[0].core_frequency * 1000;
533 	}
534 }
535 
536 static void free_acpi_perf_data(void)
537 {
538 	unsigned int i;
539 
540 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
541 	for_each_possible_cpu(i)
542 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
543 				 ->shared_cpu_map);
544 	free_percpu(acpi_perf_data);
545 }
546 
547 static int cpufreq_boost_online(unsigned int cpu)
548 {
549 	/*
550 	 * On the CPU_UP path we simply keep the boost-disable flag
551 	 * in sync with the current global state.
552 	 */
553 	return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
554 }
555 
556 static int cpufreq_boost_down_prep(unsigned int cpu)
557 {
558 	/*
559 	 * Clear the boost-disable bit on the CPU_DOWN path so that
560 	 * this cpu cannot block the remaining ones from boosting.
561 	 */
562 	return boost_set_msr(1);
563 }
564 
565 /*
566  * acpi_cpufreq_early_init - initialize ACPI P-States library
567  *
568  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
569  * in order to determine correct frequency and voltage pairings. We can
570  * do _PDC and _PSD and find out the processor dependency for the
571  * actual init that will happen later...
572  */
573 static int __init acpi_cpufreq_early_init(void)
574 {
575 	unsigned int i;
576 	pr_debug("acpi_cpufreq_early_init\n");
577 
578 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
579 	if (!acpi_perf_data) {
580 		pr_debug("Memory allocation error for acpi_perf_data.\n");
581 		return -ENOMEM;
582 	}
583 	for_each_possible_cpu(i) {
584 		if (!zalloc_cpumask_var_node(
585 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
586 			GFP_KERNEL, cpu_to_node(i))) {
587 
588 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
589 			free_acpi_perf_data();
590 			return -ENOMEM;
591 		}
592 	}
593 
594 	/* Do initialization in ACPI core */
595 	acpi_processor_preregister_performance(acpi_perf_data);
596 	return 0;
597 }
598 
599 #ifdef CONFIG_SMP
600 /*
601  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
602  * or do it in BIOS firmware and won't inform about it to OS. If not
603  * detected, this has a side effect of making CPU run at a different speed
604  * than OS intended it to run at. Detect it and handle it cleanly.
605  */
606 static int bios_with_sw_any_bug;
607 
608 static int sw_any_bug_found(const struct dmi_system_id *d)
609 {
610 	bios_with_sw_any_bug = 1;
611 	return 0;
612 }
613 
614 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
615 	{
616 		.callback = sw_any_bug_found,
617 		.ident = "Supermicro Server X6DLP",
618 		.matches = {
619 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
620 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
621 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
622 		},
623 	},
624 	{ }
625 };
626 
627 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
628 {
629 	/* Intel Xeon Processor 7100 Series Specification Update
630 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
631 	 * AL30: A Machine Check Exception (MCE) Occurring during an
632 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
633 	 * Both Processor Cores to Lock Up. */
634 	if (c->x86_vendor == X86_VENDOR_INTEL) {
635 		if ((c->x86 == 15) &&
636 		    (c->x86_model == 6) &&
637 		    (c->x86_stepping == 8)) {
638 			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
639 			return -ENODEV;
640 		    }
641 		}
642 	return 0;
643 }
644 #endif
645 
646 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
647 {
648 	unsigned int i;
649 	unsigned int valid_states = 0;
650 	unsigned int cpu = policy->cpu;
651 	struct acpi_cpufreq_data *data;
652 	unsigned int result = 0;
653 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
654 	struct acpi_processor_performance *perf;
655 	struct cpufreq_frequency_table *freq_table;
656 #ifdef CONFIG_SMP
657 	static int blacklisted;
658 #endif
659 
660 	pr_debug("acpi_cpufreq_cpu_init\n");
661 
662 #ifdef CONFIG_SMP
663 	if (blacklisted)
664 		return blacklisted;
665 	blacklisted = acpi_cpufreq_blacklist(c);
666 	if (blacklisted)
667 		return blacklisted;
668 #endif
669 
670 	data = kzalloc(sizeof(*data), GFP_KERNEL);
671 	if (!data)
672 		return -ENOMEM;
673 
674 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
675 		result = -ENOMEM;
676 		goto err_free;
677 	}
678 
679 	perf = per_cpu_ptr(acpi_perf_data, cpu);
680 	data->acpi_perf_cpu = cpu;
681 	policy->driver_data = data;
682 
683 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
684 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
685 
686 	result = acpi_processor_register_performance(perf, cpu);
687 	if (result)
688 		goto err_free_mask;
689 
690 	policy->shared_type = perf->shared_type;
691 
692 	/*
693 	 * Will let policy->cpus know about dependency only when software
694 	 * coordination is required.
695 	 */
696 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
697 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
698 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
699 	}
700 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
701 
702 #ifdef CONFIG_SMP
703 	dmi_check_system(sw_any_bug_dmi_table);
704 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
705 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
706 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
707 	}
708 
709 	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
710 		cpumask_clear(policy->cpus);
711 		cpumask_set_cpu(cpu, policy->cpus);
712 		cpumask_copy(data->freqdomain_cpus,
713 			     topology_sibling_cpumask(cpu));
714 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
715 		pr_info_once("overriding BIOS provided _PSD data\n");
716 	}
717 #endif
718 
719 	/* capability check */
720 	if (perf->state_count <= 1) {
721 		pr_debug("No P-States\n");
722 		result = -ENODEV;
723 		goto err_unreg;
724 	}
725 
726 	if (perf->control_register.space_id != perf->status_register.space_id) {
727 		result = -ENODEV;
728 		goto err_unreg;
729 	}
730 
731 	switch (perf->control_register.space_id) {
732 	case ACPI_ADR_SPACE_SYSTEM_IO:
733 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
734 		    boot_cpu_data.x86 == 0xf) {
735 			pr_debug("AMD K8 systems must use native drivers.\n");
736 			result = -ENODEV;
737 			goto err_unreg;
738 		}
739 		pr_debug("SYSTEM IO addr space\n");
740 		data->cpu_feature = SYSTEM_IO_CAPABLE;
741 		data->cpu_freq_read = cpu_freq_read_io;
742 		data->cpu_freq_write = cpu_freq_write_io;
743 		break;
744 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
745 		pr_debug("HARDWARE addr space\n");
746 		if (check_est_cpu(cpu)) {
747 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
748 			data->cpu_freq_read = cpu_freq_read_intel;
749 			data->cpu_freq_write = cpu_freq_write_intel;
750 			break;
751 		}
752 		if (check_amd_hwpstate_cpu(cpu)) {
753 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
754 			data->cpu_freq_read = cpu_freq_read_amd;
755 			data->cpu_freq_write = cpu_freq_write_amd;
756 			break;
757 		}
758 		result = -ENODEV;
759 		goto err_unreg;
760 	default:
761 		pr_debug("Unknown addr space %d\n",
762 			(u32) (perf->control_register.space_id));
763 		result = -ENODEV;
764 		goto err_unreg;
765 	}
766 
767 	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
768 			     GFP_KERNEL);
769 	if (!freq_table) {
770 		result = -ENOMEM;
771 		goto err_unreg;
772 	}
773 
774 	/* detect transition latency */
775 	policy->cpuinfo.transition_latency = 0;
776 	for (i = 0; i < perf->state_count; i++) {
777 		if ((perf->states[i].transition_latency * 1000) >
778 		    policy->cpuinfo.transition_latency)
779 			policy->cpuinfo.transition_latency =
780 			    perf->states[i].transition_latency * 1000;
781 	}
782 
783 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
784 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
785 	    policy->cpuinfo.transition_latency > 20 * 1000) {
786 		policy->cpuinfo.transition_latency = 20 * 1000;
787 		pr_info_once("P-state transition latency capped at 20 uS\n");
788 	}
789 
790 	/* table init */
791 	for (i = 0; i < perf->state_count; i++) {
792 		if (i > 0 && perf->states[i].core_frequency >=
793 		    freq_table[valid_states-1].frequency / 1000)
794 			continue;
795 
796 		freq_table[valid_states].driver_data = i;
797 		freq_table[valid_states].frequency =
798 		    perf->states[i].core_frequency * 1000;
799 		valid_states++;
800 	}
801 	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
802 	policy->freq_table = freq_table;
803 	perf->state = 0;
804 
805 	switch (perf->control_register.space_id) {
806 	case ACPI_ADR_SPACE_SYSTEM_IO:
807 		/*
808 		 * The core will not set policy->cur, because
809 		 * cpufreq_driver->get is NULL, so we need to set it here.
810 		 * However, we have to guess it, because the current speed is
811 		 * unknown and not detectable via IO ports.
812 		 */
813 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
814 		break;
815 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
816 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
817 		break;
818 	default:
819 		break;
820 	}
821 
822 	/* notify BIOS that we exist */
823 	acpi_processor_notify_smm(THIS_MODULE);
824 
825 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
826 	for (i = 0; i < perf->state_count; i++)
827 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
828 			(i == perf->state ? '*' : ' '), i,
829 			(u32) perf->states[i].core_frequency,
830 			(u32) perf->states[i].power,
831 			(u32) perf->states[i].transition_latency);
832 
833 	/*
834 	 * the first call to ->target() should result in us actually
835 	 * writing something to the appropriate registers.
836 	 */
837 	data->resume = 1;
838 
839 	policy->fast_switch_possible = !acpi_pstate_strict &&
840 		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
841 
842 	return result;
843 
844 err_unreg:
845 	acpi_processor_unregister_performance(cpu);
846 err_free_mask:
847 	free_cpumask_var(data->freqdomain_cpus);
848 err_free:
849 	kfree(data);
850 	policy->driver_data = NULL;
851 
852 	return result;
853 }
854 
855 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
856 {
857 	struct acpi_cpufreq_data *data = policy->driver_data;
858 
859 	pr_debug("acpi_cpufreq_cpu_exit\n");
860 
861 	policy->fast_switch_possible = false;
862 	policy->driver_data = NULL;
863 	acpi_processor_unregister_performance(data->acpi_perf_cpu);
864 	free_cpumask_var(data->freqdomain_cpus);
865 	kfree(policy->freq_table);
866 	kfree(data);
867 
868 	return 0;
869 }
870 
871 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
872 {
873 	struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
874 							      policy->cpu);
875 
876 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
877 		pr_warn(FW_WARN "P-state 0 is not max freq\n");
878 }
879 
880 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
881 {
882 	struct acpi_cpufreq_data *data = policy->driver_data;
883 
884 	pr_debug("acpi_cpufreq_resume\n");
885 
886 	data->resume = 1;
887 
888 	return 0;
889 }
890 
891 static struct freq_attr *acpi_cpufreq_attr[] = {
892 	&cpufreq_freq_attr_scaling_available_freqs,
893 	&freqdomain_cpus,
894 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
895 	&cpb,
896 #endif
897 	NULL,
898 };
899 
900 static struct cpufreq_driver acpi_cpufreq_driver = {
901 	.verify		= cpufreq_generic_frequency_table_verify,
902 	.target_index	= acpi_cpufreq_target,
903 	.fast_switch	= acpi_cpufreq_fast_switch,
904 	.bios_limit	= acpi_processor_get_bios_limit,
905 	.init		= acpi_cpufreq_cpu_init,
906 	.exit		= acpi_cpufreq_cpu_exit,
907 	.ready		= acpi_cpufreq_cpu_ready,
908 	.resume		= acpi_cpufreq_resume,
909 	.name		= "acpi-cpufreq",
910 	.attr		= acpi_cpufreq_attr,
911 };
912 
913 static enum cpuhp_state acpi_cpufreq_online;
914 
915 static void __init acpi_cpufreq_boost_init(void)
916 {
917 	int ret;
918 
919 	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
920 		pr_debug("Boost capabilities not present in the processor\n");
921 		return;
922 	}
923 
924 	acpi_cpufreq_driver.set_boost = set_boost;
925 	acpi_cpufreq_driver.boost_enabled = boost_state(0);
926 
927 	/*
928 	 * This calls the online callback on all online cpu and forces all
929 	 * MSRs to the same value.
930 	 */
931 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
932 				cpufreq_boost_online, cpufreq_boost_down_prep);
933 	if (ret < 0) {
934 		pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
935 		return;
936 	}
937 	acpi_cpufreq_online = ret;
938 }
939 
940 static void acpi_cpufreq_boost_exit(void)
941 {
942 	if (acpi_cpufreq_online > 0)
943 		cpuhp_remove_state_nocalls(acpi_cpufreq_online);
944 }
945 
946 static int __init acpi_cpufreq_init(void)
947 {
948 	int ret;
949 
950 	if (acpi_disabled)
951 		return -ENODEV;
952 
953 	/* don't keep reloading if cpufreq_driver exists */
954 	if (cpufreq_get_current_driver())
955 		return -EEXIST;
956 
957 	pr_debug("acpi_cpufreq_init\n");
958 
959 	ret = acpi_cpufreq_early_init();
960 	if (ret)
961 		return ret;
962 
963 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
964 	/* this is a sysfs file with a strange name and an even stranger
965 	 * semantic - per CPU instantiation, but system global effect.
966 	 * Lets enable it only on AMD CPUs for compatibility reasons and
967 	 * only if configured. This is considered legacy code, which
968 	 * will probably be removed at some point in the future.
969 	 */
970 	if (!check_amd_hwpstate_cpu(0)) {
971 		struct freq_attr **attr;
972 
973 		pr_debug("CPB unsupported, do not expose it\n");
974 
975 		for (attr = acpi_cpufreq_attr; *attr; attr++)
976 			if (*attr == &cpb) {
977 				*attr = NULL;
978 				break;
979 			}
980 	}
981 #endif
982 	acpi_cpufreq_boost_init();
983 
984 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
985 	if (ret) {
986 		free_acpi_perf_data();
987 		acpi_cpufreq_boost_exit();
988 	}
989 	return ret;
990 }
991 
992 static void __exit acpi_cpufreq_exit(void)
993 {
994 	pr_debug("acpi_cpufreq_exit\n");
995 
996 	acpi_cpufreq_boost_exit();
997 
998 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
999 
1000 	free_acpi_perf_data();
1001 }
1002 
1003 module_param(acpi_pstate_strict, uint, 0644);
1004 MODULE_PARM_DESC(acpi_pstate_strict,
1005 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1006 	"performed during frequency changes.");
1007 
1008 late_initcall(acpi_cpufreq_init);
1009 module_exit(acpi_cpufreq_exit);
1010 
1011 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1012 	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1013 	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1014 	{}
1015 };
1016 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1017 
1018 static const struct acpi_device_id processor_device_ids[] = {
1019 	{ACPI_PROCESSOR_OBJECT_HID, },
1020 	{ACPI_PROCESSOR_DEVICE_HID, },
1021 	{},
1022 };
1023 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1024 
1025 MODULE_ALIAS("acpi");
1026