1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi-cpufreq.c - ACPI Processor P-States Driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/smp.h> 17 #include <linux/sched.h> 18 #include <linux/cpufreq.h> 19 #include <linux/compiler.h> 20 #include <linux/dmi.h> 21 #include <linux/slab.h> 22 #include <linux/string_helpers.h> 23 #include <linux/platform_device.h> 24 25 #include <linux/acpi.h> 26 #include <linux/io.h> 27 #include <linux/delay.h> 28 #include <linux/uaccess.h> 29 30 #include <acpi/processor.h> 31 #include <acpi/cppc_acpi.h> 32 33 #include <asm/msr.h> 34 #include <asm/processor.h> 35 #include <asm/cpufeature.h> 36 #include <asm/cpu_device_id.h> 37 38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 39 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 40 MODULE_LICENSE("GPL"); 41 42 enum { 43 UNDEFINED_CAPABLE = 0, 44 SYSTEM_INTEL_MSR_CAPABLE, 45 SYSTEM_AMD_MSR_CAPABLE, 46 SYSTEM_IO_CAPABLE, 47 }; 48 49 #define INTEL_MSR_RANGE (0xffff) 50 #define AMD_MSR_RANGE (0x7) 51 #define HYGON_MSR_RANGE (0x7) 52 53 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) 54 55 struct acpi_cpufreq_data { 56 unsigned int resume; 57 unsigned int cpu_feature; 58 unsigned int acpi_perf_cpu; 59 cpumask_var_t freqdomain_cpus; 60 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 61 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 62 }; 63 64 /* acpi_perf_data is a pointer to percpu data. */ 65 static struct acpi_processor_performance __percpu *acpi_perf_data; 66 67 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 68 { 69 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 70 } 71 72 static struct cpufreq_driver acpi_cpufreq_driver; 73 74 static unsigned int acpi_pstate_strict; 75 76 static bool boost_state(unsigned int cpu) 77 { 78 u32 lo, hi; 79 u64 msr; 80 81 switch (boot_cpu_data.x86_vendor) { 82 case X86_VENDOR_INTEL: 83 case X86_VENDOR_CENTAUR: 84 case X86_VENDOR_ZHAOXIN: 85 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); 86 msr = lo | ((u64)hi << 32); 87 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 88 case X86_VENDOR_HYGON: 89 case X86_VENDOR_AMD: 90 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); 91 msr = lo | ((u64)hi << 32); 92 return !(msr & MSR_K7_HWCR_CPB_DIS); 93 } 94 return false; 95 } 96 97 static int boost_set_msr(bool enable) 98 { 99 u32 msr_addr; 100 u64 msr_mask, val; 101 102 switch (boot_cpu_data.x86_vendor) { 103 case X86_VENDOR_INTEL: 104 case X86_VENDOR_CENTAUR: 105 case X86_VENDOR_ZHAOXIN: 106 msr_addr = MSR_IA32_MISC_ENABLE; 107 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 108 break; 109 case X86_VENDOR_HYGON: 110 case X86_VENDOR_AMD: 111 msr_addr = MSR_K7_HWCR; 112 msr_mask = MSR_K7_HWCR_CPB_DIS; 113 break; 114 default: 115 return -EINVAL; 116 } 117 118 rdmsrl(msr_addr, val); 119 120 if (enable) 121 val &= ~msr_mask; 122 else 123 val |= msr_mask; 124 125 wrmsrl(msr_addr, val); 126 return 0; 127 } 128 129 static void boost_set_msr_each(void *p_en) 130 { 131 bool enable = (bool) p_en; 132 133 boost_set_msr(enable); 134 } 135 136 static int set_boost(struct cpufreq_policy *policy, int val) 137 { 138 on_each_cpu_mask(policy->cpus, boost_set_msr_each, 139 (void *)(long)val, 1); 140 pr_debug("CPU %*pbl: Core Boosting %s.\n", 141 cpumask_pr_args(policy->cpus), str_enabled_disabled(val)); 142 143 return 0; 144 } 145 146 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 147 { 148 struct acpi_cpufreq_data *data = policy->driver_data; 149 150 if (unlikely(!data)) 151 return -ENODEV; 152 153 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 154 } 155 156 cpufreq_freq_attr_ro(freqdomain_cpus); 157 158 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 159 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 160 size_t count) 161 { 162 int ret; 163 unsigned int val = 0; 164 165 if (!acpi_cpufreq_driver.set_boost) 166 return -EINVAL; 167 168 ret = kstrtouint(buf, 10, &val); 169 if (ret || val > 1) 170 return -EINVAL; 171 172 cpus_read_lock(); 173 set_boost(policy, val); 174 cpus_read_unlock(); 175 176 return count; 177 } 178 179 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 180 { 181 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 182 } 183 184 cpufreq_freq_attr_rw(cpb); 185 #endif 186 187 static int check_est_cpu(unsigned int cpuid) 188 { 189 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 190 191 return cpu_has(cpu, X86_FEATURE_EST); 192 } 193 194 static int check_amd_hwpstate_cpu(unsigned int cpuid) 195 { 196 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 197 198 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 199 } 200 201 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 202 { 203 struct acpi_cpufreq_data *data = policy->driver_data; 204 struct acpi_processor_performance *perf; 205 int i; 206 207 perf = to_perf_data(data); 208 209 for (i = 0; i < perf->state_count; i++) { 210 if (value == perf->states[i].status) 211 return policy->freq_table[i].frequency; 212 } 213 return 0; 214 } 215 216 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 217 { 218 struct acpi_cpufreq_data *data = policy->driver_data; 219 struct cpufreq_frequency_table *pos; 220 struct acpi_processor_performance *perf; 221 222 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 223 msr &= AMD_MSR_RANGE; 224 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 225 msr &= HYGON_MSR_RANGE; 226 else 227 msr &= INTEL_MSR_RANGE; 228 229 perf = to_perf_data(data); 230 231 cpufreq_for_each_entry(pos, policy->freq_table) 232 if (msr == perf->states[pos->driver_data].status) 233 return pos->frequency; 234 return policy->freq_table[0].frequency; 235 } 236 237 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 238 { 239 struct acpi_cpufreq_data *data = policy->driver_data; 240 241 switch (data->cpu_feature) { 242 case SYSTEM_INTEL_MSR_CAPABLE: 243 case SYSTEM_AMD_MSR_CAPABLE: 244 return extract_msr(policy, val); 245 case SYSTEM_IO_CAPABLE: 246 return extract_io(policy, val); 247 default: 248 return 0; 249 } 250 } 251 252 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 253 { 254 u32 val, dummy __always_unused; 255 256 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 257 return val; 258 } 259 260 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 261 { 262 u32 lo, hi; 263 264 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 265 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 266 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 267 } 268 269 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 270 { 271 u32 val, dummy __always_unused; 272 273 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 274 return val; 275 } 276 277 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 278 { 279 wrmsr(MSR_AMD_PERF_CTL, val, 0); 280 } 281 282 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 283 { 284 u32 val; 285 286 acpi_os_read_port(reg->address, &val, reg->bit_width); 287 return val; 288 } 289 290 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 291 { 292 acpi_os_write_port(reg->address, val, reg->bit_width); 293 } 294 295 struct drv_cmd { 296 struct acpi_pct_register *reg; 297 u32 val; 298 union { 299 void (*write)(struct acpi_pct_register *reg, u32 val); 300 u32 (*read)(struct acpi_pct_register *reg); 301 } func; 302 }; 303 304 /* Called via smp_call_function_single(), on the target CPU */ 305 static void do_drv_read(void *_cmd) 306 { 307 struct drv_cmd *cmd = _cmd; 308 309 cmd->val = cmd->func.read(cmd->reg); 310 } 311 312 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 313 { 314 struct acpi_processor_performance *perf = to_perf_data(data); 315 struct drv_cmd cmd = { 316 .reg = &perf->control_register, 317 .func.read = data->cpu_freq_read, 318 }; 319 int err; 320 321 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 322 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 323 return cmd.val; 324 } 325 326 /* Called via smp_call_function_many(), on the target CPUs */ 327 static void do_drv_write(void *_cmd) 328 { 329 struct drv_cmd *cmd = _cmd; 330 331 cmd->func.write(cmd->reg, cmd->val); 332 } 333 334 static void drv_write(struct acpi_cpufreq_data *data, 335 const struct cpumask *mask, u32 val) 336 { 337 struct acpi_processor_performance *perf = to_perf_data(data); 338 struct drv_cmd cmd = { 339 .reg = &perf->control_register, 340 .val = val, 341 .func.write = data->cpu_freq_write, 342 }; 343 int this_cpu; 344 345 this_cpu = get_cpu(); 346 if (cpumask_test_cpu(this_cpu, mask)) 347 do_drv_write(&cmd); 348 349 smp_call_function_many(mask, do_drv_write, &cmd, 1); 350 put_cpu(); 351 } 352 353 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 354 { 355 u32 val; 356 357 if (unlikely(cpumask_empty(mask))) 358 return 0; 359 360 val = drv_read(data, mask); 361 362 pr_debug("%s = %u\n", __func__, val); 363 364 return val; 365 } 366 367 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 368 { 369 struct acpi_cpufreq_data *data; 370 struct cpufreq_policy *policy; 371 unsigned int freq; 372 unsigned int cached_freq; 373 374 pr_debug("%s (%d)\n", __func__, cpu); 375 376 policy = cpufreq_cpu_get_raw(cpu); 377 if (unlikely(!policy)) 378 return 0; 379 380 data = policy->driver_data; 381 if (unlikely(!data || !policy->freq_table)) 382 return 0; 383 384 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; 385 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 386 if (freq != cached_freq) { 387 /* 388 * The dreaded BIOS frequency change behind our back. 389 * Force set the frequency on next target call. 390 */ 391 data->resume = 1; 392 } 393 394 pr_debug("cur freq = %u\n", freq); 395 396 return freq; 397 } 398 399 static unsigned int check_freqs(struct cpufreq_policy *policy, 400 const struct cpumask *mask, unsigned int freq) 401 { 402 struct acpi_cpufreq_data *data = policy->driver_data; 403 unsigned int cur_freq; 404 unsigned int i; 405 406 for (i = 0; i < 100; i++) { 407 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 408 if (cur_freq == freq) 409 return 1; 410 udelay(10); 411 } 412 return 0; 413 } 414 415 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 416 unsigned int index) 417 { 418 struct acpi_cpufreq_data *data = policy->driver_data; 419 struct acpi_processor_performance *perf; 420 const struct cpumask *mask; 421 unsigned int next_perf_state = 0; /* Index into perf table */ 422 int result = 0; 423 424 if (unlikely(!data)) { 425 return -ENODEV; 426 } 427 428 perf = to_perf_data(data); 429 next_perf_state = policy->freq_table[index].driver_data; 430 if (perf->state == next_perf_state) { 431 if (unlikely(data->resume)) { 432 pr_debug("Called after resume, resetting to P%d\n", 433 next_perf_state); 434 data->resume = 0; 435 } else { 436 pr_debug("Already at target state (P%d)\n", 437 next_perf_state); 438 return 0; 439 } 440 } 441 442 /* 443 * The core won't allow CPUs to go away until the governor has been 444 * stopped, so we can rely on the stability of policy->cpus. 445 */ 446 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 447 cpumask_of(policy->cpu) : policy->cpus; 448 449 drv_write(data, mask, perf->states[next_perf_state].control); 450 451 if (acpi_pstate_strict) { 452 if (!check_freqs(policy, mask, 453 policy->freq_table[index].frequency)) { 454 pr_debug("%s (%d)\n", __func__, policy->cpu); 455 result = -EAGAIN; 456 } 457 } 458 459 if (!result) 460 perf->state = next_perf_state; 461 462 return result; 463 } 464 465 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 466 unsigned int target_freq) 467 { 468 struct acpi_cpufreq_data *data = policy->driver_data; 469 struct acpi_processor_performance *perf; 470 struct cpufreq_frequency_table *entry; 471 unsigned int next_perf_state, next_freq, index; 472 473 /* 474 * Find the closest frequency above target_freq. 475 */ 476 if (policy->cached_target_freq == target_freq) 477 index = policy->cached_resolved_idx; 478 else 479 index = cpufreq_table_find_index_dl(policy, target_freq, 480 false); 481 482 entry = &policy->freq_table[index]; 483 next_freq = entry->frequency; 484 next_perf_state = entry->driver_data; 485 486 perf = to_perf_data(data); 487 if (perf->state == next_perf_state) { 488 if (unlikely(data->resume)) 489 data->resume = 0; 490 else 491 return next_freq; 492 } 493 494 data->cpu_freq_write(&perf->control_register, 495 perf->states[next_perf_state].control); 496 perf->state = next_perf_state; 497 return next_freq; 498 } 499 500 static unsigned long 501 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 502 { 503 struct acpi_processor_performance *perf; 504 505 perf = to_perf_data(data); 506 if (cpu_khz) { 507 /* search the closest match to cpu_khz */ 508 unsigned int i; 509 unsigned long freq; 510 unsigned long freqn = perf->states[0].core_frequency * 1000; 511 512 for (i = 0; i < (perf->state_count-1); i++) { 513 freq = freqn; 514 freqn = perf->states[i+1].core_frequency * 1000; 515 if ((2 * cpu_khz) > (freqn + freq)) { 516 perf->state = i; 517 return freq; 518 } 519 } 520 perf->state = perf->state_count-1; 521 return freqn; 522 } else { 523 /* assume CPU is at P0... */ 524 perf->state = 0; 525 return perf->states[0].core_frequency * 1000; 526 } 527 } 528 529 static void free_acpi_perf_data(void) 530 { 531 unsigned int i; 532 533 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 534 for_each_possible_cpu(i) 535 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 536 ->shared_cpu_map); 537 free_percpu(acpi_perf_data); 538 } 539 540 static int cpufreq_boost_down_prep(unsigned int cpu) 541 { 542 /* 543 * Clear the boost-disable bit on the CPU_DOWN path so that 544 * this cpu cannot block the remaining ones from boosting. 545 */ 546 return boost_set_msr(1); 547 } 548 549 /* 550 * acpi_cpufreq_early_init - initialize ACPI P-States library 551 * 552 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 553 * in order to determine correct frequency and voltage pairings. We can 554 * do _PDC and _PSD and find out the processor dependency for the 555 * actual init that will happen later... 556 */ 557 static int __init acpi_cpufreq_early_init(void) 558 { 559 unsigned int i; 560 pr_debug("%s\n", __func__); 561 562 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 563 if (!acpi_perf_data) { 564 pr_debug("Memory allocation error for acpi_perf_data.\n"); 565 return -ENOMEM; 566 } 567 for_each_possible_cpu(i) { 568 if (!zalloc_cpumask_var_node( 569 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 570 GFP_KERNEL, cpu_to_node(i))) { 571 572 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 573 free_acpi_perf_data(); 574 return -ENOMEM; 575 } 576 } 577 578 /* Do initialization in ACPI core */ 579 acpi_processor_preregister_performance(acpi_perf_data); 580 return 0; 581 } 582 583 #ifdef CONFIG_SMP 584 /* 585 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 586 * or do it in BIOS firmware and won't inform about it to OS. If not 587 * detected, this has a side effect of making CPU run at a different speed 588 * than OS intended it to run at. Detect it and handle it cleanly. 589 */ 590 static int bios_with_sw_any_bug; 591 592 static int sw_any_bug_found(const struct dmi_system_id *d) 593 { 594 bios_with_sw_any_bug = 1; 595 return 0; 596 } 597 598 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 599 { 600 .callback = sw_any_bug_found, 601 .ident = "Supermicro Server X6DLP", 602 .matches = { 603 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 604 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 605 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 606 }, 607 }, 608 { } 609 }; 610 611 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 612 { 613 /* Intel Xeon Processor 7100 Series Specification Update 614 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf 615 * AL30: A Machine Check Exception (MCE) Occurring during an 616 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 617 * Both Processor Cores to Lock Up. */ 618 if (c->x86_vendor == X86_VENDOR_INTEL) { 619 if ((c->x86 == 15) && 620 (c->x86_model == 6) && 621 (c->x86_stepping == 8)) { 622 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 623 return -ENODEV; 624 } 625 } 626 return 0; 627 } 628 #endif 629 630 #ifdef CONFIG_ACPI_CPPC_LIB 631 static u64 get_max_boost_ratio(unsigned int cpu) 632 { 633 struct cppc_perf_caps perf_caps; 634 u64 highest_perf, nominal_perf; 635 int ret; 636 637 if (acpi_pstate_strict) 638 return 0; 639 640 ret = cppc_get_perf_caps(cpu, &perf_caps); 641 if (ret) { 642 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n", 643 cpu, ret); 644 return 0; 645 } 646 647 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 648 highest_perf = amd_get_highest_perf(); 649 else 650 highest_perf = perf_caps.highest_perf; 651 652 nominal_perf = perf_caps.nominal_perf; 653 654 if (!highest_perf || !nominal_perf) { 655 pr_debug("CPU%d: highest or nominal performance missing\n", cpu); 656 return 0; 657 } 658 659 if (highest_perf < nominal_perf) { 660 pr_debug("CPU%d: nominal performance above highest\n", cpu); 661 return 0; 662 } 663 664 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf); 665 } 666 #else 667 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; } 668 #endif 669 670 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 671 { 672 struct cpufreq_frequency_table *freq_table; 673 struct acpi_processor_performance *perf; 674 struct acpi_cpufreq_data *data; 675 unsigned int cpu = policy->cpu; 676 struct cpuinfo_x86 *c = &cpu_data(cpu); 677 unsigned int valid_states = 0; 678 unsigned int result = 0; 679 u64 max_boost_ratio; 680 unsigned int i; 681 #ifdef CONFIG_SMP 682 static int blacklisted; 683 #endif 684 685 pr_debug("%s\n", __func__); 686 687 #ifdef CONFIG_SMP 688 if (blacklisted) 689 return blacklisted; 690 blacklisted = acpi_cpufreq_blacklist(c); 691 if (blacklisted) 692 return blacklisted; 693 #endif 694 695 data = kzalloc(sizeof(*data), GFP_KERNEL); 696 if (!data) 697 return -ENOMEM; 698 699 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 700 result = -ENOMEM; 701 goto err_free; 702 } 703 704 perf = per_cpu_ptr(acpi_perf_data, cpu); 705 data->acpi_perf_cpu = cpu; 706 policy->driver_data = data; 707 708 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 709 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 710 711 result = acpi_processor_register_performance(perf, cpu); 712 if (result) 713 goto err_free_mask; 714 715 policy->shared_type = perf->shared_type; 716 717 /* 718 * Will let policy->cpus know about dependency only when software 719 * coordination is required. 720 */ 721 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 722 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 723 cpumask_copy(policy->cpus, perf->shared_cpu_map); 724 } 725 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 726 727 #ifdef CONFIG_SMP 728 dmi_check_system(sw_any_bug_dmi_table); 729 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 730 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 731 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 732 } 733 734 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 && 735 !acpi_pstate_strict) { 736 cpumask_clear(policy->cpus); 737 cpumask_set_cpu(cpu, policy->cpus); 738 cpumask_copy(data->freqdomain_cpus, 739 topology_sibling_cpumask(cpu)); 740 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 741 pr_info_once("overriding BIOS provided _PSD data\n"); 742 } 743 #endif 744 745 /* capability check */ 746 if (perf->state_count <= 1) { 747 pr_debug("No P-States\n"); 748 result = -ENODEV; 749 goto err_unreg; 750 } 751 752 if (perf->control_register.space_id != perf->status_register.space_id) { 753 result = -ENODEV; 754 goto err_unreg; 755 } 756 757 switch (perf->control_register.space_id) { 758 case ACPI_ADR_SPACE_SYSTEM_IO: 759 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 760 boot_cpu_data.x86 == 0xf) { 761 pr_debug("AMD K8 systems must use native drivers.\n"); 762 result = -ENODEV; 763 goto err_unreg; 764 } 765 pr_debug("SYSTEM IO addr space\n"); 766 data->cpu_feature = SYSTEM_IO_CAPABLE; 767 data->cpu_freq_read = cpu_freq_read_io; 768 data->cpu_freq_write = cpu_freq_write_io; 769 break; 770 case ACPI_ADR_SPACE_FIXED_HARDWARE: 771 pr_debug("HARDWARE addr space\n"); 772 if (check_est_cpu(cpu)) { 773 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 774 data->cpu_freq_read = cpu_freq_read_intel; 775 data->cpu_freq_write = cpu_freq_write_intel; 776 break; 777 } 778 if (check_amd_hwpstate_cpu(cpu)) { 779 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 780 data->cpu_freq_read = cpu_freq_read_amd; 781 data->cpu_freq_write = cpu_freq_write_amd; 782 break; 783 } 784 result = -ENODEV; 785 goto err_unreg; 786 default: 787 pr_debug("Unknown addr space %d\n", 788 (u32) (perf->control_register.space_id)); 789 result = -ENODEV; 790 goto err_unreg; 791 } 792 793 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), 794 GFP_KERNEL); 795 if (!freq_table) { 796 result = -ENOMEM; 797 goto err_unreg; 798 } 799 800 /* detect transition latency */ 801 policy->cpuinfo.transition_latency = 0; 802 for (i = 0; i < perf->state_count; i++) { 803 if ((perf->states[i].transition_latency * 1000) > 804 policy->cpuinfo.transition_latency) 805 policy->cpuinfo.transition_latency = 806 perf->states[i].transition_latency * 1000; 807 } 808 809 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 810 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 811 policy->cpuinfo.transition_latency > 20 * 1000) { 812 policy->cpuinfo.transition_latency = 20 * 1000; 813 pr_info_once("P-state transition latency capped at 20 uS\n"); 814 } 815 816 /* table init */ 817 for (i = 0; i < perf->state_count; i++) { 818 if (i > 0 && perf->states[i].core_frequency >= 819 freq_table[valid_states-1].frequency / 1000) 820 continue; 821 822 freq_table[valid_states].driver_data = i; 823 freq_table[valid_states].frequency = 824 perf->states[i].core_frequency * 1000; 825 valid_states++; 826 } 827 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 828 829 max_boost_ratio = get_max_boost_ratio(cpu); 830 if (max_boost_ratio) { 831 unsigned int freq = freq_table[0].frequency; 832 833 /* 834 * Because the loop above sorts the freq_table entries in the 835 * descending order, freq is the maximum frequency in the table. 836 * Assume that it corresponds to the CPPC nominal frequency and 837 * use it to set cpuinfo.max_freq. 838 */ 839 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT; 840 } else { 841 /* 842 * If the maximum "boost" frequency is unknown, ask the arch 843 * scale-invariance code to use the "nominal" performance for 844 * CPU utilization scaling so as to prevent the schedutil 845 * governor from selecting inadequate CPU frequencies. 846 */ 847 arch_set_max_freq_ratio(true); 848 } 849 850 policy->freq_table = freq_table; 851 perf->state = 0; 852 853 switch (perf->control_register.space_id) { 854 case ACPI_ADR_SPACE_SYSTEM_IO: 855 /* 856 * The core will not set policy->cur, because 857 * cpufreq_driver->get is NULL, so we need to set it here. 858 * However, we have to guess it, because the current speed is 859 * unknown and not detectable via IO ports. 860 */ 861 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 862 break; 863 case ACPI_ADR_SPACE_FIXED_HARDWARE: 864 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 865 break; 866 default: 867 break; 868 } 869 870 /* notify BIOS that we exist */ 871 acpi_processor_notify_smm(THIS_MODULE); 872 873 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 874 for (i = 0; i < perf->state_count; i++) 875 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 876 (i == perf->state ? '*' : ' '), i, 877 (u32) perf->states[i].core_frequency, 878 (u32) perf->states[i].power, 879 (u32) perf->states[i].transition_latency); 880 881 /* 882 * the first call to ->target() should result in us actually 883 * writing something to the appropriate registers. 884 */ 885 data->resume = 1; 886 887 policy->fast_switch_possible = !acpi_pstate_strict && 888 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 889 890 if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency) 891 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 892 893 if (acpi_cpufreq_driver.set_boost) 894 set_boost(policy, acpi_cpufreq_driver.boost_enabled); 895 896 return result; 897 898 err_unreg: 899 acpi_processor_unregister_performance(cpu); 900 err_free_mask: 901 free_cpumask_var(data->freqdomain_cpus); 902 err_free: 903 kfree(data); 904 policy->driver_data = NULL; 905 906 return result; 907 } 908 909 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 910 { 911 struct acpi_cpufreq_data *data = policy->driver_data; 912 913 pr_debug("%s\n", __func__); 914 915 cpufreq_boost_down_prep(policy->cpu); 916 policy->fast_switch_possible = false; 917 policy->driver_data = NULL; 918 acpi_processor_unregister_performance(data->acpi_perf_cpu); 919 free_cpumask_var(data->freqdomain_cpus); 920 kfree(policy->freq_table); 921 kfree(data); 922 923 return 0; 924 } 925 926 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 927 { 928 struct acpi_cpufreq_data *data = policy->driver_data; 929 930 pr_debug("%s\n", __func__); 931 932 data->resume = 1; 933 934 return 0; 935 } 936 937 static struct freq_attr *acpi_cpufreq_attr[] = { 938 &cpufreq_freq_attr_scaling_available_freqs, 939 &freqdomain_cpus, 940 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 941 &cpb, 942 #endif 943 NULL, 944 }; 945 946 static struct cpufreq_driver acpi_cpufreq_driver = { 947 .verify = cpufreq_generic_frequency_table_verify, 948 .target_index = acpi_cpufreq_target, 949 .fast_switch = acpi_cpufreq_fast_switch, 950 .bios_limit = acpi_processor_get_bios_limit, 951 .init = acpi_cpufreq_cpu_init, 952 .exit = acpi_cpufreq_cpu_exit, 953 .resume = acpi_cpufreq_resume, 954 .name = "acpi-cpufreq", 955 .attr = acpi_cpufreq_attr, 956 }; 957 958 static void __init acpi_cpufreq_boost_init(void) 959 { 960 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 961 pr_debug("Boost capabilities not present in the processor\n"); 962 return; 963 } 964 965 acpi_cpufreq_driver.set_boost = set_boost; 966 acpi_cpufreq_driver.boost_enabled = boost_state(0); 967 } 968 969 static int __init acpi_cpufreq_probe(struct platform_device *pdev) 970 { 971 int ret; 972 973 if (acpi_disabled) 974 return -ENODEV; 975 976 /* don't keep reloading if cpufreq_driver exists */ 977 if (cpufreq_get_current_driver()) 978 return -ENODEV; 979 980 pr_debug("%s\n", __func__); 981 982 ret = acpi_cpufreq_early_init(); 983 if (ret) 984 return ret; 985 986 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 987 /* this is a sysfs file with a strange name and an even stranger 988 * semantic - per CPU instantiation, but system global effect. 989 * Lets enable it only on AMD CPUs for compatibility reasons and 990 * only if configured. This is considered legacy code, which 991 * will probably be removed at some point in the future. 992 */ 993 if (!check_amd_hwpstate_cpu(0)) { 994 struct freq_attr **attr; 995 996 pr_debug("CPB unsupported, do not expose it\n"); 997 998 for (attr = acpi_cpufreq_attr; *attr; attr++) 999 if (*attr == &cpb) { 1000 *attr = NULL; 1001 break; 1002 } 1003 } 1004 #endif 1005 acpi_cpufreq_boost_init(); 1006 1007 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 1008 if (ret) { 1009 free_acpi_perf_data(); 1010 } 1011 return ret; 1012 } 1013 1014 static void acpi_cpufreq_remove(struct platform_device *pdev) 1015 { 1016 pr_debug("%s\n", __func__); 1017 1018 cpufreq_unregister_driver(&acpi_cpufreq_driver); 1019 1020 free_acpi_perf_data(); 1021 } 1022 1023 static struct platform_driver acpi_cpufreq_platdrv = { 1024 .driver = { 1025 .name = "acpi-cpufreq", 1026 }, 1027 .remove_new = acpi_cpufreq_remove, 1028 }; 1029 1030 static int __init acpi_cpufreq_init(void) 1031 { 1032 return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe); 1033 } 1034 1035 static void __exit acpi_cpufreq_exit(void) 1036 { 1037 platform_driver_unregister(&acpi_cpufreq_platdrv); 1038 } 1039 1040 module_param(acpi_pstate_strict, uint, 0644); 1041 MODULE_PARM_DESC(acpi_pstate_strict, 1042 "value 0 or non-zero. non-zero -> strict ACPI checks are " 1043 "performed during frequency changes."); 1044 1045 late_initcall(acpi_cpufreq_init); 1046 module_exit(acpi_cpufreq_exit); 1047 1048 MODULE_ALIAS("platform:acpi-cpufreq"); 1049