xref: /linux/drivers/cpufreq/acpi-cpufreq.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 #include <linux/platform_device.h>
24 
25 #include <linux/acpi.h>
26 #include <linux/io.h>
27 #include <linux/delay.h>
28 #include <linux/uaccess.h>
29 
30 #include <acpi/processor.h>
31 #include <acpi/cppc_acpi.h>
32 
33 #include <asm/msr.h>
34 #include <asm/processor.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cpu_device_id.h>
37 
38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
39 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
40 MODULE_LICENSE("GPL");
41 
42 enum {
43 	UNDEFINED_CAPABLE = 0,
44 	SYSTEM_INTEL_MSR_CAPABLE,
45 	SYSTEM_AMD_MSR_CAPABLE,
46 	SYSTEM_IO_CAPABLE,
47 };
48 
49 #define INTEL_MSR_RANGE		(0xffff)
50 #define AMD_MSR_RANGE		(0x7)
51 #define HYGON_MSR_RANGE		(0x7)
52 
53 struct acpi_cpufreq_data {
54 	unsigned int resume;
55 	unsigned int cpu_feature;
56 	unsigned int acpi_perf_cpu;
57 	cpumask_var_t freqdomain_cpus;
58 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61 
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64 
65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69 
70 static struct cpufreq_driver acpi_cpufreq_driver;
71 
72 static unsigned int acpi_pstate_strict;
73 
74 static bool boost_state(unsigned int cpu)
75 {
76 	u64 msr;
77 
78 	switch (boot_cpu_data.x86_vendor) {
79 	case X86_VENDOR_INTEL:
80 	case X86_VENDOR_CENTAUR:
81 	case X86_VENDOR_ZHAOXIN:
82 		rdmsrq_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &msr);
83 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
84 	case X86_VENDOR_HYGON:
85 	case X86_VENDOR_AMD:
86 		rdmsrq_on_cpu(cpu, MSR_K7_HWCR, &msr);
87 		return !(msr & MSR_K7_HWCR_CPB_DIS);
88 	}
89 	return false;
90 }
91 
92 static int boost_set_msr(bool enable)
93 {
94 	u32 msr_addr;
95 	u64 msr_mask, val;
96 
97 	switch (boot_cpu_data.x86_vendor) {
98 	case X86_VENDOR_INTEL:
99 	case X86_VENDOR_CENTAUR:
100 	case X86_VENDOR_ZHAOXIN:
101 		msr_addr = MSR_IA32_MISC_ENABLE;
102 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
103 		break;
104 	case X86_VENDOR_HYGON:
105 	case X86_VENDOR_AMD:
106 		msr_addr = MSR_K7_HWCR;
107 		msr_mask = MSR_K7_HWCR_CPB_DIS;
108 		break;
109 	default:
110 		return -EINVAL;
111 	}
112 
113 	rdmsrq(msr_addr, val);
114 
115 	if (enable)
116 		val &= ~msr_mask;
117 	else
118 		val |= msr_mask;
119 
120 	wrmsrq(msr_addr, val);
121 	return 0;
122 }
123 
124 static void boost_set_msr_each(void *p_en)
125 {
126 	bool enable = (bool) p_en;
127 
128 	boost_set_msr(enable);
129 }
130 
131 static int set_boost(struct cpufreq_policy *policy, int val)
132 {
133 	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
134 			 (void *)(long)val, 1);
135 	pr_debug("CPU %*pbl: Core Boosting %s.\n",
136 		 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
137 
138 	return 0;
139 }
140 
141 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
142 {
143 	struct acpi_cpufreq_data *data = policy->driver_data;
144 
145 	if (unlikely(!data))
146 		return -ENODEV;
147 
148 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
149 }
150 
151 cpufreq_freq_attr_ro(freqdomain_cpus);
152 
153 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
154 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
155 			 size_t count)
156 {
157 	int ret;
158 	unsigned int val = 0;
159 
160 	if (!acpi_cpufreq_driver.set_boost)
161 		return -EINVAL;
162 
163 	ret = kstrtouint(buf, 10, &val);
164 	if (ret || val > 1)
165 		return -EINVAL;
166 
167 	cpus_read_lock();
168 	set_boost(policy, val);
169 	cpus_read_unlock();
170 
171 	return count;
172 }
173 
174 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
175 {
176 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
177 }
178 
179 cpufreq_freq_attr_rw(cpb);
180 #endif
181 
182 static int check_est_cpu(unsigned int cpuid)
183 {
184 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
185 
186 	return cpu_has(cpu, X86_FEATURE_EST);
187 }
188 
189 static int check_amd_hwpstate_cpu(unsigned int cpuid)
190 {
191 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192 
193 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
194 }
195 
196 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
197 {
198 	struct acpi_cpufreq_data *data = policy->driver_data;
199 	struct acpi_processor_performance *perf;
200 	int i;
201 
202 	perf = to_perf_data(data);
203 
204 	for (i = 0; i < perf->state_count; i++) {
205 		if (value == perf->states[i].status)
206 			return policy->freq_table[i].frequency;
207 	}
208 	return 0;
209 }
210 
211 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
212 {
213 	struct acpi_cpufreq_data *data = policy->driver_data;
214 	struct cpufreq_frequency_table *pos;
215 	struct acpi_processor_performance *perf;
216 
217 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
218 		msr &= AMD_MSR_RANGE;
219 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
220 		msr &= HYGON_MSR_RANGE;
221 	else
222 		msr &= INTEL_MSR_RANGE;
223 
224 	perf = to_perf_data(data);
225 
226 	cpufreq_for_each_entry(pos, policy->freq_table)
227 		if (msr == perf->states[pos->driver_data].status)
228 			return pos->frequency;
229 	return policy->freq_table[0].frequency;
230 }
231 
232 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
233 {
234 	struct acpi_cpufreq_data *data = policy->driver_data;
235 
236 	switch (data->cpu_feature) {
237 	case SYSTEM_INTEL_MSR_CAPABLE:
238 	case SYSTEM_AMD_MSR_CAPABLE:
239 		return extract_msr(policy, val);
240 	case SYSTEM_IO_CAPABLE:
241 		return extract_io(policy, val);
242 	default:
243 		return 0;
244 	}
245 }
246 
247 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
248 {
249 	u32 val, dummy __always_unused;
250 
251 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
252 	return val;
253 }
254 
255 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
256 {
257 	u32 lo, hi;
258 
259 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
260 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
261 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
262 }
263 
264 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
265 {
266 	u32 val, dummy __always_unused;
267 
268 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
269 	return val;
270 }
271 
272 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
273 {
274 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
275 }
276 
277 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
278 {
279 	u32 val;
280 
281 	acpi_os_read_port(reg->address, &val, reg->bit_width);
282 	return val;
283 }
284 
285 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
286 {
287 	acpi_os_write_port(reg->address, val, reg->bit_width);
288 }
289 
290 struct drv_cmd {
291 	struct acpi_pct_register *reg;
292 	u32 val;
293 	union {
294 		void (*write)(struct acpi_pct_register *reg, u32 val);
295 		u32 (*read)(struct acpi_pct_register *reg);
296 	} func;
297 };
298 
299 /* Called via smp_call_function_single(), on the target CPU */
300 static void do_drv_read(void *_cmd)
301 {
302 	struct drv_cmd *cmd = _cmd;
303 
304 	cmd->val = cmd->func.read(cmd->reg);
305 }
306 
307 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
308 {
309 	struct acpi_processor_performance *perf = to_perf_data(data);
310 	struct drv_cmd cmd = {
311 		.reg = &perf->control_register,
312 		.func.read = data->cpu_freq_read,
313 	};
314 	int err;
315 
316 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
317 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
318 	return cmd.val;
319 }
320 
321 static void do_drv_write(void *_cmd)
322 {
323 	struct drv_cmd *cmd = _cmd;
324 
325 	cmd->func.write(cmd->reg, cmd->val);
326 }
327 
328 static void drv_write(struct acpi_cpufreq_data *data,
329 		      const struct cpumask *mask, u32 val)
330 {
331 	struct acpi_processor_performance *perf = to_perf_data(data);
332 	struct drv_cmd cmd = {
333 		.reg = &perf->control_register,
334 		.val = val,
335 		.func.write = data->cpu_freq_write,
336 	};
337 
338 	on_each_cpu_mask(mask, do_drv_write, &cmd, true);
339 }
340 
341 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
342 {
343 	u32 val;
344 
345 	if (unlikely(cpumask_empty(mask)))
346 		return 0;
347 
348 	val = drv_read(data, mask);
349 
350 	pr_debug("%s = %u\n", __func__, val);
351 
352 	return val;
353 }
354 
355 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
356 {
357 	struct acpi_cpufreq_data *data;
358 	struct cpufreq_policy *policy;
359 	unsigned int freq;
360 	unsigned int cached_freq;
361 
362 	pr_debug("%s (%d)\n", __func__, cpu);
363 
364 	policy = cpufreq_cpu_get_raw(cpu);
365 	if (unlikely(!policy))
366 		return 0;
367 
368 	data = policy->driver_data;
369 	if (unlikely(!data || !policy->freq_table))
370 		return 0;
371 
372 	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
373 	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
374 	if (freq != cached_freq) {
375 		/*
376 		 * The dreaded BIOS frequency change behind our back.
377 		 * Force set the frequency on next target call.
378 		 */
379 		data->resume = 1;
380 	}
381 
382 	pr_debug("cur freq = %u\n", freq);
383 
384 	return freq;
385 }
386 
387 static unsigned int check_freqs(struct cpufreq_policy *policy,
388 				const struct cpumask *mask, unsigned int freq)
389 {
390 	struct acpi_cpufreq_data *data = policy->driver_data;
391 	unsigned int cur_freq;
392 	unsigned int i;
393 
394 	for (i = 0; i < 100; i++) {
395 		cur_freq = extract_freq(policy, get_cur_val(mask, data));
396 		if (cur_freq == freq)
397 			return 1;
398 		udelay(10);
399 	}
400 	return 0;
401 }
402 
403 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
404 			       unsigned int index)
405 {
406 	struct acpi_cpufreq_data *data = policy->driver_data;
407 	struct acpi_processor_performance *perf;
408 	const struct cpumask *mask;
409 	unsigned int next_perf_state = 0; /* Index into perf table */
410 	int result = 0;
411 
412 	if (unlikely(!data)) {
413 		return -ENODEV;
414 	}
415 
416 	perf = to_perf_data(data);
417 	next_perf_state = policy->freq_table[index].driver_data;
418 	if (perf->state == next_perf_state) {
419 		if (unlikely(data->resume)) {
420 			pr_debug("Called after resume, resetting to P%d\n",
421 				next_perf_state);
422 			data->resume = 0;
423 		} else {
424 			pr_debug("Already at target state (P%d)\n",
425 				next_perf_state);
426 			return 0;
427 		}
428 	}
429 
430 	/*
431 	 * The core won't allow CPUs to go away until the governor has been
432 	 * stopped, so we can rely on the stability of policy->cpus.
433 	 */
434 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
435 		cpumask_of(policy->cpu) : policy->cpus;
436 
437 	drv_write(data, mask, perf->states[next_perf_state].control);
438 
439 	if (acpi_pstate_strict) {
440 		if (!check_freqs(policy, mask,
441 				 policy->freq_table[index].frequency)) {
442 			pr_debug("%s (%d)\n", __func__, policy->cpu);
443 			result = -EAGAIN;
444 		}
445 	}
446 
447 	if (!result)
448 		perf->state = next_perf_state;
449 
450 	return result;
451 }
452 
453 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
454 					     unsigned int target_freq)
455 {
456 	struct acpi_cpufreq_data *data = policy->driver_data;
457 	struct acpi_processor_performance *perf;
458 	struct cpufreq_frequency_table *entry;
459 	unsigned int next_perf_state, next_freq, index;
460 
461 	/*
462 	 * Find the closest frequency above target_freq.
463 	 */
464 	if (policy->cached_target_freq == target_freq)
465 		index = policy->cached_resolved_idx;
466 	else
467 		index = cpufreq_table_find_index_dl(policy, target_freq,
468 						    false);
469 
470 	entry = &policy->freq_table[index];
471 	next_freq = entry->frequency;
472 	next_perf_state = entry->driver_data;
473 
474 	perf = to_perf_data(data);
475 	if (perf->state == next_perf_state) {
476 		if (unlikely(data->resume))
477 			data->resume = 0;
478 		else
479 			return next_freq;
480 	}
481 
482 	data->cpu_freq_write(&perf->control_register,
483 			     perf->states[next_perf_state].control);
484 	perf->state = next_perf_state;
485 	return next_freq;
486 }
487 
488 static unsigned long
489 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
490 {
491 	struct acpi_processor_performance *perf;
492 
493 	perf = to_perf_data(data);
494 	if (cpu_khz) {
495 		/* search the closest match to cpu_khz */
496 		unsigned int i;
497 		unsigned long freq;
498 		unsigned long freqn = perf->states[0].core_frequency * 1000;
499 
500 		for (i = 0; i < (perf->state_count-1); i++) {
501 			freq = freqn;
502 			freqn = perf->states[i+1].core_frequency * 1000;
503 			if ((2 * cpu_khz) > (freqn + freq)) {
504 				perf->state = i;
505 				return freq;
506 			}
507 		}
508 		perf->state = perf->state_count-1;
509 		return freqn;
510 	} else {
511 		/* assume CPU is at P0... */
512 		perf->state = 0;
513 		return perf->states[0].core_frequency * 1000;
514 	}
515 }
516 
517 static void free_acpi_perf_data(void)
518 {
519 	unsigned int i;
520 
521 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
522 	for_each_possible_cpu(i)
523 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
524 				 ->shared_cpu_map);
525 	free_percpu(acpi_perf_data);
526 }
527 
528 static int cpufreq_boost_down_prep(unsigned int cpu)
529 {
530 	/*
531 	 * Clear the boost-disable bit on the CPU_DOWN path so that
532 	 * this cpu cannot block the remaining ones from boosting.
533 	 */
534 	return boost_set_msr(1);
535 }
536 
537 /*
538  * acpi_cpufreq_early_init - initialize ACPI P-States library
539  *
540  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
541  * in order to determine correct frequency and voltage pairings. We can
542  * do _PDC and _PSD and find out the processor dependency for the
543  * actual init that will happen later...
544  */
545 static int __init acpi_cpufreq_early_init(void)
546 {
547 	unsigned int i;
548 	pr_debug("%s\n", __func__);
549 
550 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
551 	if (!acpi_perf_data) {
552 		pr_debug("Memory allocation error for acpi_perf_data.\n");
553 		return -ENOMEM;
554 	}
555 	for_each_possible_cpu(i) {
556 		if (!zalloc_cpumask_var_node(
557 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
558 			GFP_KERNEL, cpu_to_node(i))) {
559 
560 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
561 			free_acpi_perf_data();
562 			return -ENOMEM;
563 		}
564 	}
565 
566 	/* Do initialization in ACPI core */
567 	acpi_processor_preregister_performance(acpi_perf_data);
568 	return 0;
569 }
570 
571 #ifdef CONFIG_SMP
572 /*
573  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
574  * or do it in BIOS firmware and won't inform about it to OS. If not
575  * detected, this has a side effect of making CPU run at a different speed
576  * than OS intended it to run at. Detect it and handle it cleanly.
577  */
578 static int bios_with_sw_any_bug;
579 
580 static int sw_any_bug_found(const struct dmi_system_id *d)
581 {
582 	bios_with_sw_any_bug = 1;
583 	return 0;
584 }
585 
586 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
587 	{
588 		.callback = sw_any_bug_found,
589 		.ident = "Supermicro Server X6DLP",
590 		.matches = {
591 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
592 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
593 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
594 		},
595 	},
596 	{ }
597 };
598 
599 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
600 {
601 	/* Intel Xeon Processor 7100 Series Specification Update
602 	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
603 	 * AL30: A Machine Check Exception (MCE) Occurring during an
604 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
605 	 * Both Processor Cores to Lock Up. */
606 	if (c->x86_vendor == X86_VENDOR_INTEL) {
607 		if ((c->x86 == 15) &&
608 		    (c->x86_model == 6) &&
609 		    (c->x86_stepping == 8)) {
610 			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
611 			return -ENODEV;
612 		    }
613 		}
614 	return 0;
615 }
616 #endif
617 
618 #ifdef CONFIG_ACPI_CPPC_LIB
619 /*
620  * get_max_boost_ratio: Computes the max_boost_ratio as the ratio
621  * between the highest_perf and the nominal_perf.
622  *
623  * Returns the max_boost_ratio for @cpu. Returns the CPPC nominal
624  * frequency via @nominal_freq if it is non-NULL pointer.
625  */
626 static u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
627 {
628 	struct cppc_perf_caps perf_caps;
629 	u64 highest_perf, nominal_perf;
630 	int ret;
631 
632 	if (acpi_pstate_strict)
633 		return 0;
634 
635 	ret = cppc_get_perf_caps(cpu, &perf_caps);
636 	if (ret) {
637 		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
638 			 cpu, ret);
639 		return 0;
640 	}
641 
642 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
643 		ret = amd_get_boost_ratio_numerator(cpu, &highest_perf);
644 		if (ret) {
645 			pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n",
646 				 cpu, ret);
647 			return 0;
648 		}
649 	} else {
650 		highest_perf = perf_caps.highest_perf;
651 	}
652 
653 	nominal_perf = perf_caps.nominal_perf;
654 
655 	if (nominal_freq)
656 		*nominal_freq = perf_caps.nominal_freq * 1000;
657 
658 	if (!highest_perf || !nominal_perf) {
659 		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
660 		return 0;
661 	}
662 
663 	if (highest_perf < nominal_perf) {
664 		pr_debug("CPU%d: nominal performance above highest\n", cpu);
665 		return 0;
666 	}
667 
668 	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
669 }
670 
671 #else
672 static inline u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
673 {
674 	return 0;
675 }
676 #endif
677 
678 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
679 {
680 	struct cpufreq_frequency_table *freq_table;
681 	struct acpi_processor_performance *perf;
682 	struct acpi_cpufreq_data *data;
683 	unsigned int cpu = policy->cpu;
684 	struct cpuinfo_x86 *c = &cpu_data(cpu);
685 	u64 max_boost_ratio, nominal_freq = 0;
686 	unsigned int valid_states = 0;
687 	unsigned int result = 0;
688 	unsigned int i;
689 #ifdef CONFIG_SMP
690 	static int blacklisted;
691 #endif
692 
693 	pr_debug("%s\n", __func__);
694 
695 #ifdef CONFIG_SMP
696 	if (blacklisted)
697 		return blacklisted;
698 	blacklisted = acpi_cpufreq_blacklist(c);
699 	if (blacklisted)
700 		return blacklisted;
701 #endif
702 
703 	data = kzalloc(sizeof(*data), GFP_KERNEL);
704 	if (!data)
705 		return -ENOMEM;
706 
707 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
708 		result = -ENOMEM;
709 		goto err_free;
710 	}
711 
712 	perf = per_cpu_ptr(acpi_perf_data, cpu);
713 	data->acpi_perf_cpu = cpu;
714 	policy->driver_data = data;
715 
716 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
717 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
718 
719 	result = acpi_processor_register_performance(perf, cpu);
720 	if (result)
721 		goto err_free_mask;
722 
723 	policy->shared_type = perf->shared_type;
724 
725 	/*
726 	 * Will let policy->cpus know about dependency only when software
727 	 * coordination is required.
728 	 */
729 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
730 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
731 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
732 	}
733 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
734 
735 #ifdef CONFIG_SMP
736 	dmi_check_system(sw_any_bug_dmi_table);
737 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
738 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
739 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
740 	}
741 
742 	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
743 	    !acpi_pstate_strict) {
744 		cpumask_clear(policy->cpus);
745 		cpumask_set_cpu(cpu, policy->cpus);
746 		cpumask_copy(data->freqdomain_cpus,
747 			     topology_sibling_cpumask(cpu));
748 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
749 		pr_info_once("overriding BIOS provided _PSD data\n");
750 	}
751 #endif
752 
753 	/* capability check */
754 	if (perf->state_count <= 1) {
755 		pr_debug("No P-States\n");
756 		result = -ENODEV;
757 		goto err_unreg;
758 	}
759 
760 	if (perf->control_register.space_id != perf->status_register.space_id) {
761 		result = -ENODEV;
762 		goto err_unreg;
763 	}
764 
765 	switch (perf->control_register.space_id) {
766 	case ACPI_ADR_SPACE_SYSTEM_IO:
767 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
768 		    boot_cpu_data.x86 == 0xf) {
769 			pr_debug("AMD K8 systems must use native drivers.\n");
770 			result = -ENODEV;
771 			goto err_unreg;
772 		}
773 		pr_debug("SYSTEM IO addr space\n");
774 		data->cpu_feature = SYSTEM_IO_CAPABLE;
775 		data->cpu_freq_read = cpu_freq_read_io;
776 		data->cpu_freq_write = cpu_freq_write_io;
777 		break;
778 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
779 		pr_debug("HARDWARE addr space\n");
780 		if (check_est_cpu(cpu)) {
781 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
782 			data->cpu_freq_read = cpu_freq_read_intel;
783 			data->cpu_freq_write = cpu_freq_write_intel;
784 			break;
785 		}
786 		if (check_amd_hwpstate_cpu(cpu)) {
787 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
788 			data->cpu_freq_read = cpu_freq_read_amd;
789 			data->cpu_freq_write = cpu_freq_write_amd;
790 			break;
791 		}
792 		result = -ENODEV;
793 		goto err_unreg;
794 	default:
795 		pr_debug("Unknown addr space %d\n",
796 			(u32) (perf->control_register.space_id));
797 		result = -ENODEV;
798 		goto err_unreg;
799 	}
800 
801 	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
802 			     GFP_KERNEL);
803 	if (!freq_table) {
804 		result = -ENOMEM;
805 		goto err_unreg;
806 	}
807 
808 	/* detect transition latency */
809 	policy->cpuinfo.transition_latency = 0;
810 	for (i = 0; i < perf->state_count; i++) {
811 		if ((perf->states[i].transition_latency * 1000) >
812 		    policy->cpuinfo.transition_latency)
813 			policy->cpuinfo.transition_latency =
814 			    perf->states[i].transition_latency * 1000;
815 	}
816 
817 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
818 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
819 	    policy->cpuinfo.transition_latency > 20 * 1000) {
820 		policy->cpuinfo.transition_latency = 20 * 1000;
821 		pr_info_once("P-state transition latency capped at 20 uS\n");
822 	}
823 
824 	/* table init */
825 	for (i = 0; i < perf->state_count; i++) {
826 		if (i > 0 && perf->states[i].core_frequency >=
827 		    freq_table[valid_states-1].frequency / 1000)
828 			continue;
829 
830 		freq_table[valid_states].driver_data = i;
831 		freq_table[valid_states].frequency =
832 		    perf->states[i].core_frequency * 1000;
833 		valid_states++;
834 	}
835 	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
836 
837 	max_boost_ratio = get_max_boost_ratio(cpu, &nominal_freq);
838 	if (max_boost_ratio) {
839 		unsigned int freq = nominal_freq;
840 
841 		/*
842 		 * The loop above sorts the freq_table entries in the
843 		 * descending order. If ACPI CPPC has not advertised
844 		 * the nominal frequency (this is possible in CPPC
845 		 * revisions prior to 3), then use the first entry in
846 		 * the pstate table as a proxy for nominal frequency.
847 		 */
848 		if (!freq)
849 			freq = freq_table[0].frequency;
850 
851 		policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
852 	} else {
853 		/*
854 		 * If the maximum "boost" frequency is unknown, ask the arch
855 		 * scale-invariance code to use the "nominal" performance for
856 		 * CPU utilization scaling so as to prevent the schedutil
857 		 * governor from selecting inadequate CPU frequencies.
858 		 */
859 		arch_set_max_freq_ratio(true);
860 	}
861 
862 	policy->freq_table = freq_table;
863 	perf->state = 0;
864 
865 	switch (perf->control_register.space_id) {
866 	case ACPI_ADR_SPACE_SYSTEM_IO:
867 		/*
868 		 * The core will not set policy->cur, because
869 		 * cpufreq_driver->get is NULL, so we need to set it here.
870 		 * However, we have to guess it, because the current speed is
871 		 * unknown and not detectable via IO ports.
872 		 */
873 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
874 		break;
875 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
876 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
877 		break;
878 	default:
879 		break;
880 	}
881 
882 	/* notify BIOS that we exist */
883 	acpi_processor_notify_smm(THIS_MODULE);
884 
885 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
886 	for (i = 0; i < perf->state_count; i++)
887 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
888 			(i == perf->state ? '*' : ' '), i,
889 			(u32) perf->states[i].core_frequency,
890 			(u32) perf->states[i].power,
891 			(u32) perf->states[i].transition_latency);
892 
893 	/*
894 	 * the first call to ->target() should result in us actually
895 	 * writing something to the appropriate registers.
896 	 */
897 	data->resume = 1;
898 
899 	policy->fast_switch_possible = !acpi_pstate_strict &&
900 		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
901 
902 	if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
903 		pr_warn(FW_WARN "P-state 0 is not max freq\n");
904 
905 	if (acpi_cpufreq_driver.set_boost) {
906 		if (policy->boost_supported) {
907 			/*
908 			 * The firmware may have altered boost state while the
909 			 * CPU was offline (for example during a suspend-resume
910 			 * cycle).
911 			 */
912 			if (policy->boost_enabled != boost_state(cpu))
913 				set_boost(policy, policy->boost_enabled);
914 		} else {
915 			policy->boost_supported = true;
916 		}
917 	}
918 
919 	return result;
920 
921 err_unreg:
922 	acpi_processor_unregister_performance(cpu);
923 err_free_mask:
924 	free_cpumask_var(data->freqdomain_cpus);
925 err_free:
926 	kfree(data);
927 	policy->driver_data = NULL;
928 
929 	return result;
930 }
931 
932 static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
933 {
934 	struct acpi_cpufreq_data *data = policy->driver_data;
935 
936 	pr_debug("%s\n", __func__);
937 
938 	cpufreq_boost_down_prep(policy->cpu);
939 	policy->fast_switch_possible = false;
940 	policy->driver_data = NULL;
941 	acpi_processor_unregister_performance(data->acpi_perf_cpu);
942 	free_cpumask_var(data->freqdomain_cpus);
943 	kfree(policy->freq_table);
944 	kfree(data);
945 }
946 
947 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
948 {
949 	struct acpi_cpufreq_data *data = policy->driver_data;
950 
951 	pr_debug("%s\n", __func__);
952 
953 	data->resume = 1;
954 
955 	return 0;
956 }
957 
958 static struct freq_attr *acpi_cpufreq_attr[] = {
959 	&freqdomain_cpus,
960 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
961 	&cpb,
962 #endif
963 	NULL,
964 };
965 
966 static struct cpufreq_driver acpi_cpufreq_driver = {
967 	.verify		= cpufreq_generic_frequency_table_verify,
968 	.target_index	= acpi_cpufreq_target,
969 	.fast_switch	= acpi_cpufreq_fast_switch,
970 	.bios_limit	= acpi_processor_get_bios_limit,
971 	.init		= acpi_cpufreq_cpu_init,
972 	.exit		= acpi_cpufreq_cpu_exit,
973 	.resume		= acpi_cpufreq_resume,
974 	.name		= "acpi-cpufreq",
975 	.attr		= acpi_cpufreq_attr,
976 };
977 
978 static void __init acpi_cpufreq_boost_init(void)
979 {
980 	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
981 		pr_debug("Boost capabilities not present in the processor\n");
982 		return;
983 	}
984 
985 	acpi_cpufreq_driver.set_boost = set_boost;
986 	acpi_cpufreq_driver.boost_enabled = boost_state(0);
987 }
988 
989 static int __init acpi_cpufreq_probe(struct platform_device *pdev)
990 {
991 	int ret;
992 
993 	if (acpi_disabled)
994 		return -ENODEV;
995 
996 	/* don't keep reloading if cpufreq_driver exists */
997 	if (cpufreq_get_current_driver())
998 		return -ENODEV;
999 
1000 	pr_debug("%s\n", __func__);
1001 
1002 	ret = acpi_cpufreq_early_init();
1003 	if (ret)
1004 		return ret;
1005 
1006 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1007 	/* this is a sysfs file with a strange name and an even stranger
1008 	 * semantic - per CPU instantiation, but system global effect.
1009 	 * Lets enable it only on AMD CPUs for compatibility reasons and
1010 	 * only if configured. This is considered legacy code, which
1011 	 * will probably be removed at some point in the future.
1012 	 */
1013 	if (!check_amd_hwpstate_cpu(0)) {
1014 		struct freq_attr **attr;
1015 
1016 		pr_debug("CPB unsupported, do not expose it\n");
1017 
1018 		for (attr = acpi_cpufreq_attr; *attr; attr++)
1019 			if (*attr == &cpb) {
1020 				*attr = NULL;
1021 				break;
1022 			}
1023 	}
1024 #endif
1025 	acpi_cpufreq_boost_init();
1026 
1027 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1028 	if (ret) {
1029 		free_acpi_perf_data();
1030 	}
1031 	return ret;
1032 }
1033 
1034 static void acpi_cpufreq_remove(struct platform_device *pdev)
1035 {
1036 	pr_debug("%s\n", __func__);
1037 
1038 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1039 
1040 	free_acpi_perf_data();
1041 }
1042 
1043 static struct platform_driver acpi_cpufreq_platdrv = {
1044 	.driver = {
1045 		.name	= "acpi-cpufreq",
1046 	},
1047 	.remove = acpi_cpufreq_remove,
1048 };
1049 
1050 static int __init acpi_cpufreq_init(void)
1051 {
1052 	return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1053 }
1054 
1055 static void __exit acpi_cpufreq_exit(void)
1056 {
1057 	platform_driver_unregister(&acpi_cpufreq_platdrv);
1058 }
1059 
1060 module_param(acpi_pstate_strict, uint, 0644);
1061 MODULE_PARM_DESC(acpi_pstate_strict,
1062 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1063 	"performed during frequency changes.");
1064 
1065 late_initcall(acpi_cpufreq_init);
1066 module_exit(acpi_cpufreq_exit);
1067 
1068 MODULE_ALIAS("platform:acpi-cpufreq");
1069