1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi-cpufreq.c - ACPI Processor P-States Driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/smp.h> 17 #include <linux/sched.h> 18 #include <linux/cpufreq.h> 19 #include <linux/compiler.h> 20 #include <linux/dmi.h> 21 #include <linux/slab.h> 22 #include <linux/string_helpers.h> 23 #include <linux/platform_device.h> 24 25 #include <linux/acpi.h> 26 #include <linux/io.h> 27 #include <linux/delay.h> 28 #include <linux/uaccess.h> 29 30 #include <acpi/processor.h> 31 #include <acpi/cppc_acpi.h> 32 33 #include <asm/msr.h> 34 #include <asm/processor.h> 35 #include <asm/cpufeature.h> 36 #include <asm/cpu_device_id.h> 37 38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 39 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 40 MODULE_LICENSE("GPL"); 41 42 enum { 43 UNDEFINED_CAPABLE = 0, 44 SYSTEM_INTEL_MSR_CAPABLE, 45 SYSTEM_AMD_MSR_CAPABLE, 46 SYSTEM_IO_CAPABLE, 47 }; 48 49 #define INTEL_MSR_RANGE (0xffff) 50 #define AMD_MSR_RANGE (0x7) 51 #define HYGON_MSR_RANGE (0x7) 52 53 struct acpi_cpufreq_data { 54 unsigned int resume; 55 unsigned int cpu_feature; 56 unsigned int acpi_perf_cpu; 57 cpumask_var_t freqdomain_cpus; 58 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 59 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 60 }; 61 62 /* acpi_perf_data is a pointer to percpu data. */ 63 static struct acpi_processor_performance __percpu *acpi_perf_data; 64 65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 66 { 67 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 68 } 69 70 static struct cpufreq_driver acpi_cpufreq_driver; 71 72 static unsigned int acpi_pstate_strict; 73 74 static bool boost_state(unsigned int cpu) 75 { 76 u64 msr; 77 78 switch (boot_cpu_data.x86_vendor) { 79 case X86_VENDOR_INTEL: 80 case X86_VENDOR_CENTAUR: 81 case X86_VENDOR_ZHAOXIN: 82 rdmsrq_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &msr); 83 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 84 case X86_VENDOR_HYGON: 85 case X86_VENDOR_AMD: 86 rdmsrq_on_cpu(cpu, MSR_K7_HWCR, &msr); 87 return !(msr & MSR_K7_HWCR_CPB_DIS); 88 } 89 return false; 90 } 91 92 static int boost_set_msr(bool enable) 93 { 94 u32 msr_addr; 95 u64 msr_mask, val; 96 97 switch (boot_cpu_data.x86_vendor) { 98 case X86_VENDOR_INTEL: 99 case X86_VENDOR_CENTAUR: 100 case X86_VENDOR_ZHAOXIN: 101 msr_addr = MSR_IA32_MISC_ENABLE; 102 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 103 break; 104 case X86_VENDOR_HYGON: 105 case X86_VENDOR_AMD: 106 msr_addr = MSR_K7_HWCR; 107 msr_mask = MSR_K7_HWCR_CPB_DIS; 108 break; 109 default: 110 return -EINVAL; 111 } 112 113 rdmsrq(msr_addr, val); 114 115 if (enable) 116 val &= ~msr_mask; 117 else 118 val |= msr_mask; 119 120 wrmsrq(msr_addr, val); 121 return 0; 122 } 123 124 static void boost_set_msr_each(void *p_en) 125 { 126 bool enable = (bool) p_en; 127 128 boost_set_msr(enable); 129 } 130 131 static int set_boost(struct cpufreq_policy *policy, int val) 132 { 133 on_each_cpu_mask(policy->cpus, boost_set_msr_each, 134 (void *)(long)val, 1); 135 pr_debug("CPU %*pbl: Core Boosting %s.\n", 136 cpumask_pr_args(policy->cpus), str_enabled_disabled(val)); 137 138 return 0; 139 } 140 141 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 142 { 143 struct acpi_cpufreq_data *data = policy->driver_data; 144 145 if (unlikely(!data)) 146 return -ENODEV; 147 148 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 149 } 150 151 cpufreq_freq_attr_ro(freqdomain_cpus); 152 153 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 154 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 155 size_t count) 156 { 157 int ret; 158 unsigned int val = 0; 159 160 if (!acpi_cpufreq_driver.set_boost) 161 return -EINVAL; 162 163 ret = kstrtouint(buf, 10, &val); 164 if (ret || val > 1) 165 return -EINVAL; 166 167 cpus_read_lock(); 168 set_boost(policy, val); 169 cpus_read_unlock(); 170 171 return count; 172 } 173 174 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 175 { 176 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 177 } 178 179 cpufreq_freq_attr_rw(cpb); 180 #endif 181 182 static int check_est_cpu(unsigned int cpuid) 183 { 184 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 185 186 return cpu_has(cpu, X86_FEATURE_EST); 187 } 188 189 static int check_amd_hwpstate_cpu(unsigned int cpuid) 190 { 191 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 192 193 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 194 } 195 196 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 197 { 198 struct acpi_cpufreq_data *data = policy->driver_data; 199 struct acpi_processor_performance *perf; 200 int i; 201 202 perf = to_perf_data(data); 203 204 for (i = 0; i < perf->state_count; i++) { 205 if (value == perf->states[i].status) 206 return policy->freq_table[i].frequency; 207 } 208 return 0; 209 } 210 211 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 212 { 213 struct acpi_cpufreq_data *data = policy->driver_data; 214 struct cpufreq_frequency_table *pos; 215 struct acpi_processor_performance *perf; 216 217 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 218 msr &= AMD_MSR_RANGE; 219 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 220 msr &= HYGON_MSR_RANGE; 221 else 222 msr &= INTEL_MSR_RANGE; 223 224 perf = to_perf_data(data); 225 226 cpufreq_for_each_entry(pos, policy->freq_table) 227 if (msr == perf->states[pos->driver_data].status) 228 return pos->frequency; 229 return policy->freq_table[0].frequency; 230 } 231 232 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 233 { 234 struct acpi_cpufreq_data *data = policy->driver_data; 235 236 switch (data->cpu_feature) { 237 case SYSTEM_INTEL_MSR_CAPABLE: 238 case SYSTEM_AMD_MSR_CAPABLE: 239 return extract_msr(policy, val); 240 case SYSTEM_IO_CAPABLE: 241 return extract_io(policy, val); 242 default: 243 return 0; 244 } 245 } 246 247 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 248 { 249 u32 val, dummy __always_unused; 250 251 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 252 return val; 253 } 254 255 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 256 { 257 u32 lo, hi; 258 259 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 260 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 261 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 262 } 263 264 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 265 { 266 u32 val, dummy __always_unused; 267 268 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 269 return val; 270 } 271 272 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 273 { 274 wrmsr(MSR_AMD_PERF_CTL, val, 0); 275 } 276 277 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 278 { 279 u32 val; 280 281 acpi_os_read_port(reg->address, &val, reg->bit_width); 282 return val; 283 } 284 285 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 286 { 287 acpi_os_write_port(reg->address, val, reg->bit_width); 288 } 289 290 struct drv_cmd { 291 struct acpi_pct_register *reg; 292 u32 val; 293 union { 294 void (*write)(struct acpi_pct_register *reg, u32 val); 295 u32 (*read)(struct acpi_pct_register *reg); 296 } func; 297 }; 298 299 /* Called via smp_call_function_single(), on the target CPU */ 300 static void do_drv_read(void *_cmd) 301 { 302 struct drv_cmd *cmd = _cmd; 303 304 cmd->val = cmd->func.read(cmd->reg); 305 } 306 307 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 308 { 309 struct acpi_processor_performance *perf = to_perf_data(data); 310 struct drv_cmd cmd = { 311 .reg = &perf->control_register, 312 .func.read = data->cpu_freq_read, 313 }; 314 int err; 315 316 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 317 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 318 return cmd.val; 319 } 320 321 static void do_drv_write(void *_cmd) 322 { 323 struct drv_cmd *cmd = _cmd; 324 325 cmd->func.write(cmd->reg, cmd->val); 326 } 327 328 static void drv_write(struct acpi_cpufreq_data *data, 329 const struct cpumask *mask, u32 val) 330 { 331 struct acpi_processor_performance *perf = to_perf_data(data); 332 struct drv_cmd cmd = { 333 .reg = &perf->control_register, 334 .val = val, 335 .func.write = data->cpu_freq_write, 336 }; 337 338 on_each_cpu_mask(mask, do_drv_write, &cmd, true); 339 } 340 341 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 342 { 343 u32 val; 344 345 if (unlikely(cpumask_empty(mask))) 346 return 0; 347 348 val = drv_read(data, mask); 349 350 pr_debug("%s = %u\n", __func__, val); 351 352 return val; 353 } 354 355 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 356 { 357 struct acpi_cpufreq_data *data; 358 struct cpufreq_policy *policy; 359 unsigned int freq; 360 unsigned int cached_freq; 361 362 pr_debug("%s (%d)\n", __func__, cpu); 363 364 policy = cpufreq_cpu_get_raw(cpu); 365 if (unlikely(!policy)) 366 return 0; 367 368 data = policy->driver_data; 369 if (unlikely(!data || !policy->freq_table)) 370 return 0; 371 372 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; 373 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 374 if (freq != cached_freq) { 375 /* 376 * The dreaded BIOS frequency change behind our back. 377 * Force set the frequency on next target call. 378 */ 379 data->resume = 1; 380 } 381 382 pr_debug("cur freq = %u\n", freq); 383 384 return freq; 385 } 386 387 static unsigned int check_freqs(struct cpufreq_policy *policy, 388 const struct cpumask *mask, unsigned int freq) 389 { 390 struct acpi_cpufreq_data *data = policy->driver_data; 391 unsigned int cur_freq; 392 unsigned int i; 393 394 for (i = 0; i < 100; i++) { 395 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 396 if (cur_freq == freq) 397 return 1; 398 udelay(10); 399 } 400 return 0; 401 } 402 403 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 404 unsigned int index) 405 { 406 struct acpi_cpufreq_data *data = policy->driver_data; 407 struct acpi_processor_performance *perf; 408 const struct cpumask *mask; 409 unsigned int next_perf_state = 0; /* Index into perf table */ 410 int result = 0; 411 412 if (unlikely(!data)) { 413 return -ENODEV; 414 } 415 416 perf = to_perf_data(data); 417 next_perf_state = policy->freq_table[index].driver_data; 418 if (perf->state == next_perf_state) { 419 if (unlikely(data->resume)) { 420 pr_debug("Called after resume, resetting to P%d\n", 421 next_perf_state); 422 data->resume = 0; 423 } else { 424 pr_debug("Already at target state (P%d)\n", 425 next_perf_state); 426 return 0; 427 } 428 } 429 430 /* 431 * The core won't allow CPUs to go away until the governor has been 432 * stopped, so we can rely on the stability of policy->cpus. 433 */ 434 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 435 cpumask_of(policy->cpu) : policy->cpus; 436 437 drv_write(data, mask, perf->states[next_perf_state].control); 438 439 if (acpi_pstate_strict) { 440 if (!check_freqs(policy, mask, 441 policy->freq_table[index].frequency)) { 442 pr_debug("%s (%d)\n", __func__, policy->cpu); 443 result = -EAGAIN; 444 } 445 } 446 447 if (!result) 448 perf->state = next_perf_state; 449 450 return result; 451 } 452 453 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 454 unsigned int target_freq) 455 { 456 struct acpi_cpufreq_data *data = policy->driver_data; 457 struct acpi_processor_performance *perf; 458 struct cpufreq_frequency_table *entry; 459 unsigned int next_perf_state, next_freq, index; 460 461 /* 462 * Find the closest frequency above target_freq. 463 */ 464 if (policy->cached_target_freq == target_freq) 465 index = policy->cached_resolved_idx; 466 else 467 index = cpufreq_table_find_index_dl(policy, target_freq, 468 false); 469 470 entry = &policy->freq_table[index]; 471 next_freq = entry->frequency; 472 next_perf_state = entry->driver_data; 473 474 perf = to_perf_data(data); 475 if (perf->state == next_perf_state) { 476 if (unlikely(data->resume)) 477 data->resume = 0; 478 else 479 return next_freq; 480 } 481 482 data->cpu_freq_write(&perf->control_register, 483 perf->states[next_perf_state].control); 484 perf->state = next_perf_state; 485 return next_freq; 486 } 487 488 static unsigned long 489 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 490 { 491 struct acpi_processor_performance *perf; 492 493 perf = to_perf_data(data); 494 if (cpu_khz) { 495 /* search the closest match to cpu_khz */ 496 unsigned int i; 497 unsigned long freq; 498 unsigned long freqn = perf->states[0].core_frequency * 1000; 499 500 for (i = 0; i < (perf->state_count-1); i++) { 501 freq = freqn; 502 freqn = perf->states[i+1].core_frequency * 1000; 503 if ((2 * cpu_khz) > (freqn + freq)) { 504 perf->state = i; 505 return freq; 506 } 507 } 508 perf->state = perf->state_count-1; 509 return freqn; 510 } else { 511 /* assume CPU is at P0... */ 512 perf->state = 0; 513 return perf->states[0].core_frequency * 1000; 514 } 515 } 516 517 static void free_acpi_perf_data(void) 518 { 519 unsigned int i; 520 521 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 522 for_each_possible_cpu(i) 523 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 524 ->shared_cpu_map); 525 free_percpu(acpi_perf_data); 526 } 527 528 static int cpufreq_boost_down_prep(unsigned int cpu) 529 { 530 /* 531 * Clear the boost-disable bit on the CPU_DOWN path so that 532 * this cpu cannot block the remaining ones from boosting. 533 */ 534 return boost_set_msr(1); 535 } 536 537 /* 538 * acpi_cpufreq_early_init - initialize ACPI P-States library 539 * 540 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 541 * in order to determine correct frequency and voltage pairings. We can 542 * do _PDC and _PSD and find out the processor dependency for the 543 * actual init that will happen later... 544 */ 545 static int __init acpi_cpufreq_early_init(void) 546 { 547 unsigned int i; 548 pr_debug("%s\n", __func__); 549 550 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 551 if (!acpi_perf_data) { 552 pr_debug("Memory allocation error for acpi_perf_data.\n"); 553 return -ENOMEM; 554 } 555 for_each_possible_cpu(i) { 556 if (!zalloc_cpumask_var_node( 557 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 558 GFP_KERNEL, cpu_to_node(i))) { 559 560 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 561 free_acpi_perf_data(); 562 return -ENOMEM; 563 } 564 } 565 566 /* Do initialization in ACPI core */ 567 acpi_processor_preregister_performance(acpi_perf_data); 568 return 0; 569 } 570 571 #ifdef CONFIG_SMP 572 /* 573 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 574 * or do it in BIOS firmware and won't inform about it to OS. If not 575 * detected, this has a side effect of making CPU run at a different speed 576 * than OS intended it to run at. Detect it and handle it cleanly. 577 */ 578 static int bios_with_sw_any_bug; 579 580 static int sw_any_bug_found(const struct dmi_system_id *d) 581 { 582 bios_with_sw_any_bug = 1; 583 return 0; 584 } 585 586 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 587 { 588 .callback = sw_any_bug_found, 589 .ident = "Supermicro Server X6DLP", 590 .matches = { 591 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 592 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 593 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 594 }, 595 }, 596 { } 597 }; 598 599 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 600 { 601 /* Intel Xeon Processor 7100 Series Specification Update 602 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf 603 * AL30: A Machine Check Exception (MCE) Occurring during an 604 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 605 * Both Processor Cores to Lock Up. */ 606 if (c->x86_vendor == X86_VENDOR_INTEL) { 607 if ((c->x86 == 15) && 608 (c->x86_model == 6) && 609 (c->x86_stepping == 8)) { 610 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 611 return -ENODEV; 612 } 613 } 614 return 0; 615 } 616 #endif 617 618 #ifdef CONFIG_ACPI_CPPC_LIB 619 /* 620 * get_max_boost_ratio: Computes the max_boost_ratio as the ratio 621 * between the highest_perf and the nominal_perf. 622 * 623 * Returns the max_boost_ratio for @cpu. Returns the CPPC nominal 624 * frequency via @nominal_freq if it is non-NULL pointer. 625 */ 626 static u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq) 627 { 628 struct cppc_perf_caps perf_caps; 629 u64 highest_perf, nominal_perf; 630 int ret; 631 632 if (acpi_pstate_strict) 633 return 0; 634 635 ret = cppc_get_perf_caps(cpu, &perf_caps); 636 if (ret) { 637 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n", 638 cpu, ret); 639 return 0; 640 } 641 642 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { 643 ret = amd_get_boost_ratio_numerator(cpu, &highest_perf); 644 if (ret) { 645 pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n", 646 cpu, ret); 647 return 0; 648 } 649 } else { 650 highest_perf = perf_caps.highest_perf; 651 } 652 653 nominal_perf = perf_caps.nominal_perf; 654 655 if (nominal_freq) 656 *nominal_freq = perf_caps.nominal_freq * 1000; 657 658 if (!highest_perf || !nominal_perf) { 659 pr_debug("CPU%d: highest or nominal performance missing\n", cpu); 660 return 0; 661 } 662 663 if (highest_perf < nominal_perf) { 664 pr_debug("CPU%d: nominal performance above highest\n", cpu); 665 return 0; 666 } 667 668 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf); 669 } 670 671 #else 672 static inline u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq) 673 { 674 return 0; 675 } 676 #endif 677 678 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 679 { 680 struct cpufreq_frequency_table *freq_table; 681 struct acpi_processor_performance *perf; 682 struct acpi_cpufreq_data *data; 683 unsigned int cpu = policy->cpu; 684 struct cpuinfo_x86 *c = &cpu_data(cpu); 685 u64 max_boost_ratio, nominal_freq = 0; 686 unsigned int valid_states = 0; 687 unsigned int result = 0; 688 unsigned int i; 689 #ifdef CONFIG_SMP 690 static int blacklisted; 691 #endif 692 693 pr_debug("%s\n", __func__); 694 695 #ifdef CONFIG_SMP 696 if (blacklisted) 697 return blacklisted; 698 blacklisted = acpi_cpufreq_blacklist(c); 699 if (blacklisted) 700 return blacklisted; 701 #endif 702 703 data = kzalloc(sizeof(*data), GFP_KERNEL); 704 if (!data) 705 return -ENOMEM; 706 707 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 708 result = -ENOMEM; 709 goto err_free; 710 } 711 712 perf = per_cpu_ptr(acpi_perf_data, cpu); 713 data->acpi_perf_cpu = cpu; 714 policy->driver_data = data; 715 716 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 717 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 718 719 result = acpi_processor_register_performance(perf, cpu); 720 if (result) 721 goto err_free_mask; 722 723 policy->shared_type = perf->shared_type; 724 725 /* 726 * Will let policy->cpus know about dependency only when software 727 * coordination is required. 728 */ 729 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 730 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 731 cpumask_copy(policy->cpus, perf->shared_cpu_map); 732 } 733 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 734 735 #ifdef CONFIG_SMP 736 dmi_check_system(sw_any_bug_dmi_table); 737 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 738 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 739 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 740 } 741 742 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 && 743 !acpi_pstate_strict) { 744 cpumask_clear(policy->cpus); 745 cpumask_set_cpu(cpu, policy->cpus); 746 cpumask_copy(data->freqdomain_cpus, 747 topology_sibling_cpumask(cpu)); 748 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 749 pr_info_once("overriding BIOS provided _PSD data\n"); 750 } 751 #endif 752 753 /* capability check */ 754 if (perf->state_count <= 1) { 755 pr_debug("No P-States\n"); 756 result = -ENODEV; 757 goto err_unreg; 758 } 759 760 if (perf->control_register.space_id != perf->status_register.space_id) { 761 result = -ENODEV; 762 goto err_unreg; 763 } 764 765 switch (perf->control_register.space_id) { 766 case ACPI_ADR_SPACE_SYSTEM_IO: 767 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 768 boot_cpu_data.x86 == 0xf) { 769 pr_debug("AMD K8 systems must use native drivers.\n"); 770 result = -ENODEV; 771 goto err_unreg; 772 } 773 pr_debug("SYSTEM IO addr space\n"); 774 data->cpu_feature = SYSTEM_IO_CAPABLE; 775 data->cpu_freq_read = cpu_freq_read_io; 776 data->cpu_freq_write = cpu_freq_write_io; 777 break; 778 case ACPI_ADR_SPACE_FIXED_HARDWARE: 779 pr_debug("HARDWARE addr space\n"); 780 if (check_est_cpu(cpu)) { 781 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 782 data->cpu_freq_read = cpu_freq_read_intel; 783 data->cpu_freq_write = cpu_freq_write_intel; 784 break; 785 } 786 if (check_amd_hwpstate_cpu(cpu)) { 787 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 788 data->cpu_freq_read = cpu_freq_read_amd; 789 data->cpu_freq_write = cpu_freq_write_amd; 790 break; 791 } 792 result = -ENODEV; 793 goto err_unreg; 794 default: 795 pr_debug("Unknown addr space %d\n", 796 (u32) (perf->control_register.space_id)); 797 result = -ENODEV; 798 goto err_unreg; 799 } 800 801 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), 802 GFP_KERNEL); 803 if (!freq_table) { 804 result = -ENOMEM; 805 goto err_unreg; 806 } 807 808 /* detect transition latency */ 809 policy->cpuinfo.transition_latency = 0; 810 for (i = 0; i < perf->state_count; i++) { 811 if ((perf->states[i].transition_latency * 1000) > 812 policy->cpuinfo.transition_latency) 813 policy->cpuinfo.transition_latency = 814 perf->states[i].transition_latency * 1000; 815 } 816 817 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 818 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 819 policy->cpuinfo.transition_latency > 20 * 1000) { 820 policy->cpuinfo.transition_latency = 20 * 1000; 821 pr_info_once("P-state transition latency capped at 20 uS\n"); 822 } 823 824 /* table init */ 825 for (i = 0; i < perf->state_count; i++) { 826 if (i > 0 && perf->states[i].core_frequency >= 827 freq_table[valid_states-1].frequency / 1000) 828 continue; 829 830 freq_table[valid_states].driver_data = i; 831 freq_table[valid_states].frequency = 832 perf->states[i].core_frequency * 1000; 833 valid_states++; 834 } 835 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 836 837 max_boost_ratio = get_max_boost_ratio(cpu, &nominal_freq); 838 if (max_boost_ratio) { 839 unsigned int freq = nominal_freq; 840 841 /* 842 * The loop above sorts the freq_table entries in the 843 * descending order. If ACPI CPPC has not advertised 844 * the nominal frequency (this is possible in CPPC 845 * revisions prior to 3), then use the first entry in 846 * the pstate table as a proxy for nominal frequency. 847 */ 848 if (!freq) 849 freq = freq_table[0].frequency; 850 851 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT; 852 } else { 853 /* 854 * If the maximum "boost" frequency is unknown, ask the arch 855 * scale-invariance code to use the "nominal" performance for 856 * CPU utilization scaling so as to prevent the schedutil 857 * governor from selecting inadequate CPU frequencies. 858 */ 859 arch_set_max_freq_ratio(true); 860 } 861 862 policy->freq_table = freq_table; 863 perf->state = 0; 864 865 switch (perf->control_register.space_id) { 866 case ACPI_ADR_SPACE_SYSTEM_IO: 867 /* 868 * The core will not set policy->cur, because 869 * cpufreq_driver->get is NULL, so we need to set it here. 870 * However, we have to guess it, because the current speed is 871 * unknown and not detectable via IO ports. 872 */ 873 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 874 break; 875 case ACPI_ADR_SPACE_FIXED_HARDWARE: 876 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 877 break; 878 default: 879 break; 880 } 881 882 /* notify BIOS that we exist */ 883 acpi_processor_notify_smm(THIS_MODULE); 884 885 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 886 for (i = 0; i < perf->state_count; i++) 887 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 888 (i == perf->state ? '*' : ' '), i, 889 (u32) perf->states[i].core_frequency, 890 (u32) perf->states[i].power, 891 (u32) perf->states[i].transition_latency); 892 893 /* 894 * the first call to ->target() should result in us actually 895 * writing something to the appropriate registers. 896 */ 897 data->resume = 1; 898 899 policy->fast_switch_possible = !acpi_pstate_strict && 900 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 901 902 if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency) 903 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 904 905 if (acpi_cpufreq_driver.set_boost) { 906 if (policy->boost_supported) { 907 /* 908 * The firmware may have altered boost state while the 909 * CPU was offline (for example during a suspend-resume 910 * cycle). 911 */ 912 if (policy->boost_enabled != boost_state(cpu)) 913 set_boost(policy, policy->boost_enabled); 914 } else { 915 policy->boost_supported = true; 916 } 917 } 918 919 return result; 920 921 err_unreg: 922 acpi_processor_unregister_performance(cpu); 923 err_free_mask: 924 free_cpumask_var(data->freqdomain_cpus); 925 err_free: 926 kfree(data); 927 policy->driver_data = NULL; 928 929 return result; 930 } 931 932 static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 933 { 934 struct acpi_cpufreq_data *data = policy->driver_data; 935 936 pr_debug("%s\n", __func__); 937 938 cpufreq_boost_down_prep(policy->cpu); 939 policy->fast_switch_possible = false; 940 policy->driver_data = NULL; 941 acpi_processor_unregister_performance(data->acpi_perf_cpu); 942 free_cpumask_var(data->freqdomain_cpus); 943 kfree(policy->freq_table); 944 kfree(data); 945 } 946 947 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 948 { 949 struct acpi_cpufreq_data *data = policy->driver_data; 950 951 pr_debug("%s\n", __func__); 952 953 data->resume = 1; 954 955 return 0; 956 } 957 958 static struct freq_attr *acpi_cpufreq_attr[] = { 959 &freqdomain_cpus, 960 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 961 &cpb, 962 #endif 963 NULL, 964 }; 965 966 static struct cpufreq_driver acpi_cpufreq_driver = { 967 .verify = cpufreq_generic_frequency_table_verify, 968 .target_index = acpi_cpufreq_target, 969 .fast_switch = acpi_cpufreq_fast_switch, 970 .bios_limit = acpi_processor_get_bios_limit, 971 .init = acpi_cpufreq_cpu_init, 972 .exit = acpi_cpufreq_cpu_exit, 973 .resume = acpi_cpufreq_resume, 974 .name = "acpi-cpufreq", 975 .attr = acpi_cpufreq_attr, 976 }; 977 978 static void __init acpi_cpufreq_boost_init(void) 979 { 980 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 981 pr_debug("Boost capabilities not present in the processor\n"); 982 return; 983 } 984 985 acpi_cpufreq_driver.set_boost = set_boost; 986 acpi_cpufreq_driver.boost_enabled = boost_state(0); 987 } 988 989 static int __init acpi_cpufreq_probe(struct platform_device *pdev) 990 { 991 int ret; 992 993 if (acpi_disabled) 994 return -ENODEV; 995 996 /* don't keep reloading if cpufreq_driver exists */ 997 if (cpufreq_get_current_driver()) 998 return -ENODEV; 999 1000 pr_debug("%s\n", __func__); 1001 1002 ret = acpi_cpufreq_early_init(); 1003 if (ret) 1004 return ret; 1005 1006 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 1007 /* this is a sysfs file with a strange name and an even stranger 1008 * semantic - per CPU instantiation, but system global effect. 1009 * Lets enable it only on AMD CPUs for compatibility reasons and 1010 * only if configured. This is considered legacy code, which 1011 * will probably be removed at some point in the future. 1012 */ 1013 if (!check_amd_hwpstate_cpu(0)) { 1014 struct freq_attr **attr; 1015 1016 pr_debug("CPB unsupported, do not expose it\n"); 1017 1018 for (attr = acpi_cpufreq_attr; *attr; attr++) 1019 if (*attr == &cpb) { 1020 *attr = NULL; 1021 break; 1022 } 1023 } 1024 #endif 1025 acpi_cpufreq_boost_init(); 1026 1027 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 1028 if (ret) { 1029 free_acpi_perf_data(); 1030 } 1031 return ret; 1032 } 1033 1034 static void acpi_cpufreq_remove(struct platform_device *pdev) 1035 { 1036 pr_debug("%s\n", __func__); 1037 1038 cpufreq_unregister_driver(&acpi_cpufreq_driver); 1039 1040 free_acpi_perf_data(); 1041 } 1042 1043 static struct platform_driver acpi_cpufreq_platdrv = { 1044 .driver = { 1045 .name = "acpi-cpufreq", 1046 }, 1047 .remove = acpi_cpufreq_remove, 1048 }; 1049 1050 static int __init acpi_cpufreq_init(void) 1051 { 1052 return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe); 1053 } 1054 1055 static void __exit acpi_cpufreq_exit(void) 1056 { 1057 platform_driver_unregister(&acpi_cpufreq_platdrv); 1058 } 1059 1060 module_param(acpi_pstate_strict, uint, 0644); 1061 MODULE_PARM_DESC(acpi_pstate_strict, 1062 "value 0 or non-zero. non-zero -> strict ACPI checks are " 1063 "performed during frequency changes."); 1064 1065 late_initcall(acpi_cpufreq_init); 1066 module_exit(acpi_cpufreq_exit); 1067 1068 MODULE_ALIAS("platform:acpi-cpufreq"); 1069