1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi-cpufreq.c - ACPI Processor P-States Driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/smp.h> 17 #include <linux/sched.h> 18 #include <linux/cpufreq.h> 19 #include <linux/compiler.h> 20 #include <linux/dmi.h> 21 #include <linux/slab.h> 22 #include <linux/string_helpers.h> 23 #include <linux/platform_device.h> 24 25 #include <linux/acpi.h> 26 #include <linux/io.h> 27 #include <linux/delay.h> 28 #include <linux/uaccess.h> 29 30 #include <acpi/processor.h> 31 #include <acpi/cppc_acpi.h> 32 33 #include <asm/msr.h> 34 #include <asm/processor.h> 35 #include <asm/cpufeature.h> 36 #include <asm/cpu_device_id.h> 37 38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 39 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 40 MODULE_LICENSE("GPL"); 41 42 enum { 43 UNDEFINED_CAPABLE = 0, 44 SYSTEM_INTEL_MSR_CAPABLE, 45 SYSTEM_AMD_MSR_CAPABLE, 46 SYSTEM_IO_CAPABLE, 47 }; 48 49 #define INTEL_MSR_RANGE (0xffff) 50 #define AMD_MSR_RANGE (0x7) 51 #define HYGON_MSR_RANGE (0x7) 52 53 struct acpi_cpufreq_data { 54 unsigned int resume; 55 unsigned int cpu_feature; 56 unsigned int acpi_perf_cpu; 57 cpumask_var_t freqdomain_cpus; 58 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 59 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 60 }; 61 62 /* acpi_perf_data is a pointer to percpu data. */ 63 static struct acpi_processor_performance __percpu *acpi_perf_data; 64 65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 66 { 67 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 68 } 69 70 static struct cpufreq_driver acpi_cpufreq_driver; 71 72 static unsigned int acpi_pstate_strict; 73 74 static bool boost_state(unsigned int cpu) 75 { 76 u64 msr; 77 78 switch (boot_cpu_data.x86_vendor) { 79 case X86_VENDOR_INTEL: 80 case X86_VENDOR_CENTAUR: 81 case X86_VENDOR_ZHAOXIN: 82 rdmsrl_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &msr); 83 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 84 case X86_VENDOR_HYGON: 85 case X86_VENDOR_AMD: 86 rdmsrl_on_cpu(cpu, MSR_K7_HWCR, &msr); 87 return !(msr & MSR_K7_HWCR_CPB_DIS); 88 } 89 return false; 90 } 91 92 static int boost_set_msr(bool enable) 93 { 94 u32 msr_addr; 95 u64 msr_mask, val; 96 97 switch (boot_cpu_data.x86_vendor) { 98 case X86_VENDOR_INTEL: 99 case X86_VENDOR_CENTAUR: 100 case X86_VENDOR_ZHAOXIN: 101 msr_addr = MSR_IA32_MISC_ENABLE; 102 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 103 break; 104 case X86_VENDOR_HYGON: 105 case X86_VENDOR_AMD: 106 msr_addr = MSR_K7_HWCR; 107 msr_mask = MSR_K7_HWCR_CPB_DIS; 108 break; 109 default: 110 return -EINVAL; 111 } 112 113 rdmsrl(msr_addr, val); 114 115 if (enable) 116 val &= ~msr_mask; 117 else 118 val |= msr_mask; 119 120 wrmsrl(msr_addr, val); 121 return 0; 122 } 123 124 static void boost_set_msr_each(void *p_en) 125 { 126 bool enable = (bool) p_en; 127 128 boost_set_msr(enable); 129 } 130 131 static int set_boost(struct cpufreq_policy *policy, int val) 132 { 133 on_each_cpu_mask(policy->cpus, boost_set_msr_each, 134 (void *)(long)val, 1); 135 pr_debug("CPU %*pbl: Core Boosting %s.\n", 136 cpumask_pr_args(policy->cpus), str_enabled_disabled(val)); 137 138 return 0; 139 } 140 141 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 142 { 143 struct acpi_cpufreq_data *data = policy->driver_data; 144 145 if (unlikely(!data)) 146 return -ENODEV; 147 148 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 149 } 150 151 cpufreq_freq_attr_ro(freqdomain_cpus); 152 153 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 154 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 155 size_t count) 156 { 157 int ret; 158 unsigned int val = 0; 159 160 if (!acpi_cpufreq_driver.set_boost) 161 return -EINVAL; 162 163 ret = kstrtouint(buf, 10, &val); 164 if (ret || val > 1) 165 return -EINVAL; 166 167 cpus_read_lock(); 168 set_boost(policy, val); 169 cpus_read_unlock(); 170 171 return count; 172 } 173 174 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 175 { 176 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 177 } 178 179 cpufreq_freq_attr_rw(cpb); 180 #endif 181 182 static int check_est_cpu(unsigned int cpuid) 183 { 184 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 185 186 return cpu_has(cpu, X86_FEATURE_EST); 187 } 188 189 static int check_amd_hwpstate_cpu(unsigned int cpuid) 190 { 191 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 192 193 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 194 } 195 196 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 197 { 198 struct acpi_cpufreq_data *data = policy->driver_data; 199 struct acpi_processor_performance *perf; 200 int i; 201 202 perf = to_perf_data(data); 203 204 for (i = 0; i < perf->state_count; i++) { 205 if (value == perf->states[i].status) 206 return policy->freq_table[i].frequency; 207 } 208 return 0; 209 } 210 211 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 212 { 213 struct acpi_cpufreq_data *data = policy->driver_data; 214 struct cpufreq_frequency_table *pos; 215 struct acpi_processor_performance *perf; 216 217 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 218 msr &= AMD_MSR_RANGE; 219 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 220 msr &= HYGON_MSR_RANGE; 221 else 222 msr &= INTEL_MSR_RANGE; 223 224 perf = to_perf_data(data); 225 226 cpufreq_for_each_entry(pos, policy->freq_table) 227 if (msr == perf->states[pos->driver_data].status) 228 return pos->frequency; 229 return policy->freq_table[0].frequency; 230 } 231 232 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 233 { 234 struct acpi_cpufreq_data *data = policy->driver_data; 235 236 switch (data->cpu_feature) { 237 case SYSTEM_INTEL_MSR_CAPABLE: 238 case SYSTEM_AMD_MSR_CAPABLE: 239 return extract_msr(policy, val); 240 case SYSTEM_IO_CAPABLE: 241 return extract_io(policy, val); 242 default: 243 return 0; 244 } 245 } 246 247 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 248 { 249 u32 val, dummy __always_unused; 250 251 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 252 return val; 253 } 254 255 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 256 { 257 u32 lo, hi; 258 259 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 260 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 261 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 262 } 263 264 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 265 { 266 u32 val, dummy __always_unused; 267 268 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 269 return val; 270 } 271 272 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 273 { 274 wrmsr(MSR_AMD_PERF_CTL, val, 0); 275 } 276 277 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 278 { 279 u32 val; 280 281 acpi_os_read_port(reg->address, &val, reg->bit_width); 282 return val; 283 } 284 285 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 286 { 287 acpi_os_write_port(reg->address, val, reg->bit_width); 288 } 289 290 struct drv_cmd { 291 struct acpi_pct_register *reg; 292 u32 val; 293 union { 294 void (*write)(struct acpi_pct_register *reg, u32 val); 295 u32 (*read)(struct acpi_pct_register *reg); 296 } func; 297 }; 298 299 /* Called via smp_call_function_single(), on the target CPU */ 300 static void do_drv_read(void *_cmd) 301 { 302 struct drv_cmd *cmd = _cmd; 303 304 cmd->val = cmd->func.read(cmd->reg); 305 } 306 307 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 308 { 309 struct acpi_processor_performance *perf = to_perf_data(data); 310 struct drv_cmd cmd = { 311 .reg = &perf->control_register, 312 .func.read = data->cpu_freq_read, 313 }; 314 int err; 315 316 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 317 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 318 return cmd.val; 319 } 320 321 /* Called via smp_call_function_many(), on the target CPUs */ 322 static void do_drv_write(void *_cmd) 323 { 324 struct drv_cmd *cmd = _cmd; 325 326 cmd->func.write(cmd->reg, cmd->val); 327 } 328 329 static void drv_write(struct acpi_cpufreq_data *data, 330 const struct cpumask *mask, u32 val) 331 { 332 struct acpi_processor_performance *perf = to_perf_data(data); 333 struct drv_cmd cmd = { 334 .reg = &perf->control_register, 335 .val = val, 336 .func.write = data->cpu_freq_write, 337 }; 338 int this_cpu; 339 340 this_cpu = get_cpu(); 341 if (cpumask_test_cpu(this_cpu, mask)) 342 do_drv_write(&cmd); 343 344 smp_call_function_many(mask, do_drv_write, &cmd, 1); 345 put_cpu(); 346 } 347 348 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 349 { 350 u32 val; 351 352 if (unlikely(cpumask_empty(mask))) 353 return 0; 354 355 val = drv_read(data, mask); 356 357 pr_debug("%s = %u\n", __func__, val); 358 359 return val; 360 } 361 362 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 363 { 364 struct acpi_cpufreq_data *data; 365 struct cpufreq_policy *policy; 366 unsigned int freq; 367 unsigned int cached_freq; 368 369 pr_debug("%s (%d)\n", __func__, cpu); 370 371 policy = cpufreq_cpu_get_raw(cpu); 372 if (unlikely(!policy)) 373 return 0; 374 375 data = policy->driver_data; 376 if (unlikely(!data || !policy->freq_table)) 377 return 0; 378 379 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; 380 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 381 if (freq != cached_freq) { 382 /* 383 * The dreaded BIOS frequency change behind our back. 384 * Force set the frequency on next target call. 385 */ 386 data->resume = 1; 387 } 388 389 pr_debug("cur freq = %u\n", freq); 390 391 return freq; 392 } 393 394 static unsigned int check_freqs(struct cpufreq_policy *policy, 395 const struct cpumask *mask, unsigned int freq) 396 { 397 struct acpi_cpufreq_data *data = policy->driver_data; 398 unsigned int cur_freq; 399 unsigned int i; 400 401 for (i = 0; i < 100; i++) { 402 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 403 if (cur_freq == freq) 404 return 1; 405 udelay(10); 406 } 407 return 0; 408 } 409 410 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 411 unsigned int index) 412 { 413 struct acpi_cpufreq_data *data = policy->driver_data; 414 struct acpi_processor_performance *perf; 415 const struct cpumask *mask; 416 unsigned int next_perf_state = 0; /* Index into perf table */ 417 int result = 0; 418 419 if (unlikely(!data)) { 420 return -ENODEV; 421 } 422 423 perf = to_perf_data(data); 424 next_perf_state = policy->freq_table[index].driver_data; 425 if (perf->state == next_perf_state) { 426 if (unlikely(data->resume)) { 427 pr_debug("Called after resume, resetting to P%d\n", 428 next_perf_state); 429 data->resume = 0; 430 } else { 431 pr_debug("Already at target state (P%d)\n", 432 next_perf_state); 433 return 0; 434 } 435 } 436 437 /* 438 * The core won't allow CPUs to go away until the governor has been 439 * stopped, so we can rely on the stability of policy->cpus. 440 */ 441 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 442 cpumask_of(policy->cpu) : policy->cpus; 443 444 drv_write(data, mask, perf->states[next_perf_state].control); 445 446 if (acpi_pstate_strict) { 447 if (!check_freqs(policy, mask, 448 policy->freq_table[index].frequency)) { 449 pr_debug("%s (%d)\n", __func__, policy->cpu); 450 result = -EAGAIN; 451 } 452 } 453 454 if (!result) 455 perf->state = next_perf_state; 456 457 return result; 458 } 459 460 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 461 unsigned int target_freq) 462 { 463 struct acpi_cpufreq_data *data = policy->driver_data; 464 struct acpi_processor_performance *perf; 465 struct cpufreq_frequency_table *entry; 466 unsigned int next_perf_state, next_freq, index; 467 468 /* 469 * Find the closest frequency above target_freq. 470 */ 471 if (policy->cached_target_freq == target_freq) 472 index = policy->cached_resolved_idx; 473 else 474 index = cpufreq_table_find_index_dl(policy, target_freq, 475 false); 476 477 entry = &policy->freq_table[index]; 478 next_freq = entry->frequency; 479 next_perf_state = entry->driver_data; 480 481 perf = to_perf_data(data); 482 if (perf->state == next_perf_state) { 483 if (unlikely(data->resume)) 484 data->resume = 0; 485 else 486 return next_freq; 487 } 488 489 data->cpu_freq_write(&perf->control_register, 490 perf->states[next_perf_state].control); 491 perf->state = next_perf_state; 492 return next_freq; 493 } 494 495 static unsigned long 496 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 497 { 498 struct acpi_processor_performance *perf; 499 500 perf = to_perf_data(data); 501 if (cpu_khz) { 502 /* search the closest match to cpu_khz */ 503 unsigned int i; 504 unsigned long freq; 505 unsigned long freqn = perf->states[0].core_frequency * 1000; 506 507 for (i = 0; i < (perf->state_count-1); i++) { 508 freq = freqn; 509 freqn = perf->states[i+1].core_frequency * 1000; 510 if ((2 * cpu_khz) > (freqn + freq)) { 511 perf->state = i; 512 return freq; 513 } 514 } 515 perf->state = perf->state_count-1; 516 return freqn; 517 } else { 518 /* assume CPU is at P0... */ 519 perf->state = 0; 520 return perf->states[0].core_frequency * 1000; 521 } 522 } 523 524 static void free_acpi_perf_data(void) 525 { 526 unsigned int i; 527 528 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 529 for_each_possible_cpu(i) 530 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 531 ->shared_cpu_map); 532 free_percpu(acpi_perf_data); 533 } 534 535 static int cpufreq_boost_down_prep(unsigned int cpu) 536 { 537 /* 538 * Clear the boost-disable bit on the CPU_DOWN path so that 539 * this cpu cannot block the remaining ones from boosting. 540 */ 541 return boost_set_msr(1); 542 } 543 544 /* 545 * acpi_cpufreq_early_init - initialize ACPI P-States library 546 * 547 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 548 * in order to determine correct frequency and voltage pairings. We can 549 * do _PDC and _PSD and find out the processor dependency for the 550 * actual init that will happen later... 551 */ 552 static int __init acpi_cpufreq_early_init(void) 553 { 554 unsigned int i; 555 pr_debug("%s\n", __func__); 556 557 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 558 if (!acpi_perf_data) { 559 pr_debug("Memory allocation error for acpi_perf_data.\n"); 560 return -ENOMEM; 561 } 562 for_each_possible_cpu(i) { 563 if (!zalloc_cpumask_var_node( 564 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 565 GFP_KERNEL, cpu_to_node(i))) { 566 567 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 568 free_acpi_perf_data(); 569 return -ENOMEM; 570 } 571 } 572 573 /* Do initialization in ACPI core */ 574 acpi_processor_preregister_performance(acpi_perf_data); 575 return 0; 576 } 577 578 #ifdef CONFIG_SMP 579 /* 580 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 581 * or do it in BIOS firmware and won't inform about it to OS. If not 582 * detected, this has a side effect of making CPU run at a different speed 583 * than OS intended it to run at. Detect it and handle it cleanly. 584 */ 585 static int bios_with_sw_any_bug; 586 587 static int sw_any_bug_found(const struct dmi_system_id *d) 588 { 589 bios_with_sw_any_bug = 1; 590 return 0; 591 } 592 593 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 594 { 595 .callback = sw_any_bug_found, 596 .ident = "Supermicro Server X6DLP", 597 .matches = { 598 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 599 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 600 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 601 }, 602 }, 603 { } 604 }; 605 606 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 607 { 608 /* Intel Xeon Processor 7100 Series Specification Update 609 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf 610 * AL30: A Machine Check Exception (MCE) Occurring during an 611 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 612 * Both Processor Cores to Lock Up. */ 613 if (c->x86_vendor == X86_VENDOR_INTEL) { 614 if ((c->x86 == 15) && 615 (c->x86_model == 6) && 616 (c->x86_stepping == 8)) { 617 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 618 return -ENODEV; 619 } 620 } 621 return 0; 622 } 623 #endif 624 625 #ifdef CONFIG_ACPI_CPPC_LIB 626 /* 627 * get_max_boost_ratio: Computes the max_boost_ratio as the ratio 628 * between the highest_perf and the nominal_perf. 629 * 630 * Returns the max_boost_ratio for @cpu. Returns the CPPC nominal 631 * frequency via @nominal_freq if it is non-NULL pointer. 632 */ 633 static u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq) 634 { 635 struct cppc_perf_caps perf_caps; 636 u64 highest_perf, nominal_perf; 637 int ret; 638 639 if (acpi_pstate_strict) 640 return 0; 641 642 ret = cppc_get_perf_caps(cpu, &perf_caps); 643 if (ret) { 644 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n", 645 cpu, ret); 646 return 0; 647 } 648 649 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { 650 ret = amd_get_boost_ratio_numerator(cpu, &highest_perf); 651 if (ret) { 652 pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n", 653 cpu, ret); 654 return 0; 655 } 656 } else { 657 highest_perf = perf_caps.highest_perf; 658 } 659 660 nominal_perf = perf_caps.nominal_perf; 661 662 if (nominal_freq) 663 *nominal_freq = perf_caps.nominal_freq; 664 665 if (!highest_perf || !nominal_perf) { 666 pr_debug("CPU%d: highest or nominal performance missing\n", cpu); 667 return 0; 668 } 669 670 if (highest_perf < nominal_perf) { 671 pr_debug("CPU%d: nominal performance above highest\n", cpu); 672 return 0; 673 } 674 675 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf); 676 } 677 678 #else 679 static inline u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq) 680 { 681 return 0; 682 } 683 #endif 684 685 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 686 { 687 struct cpufreq_frequency_table *freq_table; 688 struct acpi_processor_performance *perf; 689 struct acpi_cpufreq_data *data; 690 unsigned int cpu = policy->cpu; 691 struct cpuinfo_x86 *c = &cpu_data(cpu); 692 u64 max_boost_ratio, nominal_freq = 0; 693 unsigned int valid_states = 0; 694 unsigned int result = 0; 695 unsigned int i; 696 #ifdef CONFIG_SMP 697 static int blacklisted; 698 #endif 699 700 pr_debug("%s\n", __func__); 701 702 #ifdef CONFIG_SMP 703 if (blacklisted) 704 return blacklisted; 705 blacklisted = acpi_cpufreq_blacklist(c); 706 if (blacklisted) 707 return blacklisted; 708 #endif 709 710 data = kzalloc(sizeof(*data), GFP_KERNEL); 711 if (!data) 712 return -ENOMEM; 713 714 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 715 result = -ENOMEM; 716 goto err_free; 717 } 718 719 perf = per_cpu_ptr(acpi_perf_data, cpu); 720 data->acpi_perf_cpu = cpu; 721 policy->driver_data = data; 722 723 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 724 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 725 726 result = acpi_processor_register_performance(perf, cpu); 727 if (result) 728 goto err_free_mask; 729 730 policy->shared_type = perf->shared_type; 731 732 /* 733 * Will let policy->cpus know about dependency only when software 734 * coordination is required. 735 */ 736 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 737 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 738 cpumask_copy(policy->cpus, perf->shared_cpu_map); 739 } 740 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 741 742 #ifdef CONFIG_SMP 743 dmi_check_system(sw_any_bug_dmi_table); 744 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 745 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 746 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 747 } 748 749 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 && 750 !acpi_pstate_strict) { 751 cpumask_clear(policy->cpus); 752 cpumask_set_cpu(cpu, policy->cpus); 753 cpumask_copy(data->freqdomain_cpus, 754 topology_sibling_cpumask(cpu)); 755 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 756 pr_info_once("overriding BIOS provided _PSD data\n"); 757 } 758 #endif 759 760 /* capability check */ 761 if (perf->state_count <= 1) { 762 pr_debug("No P-States\n"); 763 result = -ENODEV; 764 goto err_unreg; 765 } 766 767 if (perf->control_register.space_id != perf->status_register.space_id) { 768 result = -ENODEV; 769 goto err_unreg; 770 } 771 772 switch (perf->control_register.space_id) { 773 case ACPI_ADR_SPACE_SYSTEM_IO: 774 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 775 boot_cpu_data.x86 == 0xf) { 776 pr_debug("AMD K8 systems must use native drivers.\n"); 777 result = -ENODEV; 778 goto err_unreg; 779 } 780 pr_debug("SYSTEM IO addr space\n"); 781 data->cpu_feature = SYSTEM_IO_CAPABLE; 782 data->cpu_freq_read = cpu_freq_read_io; 783 data->cpu_freq_write = cpu_freq_write_io; 784 break; 785 case ACPI_ADR_SPACE_FIXED_HARDWARE: 786 pr_debug("HARDWARE addr space\n"); 787 if (check_est_cpu(cpu)) { 788 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 789 data->cpu_freq_read = cpu_freq_read_intel; 790 data->cpu_freq_write = cpu_freq_write_intel; 791 break; 792 } 793 if (check_amd_hwpstate_cpu(cpu)) { 794 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 795 data->cpu_freq_read = cpu_freq_read_amd; 796 data->cpu_freq_write = cpu_freq_write_amd; 797 break; 798 } 799 result = -ENODEV; 800 goto err_unreg; 801 default: 802 pr_debug("Unknown addr space %d\n", 803 (u32) (perf->control_register.space_id)); 804 result = -ENODEV; 805 goto err_unreg; 806 } 807 808 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), 809 GFP_KERNEL); 810 if (!freq_table) { 811 result = -ENOMEM; 812 goto err_unreg; 813 } 814 815 /* detect transition latency */ 816 policy->cpuinfo.transition_latency = 0; 817 for (i = 0; i < perf->state_count; i++) { 818 if ((perf->states[i].transition_latency * 1000) > 819 policy->cpuinfo.transition_latency) 820 policy->cpuinfo.transition_latency = 821 perf->states[i].transition_latency * 1000; 822 } 823 824 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 825 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 826 policy->cpuinfo.transition_latency > 20 * 1000) { 827 policy->cpuinfo.transition_latency = 20 * 1000; 828 pr_info_once("P-state transition latency capped at 20 uS\n"); 829 } 830 831 /* table init */ 832 for (i = 0; i < perf->state_count; i++) { 833 if (i > 0 && perf->states[i].core_frequency >= 834 freq_table[valid_states-1].frequency / 1000) 835 continue; 836 837 freq_table[valid_states].driver_data = i; 838 freq_table[valid_states].frequency = 839 perf->states[i].core_frequency * 1000; 840 valid_states++; 841 } 842 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 843 844 max_boost_ratio = get_max_boost_ratio(cpu, &nominal_freq); 845 if (max_boost_ratio) { 846 unsigned int freq = nominal_freq; 847 848 /* 849 * The loop above sorts the freq_table entries in the 850 * descending order. If ACPI CPPC has not advertised 851 * the nominal frequency (this is possible in CPPC 852 * revisions prior to 3), then use the first entry in 853 * the pstate table as a proxy for nominal frequency. 854 */ 855 if (!freq) 856 freq = freq_table[0].frequency; 857 858 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT; 859 } else { 860 /* 861 * If the maximum "boost" frequency is unknown, ask the arch 862 * scale-invariance code to use the "nominal" performance for 863 * CPU utilization scaling so as to prevent the schedutil 864 * governor from selecting inadequate CPU frequencies. 865 */ 866 arch_set_max_freq_ratio(true); 867 } 868 869 policy->freq_table = freq_table; 870 perf->state = 0; 871 872 switch (perf->control_register.space_id) { 873 case ACPI_ADR_SPACE_SYSTEM_IO: 874 /* 875 * The core will not set policy->cur, because 876 * cpufreq_driver->get is NULL, so we need to set it here. 877 * However, we have to guess it, because the current speed is 878 * unknown and not detectable via IO ports. 879 */ 880 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 881 break; 882 case ACPI_ADR_SPACE_FIXED_HARDWARE: 883 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 884 break; 885 default: 886 break; 887 } 888 889 /* notify BIOS that we exist */ 890 acpi_processor_notify_smm(THIS_MODULE); 891 892 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 893 for (i = 0; i < perf->state_count; i++) 894 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 895 (i == perf->state ? '*' : ' '), i, 896 (u32) perf->states[i].core_frequency, 897 (u32) perf->states[i].power, 898 (u32) perf->states[i].transition_latency); 899 900 /* 901 * the first call to ->target() should result in us actually 902 * writing something to the appropriate registers. 903 */ 904 data->resume = 1; 905 906 policy->fast_switch_possible = !acpi_pstate_strict && 907 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 908 909 if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency) 910 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 911 912 return result; 913 914 err_unreg: 915 acpi_processor_unregister_performance(cpu); 916 err_free_mask: 917 free_cpumask_var(data->freqdomain_cpus); 918 err_free: 919 kfree(data); 920 policy->driver_data = NULL; 921 922 return result; 923 } 924 925 static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 926 { 927 struct acpi_cpufreq_data *data = policy->driver_data; 928 929 pr_debug("%s\n", __func__); 930 931 cpufreq_boost_down_prep(policy->cpu); 932 policy->fast_switch_possible = false; 933 policy->driver_data = NULL; 934 acpi_processor_unregister_performance(data->acpi_perf_cpu); 935 free_cpumask_var(data->freqdomain_cpus); 936 kfree(policy->freq_table); 937 kfree(data); 938 } 939 940 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 941 { 942 struct acpi_cpufreq_data *data = policy->driver_data; 943 944 pr_debug("%s\n", __func__); 945 946 data->resume = 1; 947 948 return 0; 949 } 950 951 static struct freq_attr *acpi_cpufreq_attr[] = { 952 &cpufreq_freq_attr_scaling_available_freqs, 953 &freqdomain_cpus, 954 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 955 &cpb, 956 #endif 957 NULL, 958 }; 959 960 static struct cpufreq_driver acpi_cpufreq_driver = { 961 .verify = cpufreq_generic_frequency_table_verify, 962 .target_index = acpi_cpufreq_target, 963 .fast_switch = acpi_cpufreq_fast_switch, 964 .bios_limit = acpi_processor_get_bios_limit, 965 .init = acpi_cpufreq_cpu_init, 966 .exit = acpi_cpufreq_cpu_exit, 967 .resume = acpi_cpufreq_resume, 968 .name = "acpi-cpufreq", 969 .attr = acpi_cpufreq_attr, 970 }; 971 972 static void __init acpi_cpufreq_boost_init(void) 973 { 974 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 975 pr_debug("Boost capabilities not present in the processor\n"); 976 return; 977 } 978 979 acpi_cpufreq_driver.set_boost = set_boost; 980 acpi_cpufreq_driver.boost_enabled = boost_state(0); 981 } 982 983 static int __init acpi_cpufreq_probe(struct platform_device *pdev) 984 { 985 int ret; 986 987 if (acpi_disabled) 988 return -ENODEV; 989 990 /* don't keep reloading if cpufreq_driver exists */ 991 if (cpufreq_get_current_driver()) 992 return -ENODEV; 993 994 pr_debug("%s\n", __func__); 995 996 ret = acpi_cpufreq_early_init(); 997 if (ret) 998 return ret; 999 1000 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 1001 /* this is a sysfs file with a strange name and an even stranger 1002 * semantic - per CPU instantiation, but system global effect. 1003 * Lets enable it only on AMD CPUs for compatibility reasons and 1004 * only if configured. This is considered legacy code, which 1005 * will probably be removed at some point in the future. 1006 */ 1007 if (!check_amd_hwpstate_cpu(0)) { 1008 struct freq_attr **attr; 1009 1010 pr_debug("CPB unsupported, do not expose it\n"); 1011 1012 for (attr = acpi_cpufreq_attr; *attr; attr++) 1013 if (*attr == &cpb) { 1014 *attr = NULL; 1015 break; 1016 } 1017 } 1018 #endif 1019 acpi_cpufreq_boost_init(); 1020 1021 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 1022 if (ret) { 1023 free_acpi_perf_data(); 1024 } 1025 return ret; 1026 } 1027 1028 static void acpi_cpufreq_remove(struct platform_device *pdev) 1029 { 1030 pr_debug("%s\n", __func__); 1031 1032 cpufreq_unregister_driver(&acpi_cpufreq_driver); 1033 1034 free_acpi_perf_data(); 1035 } 1036 1037 static struct platform_driver acpi_cpufreq_platdrv = { 1038 .driver = { 1039 .name = "acpi-cpufreq", 1040 }, 1041 .remove = acpi_cpufreq_remove, 1042 }; 1043 1044 static int __init acpi_cpufreq_init(void) 1045 { 1046 return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe); 1047 } 1048 1049 static void __exit acpi_cpufreq_exit(void) 1050 { 1051 platform_driver_unregister(&acpi_cpufreq_platdrv); 1052 } 1053 1054 module_param(acpi_pstate_strict, uint, 0644); 1055 MODULE_PARM_DESC(acpi_pstate_strict, 1056 "value 0 or non-zero. non-zero -> strict ACPI checks are " 1057 "performed during frequency changes."); 1058 1059 late_initcall(acpi_cpufreq_init); 1060 module_exit(acpi_cpufreq_exit); 1061 1062 MODULE_ALIAS("platform:acpi-cpufreq"); 1063