1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Emilio López
4 *
5 * Emilio López <emilio@elopez.com.ar>
6 */
7
8 #include <linux/clk.h>
9 #include <linux/clk-provider.h>
10 #include <linux/clkdev.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/reset-controller.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/log2.h>
18
19 #include "clk-factors.h"
20
21 static DEFINE_SPINLOCK(clk_lock);
22
23 /* Maximum number of parents our clocks have */
24 #define SUNXI_MAX_PARENTS 5
25
26 /*
27 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
28 * PLL1 rate is calculated as follows
29 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
30 * parent_rate is always 24Mhz
31 */
32
sun4i_get_pll1_factors(struct factors_request * req)33 static void sun4i_get_pll1_factors(struct factors_request *req)
34 {
35 u8 div;
36
37 /* Normalize value to a 6M multiple */
38 div = req->rate / 6000000;
39 req->rate = 6000000 * div;
40
41 /* m is always zero for pll1 */
42 req->m = 0;
43
44 /* k is 1 only on these cases */
45 if (req->rate >= 768000000 || req->rate == 42000000 ||
46 req->rate == 54000000)
47 req->k = 1;
48 else
49 req->k = 0;
50
51 /* p will be 3 for divs under 10 */
52 if (div < 10)
53 req->p = 3;
54
55 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
56 else if (div < 20 || (div < 32 && (div & 1)))
57 req->p = 2;
58
59 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
60 * of divs between 40-62 */
61 else if (div < 40 || (div < 64 && (div & 2)))
62 req->p = 1;
63
64 /* any other entries have p = 0 */
65 else
66 req->p = 0;
67
68 /* calculate a suitable n based on k and p */
69 div <<= req->p;
70 div /= (req->k + 1);
71 req->n = div / 4;
72 }
73
74 /*
75 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
76 * PLL1 rate is calculated as follows
77 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
78 * parent_rate should always be 24MHz
79 */
sun6i_a31_get_pll1_factors(struct factors_request * req)80 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
81 {
82 /*
83 * We can operate only on MHz, this will make our life easier
84 * later.
85 */
86 u32 freq_mhz = req->rate / 1000000;
87 u32 parent_freq_mhz = req->parent_rate / 1000000;
88
89 /*
90 * Round down the frequency to the closest multiple of either
91 * 6 or 16
92 */
93 u32 round_freq_6 = rounddown(freq_mhz, 6);
94 u32 round_freq_16 = round_down(freq_mhz, 16);
95
96 if (round_freq_6 > round_freq_16)
97 freq_mhz = round_freq_6;
98 else
99 freq_mhz = round_freq_16;
100
101 req->rate = freq_mhz * 1000000;
102
103 /* If the frequency is a multiple of 32 MHz, k is always 3 */
104 if (!(freq_mhz % 32))
105 req->k = 3;
106 /* If the frequency is a multiple of 9 MHz, k is always 2 */
107 else if (!(freq_mhz % 9))
108 req->k = 2;
109 /* If the frequency is a multiple of 8 MHz, k is always 1 */
110 else if (!(freq_mhz % 8))
111 req->k = 1;
112 /* Otherwise, we don't use the k factor */
113 else
114 req->k = 0;
115
116 /*
117 * If the frequency is a multiple of 2 but not a multiple of
118 * 3, m is 3. This is the first time we use 6 here, yet we
119 * will use it on several other places.
120 * We use this number because it's the lowest frequency we can
121 * generate (with n = 0, k = 0, m = 3), so every other frequency
122 * somehow relates to this frequency.
123 */
124 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
125 req->m = 2;
126 /*
127 * If the frequency is a multiple of 6MHz, but the factor is
128 * odd, m will be 3
129 */
130 else if ((freq_mhz / 6) & 1)
131 req->m = 3;
132 /* Otherwise, we end up with m = 1 */
133 else
134 req->m = 1;
135
136 /* Calculate n thanks to the above factors we already got */
137 req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
138 - 1;
139
140 /*
141 * If n end up being outbound, and that we can still decrease
142 * m, do it.
143 */
144 if ((req->n + 1) > 31 && (req->m + 1) > 1) {
145 req->n = (req->n + 1) / 2 - 1;
146 req->m = (req->m + 1) / 2 - 1;
147 }
148 }
149
150 /*
151 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
152 * PLL1 rate is calculated as follows
153 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
154 * parent_rate is always 24Mhz
155 */
156
sun8i_a23_get_pll1_factors(struct factors_request * req)157 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
158 {
159 u8 div;
160
161 /* Normalize value to a 6M multiple */
162 div = req->rate / 6000000;
163 req->rate = 6000000 * div;
164
165 /* m is always zero for pll1 */
166 req->m = 0;
167
168 /* k is 1 only on these cases */
169 if (req->rate >= 768000000 || req->rate == 42000000 ||
170 req->rate == 54000000)
171 req->k = 1;
172 else
173 req->k = 0;
174
175 /* p will be 2 for divs under 20 and odd divs under 32 */
176 if (div < 20 || (div < 32 && (div & 1)))
177 req->p = 2;
178
179 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
180 * of divs between 40-62 */
181 else if (div < 40 || (div < 64 && (div & 2)))
182 req->p = 1;
183
184 /* any other entries have p = 0 */
185 else
186 req->p = 0;
187
188 /* calculate a suitable n based on k and p */
189 div <<= req->p;
190 div /= (req->k + 1);
191 req->n = div / 4 - 1;
192 }
193
194 /*
195 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
196 * PLL5 rate is calculated as follows
197 * rate = parent_rate * n * (k + 1)
198 * parent_rate is always 24Mhz
199 */
200
sun4i_get_pll5_factors(struct factors_request * req)201 static void sun4i_get_pll5_factors(struct factors_request *req)
202 {
203 u8 div;
204
205 /* Normalize value to a parent_rate multiple (24M) */
206 div = req->rate / req->parent_rate;
207 req->rate = req->parent_rate * div;
208
209 if (div < 31)
210 req->k = 0;
211 else if (div / 2 < 31)
212 req->k = 1;
213 else if (div / 3 < 31)
214 req->k = 2;
215 else
216 req->k = 3;
217
218 req->n = DIV_ROUND_UP(div, (req->k + 1));
219 }
220
221 /*
222 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
223 * PLL6x2 rate is calculated as follows
224 * rate = parent_rate * (n + 1) * (k + 1)
225 * parent_rate is always 24Mhz
226 */
227
sun6i_a31_get_pll6_factors(struct factors_request * req)228 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
229 {
230 u8 div;
231
232 /* Normalize value to a parent_rate multiple (24M) */
233 div = req->rate / req->parent_rate;
234 req->rate = req->parent_rate * div;
235
236 req->k = div / 32;
237 if (req->k > 3)
238 req->k = 3;
239
240 req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
241 }
242
243 /*
244 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
245 * AHB rate is calculated as follows
246 * rate = parent_rate >> p
247 */
248
sun5i_a13_get_ahb_factors(struct factors_request * req)249 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
250 {
251 u32 div;
252
253 /* divide only */
254 if (req->parent_rate < req->rate)
255 req->rate = req->parent_rate;
256
257 /*
258 * user manual says valid speed is 8k ~ 276M, but tests show it
259 * can work at speeds up to 300M, just after reparenting to pll6
260 */
261 if (req->rate < 8000)
262 req->rate = 8000;
263 if (req->rate > 300000000)
264 req->rate = 300000000;
265
266 div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
267
268 /* p = 0 ~ 3 */
269 if (div > 3)
270 div = 3;
271
272 req->rate = req->parent_rate >> div;
273
274 req->p = div;
275 }
276
277 #define SUN6I_AHB1_PARENT_PLL6 3
278
279 /*
280 * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
281 * AHB rate is calculated as follows
282 * rate = parent_rate >> p
283 *
284 * if parent is pll6, then
285 * parent_rate = pll6 rate / (m + 1)
286 */
287
sun6i_get_ahb1_factors(struct factors_request * req)288 static void sun6i_get_ahb1_factors(struct factors_request *req)
289 {
290 u8 div, calcp, calcm = 1;
291
292 /*
293 * clock can only divide, so we will never be able to achieve
294 * frequencies higher than the parent frequency
295 */
296 if (req->parent_rate && req->rate > req->parent_rate)
297 req->rate = req->parent_rate;
298
299 div = DIV_ROUND_UP(req->parent_rate, req->rate);
300
301 /* calculate pre-divider if parent is pll6 */
302 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
303 if (div < 4)
304 calcp = 0;
305 else if (div / 2 < 4)
306 calcp = 1;
307 else if (div / 4 < 4)
308 calcp = 2;
309 else
310 calcp = 3;
311
312 calcm = DIV_ROUND_UP(div, 1 << calcp);
313 } else {
314 calcp = __roundup_pow_of_two(div);
315 calcp = calcp > 3 ? 3 : calcp;
316 }
317
318 req->rate = (req->parent_rate / calcm) >> calcp;
319 req->p = calcp;
320 req->m = calcm - 1;
321 }
322
323 /*
324 * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
325 * parent index
326 */
sun6i_ahb1_recalc(struct factors_request * req)327 static void sun6i_ahb1_recalc(struct factors_request *req)
328 {
329 req->rate = req->parent_rate;
330
331 /* apply pre-divider first if parent is pll6 */
332 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
333 req->rate /= req->m + 1;
334
335 /* clk divider */
336 req->rate >>= req->p;
337 }
338
339 /*
340 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
341 * APB1 rate is calculated as follows
342 * rate = (parent_rate >> p) / (m + 1);
343 */
344
sun4i_get_apb1_factors(struct factors_request * req)345 static void sun4i_get_apb1_factors(struct factors_request *req)
346 {
347 u8 calcm, calcp;
348 int div;
349
350 if (req->parent_rate < req->rate)
351 req->rate = req->parent_rate;
352
353 div = DIV_ROUND_UP(req->parent_rate, req->rate);
354
355 /* Invalid rate! */
356 if (div > 32)
357 return;
358
359 if (div <= 4)
360 calcp = 0;
361 else if (div <= 8)
362 calcp = 1;
363 else if (div <= 16)
364 calcp = 2;
365 else
366 calcp = 3;
367
368 calcm = (div >> calcp) - 1;
369
370 req->rate = (req->parent_rate >> calcp) / (calcm + 1);
371 req->m = calcm;
372 req->p = calcp;
373 }
374
375
376
377
378 /*
379 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
380 * CLK_OUT rate is calculated as follows
381 * rate = (parent_rate >> p) / (m + 1);
382 */
383
sun7i_a20_get_out_factors(struct factors_request * req)384 static void sun7i_a20_get_out_factors(struct factors_request *req)
385 {
386 u8 div, calcm, calcp;
387
388 /* These clocks can only divide, so we will never be able to achieve
389 * frequencies higher than the parent frequency */
390 if (req->rate > req->parent_rate)
391 req->rate = req->parent_rate;
392
393 div = DIV_ROUND_UP(req->parent_rate, req->rate);
394
395 if (div < 32)
396 calcp = 0;
397 else if (div / 2 < 32)
398 calcp = 1;
399 else if (div / 4 < 32)
400 calcp = 2;
401 else
402 calcp = 3;
403
404 calcm = DIV_ROUND_UP(div, 1 << calcp);
405
406 req->rate = (req->parent_rate >> calcp) / calcm;
407 req->m = calcm - 1;
408 req->p = calcp;
409 }
410
411 /*
412 * sunxi_factors_clk_setup() - Setup function for factor clocks
413 */
414
415 static const struct clk_factors_config sun4i_pll1_config = {
416 .nshift = 8,
417 .nwidth = 5,
418 .kshift = 4,
419 .kwidth = 2,
420 .mshift = 0,
421 .mwidth = 2,
422 .pshift = 16,
423 .pwidth = 2,
424 };
425
426 static const struct clk_factors_config sun6i_a31_pll1_config = {
427 .nshift = 8,
428 .nwidth = 5,
429 .kshift = 4,
430 .kwidth = 2,
431 .mshift = 0,
432 .mwidth = 2,
433 .n_start = 1,
434 };
435
436 static const struct clk_factors_config sun8i_a23_pll1_config = {
437 .nshift = 8,
438 .nwidth = 5,
439 .kshift = 4,
440 .kwidth = 2,
441 .mshift = 0,
442 .mwidth = 2,
443 .pshift = 16,
444 .pwidth = 2,
445 .n_start = 1,
446 };
447
448 static const struct clk_factors_config sun4i_pll5_config = {
449 .nshift = 8,
450 .nwidth = 5,
451 .kshift = 4,
452 .kwidth = 2,
453 };
454
455 static const struct clk_factors_config sun6i_a31_pll6_config = {
456 .nshift = 8,
457 .nwidth = 5,
458 .kshift = 4,
459 .kwidth = 2,
460 .n_start = 1,
461 };
462
463 static const struct clk_factors_config sun5i_a13_ahb_config = {
464 .pshift = 4,
465 .pwidth = 2,
466 };
467
468 static const struct clk_factors_config sun6i_ahb1_config = {
469 .mshift = 6,
470 .mwidth = 2,
471 .pshift = 4,
472 .pwidth = 2,
473 };
474
475 static const struct clk_factors_config sun4i_apb1_config = {
476 .mshift = 0,
477 .mwidth = 5,
478 .pshift = 16,
479 .pwidth = 2,
480 };
481
482 /* user manual says "n" but it's really "p" */
483 static const struct clk_factors_config sun7i_a20_out_config = {
484 .mshift = 8,
485 .mwidth = 5,
486 .pshift = 20,
487 .pwidth = 2,
488 };
489
490 static const struct factors_data sun4i_pll1_data __initconst = {
491 .enable = 31,
492 .table = &sun4i_pll1_config,
493 .getter = sun4i_get_pll1_factors,
494 };
495
496 static const struct factors_data sun6i_a31_pll1_data __initconst = {
497 .enable = 31,
498 .table = &sun6i_a31_pll1_config,
499 .getter = sun6i_a31_get_pll1_factors,
500 };
501
502 static const struct factors_data sun8i_a23_pll1_data __initconst = {
503 .enable = 31,
504 .table = &sun8i_a23_pll1_config,
505 .getter = sun8i_a23_get_pll1_factors,
506 };
507
508 static const struct factors_data sun7i_a20_pll4_data __initconst = {
509 .enable = 31,
510 .table = &sun4i_pll5_config,
511 .getter = sun4i_get_pll5_factors,
512 };
513
514 static const struct factors_data sun4i_pll5_data __initconst = {
515 .enable = 31,
516 .table = &sun4i_pll5_config,
517 .getter = sun4i_get_pll5_factors,
518 };
519
520 static const struct factors_data sun6i_a31_pll6_data __initconst = {
521 .enable = 31,
522 .table = &sun6i_a31_pll6_config,
523 .getter = sun6i_a31_get_pll6_factors,
524 };
525
526 static const struct factors_data sun5i_a13_ahb_data __initconst = {
527 .mux = 6,
528 .muxmask = BIT(1) | BIT(0),
529 .table = &sun5i_a13_ahb_config,
530 .getter = sun5i_a13_get_ahb_factors,
531 };
532
533 static const struct factors_data sun6i_ahb1_data __initconst = {
534 .mux = 12,
535 .muxmask = BIT(1) | BIT(0),
536 .table = &sun6i_ahb1_config,
537 .getter = sun6i_get_ahb1_factors,
538 .recalc = sun6i_ahb1_recalc,
539 };
540
541 static const struct factors_data sun4i_apb1_data __initconst = {
542 .mux = 24,
543 .muxmask = BIT(1) | BIT(0),
544 .table = &sun4i_apb1_config,
545 .getter = sun4i_get_apb1_factors,
546 };
547
548 static const struct factors_data sun7i_a20_out_data __initconst = {
549 .enable = 31,
550 .mux = 24,
551 .muxmask = BIT(1) | BIT(0),
552 .table = &sun7i_a20_out_config,
553 .getter = sun7i_a20_get_out_factors,
554 };
555
sunxi_factors_clk_setup(struct device_node * node,const struct factors_data * data)556 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
557 const struct factors_data *data)
558 {
559 void __iomem *reg;
560
561 reg = of_iomap(node, 0);
562 if (!reg) {
563 pr_err("Could not get registers for factors-clk: %pOFn\n",
564 node);
565 return NULL;
566 }
567
568 return sunxi_factors_register(node, data, &clk_lock, reg);
569 }
570
sun4i_pll1_clk_setup(struct device_node * node)571 static void __init sun4i_pll1_clk_setup(struct device_node *node)
572 {
573 sunxi_factors_clk_setup(node, &sun4i_pll1_data);
574 }
575 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
576 sun4i_pll1_clk_setup);
577
sun6i_pll1_clk_setup(struct device_node * node)578 static void __init sun6i_pll1_clk_setup(struct device_node *node)
579 {
580 sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
581 }
582 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
583 sun6i_pll1_clk_setup);
584
sun8i_pll1_clk_setup(struct device_node * node)585 static void __init sun8i_pll1_clk_setup(struct device_node *node)
586 {
587 sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
588 }
589 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
590 sun8i_pll1_clk_setup);
591
sun7i_pll4_clk_setup(struct device_node * node)592 static void __init sun7i_pll4_clk_setup(struct device_node *node)
593 {
594 sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
595 }
596 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
597 sun7i_pll4_clk_setup);
598
sun5i_ahb_clk_setup(struct device_node * node)599 static void __init sun5i_ahb_clk_setup(struct device_node *node)
600 {
601 sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
602 }
603 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
604 sun5i_ahb_clk_setup);
605
sun6i_ahb1_clk_setup(struct device_node * node)606 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
607 {
608 sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
609 }
610 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
611 sun6i_ahb1_clk_setup);
612
sun4i_apb1_clk_setup(struct device_node * node)613 static void __init sun4i_apb1_clk_setup(struct device_node *node)
614 {
615 sunxi_factors_clk_setup(node, &sun4i_apb1_data);
616 }
617 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
618 sun4i_apb1_clk_setup);
619
sun7i_out_clk_setup(struct device_node * node)620 static void __init sun7i_out_clk_setup(struct device_node *node)
621 {
622 sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
623 }
624 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
625 sun7i_out_clk_setup);
626
627
628 /*
629 * sunxi_mux_clk_setup() - Setup function for muxes
630 */
631
632 #define SUNXI_MUX_GATE_WIDTH 2
633
634 struct mux_data {
635 u8 shift;
636 };
637
638 static const struct mux_data sun4i_cpu_mux_data __initconst = {
639 .shift = 16,
640 };
641
642 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
643 .shift = 12,
644 };
645
646 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
647 .shift = 0,
648 };
649
sunxi_mux_clk_setup(struct device_node * node,const struct mux_data * data,unsigned long flags)650 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
651 const struct mux_data *data,
652 unsigned long flags)
653 {
654 struct clk *clk;
655 const char *clk_name = node->name;
656 const char *parents[SUNXI_MAX_PARENTS];
657 void __iomem *reg;
658 int i;
659
660 reg = of_iomap(node, 0);
661 if (!reg) {
662 pr_err("Could not map registers for mux-clk: %pOF\n", node);
663 return NULL;
664 }
665
666 i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
667 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
668 pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
669 __func__, node);
670 goto out_unmap;
671 }
672
673 clk = clk_register_mux(NULL, clk_name, parents, i,
674 CLK_SET_RATE_PARENT | flags, reg,
675 data->shift, SUNXI_MUX_GATE_WIDTH,
676 0, &clk_lock);
677
678 if (IS_ERR(clk)) {
679 pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
680 clk_name, PTR_ERR(clk));
681 goto out_unmap;
682 }
683
684 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
685 pr_err("%s: failed to add clock provider for %s\n",
686 __func__, clk_name);
687 clk_unregister_divider(clk);
688 goto out_unmap;
689 }
690
691 return clk;
692 out_unmap:
693 iounmap(reg);
694 return NULL;
695 }
696
sun4i_cpu_clk_setup(struct device_node * node)697 static void __init sun4i_cpu_clk_setup(struct device_node *node)
698 {
699 /* Protect CPU clock */
700 sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data, CLK_IS_CRITICAL);
701 }
702 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
703 sun4i_cpu_clk_setup);
704
sun6i_ahb1_mux_clk_setup(struct device_node * node)705 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
706 {
707 sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data, 0);
708 }
709 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
710 sun6i_ahb1_mux_clk_setup);
711
sun8i_ahb2_clk_setup(struct device_node * node)712 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
713 {
714 sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data, 0);
715 }
716 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
717 sun8i_ahb2_clk_setup);
718
719
720 /*
721 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
722 */
723
724 struct div_data {
725 u8 shift;
726 u8 pow;
727 u8 width;
728 const struct clk_div_table *table;
729 };
730
731 static const struct div_data sun4i_axi_data __initconst = {
732 .shift = 0,
733 .pow = 0,
734 .width = 2,
735 };
736
737 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
738 { .val = 0, .div = 1 },
739 { .val = 1, .div = 2 },
740 { .val = 2, .div = 3 },
741 { .val = 3, .div = 4 },
742 { .val = 4, .div = 4 },
743 { .val = 5, .div = 4 },
744 { .val = 6, .div = 4 },
745 { .val = 7, .div = 4 },
746 { } /* sentinel */
747 };
748
749 static const struct div_data sun8i_a23_axi_data __initconst = {
750 .width = 3,
751 .table = sun8i_a23_axi_table,
752 };
753
754 static const struct div_data sun4i_ahb_data __initconst = {
755 .shift = 4,
756 .pow = 1,
757 .width = 2,
758 };
759
760 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
761 { .val = 0, .div = 2 },
762 { .val = 1, .div = 2 },
763 { .val = 2, .div = 4 },
764 { .val = 3, .div = 8 },
765 { } /* sentinel */
766 };
767
768 static const struct div_data sun4i_apb0_data __initconst = {
769 .shift = 8,
770 .pow = 1,
771 .width = 2,
772 .table = sun4i_apb0_table,
773 };
774
sunxi_divider_clk_setup(struct device_node * node,const struct div_data * data)775 static void __init sunxi_divider_clk_setup(struct device_node *node,
776 const struct div_data *data)
777 {
778 struct clk *clk;
779 const char *clk_name = node->name;
780 const char *clk_parent;
781 void __iomem *reg;
782
783 reg = of_iomap(node, 0);
784 if (!reg) {
785 pr_err("Could not map registers for mux-clk: %pOF\n", node);
786 return;
787 }
788
789 clk_parent = of_clk_get_parent_name(node, 0);
790
791 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
792 pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
793 __func__, node);
794 goto out_unmap;
795 }
796
797 clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
798 reg, data->shift, data->width,
799 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
800 data->table, &clk_lock);
801 if (IS_ERR(clk)) {
802 pr_err("%s: failed to register divider clock %s: %ld\n",
803 __func__, clk_name, PTR_ERR(clk));
804 goto out_unmap;
805 }
806
807 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
808 pr_err("%s: failed to add clock provider for %s\n",
809 __func__, clk_name);
810 goto out_unregister;
811 }
812
813 if (clk_register_clkdev(clk, clk_name, NULL)) {
814 of_clk_del_provider(node);
815 goto out_unregister;
816 }
817
818 return;
819 out_unregister:
820 clk_unregister_divider(clk);
821
822 out_unmap:
823 iounmap(reg);
824 }
825
sun4i_ahb_clk_setup(struct device_node * node)826 static void __init sun4i_ahb_clk_setup(struct device_node *node)
827 {
828 sunxi_divider_clk_setup(node, &sun4i_ahb_data);
829 }
830 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
831 sun4i_ahb_clk_setup);
832
sun4i_apb0_clk_setup(struct device_node * node)833 static void __init sun4i_apb0_clk_setup(struct device_node *node)
834 {
835 sunxi_divider_clk_setup(node, &sun4i_apb0_data);
836 }
837 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
838 sun4i_apb0_clk_setup);
839
sun4i_axi_clk_setup(struct device_node * node)840 static void __init sun4i_axi_clk_setup(struct device_node *node)
841 {
842 sunxi_divider_clk_setup(node, &sun4i_axi_data);
843 }
844 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
845 sun4i_axi_clk_setup);
846
sun8i_axi_clk_setup(struct device_node * node)847 static void __init sun8i_axi_clk_setup(struct device_node *node)
848 {
849 sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
850 }
851 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
852 sun8i_axi_clk_setup);
853
854
855 /*
856 * sunxi_divs_clk_setup() helper data
857 */
858
859 #define SUNXI_DIVS_MAX_QTY 4
860 #define SUNXI_DIVISOR_WIDTH 2
861
862 struct divs_data {
863 const struct factors_data *factors; /* data for the factor clock */
864 int ndivs; /* number of outputs */
865 /*
866 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
867 * self or base factor clock refers to the output from the pll
868 * itself. The remaining refer to fixed or configurable divider
869 * outputs.
870 */
871 struct {
872 u8 self; /* is it the base factor clock? (only one) */
873 u8 fixed; /* is it a fixed divisor? if not... */
874 struct clk_div_table *table; /* is it a table based divisor? */
875 u8 shift; /* otherwise it's a normal divisor with this shift */
876 u8 pow; /* is it power-of-two based? */
877 u8 gate; /* is it independently gateable? */
878 bool critical;
879 } div[SUNXI_DIVS_MAX_QTY];
880 };
881
882 static struct clk_div_table pll6_sata_tbl[] = {
883 { .val = 0, .div = 6, },
884 { .val = 1, .div = 12, },
885 { .val = 2, .div = 18, },
886 { .val = 3, .div = 24, },
887 { } /* sentinel */
888 };
889
890 static const struct divs_data pll5_divs_data __initconst = {
891 .factors = &sun4i_pll5_data,
892 .ndivs = 2,
893 .div = {
894 /* Protect PLL5_DDR */
895 { .shift = 0, .pow = 0, .critical = true }, /* M, DDR */
896 { .shift = 16, .pow = 1, }, /* P, other */
897 /* No output for the base factor clock */
898 }
899 };
900
901 static const struct divs_data pll6_divs_data __initconst = {
902 .factors = &sun4i_pll5_data,
903 .ndivs = 4,
904 .div = {
905 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
906 { .fixed = 2 }, /* P, other */
907 { .self = 1 }, /* base factor clock, 2x */
908 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
909 }
910 };
911
912 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
913 .factors = &sun6i_a31_pll6_data,
914 .ndivs = 2,
915 .div = {
916 { .fixed = 2 }, /* normal output */
917 { .self = 1 }, /* base factor clock, 2x */
918 }
919 };
920
921 /*
922 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
923 *
924 * These clocks look something like this
925 * ________________________
926 * | ___divisor 1---|----> to consumer
927 * parent >--| pll___/___divisor 2---|----> to consumer
928 * | \_______________|____> to consumer
929 * |________________________|
930 */
931
sunxi_divs_clk_setup(struct device_node * node,const struct divs_data * data)932 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
933 const struct divs_data *data)
934 {
935 struct clk_onecell_data *clk_data;
936 const char *parent;
937 const char *clk_name;
938 struct clk **clks, *pclk;
939 struct clk_hw *gate_hw, *rate_hw;
940 const struct clk_ops *rate_ops;
941 struct clk_gate *gate = NULL;
942 struct clk_fixed_factor *fix_factor;
943 struct clk_divider *divider;
944 struct factors_data factors = *data->factors;
945 char *derived_name = NULL;
946 void __iomem *reg;
947 int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
948 int flags, clkflags;
949
950 /* if number of children known, use it */
951 if (data->ndivs)
952 ndivs = data->ndivs;
953
954 /* Try to find a name for base factor clock */
955 for (i = 0; i < ndivs; i++) {
956 if (data->div[i].self) {
957 of_property_read_string_index(node, "clock-output-names",
958 i, &factors.name);
959 break;
960 }
961 }
962 /* If we don't have a .self clk use the first output-name up to '_' */
963 if (factors.name == NULL) {
964 char *endp;
965
966 of_property_read_string_index(node, "clock-output-names",
967 0, &clk_name);
968 endp = strchr(clk_name, '_');
969 if (endp) {
970 derived_name = kstrndup(clk_name, endp - clk_name,
971 GFP_KERNEL);
972 if (!derived_name)
973 return NULL;
974 factors.name = derived_name;
975 } else {
976 factors.name = clk_name;
977 }
978 }
979
980 /* Set up factor clock that we will be dividing */
981 pclk = sunxi_factors_clk_setup(node, &factors);
982 if (!pclk)
983 return NULL;
984
985 parent = __clk_get_name(pclk);
986 kfree(derived_name);
987
988 reg = of_iomap(node, 0);
989 if (!reg) {
990 pr_err("Could not map registers for divs-clk: %pOF\n", node);
991 return NULL;
992 }
993
994 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
995 if (!clk_data)
996 goto out_unmap;
997
998 clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
999 if (!clks)
1000 goto free_clkdata;
1001
1002 clk_data->clks = clks;
1003
1004 /* It's not a good idea to have automatic reparenting changing
1005 * our RAM clock! */
1006 clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1007
1008 for (i = 0; i < ndivs; i++) {
1009 if (of_property_read_string_index(node, "clock-output-names",
1010 i, &clk_name) != 0)
1011 break;
1012
1013 /* If this is the base factor clock, only update clks */
1014 if (data->div[i].self) {
1015 clk_data->clks[i] = pclk;
1016 continue;
1017 }
1018
1019 gate_hw = NULL;
1020 rate_hw = NULL;
1021 rate_ops = NULL;
1022
1023 /* If this leaf clock can be gated, create a gate */
1024 if (data->div[i].gate) {
1025 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1026 if (!gate)
1027 goto free_clks;
1028
1029 gate->reg = reg;
1030 gate->bit_idx = data->div[i].gate;
1031 gate->lock = &clk_lock;
1032
1033 gate_hw = &gate->hw;
1034 }
1035
1036 /* Leaves can be fixed or configurable divisors */
1037 if (data->div[i].fixed) {
1038 fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1039 if (!fix_factor)
1040 goto free_gate;
1041
1042 fix_factor->mult = 1;
1043 fix_factor->div = data->div[i].fixed;
1044
1045 rate_hw = &fix_factor->hw;
1046 rate_ops = &clk_fixed_factor_ops;
1047 } else {
1048 divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1049 if (!divider)
1050 goto free_gate;
1051
1052 flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1053
1054 divider->reg = reg;
1055 divider->shift = data->div[i].shift;
1056 divider->width = SUNXI_DIVISOR_WIDTH;
1057 divider->flags = flags;
1058 divider->lock = &clk_lock;
1059 divider->table = data->div[i].table;
1060
1061 rate_hw = ÷r->hw;
1062 rate_ops = &clk_divider_ops;
1063 }
1064
1065 /* Wrap the (potential) gate and the divisor on a composite
1066 * clock to unify them */
1067 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1068 NULL, NULL,
1069 rate_hw, rate_ops,
1070 gate_hw, &clk_gate_ops,
1071 clkflags |
1072 (data->div[i].critical ?
1073 CLK_IS_CRITICAL : 0));
1074
1075 WARN_ON(IS_ERR(clk_data->clks[i]));
1076 }
1077
1078 /* Adjust to the real max */
1079 clk_data->clk_num = i;
1080
1081 if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1082 pr_err("%s: failed to add clock provider for %s\n",
1083 __func__, clk_name);
1084 goto free_gate;
1085 }
1086
1087 return clks;
1088 free_gate:
1089 kfree(gate);
1090 free_clks:
1091 kfree(clks);
1092 free_clkdata:
1093 kfree(clk_data);
1094 out_unmap:
1095 iounmap(reg);
1096 return NULL;
1097 }
1098
sun4i_pll5_clk_setup(struct device_node * node)1099 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1100 {
1101 sunxi_divs_clk_setup(node, &pll5_divs_data);
1102 }
1103 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1104 sun4i_pll5_clk_setup);
1105
sun4i_pll6_clk_setup(struct device_node * node)1106 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1107 {
1108 sunxi_divs_clk_setup(node, &pll6_divs_data);
1109 }
1110 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1111 sun4i_pll6_clk_setup);
1112
sun6i_pll6_clk_setup(struct device_node * node)1113 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1114 {
1115 sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1116 }
1117 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1118 sun6i_pll6_clk_setup);
1119
1120 /*
1121 * sun6i display
1122 *
1123 * rate = parent_rate / (m + 1);
1124 */
sun6i_display_factors(struct factors_request * req)1125 static void sun6i_display_factors(struct factors_request *req)
1126 {
1127 u8 m;
1128
1129 if (req->rate > req->parent_rate)
1130 req->rate = req->parent_rate;
1131
1132 m = DIV_ROUND_UP(req->parent_rate, req->rate);
1133
1134 req->rate = req->parent_rate / m;
1135 req->m = m - 1;
1136 }
1137
1138 static const struct clk_factors_config sun6i_display_config = {
1139 .mshift = 0,
1140 .mwidth = 4,
1141 };
1142
1143 static const struct factors_data sun6i_display_data __initconst = {
1144 .enable = 31,
1145 .mux = 24,
1146 .muxmask = BIT(2) | BIT(1) | BIT(0),
1147 .table = &sun6i_display_config,
1148 .getter = sun6i_display_factors,
1149 };
1150
sun6i_display_setup(struct device_node * node)1151 static void __init sun6i_display_setup(struct device_node *node)
1152 {
1153 sunxi_factors_clk_setup(node, &sun6i_display_data);
1154 }
1155 CLK_OF_DECLARE(sun6i_display, "allwinner,sun6i-a31-display-clk",
1156 sun6i_display_setup);
1157