1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2017 4 * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/clk-provider.h> 9 #include <linux/err.h> 10 #include <linux/io.h> 11 #include <linux/mfd/syscon.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/regmap.h> 17 18 #include <dt-bindings/clock/stm32h7-clks.h> 19 20 /* Reset Clock Control Registers */ 21 #define RCC_CR 0x00 22 #define RCC_CFGR 0x10 23 #define RCC_D1CFGR 0x18 24 #define RCC_D2CFGR 0x1C 25 #define RCC_D3CFGR 0x20 26 #define RCC_PLLCKSELR 0x28 27 #define RCC_PLLCFGR 0x2C 28 #define RCC_PLL1DIVR 0x30 29 #define RCC_PLL1FRACR 0x34 30 #define RCC_PLL2DIVR 0x38 31 #define RCC_PLL2FRACR 0x3C 32 #define RCC_PLL3DIVR 0x40 33 #define RCC_PLL3FRACR 0x44 34 #define RCC_D1CCIPR 0x4C 35 #define RCC_D2CCIP1R 0x50 36 #define RCC_D2CCIP2R 0x54 37 #define RCC_D3CCIPR 0x58 38 #define RCC_BDCR 0x70 39 #define RCC_CSR 0x74 40 #define RCC_AHB3ENR 0xD4 41 #define RCC_AHB1ENR 0xD8 42 #define RCC_AHB2ENR 0xDC 43 #define RCC_AHB4ENR 0xE0 44 #define RCC_APB3ENR 0xE4 45 #define RCC_APB1LENR 0xE8 46 #define RCC_APB1HENR 0xEC 47 #define RCC_APB2ENR 0xF0 48 #define RCC_APB4ENR 0xF4 49 50 static DEFINE_SPINLOCK(stm32rcc_lock); 51 52 static void __iomem *base; 53 static struct clk_hw **hws; 54 55 /* System clock parent */ 56 static const char * const sys_src[] = { 57 "hsi_ck", "csi_ck", "hse_ck", "pll1_p" }; 58 59 static const char * const tracein_src[] = { 60 "hsi_ck", "csi_ck", "hse_ck", "pll1_r" }; 61 62 static const char * const per_src[] = { 63 "hsi_ker", "csi_ker", "hse_ck", "disabled" }; 64 65 static const char * const pll_src[] = { 66 "hsi_ck", "csi_ck", "hse_ck", "no clock" }; 67 68 static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" }; 69 70 static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" }; 71 72 static const char * const qspi_src[] = { 73 "hclk", "pll1_q", "pll2_r", "per_ck" }; 74 75 static const char * const fmc_src[] = { 76 "hclk", "pll1_q", "pll2_r", "per_ck" }; 77 78 /* Kernel clock parent */ 79 static const char * const swp_src[] = { "pclk1", "hsi_ker" }; 80 81 static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" }; 82 83 static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" }; 84 85 static const char * const spdifrx_src[] = { 86 "pll1_q", "pll2_r", "pll3_r", "hsi_ker" }; 87 88 static const char *spi_src1[5] = { 89 "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" }; 90 91 static const char * const spi_src2[] = { 92 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" }; 93 94 static const char * const spi_src3[] = { 95 "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" }; 96 97 static const char * const lptim_src1[] = { 98 "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" }; 99 100 static const char * const lptim_src2[] = { 101 "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" }; 102 103 static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" }; 104 105 static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" }; 106 107 /* i2c 1,2,3 src */ 108 static const char * const i2c_src1[] = { 109 "pclk1", "pll3_r", "hsi_ker", "csi_ker" }; 110 111 static const char * const i2c_src2[] = { 112 "pclk4", "pll3_r", "hsi_ker", "csi_ker" }; 113 114 static const char * const rng_src[] = { 115 "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" }; 116 117 /* usart 1,6 src */ 118 static const char * const usart_src1[] = { 119 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" }; 120 121 /* usart 2,3,4,5,7,8 src */ 122 static const char * const usart_src2[] = { 123 "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" }; 124 125 static const char *sai_src[5] = { 126 "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" }; 127 128 static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" }; 129 130 /* lptim 2,3,4,5 src */ 131 static const char * const lpuart1_src[] = { 132 "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" }; 133 134 static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" }; 135 136 /* RTC clock parent */ 137 static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" }; 138 139 /* Micro-controller output clock parent */ 140 static const char * const mco_src1[] = { 141 "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" }; 142 143 static const char * const mco_src2[] = { 144 "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" }; 145 146 /* LCD clock */ 147 static const char * const ltdc_src[] = {"pll3_r"}; 148 149 /* Gate clock with ready bit and backup domain management */ 150 struct stm32_ready_gate { 151 struct clk_gate gate; 152 u8 bit_rdy; 153 }; 154 155 #define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\ 156 gate) 157 158 #define RGATE_TIMEOUT 10000 159 160 static int ready_gate_clk_enable(struct clk_hw *hw) 161 { 162 struct clk_gate *gate = to_clk_gate(hw); 163 struct stm32_ready_gate *rgate = to_ready_gate_clk(gate); 164 int bit_status; 165 unsigned int timeout = RGATE_TIMEOUT; 166 167 if (clk_gate_ops.is_enabled(hw)) 168 return 0; 169 170 clk_gate_ops.enable(hw); 171 172 /* We can't use readl_poll_timeout() because we can blocked if 173 * someone enables this clock before clocksource changes. 174 * Only jiffies counter is available. Jiffies are incremented by 175 * interruptions and enable op does not allow to be interrupted. 176 */ 177 do { 178 bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy)); 179 180 if (bit_status) 181 udelay(100); 182 183 } while (bit_status && --timeout); 184 185 return bit_status; 186 } 187 188 static void ready_gate_clk_disable(struct clk_hw *hw) 189 { 190 struct clk_gate *gate = to_clk_gate(hw); 191 struct stm32_ready_gate *rgate = to_ready_gate_clk(gate); 192 int bit_status; 193 unsigned int timeout = RGATE_TIMEOUT; 194 195 if (!clk_gate_ops.is_enabled(hw)) 196 return; 197 198 clk_gate_ops.disable(hw); 199 200 do { 201 bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy)); 202 203 if (bit_status) 204 udelay(100); 205 206 } while (bit_status && --timeout); 207 } 208 209 static const struct clk_ops ready_gate_clk_ops = { 210 .enable = ready_gate_clk_enable, 211 .disable = ready_gate_clk_disable, 212 .is_enabled = clk_gate_is_enabled, 213 }; 214 215 static struct clk_hw *clk_register_ready_gate(struct device *dev, 216 const char *name, const char *parent_name, 217 void __iomem *reg, u8 bit_idx, u8 bit_rdy, 218 unsigned long flags, spinlock_t *lock) 219 { 220 struct stm32_ready_gate *rgate; 221 struct clk_init_data init = { NULL }; 222 struct clk_hw *hw; 223 int ret; 224 225 rgate = kzalloc(sizeof(*rgate), GFP_KERNEL); 226 if (!rgate) 227 return ERR_PTR(-ENOMEM); 228 229 init.name = name; 230 init.ops = &ready_gate_clk_ops; 231 init.flags = flags; 232 init.parent_names = &parent_name; 233 init.num_parents = 1; 234 235 rgate->bit_rdy = bit_rdy; 236 rgate->gate.lock = lock; 237 rgate->gate.reg = reg; 238 rgate->gate.bit_idx = bit_idx; 239 rgate->gate.hw.init = &init; 240 241 hw = &rgate->gate.hw; 242 ret = clk_hw_register(dev, hw); 243 if (ret) { 244 kfree(rgate); 245 hw = ERR_PTR(ret); 246 } 247 248 return hw; 249 } 250 251 struct gate_cfg { 252 u32 offset; 253 u8 bit_idx; 254 }; 255 256 struct muxdiv_cfg { 257 u32 offset; 258 u8 shift; 259 u8 width; 260 }; 261 262 struct composite_clk_cfg { 263 struct gate_cfg *gate; 264 struct muxdiv_cfg *mux; 265 struct muxdiv_cfg *div; 266 const char *name; 267 const char * const *parent_name; 268 int num_parents; 269 u32 flags; 270 }; 271 272 struct composite_clk_gcfg_t { 273 u8 flags; 274 const struct clk_ops *ops; 275 }; 276 277 /* 278 * General config definition of a composite clock (only clock diviser for rate) 279 */ 280 struct composite_clk_gcfg { 281 struct composite_clk_gcfg_t *mux; 282 struct composite_clk_gcfg_t *div; 283 struct composite_clk_gcfg_t *gate; 284 }; 285 286 #define M_CFG_MUX(_mux_ops, _mux_flags)\ 287 .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops} 288 289 #define M_CFG_DIV(_rate_ops, _rate_flags)\ 290 .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops} 291 292 #define M_CFG_GATE(_gate_ops, _gate_flags)\ 293 .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops} 294 295 static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width, 296 u32 flags, spinlock_t *lock) 297 { 298 struct clk_mux *mux; 299 300 mux = kzalloc(sizeof(*mux), GFP_KERNEL); 301 if (!mux) 302 return ERR_PTR(-ENOMEM); 303 304 mux->reg = reg; 305 mux->shift = shift; 306 mux->mask = (1 << width) - 1; 307 mux->flags = flags; 308 mux->lock = lock; 309 310 return mux; 311 } 312 313 static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width, 314 u32 flags, spinlock_t *lock) 315 { 316 struct clk_divider *div; 317 318 div = kzalloc(sizeof(*div), GFP_KERNEL); 319 320 if (!div) 321 return ERR_PTR(-ENOMEM); 322 323 div->reg = reg; 324 div->shift = shift; 325 div->width = width; 326 div->flags = flags; 327 div->lock = lock; 328 329 return div; 330 } 331 332 static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags, 333 spinlock_t *lock) 334 { 335 struct clk_gate *gate; 336 337 gate = kzalloc(sizeof(*gate), GFP_KERNEL); 338 if (!gate) 339 return ERR_PTR(-ENOMEM); 340 341 gate->reg = reg; 342 gate->bit_idx = bit_idx; 343 gate->flags = flags; 344 gate->lock = lock; 345 346 return gate; 347 } 348 349 struct composite_cfg { 350 struct clk_hw *mux_hw; 351 struct clk_hw *div_hw; 352 struct clk_hw *gate_hw; 353 354 const struct clk_ops *mux_ops; 355 const struct clk_ops *div_ops; 356 const struct clk_ops *gate_ops; 357 }; 358 359 static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg, 360 const struct composite_clk_cfg *cfg, 361 struct composite_cfg *composite, spinlock_t *lock) 362 { 363 struct clk_mux *mux = NULL; 364 struct clk_divider *div = NULL; 365 struct clk_gate *gate = NULL; 366 const struct clk_ops *mux_ops, *div_ops, *gate_ops; 367 struct clk_hw *mux_hw; 368 struct clk_hw *div_hw; 369 struct clk_hw *gate_hw; 370 371 mux_ops = div_ops = gate_ops = NULL; 372 mux_hw = div_hw = gate_hw = NULL; 373 374 if (gcfg->mux && cfg->mux) { 375 mux = _get_cmux(base + cfg->mux->offset, 376 cfg->mux->shift, 377 cfg->mux->width, 378 gcfg->mux->flags, lock); 379 380 if (!IS_ERR(mux)) { 381 mux_hw = &mux->hw; 382 mux_ops = gcfg->mux->ops ? 383 gcfg->mux->ops : &clk_mux_ops; 384 } 385 } 386 387 if (gcfg->div && cfg->div) { 388 div = _get_cdiv(base + cfg->div->offset, 389 cfg->div->shift, 390 cfg->div->width, 391 gcfg->div->flags, lock); 392 393 if (!IS_ERR(div)) { 394 div_hw = &div->hw; 395 div_ops = gcfg->div->ops ? 396 gcfg->div->ops : &clk_divider_ops; 397 } 398 } 399 400 if (gcfg->gate && cfg->gate) { 401 gate = _get_cgate(base + cfg->gate->offset, 402 cfg->gate->bit_idx, 403 gcfg->gate->flags, lock); 404 405 if (!IS_ERR(gate)) { 406 gate_hw = &gate->hw; 407 gate_ops = gcfg->gate->ops ? 408 gcfg->gate->ops : &clk_gate_ops; 409 } 410 } 411 412 composite->mux_hw = mux_hw; 413 composite->mux_ops = mux_ops; 414 415 composite->div_hw = div_hw; 416 composite->div_ops = div_ops; 417 418 composite->gate_hw = gate_hw; 419 composite->gate_ops = gate_ops; 420 } 421 422 /* Kernel Timer */ 423 struct timer_ker { 424 u8 dppre_shift; 425 struct clk_hw hw; 426 spinlock_t *lock; 427 }; 428 429 #define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw) 430 431 static unsigned long timer_ker_recalc_rate(struct clk_hw *hw, 432 unsigned long parent_rate) 433 { 434 struct timer_ker *clk_elem = to_timer_ker(hw); 435 u32 timpre; 436 u32 dppre_shift = clk_elem->dppre_shift; 437 u32 prescaler; 438 u32 mul; 439 440 timpre = (readl(base + RCC_CFGR) >> 15) & 0x01; 441 442 prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03; 443 444 mul = 2; 445 446 if (prescaler < 4) 447 mul = 1; 448 449 else if (timpre && prescaler > 4) 450 mul = 4; 451 452 return parent_rate * mul; 453 } 454 455 static const struct clk_ops timer_ker_ops = { 456 .recalc_rate = timer_ker_recalc_rate, 457 }; 458 459 static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev, 460 const char *name, const char *parent_name, 461 unsigned long flags, 462 u8 dppre_shift, 463 spinlock_t *lock) 464 { 465 struct timer_ker *element; 466 struct clk_init_data init; 467 struct clk_hw *hw; 468 int err; 469 470 element = kzalloc(sizeof(*element), GFP_KERNEL); 471 if (!element) 472 return ERR_PTR(-ENOMEM); 473 474 init.name = name; 475 init.ops = &timer_ker_ops; 476 init.flags = flags; 477 init.parent_names = &parent_name; 478 init.num_parents = 1; 479 480 element->hw.init = &init; 481 element->lock = lock; 482 element->dppre_shift = dppre_shift; 483 484 hw = &element->hw; 485 err = clk_hw_register(dev, hw); 486 487 if (err) { 488 kfree(element); 489 return ERR_PTR(err); 490 } 491 492 return hw; 493 } 494 495 static const struct clk_div_table d1cpre_div_table[] = { 496 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1}, 497 { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1}, 498 { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 }, 499 { 12, 64 }, { 13, 128 }, { 14, 256 }, 500 { 15, 512 }, 501 { 0 }, 502 }; 503 504 static const struct clk_div_table ppre_div_table[] = { 505 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1}, 506 { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 }, 507 { 0 }, 508 }; 509 510 static void register_core_and_bus_clocks(void) 511 { 512 /* CORE AND BUS */ 513 hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre", 514 "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0, 515 d1cpre_div_table, &stm32rcc_lock); 516 517 hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre", 518 CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0, 519 d1cpre_div_table, &stm32rcc_lock); 520 521 /* D1 DOMAIN */ 522 /* * CPU Systick */ 523 hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick", 524 "d1cpre", 0, 1, 8); 525 526 /* * APB3 peripheral */ 527 hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0, 528 base + RCC_D1CFGR, 4, 3, 0, 529 ppre_div_table, &stm32rcc_lock); 530 531 /* D2 DOMAIN */ 532 /* * APB1 peripheral */ 533 hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0, 534 base + RCC_D2CFGR, 4, 3, 0, 535 ppre_div_table, &stm32rcc_lock); 536 537 /* Timers prescaler clocks */ 538 clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0, 539 4, &stm32rcc_lock); 540 541 /* * APB2 peripheral */ 542 hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0, 543 base + RCC_D2CFGR, 8, 3, 0, ppre_div_table, 544 &stm32rcc_lock); 545 546 clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8, 547 &stm32rcc_lock); 548 549 /* D3 DOMAIN */ 550 /* * APB4 peripheral */ 551 hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0, 552 base + RCC_D3CFGR, 4, 3, 0, 553 ppre_div_table, &stm32rcc_lock); 554 } 555 556 /* MUX clock configuration */ 557 struct stm32_mux_clk { 558 const char *name; 559 const char * const *parents; 560 u8 num_parents; 561 u32 offset; 562 u8 shift; 563 u8 width; 564 u32 flags; 565 }; 566 567 #define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\ 568 {\ 569 .name = _name,\ 570 .parents = _parents,\ 571 .num_parents = ARRAY_SIZE(_parents),\ 572 .offset = _mux_offset,\ 573 .shift = _mux_shift,\ 574 .width = _mux_width,\ 575 .flags = _flags,\ 576 } 577 578 #define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\ 579 M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\ 580 581 static const struct stm32_mux_clk stm32_mclk[] __initconst = { 582 M_MCLOC("per_ck", per_src, RCC_D1CCIPR, 28, 3), 583 M_MCLOC("pllsrc", pll_src, RCC_PLLCKSELR, 0, 3), 584 M_MCLOC("sys_ck", sys_src, RCC_CFGR, 0, 3), 585 M_MCLOC("tracein_ck", tracein_src, RCC_CFGR, 0, 3), 586 }; 587 588 /* Oscillary clock configuration */ 589 struct stm32_osc_clk { 590 const char *name; 591 const char *parent; 592 u32 gate_offset; 593 u8 bit_idx; 594 u8 bit_rdy; 595 u32 flags; 596 }; 597 598 #define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\ 599 {\ 600 .name = _name,\ 601 .parent = _parent,\ 602 .gate_offset = _gate_offset,\ 603 .bit_idx = _bit_idx,\ 604 .bit_rdy = _bit_rdy,\ 605 .flags = _flags,\ 606 } 607 608 #define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\ 609 OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0) 610 611 static const struct stm32_osc_clk stm32_oclk[] __initconst = { 612 OSC_CLKF("hsi_ck", "hsidiv", RCC_CR, 0, 2, CLK_IGNORE_UNUSED), 613 OSC_CLKF("hsi_ker", "hsidiv", RCC_CR, 1, 2, CLK_IGNORE_UNUSED), 614 OSC_CLKF("csi_ck", "clk-csi", RCC_CR, 7, 8, CLK_IGNORE_UNUSED), 615 OSC_CLKF("csi_ker", "clk-csi", RCC_CR, 9, 8, CLK_IGNORE_UNUSED), 616 OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR, 12, 13, CLK_IGNORE_UNUSED), 617 OSC_CLKF("lsi_ck", "clk-lsi", RCC_CSR, 0, 1, CLK_IGNORE_UNUSED), 618 }; 619 620 /* PLL configuration */ 621 struct st32h7_pll_cfg { 622 u8 bit_idx; 623 u32 offset_divr; 624 u8 bit_frac_en; 625 u32 offset_frac; 626 u8 divm; 627 }; 628 629 struct stm32_pll_data { 630 const char *name; 631 const char *parent_name; 632 unsigned long flags; 633 const struct st32h7_pll_cfg *cfg; 634 }; 635 636 static const struct st32h7_pll_cfg stm32h7_pll1 = { 637 .bit_idx = 24, 638 .offset_divr = RCC_PLL1DIVR, 639 .bit_frac_en = 0, 640 .offset_frac = RCC_PLL1FRACR, 641 .divm = 4, 642 }; 643 644 static const struct st32h7_pll_cfg stm32h7_pll2 = { 645 .bit_idx = 26, 646 .offset_divr = RCC_PLL2DIVR, 647 .bit_frac_en = 4, 648 .offset_frac = RCC_PLL2FRACR, 649 .divm = 12, 650 }; 651 652 static const struct st32h7_pll_cfg stm32h7_pll3 = { 653 .bit_idx = 28, 654 .offset_divr = RCC_PLL3DIVR, 655 .bit_frac_en = 8, 656 .offset_frac = RCC_PLL3FRACR, 657 .divm = 20, 658 }; 659 660 static const struct stm32_pll_data stm32_pll[] = { 661 { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 }, 662 { "vco2", "pllsrc", 0, &stm32h7_pll2 }, 663 { "vco3", "pllsrc", 0, &stm32h7_pll3 }, 664 }; 665 666 struct stm32_fractional_divider { 667 void __iomem *mreg; 668 u8 mshift; 669 u8 mwidth; 670 u32 mmask; 671 672 void __iomem *nreg; 673 u8 nshift; 674 u8 nwidth; 675 676 void __iomem *freg_status; 677 u8 freg_bit; 678 void __iomem *freg_value; 679 u8 fshift; 680 u8 fwidth; 681 682 u8 flags; 683 struct clk_hw hw; 684 spinlock_t *lock; 685 }; 686 687 struct stm32_pll_obj { 688 spinlock_t *lock; 689 struct stm32_fractional_divider div; 690 struct stm32_ready_gate rgate; 691 struct clk_hw hw; 692 }; 693 694 #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw) 695 696 static int pll_is_enabled(struct clk_hw *hw) 697 { 698 struct stm32_pll_obj *clk_elem = to_pll(hw); 699 struct clk_hw *_hw = &clk_elem->rgate.gate.hw; 700 701 __clk_hw_set_clk(_hw, hw); 702 703 return ready_gate_clk_ops.is_enabled(_hw); 704 } 705 706 static int pll_enable(struct clk_hw *hw) 707 { 708 struct stm32_pll_obj *clk_elem = to_pll(hw); 709 struct clk_hw *_hw = &clk_elem->rgate.gate.hw; 710 711 __clk_hw_set_clk(_hw, hw); 712 713 return ready_gate_clk_ops.enable(_hw); 714 } 715 716 static void pll_disable(struct clk_hw *hw) 717 { 718 struct stm32_pll_obj *clk_elem = to_pll(hw); 719 struct clk_hw *_hw = &clk_elem->rgate.gate.hw; 720 721 __clk_hw_set_clk(_hw, hw); 722 723 ready_gate_clk_ops.disable(_hw); 724 } 725 726 static int pll_frac_is_enabled(struct clk_hw *hw) 727 { 728 struct stm32_pll_obj *clk_elem = to_pll(hw); 729 struct stm32_fractional_divider *fd = &clk_elem->div; 730 731 return (readl(fd->freg_status) >> fd->freg_bit) & 0x01; 732 } 733 734 static unsigned long pll_read_frac(struct clk_hw *hw) 735 { 736 struct stm32_pll_obj *clk_elem = to_pll(hw); 737 struct stm32_fractional_divider *fd = &clk_elem->div; 738 739 return (readl(fd->freg_value) >> fd->fshift) & 740 GENMASK(fd->fwidth - 1, 0); 741 } 742 743 static unsigned long pll_fd_recalc_rate(struct clk_hw *hw, 744 unsigned long parent_rate) 745 { 746 struct stm32_pll_obj *clk_elem = to_pll(hw); 747 struct stm32_fractional_divider *fd = &clk_elem->div; 748 unsigned long m, n; 749 u32 val, mask; 750 u64 rate, rate1 = 0; 751 752 val = readl(fd->mreg); 753 mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift; 754 m = (val & mask) >> fd->mshift; 755 756 val = readl(fd->nreg); 757 mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift; 758 n = ((val & mask) >> fd->nshift) + 1; 759 760 if (!n || !m) 761 return parent_rate; 762 763 rate = (u64)parent_rate * n; 764 do_div(rate, m); 765 766 if (pll_frac_is_enabled(hw)) { 767 val = pll_read_frac(hw); 768 rate1 = (u64)parent_rate * (u64)val; 769 do_div(rate1, (m * 8191)); 770 } 771 772 return rate + rate1; 773 } 774 775 static const struct clk_ops pll_ops = { 776 .enable = pll_enable, 777 .disable = pll_disable, 778 .is_enabled = pll_is_enabled, 779 .recalc_rate = pll_fd_recalc_rate, 780 }; 781 782 static struct clk_hw *clk_register_stm32_pll(struct device *dev, 783 const char *name, 784 const char *parent, 785 unsigned long flags, 786 const struct st32h7_pll_cfg *cfg, 787 spinlock_t *lock) 788 { 789 struct stm32_pll_obj *pll; 790 struct clk_init_data init = { NULL }; 791 struct clk_hw *hw; 792 int ret; 793 struct stm32_fractional_divider *div = NULL; 794 struct stm32_ready_gate *rgate; 795 796 pll = kzalloc(sizeof(*pll), GFP_KERNEL); 797 if (!pll) 798 return ERR_PTR(-ENOMEM); 799 800 init.name = name; 801 init.ops = &pll_ops; 802 init.flags = flags; 803 init.parent_names = &parent; 804 init.num_parents = 1; 805 pll->hw.init = &init; 806 807 hw = &pll->hw; 808 rgate = &pll->rgate; 809 810 rgate->bit_rdy = cfg->bit_idx + 1; 811 rgate->gate.lock = lock; 812 rgate->gate.reg = base + RCC_CR; 813 rgate->gate.bit_idx = cfg->bit_idx; 814 815 div = &pll->div; 816 div->flags = 0; 817 div->mreg = base + RCC_PLLCKSELR; 818 div->mshift = cfg->divm; 819 div->mwidth = 6; 820 div->nreg = base + cfg->offset_divr; 821 div->nshift = 0; 822 div->nwidth = 9; 823 824 div->freg_status = base + RCC_PLLCFGR; 825 div->freg_bit = cfg->bit_frac_en; 826 div->freg_value = base + cfg->offset_frac; 827 div->fshift = 3; 828 div->fwidth = 13; 829 830 div->lock = lock; 831 832 ret = clk_hw_register(dev, hw); 833 if (ret) { 834 kfree(pll); 835 hw = ERR_PTR(ret); 836 } 837 838 return hw; 839 } 840 841 /* ODF CLOCKS */ 842 static unsigned long odf_divider_recalc_rate(struct clk_hw *hw, 843 unsigned long parent_rate) 844 { 845 return clk_divider_ops.recalc_rate(hw, parent_rate); 846 } 847 848 static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate, 849 unsigned long *prate) 850 { 851 return clk_divider_ops.round_rate(hw, rate, prate); 852 } 853 854 static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate, 855 unsigned long parent_rate) 856 { 857 struct clk_hw *hwp; 858 int pll_status; 859 int ret; 860 861 hwp = clk_hw_get_parent(hw); 862 863 pll_status = pll_is_enabled(hwp); 864 865 if (pll_status) 866 pll_disable(hwp); 867 868 ret = clk_divider_ops.set_rate(hw, rate, parent_rate); 869 870 if (pll_status) 871 pll_enable(hwp); 872 873 return ret; 874 } 875 876 static const struct clk_ops odf_divider_ops = { 877 .recalc_rate = odf_divider_recalc_rate, 878 .round_rate = odf_divider_round_rate, 879 .set_rate = odf_divider_set_rate, 880 }; 881 882 static int odf_gate_enable(struct clk_hw *hw) 883 { 884 struct clk_hw *hwp; 885 int pll_status; 886 int ret; 887 888 if (clk_gate_ops.is_enabled(hw)) 889 return 0; 890 891 hwp = clk_hw_get_parent(hw); 892 893 pll_status = pll_is_enabled(hwp); 894 895 if (pll_status) 896 pll_disable(hwp); 897 898 ret = clk_gate_ops.enable(hw); 899 900 if (pll_status) 901 pll_enable(hwp); 902 903 return ret; 904 } 905 906 static void odf_gate_disable(struct clk_hw *hw) 907 { 908 struct clk_hw *hwp; 909 int pll_status; 910 911 if (!clk_gate_ops.is_enabled(hw)) 912 return; 913 914 hwp = clk_hw_get_parent(hw); 915 916 pll_status = pll_is_enabled(hwp); 917 918 if (pll_status) 919 pll_disable(hwp); 920 921 clk_gate_ops.disable(hw); 922 923 if (pll_status) 924 pll_enable(hwp); 925 } 926 927 static const struct clk_ops odf_gate_ops = { 928 .enable = odf_gate_enable, 929 .disable = odf_gate_disable, 930 .is_enabled = clk_gate_is_enabled, 931 }; 932 933 static struct composite_clk_gcfg odf_clk_gcfg = { 934 M_CFG_DIV(&odf_divider_ops, 0), 935 M_CFG_GATE(&odf_gate_ops, 0), 936 }; 937 938 #define M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\ 939 _rate_shift, _rate_width, _flags)\ 940 {\ 941 .mux = NULL,\ 942 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\ 943 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\ 944 .name = _name,\ 945 .parent_name = &(const char *) {_parent},\ 946 .num_parents = 1,\ 947 .flags = _flags,\ 948 } 949 950 #define M_ODF(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\ 951 _rate_shift, _rate_width)\ 952 M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\ 953 _rate_shift, _rate_width, 0)\ 954 955 static const struct composite_clk_cfg stm32_odf[3][3] = { 956 { 957 M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR, 9, 7, 958 CLK_IGNORE_UNUSED), 959 M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7, 960 CLK_IGNORE_UNUSED), 961 M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7, 962 CLK_IGNORE_UNUSED), 963 }, 964 965 { 966 M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR, 9, 7), 967 M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7), 968 M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7), 969 }, 970 { 971 M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR, 9, 7), 972 M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7), 973 M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7), 974 } 975 }; 976 977 /* PERIF CLOCKS */ 978 struct pclk_t { 979 u32 gate_offset; 980 u8 bit_idx; 981 const char *name; 982 const char *parent; 983 u32 flags; 984 }; 985 986 #define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\ 987 {\ 988 .gate_offset = _gate_offset,\ 989 .bit_idx = _bit_idx,\ 990 .name = _name,\ 991 .parent = _parent,\ 992 .flags = _flags,\ 993 } 994 995 #define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\ 996 PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0) 997 998 static const struct pclk_t pclk[] = { 999 PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"), 1000 PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"), 1001 PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"), 1002 PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"), 1003 PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"), 1004 PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"), 1005 PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"), 1006 PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"), 1007 PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"), 1008 PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"), 1009 PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"), 1010 PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"), 1011 PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"), 1012 PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"), 1013 PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"), 1014 PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"), 1015 PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"), 1016 PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"), 1017 PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"), 1018 PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"), 1019 PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"), 1020 PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"), 1021 PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"), 1022 PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"), 1023 PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"), 1024 PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"), 1025 PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"), 1026 PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"), 1027 PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"), 1028 PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"), 1029 PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"), 1030 PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"), 1031 PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"), 1032 PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"), 1033 PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"), 1034 PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"), 1035 PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"), 1036 PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"), 1037 PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"), 1038 PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"), 1039 PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"), 1040 PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"), 1041 PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"), 1042 PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"), 1043 PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"), 1044 PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"), 1045 PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"), 1046 PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"), 1047 PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"), 1048 PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"), 1049 PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"), 1050 PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"), 1051 PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"), 1052 PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"), 1053 PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"), 1054 PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"), 1055 PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"), 1056 PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"), 1057 PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"), 1058 PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"), 1059 PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"), 1060 PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"), 1061 }; 1062 1063 /* KERNEL CLOCKS */ 1064 #define KER_CLKF(_gate_offset, _bit_idx,\ 1065 _mux_offset, _mux_shift, _mux_width,\ 1066 _name, _parent_name,\ 1067 _flags) \ 1068 { \ 1069 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\ 1070 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\ 1071 .name = _name, \ 1072 .parent_name = _parent_name, \ 1073 .num_parents = ARRAY_SIZE(_parent_name),\ 1074 .flags = _flags,\ 1075 } 1076 1077 #define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\ 1078 _name, _parent_name) \ 1079 KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\ 1080 _name, _parent_name, 0)\ 1081 1082 #define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\ 1083 _name, _parent_name,\ 1084 _flags) \ 1085 { \ 1086 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\ 1087 .mux = NULL,\ 1088 .name = _name, \ 1089 .parent_name = _parent_name, \ 1090 .num_parents = 1,\ 1091 .flags = _flags,\ 1092 } 1093 1094 static const struct composite_clk_cfg kclk[] = { 1095 KER_CLK(RCC_AHB3ENR, 16, RCC_D1CCIPR, 16, 1, "sdmmc1", sdmmc_src), 1096 KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR, 4, 2, "quadspi", qspi_src, 1097 CLK_IGNORE_UNUSED), 1098 KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR, 0, 2, "fmc", fmc_src, 1099 CLK_IGNORE_UNUSED), 1100 KER_CLK(RCC_AHB1ENR, 27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src), 1101 KER_CLK(RCC_AHB1ENR, 25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src), 1102 KER_CLK(RCC_AHB1ENR, 5, RCC_D3CCIPR, 16, 2, "adc12", adc_src), 1103 KER_CLK(RCC_AHB2ENR, 9, RCC_D1CCIPR, 16, 1, "sdmmc2", sdmmc_src), 1104 KER_CLK(RCC_AHB2ENR, 6, RCC_D2CCIP2R, 8, 2, "rng", rng_src), 1105 KER_CLK(RCC_AHB4ENR, 24, RCC_D3CCIPR, 16, 2, "adc3", adc_src), 1106 KER_CLKF(RCC_APB3ENR, 4, RCC_D1CCIPR, 8, 1, "dsi", dsi_src, 1107 CLK_SET_RATE_PARENT), 1108 KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT), 1109 KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R, 0, 3, "usart8", usart_src2), 1110 KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R, 0, 3, "usart7", usart_src2), 1111 KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src), 1112 KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1), 1113 KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1), 1114 KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1), 1115 KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R, 0, 3, "uart5", usart_src2), 1116 KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R, 0, 3, "uart4", usart_src2), 1117 KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R, 0, 3, "usart3", usart_src2), 1118 KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R, 0, 3, "usart2", usart_src2), 1119 KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src), 1120 KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1), 1121 KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1), 1122 KER_CLK(RCC_APB1LENR, 9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1), 1123 KER_CLK(RCC_APB1HENR, 8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src), 1124 KER_CLK(RCC_APB1HENR, 2, RCC_D2CCIP1R, 31, 1, "swp", swp_src), 1125 KER_CLK(RCC_APB2ENR, 29, RCC_CFGR, 14, 1, "hrtim", hrtim_src), 1126 KER_CLK(RCC_APB2ENR, 28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src), 1127 KER_CLKF(RCC_APB2ENR, 24, RCC_D2CCIP1R, 6, 3, "sai3", sai_src, 1128 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT), 1129 KER_CLKF(RCC_APB2ENR, 23, RCC_D2CCIP1R, 6, 3, "sai2", sai_src, 1130 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT), 1131 KER_CLKF(RCC_APB2ENR, 22, RCC_D2CCIP1R, 0, 3, "sai1", sai_src, 1132 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT), 1133 KER_CLK(RCC_APB2ENR, 20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2), 1134 KER_CLK(RCC_APB2ENR, 13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2), 1135 KER_CLK(RCC_APB2ENR, 12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1), 1136 KER_CLK(RCC_APB2ENR, 5, RCC_D2CCIP2R, 3, 3, "usart6", usart_src1), 1137 KER_CLK(RCC_APB2ENR, 4, RCC_D2CCIP2R, 3, 3, "usart1", usart_src1), 1138 KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 24, 3, "sai4b", sai_src), 1139 KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 21, 3, "sai4a", sai_src), 1140 KER_CLK(RCC_APB4ENR, 12, RCC_D3CCIPR, 13, 3, "lptim5", lptim_src2), 1141 KER_CLK(RCC_APB4ENR, 11, RCC_D3CCIPR, 13, 3, "lptim4", lptim_src2), 1142 KER_CLK(RCC_APB4ENR, 10, RCC_D3CCIPR, 13, 3, "lptim3", lptim_src2), 1143 KER_CLK(RCC_APB4ENR, 9, RCC_D3CCIPR, 10, 3, "lptim2", lptim_src2), 1144 KER_CLK(RCC_APB4ENR, 7, RCC_D3CCIPR, 8, 2, "i2c4", i2c_src2), 1145 KER_CLK(RCC_APB4ENR, 5, RCC_D3CCIPR, 28, 3, "spi6", spi_src3), 1146 KER_CLK(RCC_APB4ENR, 3, RCC_D3CCIPR, 0, 3, "lpuart1", lpuart1_src), 1147 }; 1148 1149 static struct composite_clk_gcfg kernel_clk_cfg = { 1150 M_CFG_MUX(NULL, 0), 1151 M_CFG_GATE(NULL, 0), 1152 }; 1153 1154 /* RTC clock */ 1155 /* 1156 * RTC & LSE registers are protected against parasitic write access. 1157 * PWR_CR_DBP bit must be set to enable write access to RTC registers. 1158 */ 1159 /* STM32_PWR_CR */ 1160 #define PWR_CR 0x00 1161 /* STM32_PWR_CR bit field */ 1162 #define PWR_CR_DBP BIT(8) 1163 1164 static struct composite_clk_gcfg rtc_clk_cfg = { 1165 M_CFG_MUX(NULL, 0), 1166 M_CFG_GATE(NULL, 0), 1167 }; 1168 1169 static const struct composite_clk_cfg rtc_clk = 1170 KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src); 1171 1172 /* Micro-controller output clock */ 1173 static struct composite_clk_gcfg mco_clk_cfg = { 1174 M_CFG_MUX(NULL, 0), 1175 M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO), 1176 }; 1177 1178 #define M_MCO_F(_name, _parents, _mux_offset, _mux_shift, _mux_width,\ 1179 _rate_offset, _rate_shift, _rate_width,\ 1180 _flags)\ 1181 {\ 1182 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\ 1183 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\ 1184 .gate = NULL,\ 1185 .name = _name,\ 1186 .parent_name = _parents,\ 1187 .num_parents = ARRAY_SIZE(_parents),\ 1188 .flags = _flags,\ 1189 } 1190 1191 static const struct composite_clk_cfg mco_clk[] = { 1192 M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0), 1193 M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0), 1194 }; 1195 1196 static void __init stm32h7_rcc_init(struct device_node *np) 1197 { 1198 struct clk_hw_onecell_data *clk_data; 1199 struct composite_cfg c_cfg; 1200 int n; 1201 const char *hse_clk, *lse_clk, *i2s_clk; 1202 struct regmap *pdrm; 1203 1204 clk_data = kzalloc(sizeof(*clk_data) + 1205 sizeof(*clk_data->hws) * STM32H7_MAX_CLKS, 1206 GFP_KERNEL); 1207 if (!clk_data) 1208 return; 1209 1210 clk_data->num = STM32H7_MAX_CLKS; 1211 1212 hws = clk_data->hws; 1213 1214 for (n = 0; n < STM32H7_MAX_CLKS; n++) 1215 hws[n] = ERR_PTR(-ENOENT); 1216 1217 /* get RCC base @ from DT */ 1218 base = of_iomap(np, 0); 1219 if (!base) { 1220 pr_err("%s: unable to map resource", np->name); 1221 goto err_free_clks; 1222 } 1223 1224 pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); 1225 if (IS_ERR(pdrm)) 1226 pr_warn("%s: Unable to get syscfg\n", __func__); 1227 else 1228 /* In any case disable backup domain write protection 1229 * and will never be enabled. 1230 * Needed by LSE & RTC clocks. 1231 */ 1232 regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP); 1233 1234 /* Put parent names from DT */ 1235 hse_clk = of_clk_get_parent_name(np, 0); 1236 lse_clk = of_clk_get_parent_name(np, 1); 1237 i2s_clk = of_clk_get_parent_name(np, 2); 1238 1239 sai_src[3] = i2s_clk; 1240 spi_src1[3] = i2s_clk; 1241 1242 /* Register Internal oscillators */ 1243 clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000); 1244 clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000); 1245 clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000); 1246 clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000); 1247 1248 /* This clock is coming from outside. Frequencies unknown */ 1249 hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL, 1250 0, 0); 1251 1252 hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0, 1253 base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO, 1254 &stm32rcc_lock); 1255 1256 hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0, 1257 base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED | 1258 CLK_DIVIDER_ALLOW_ZERO, 1259 &stm32rcc_lock); 1260 1261 /* Mux system clocks */ 1262 for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++) 1263 hws[MCLK_BANK + n] = clk_hw_register_mux(NULL, 1264 stm32_mclk[n].name, 1265 stm32_mclk[n].parents, 1266 stm32_mclk[n].num_parents, 1267 stm32_mclk[n].flags, 1268 stm32_mclk[n].offset + base, 1269 stm32_mclk[n].shift, 1270 stm32_mclk[n].width, 1271 0, 1272 &stm32rcc_lock); 1273 1274 register_core_and_bus_clocks(); 1275 1276 /* Oscillary clocks */ 1277 for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++) 1278 hws[OSC_BANK + n] = clk_register_ready_gate(NULL, 1279 stm32_oclk[n].name, 1280 stm32_oclk[n].parent, 1281 stm32_oclk[n].gate_offset + base, 1282 stm32_oclk[n].bit_idx, 1283 stm32_oclk[n].bit_rdy, 1284 stm32_oclk[n].flags, 1285 &stm32rcc_lock); 1286 1287 hws[HSE_CK] = clk_register_ready_gate(NULL, 1288 "hse_ck", 1289 hse_clk, 1290 RCC_CR + base, 1291 16, 17, 1292 0, 1293 &stm32rcc_lock); 1294 1295 hws[LSE_CK] = clk_register_ready_gate(NULL, 1296 "lse_ck", 1297 lse_clk, 1298 RCC_BDCR + base, 1299 0, 1, 1300 0, 1301 &stm32rcc_lock); 1302 1303 hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL, 1304 "csi_ker_div122", "csi_ker", 0, 1, 122); 1305 1306 /* PLLs */ 1307 for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) { 1308 int odf; 1309 1310 /* Register the VCO */ 1311 clk_register_stm32_pll(NULL, stm32_pll[n].name, 1312 stm32_pll[n].parent_name, stm32_pll[n].flags, 1313 stm32_pll[n].cfg, 1314 &stm32rcc_lock); 1315 1316 /* Register the 3 output dividers */ 1317 for (odf = 0; odf < 3; odf++) { 1318 int idx = n * 3 + odf; 1319 1320 get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf], 1321 &c_cfg, &stm32rcc_lock); 1322 1323 hws[ODF_BANK + idx] = clk_hw_register_composite(NULL, 1324 stm32_odf[n][odf].name, 1325 stm32_odf[n][odf].parent_name, 1326 stm32_odf[n][odf].num_parents, 1327 c_cfg.mux_hw, c_cfg.mux_ops, 1328 c_cfg.div_hw, c_cfg.div_ops, 1329 c_cfg.gate_hw, c_cfg.gate_ops, 1330 stm32_odf[n][odf].flags); 1331 } 1332 } 1333 1334 /* Peripheral clocks */ 1335 for (n = 0; n < ARRAY_SIZE(pclk); n++) 1336 hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name, 1337 pclk[n].parent, 1338 pclk[n].flags, base + pclk[n].gate_offset, 1339 pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock); 1340 1341 /* Kernel clocks */ 1342 for (n = 0; n < ARRAY_SIZE(kclk); n++) { 1343 get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg, 1344 &stm32rcc_lock); 1345 1346 hws[KERN_BANK + n] = clk_hw_register_composite(NULL, 1347 kclk[n].name, 1348 kclk[n].parent_name, 1349 kclk[n].num_parents, 1350 c_cfg.mux_hw, c_cfg.mux_ops, 1351 c_cfg.div_hw, c_cfg.div_ops, 1352 c_cfg.gate_hw, c_cfg.gate_ops, 1353 kclk[n].flags); 1354 } 1355 1356 /* RTC clock (default state is off) */ 1357 clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0); 1358 1359 get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock); 1360 1361 hws[RTC_CK] = clk_hw_register_composite(NULL, 1362 rtc_clk.name, 1363 rtc_clk.parent_name, 1364 rtc_clk.num_parents, 1365 c_cfg.mux_hw, c_cfg.mux_ops, 1366 c_cfg.div_hw, c_cfg.div_ops, 1367 c_cfg.gate_hw, c_cfg.gate_ops, 1368 rtc_clk.flags); 1369 1370 /* Micro-controller clocks */ 1371 for (n = 0; n < ARRAY_SIZE(mco_clk); n++) { 1372 get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg, 1373 &stm32rcc_lock); 1374 1375 hws[MCO_BANK + n] = clk_hw_register_composite(NULL, 1376 mco_clk[n].name, 1377 mco_clk[n].parent_name, 1378 mco_clk[n].num_parents, 1379 c_cfg.mux_hw, c_cfg.mux_ops, 1380 c_cfg.div_hw, c_cfg.div_ops, 1381 c_cfg.gate_hw, c_cfg.gate_ops, 1382 mco_clk[n].flags); 1383 } 1384 1385 of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); 1386 1387 return; 1388 1389 err_free_clks: 1390 kfree(clk_data); 1391 } 1392 1393 /* The RCC node is a clock and reset controller, and these 1394 * functionalities are supported by different drivers that 1395 * matches the same compatible strings. 1396 */ 1397 CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init); 1398