1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2017
4 * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/err.h>
10 #include <linux/io.h>
11 #include <linux/mfd/syscon.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/regmap.h>
17
18 #include <dt-bindings/clock/stm32h7-clks.h>
19
20 /* Reset Clock Control Registers */
21 #define RCC_CR 0x00
22 #define RCC_CFGR 0x10
23 #define RCC_D1CFGR 0x18
24 #define RCC_D2CFGR 0x1C
25 #define RCC_D3CFGR 0x20
26 #define RCC_PLLCKSELR 0x28
27 #define RCC_PLLCFGR 0x2C
28 #define RCC_PLL1DIVR 0x30
29 #define RCC_PLL1FRACR 0x34
30 #define RCC_PLL2DIVR 0x38
31 #define RCC_PLL2FRACR 0x3C
32 #define RCC_PLL3DIVR 0x40
33 #define RCC_PLL3FRACR 0x44
34 #define RCC_D1CCIPR 0x4C
35 #define RCC_D2CCIP1R 0x50
36 #define RCC_D2CCIP2R 0x54
37 #define RCC_D3CCIPR 0x58
38 #define RCC_BDCR 0x70
39 #define RCC_CSR 0x74
40 #define RCC_AHB3ENR 0xD4
41 #define RCC_AHB1ENR 0xD8
42 #define RCC_AHB2ENR 0xDC
43 #define RCC_AHB4ENR 0xE0
44 #define RCC_APB3ENR 0xE4
45 #define RCC_APB1LENR 0xE8
46 #define RCC_APB1HENR 0xEC
47 #define RCC_APB2ENR 0xF0
48 #define RCC_APB4ENR 0xF4
49
50 static DEFINE_SPINLOCK(stm32rcc_lock);
51
52 static void __iomem *base;
53 static struct clk_hw **hws;
54
55 /* System clock parent */
56 static const char * const sys_src[] = {
57 "hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
58
59 static const char * const tracein_src[] = {
60 "hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
61
62 static const char * const per_src[] = {
63 "hsi_ker", "csi_ker", "hse_ck", "disabled" };
64
65 static const char * const pll_src[] = {
66 "hsi_ck", "csi_ck", "hse_ck", "no clock" };
67
68 static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };
69
70 static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };
71
72 static const char * const qspi_src[] = {
73 "hclk", "pll1_q", "pll2_r", "per_ck" };
74
75 static const char * const fmc_src[] = {
76 "hclk", "pll1_q", "pll2_r", "per_ck" };
77
78 /* Kernel clock parent */
79 static const char * const swp_src[] = { "pclk1", "hsi_ker" };
80
81 static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };
82
83 static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };
84
85 static const char * const spdifrx_src[] = {
86 "pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
87
88 static const char *spi_src1[5] = {
89 "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
90
91 static const char * const spi_src2[] = {
92 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
93
94 static const char * const spi_src3[] = {
95 "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
96
97 static const char * const lptim_src1[] = {
98 "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
99
100 static const char * const lptim_src2[] = {
101 "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
102
103 static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
104
105 static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };
106
107 /* i2c 1,2,3 src */
108 static const char * const i2c_src1[] = {
109 "pclk1", "pll3_r", "hsi_ker", "csi_ker" };
110
111 static const char * const i2c_src2[] = {
112 "pclk4", "pll3_r", "hsi_ker", "csi_ker" };
113
114 static const char * const rng_src[] = {
115 "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
116
117 /* usart 1,6 src */
118 static const char * const usart_src1[] = {
119 "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
120
121 /* usart 2,3,4,5,7,8 src */
122 static const char * const usart_src2[] = {
123 "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
124
125 static const char *sai_src[5] = {
126 "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
127
128 static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };
129
130 /* lptim 2,3,4,5 src */
131 static const char * const lpuart1_src[] = {
132 "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
133
134 static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };
135
136 /* RTC clock parent */
137 static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
138
139 /* Micro-controller output clock parent */
140 static const char * const mco_src1[] = {
141 "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
142
143 static const char * const mco_src2[] = {
144 "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
145
146 /* LCD clock */
147 static const char * const ltdc_src[] = {"pll3_r"};
148
149 /* Gate clock with ready bit and backup domain management */
150 struct stm32_ready_gate {
151 struct clk_gate gate;
152 u8 bit_rdy;
153 };
154
155 #define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
156 gate)
157
158 #define RGATE_TIMEOUT 10000
159
ready_gate_clk_enable(struct clk_hw * hw)160 static int ready_gate_clk_enable(struct clk_hw *hw)
161 {
162 struct clk_gate *gate = to_clk_gate(hw);
163 struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
164 int bit_status;
165 unsigned int timeout = RGATE_TIMEOUT;
166
167 if (clk_gate_ops.is_enabled(hw))
168 return 0;
169
170 clk_gate_ops.enable(hw);
171
172 /* We can't use readl_poll_timeout() because we can blocked if
173 * someone enables this clock before clocksource changes.
174 * Only jiffies counter is available. Jiffies are incremented by
175 * interruptions and enable op does not allow to be interrupted.
176 */
177 do {
178 bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));
179
180 if (bit_status)
181 udelay(100);
182
183 } while (bit_status && --timeout);
184
185 return bit_status;
186 }
187
ready_gate_clk_disable(struct clk_hw * hw)188 static void ready_gate_clk_disable(struct clk_hw *hw)
189 {
190 struct clk_gate *gate = to_clk_gate(hw);
191 struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
192 int bit_status;
193 unsigned int timeout = RGATE_TIMEOUT;
194
195 if (!clk_gate_ops.is_enabled(hw))
196 return;
197
198 clk_gate_ops.disable(hw);
199
200 do {
201 bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));
202
203 if (bit_status)
204 udelay(100);
205
206 } while (bit_status && --timeout);
207 }
208
209 static const struct clk_ops ready_gate_clk_ops = {
210 .enable = ready_gate_clk_enable,
211 .disable = ready_gate_clk_disable,
212 .is_enabled = clk_gate_is_enabled,
213 };
214
clk_register_ready_gate(struct device * dev,const char * name,const char * parent_name,void __iomem * reg,u8 bit_idx,u8 bit_rdy,unsigned long flags,spinlock_t * lock)215 static struct clk_hw *clk_register_ready_gate(struct device *dev,
216 const char *name, const char *parent_name,
217 void __iomem *reg, u8 bit_idx, u8 bit_rdy,
218 unsigned long flags, spinlock_t *lock)
219 {
220 struct stm32_ready_gate *rgate;
221 struct clk_init_data init = { NULL };
222 struct clk_hw *hw;
223 int ret;
224
225 rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
226 if (!rgate)
227 return ERR_PTR(-ENOMEM);
228
229 init.name = name;
230 init.ops = &ready_gate_clk_ops;
231 init.flags = flags;
232 init.parent_names = &parent_name;
233 init.num_parents = 1;
234
235 rgate->bit_rdy = bit_rdy;
236 rgate->gate.lock = lock;
237 rgate->gate.reg = reg;
238 rgate->gate.bit_idx = bit_idx;
239 rgate->gate.hw.init = &init;
240
241 hw = &rgate->gate.hw;
242 ret = clk_hw_register(dev, hw);
243 if (ret) {
244 kfree(rgate);
245 hw = ERR_PTR(ret);
246 }
247
248 return hw;
249 }
250
251 struct gate_cfg {
252 u32 offset;
253 u8 bit_idx;
254 };
255
256 struct muxdiv_cfg {
257 u32 offset;
258 u8 shift;
259 u8 width;
260 };
261
262 struct composite_clk_cfg {
263 struct gate_cfg *gate;
264 struct muxdiv_cfg *mux;
265 struct muxdiv_cfg *div;
266 const char *name;
267 const char * const *parent_name;
268 int num_parents;
269 u32 flags;
270 };
271
272 struct composite_clk_gcfg_t {
273 u8 flags;
274 const struct clk_ops *ops;
275 };
276
277 /*
278 * General config definition of a composite clock (only clock diviser for rate)
279 */
280 struct composite_clk_gcfg {
281 struct composite_clk_gcfg_t *mux;
282 struct composite_clk_gcfg_t *div;
283 struct composite_clk_gcfg_t *gate;
284 };
285
286 #define M_CFG_MUX(_mux_ops, _mux_flags)\
287 .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
288
289 #define M_CFG_DIV(_rate_ops, _rate_flags)\
290 .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
291
292 #define M_CFG_GATE(_gate_ops, _gate_flags)\
293 .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
294
_get_cmux(void __iomem * reg,u8 shift,u8 width,u32 flags,spinlock_t * lock)295 static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
296 u32 flags, spinlock_t *lock)
297 {
298 struct clk_mux *mux;
299
300 mux = kzalloc(sizeof(*mux), GFP_KERNEL);
301 if (!mux)
302 return ERR_PTR(-ENOMEM);
303
304 mux->reg = reg;
305 mux->shift = shift;
306 mux->mask = (1 << width) - 1;
307 mux->flags = flags;
308 mux->lock = lock;
309
310 return mux;
311 }
312
_get_cdiv(void __iomem * reg,u8 shift,u8 width,u32 flags,spinlock_t * lock)313 static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
314 u32 flags, spinlock_t *lock)
315 {
316 struct clk_divider *div;
317
318 div = kzalloc(sizeof(*div), GFP_KERNEL);
319
320 if (!div)
321 return ERR_PTR(-ENOMEM);
322
323 div->reg = reg;
324 div->shift = shift;
325 div->width = width;
326 div->flags = flags;
327 div->lock = lock;
328
329 return div;
330 }
331
_get_cgate(void __iomem * reg,u8 bit_idx,u32 flags,spinlock_t * lock)332 static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
333 spinlock_t *lock)
334 {
335 struct clk_gate *gate;
336
337 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
338 if (!gate)
339 return ERR_PTR(-ENOMEM);
340
341 gate->reg = reg;
342 gate->bit_idx = bit_idx;
343 gate->flags = flags;
344 gate->lock = lock;
345
346 return gate;
347 }
348
349 struct composite_cfg {
350 struct clk_hw *mux_hw;
351 struct clk_hw *div_hw;
352 struct clk_hw *gate_hw;
353
354 const struct clk_ops *mux_ops;
355 const struct clk_ops *div_ops;
356 const struct clk_ops *gate_ops;
357 };
358
get_cfg_composite_div(const struct composite_clk_gcfg * gcfg,const struct composite_clk_cfg * cfg,struct composite_cfg * composite,spinlock_t * lock)359 static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
360 const struct composite_clk_cfg *cfg,
361 struct composite_cfg *composite, spinlock_t *lock)
362 {
363 struct clk_mux *mux = NULL;
364 struct clk_divider *div = NULL;
365 struct clk_gate *gate = NULL;
366 const struct clk_ops *mux_ops, *div_ops, *gate_ops;
367 struct clk_hw *mux_hw;
368 struct clk_hw *div_hw;
369 struct clk_hw *gate_hw;
370
371 mux_ops = div_ops = gate_ops = NULL;
372 mux_hw = div_hw = gate_hw = NULL;
373
374 if (gcfg->mux && cfg->mux) {
375 mux = _get_cmux(base + cfg->mux->offset,
376 cfg->mux->shift,
377 cfg->mux->width,
378 gcfg->mux->flags, lock);
379
380 if (!IS_ERR(mux)) {
381 mux_hw = &mux->hw;
382 mux_ops = gcfg->mux->ops ?
383 gcfg->mux->ops : &clk_mux_ops;
384 }
385 }
386
387 if (gcfg->div && cfg->div) {
388 div = _get_cdiv(base + cfg->div->offset,
389 cfg->div->shift,
390 cfg->div->width,
391 gcfg->div->flags, lock);
392
393 if (!IS_ERR(div)) {
394 div_hw = &div->hw;
395 div_ops = gcfg->div->ops ?
396 gcfg->div->ops : &clk_divider_ops;
397 }
398 }
399
400 if (gcfg->gate && cfg->gate) {
401 gate = _get_cgate(base + cfg->gate->offset,
402 cfg->gate->bit_idx,
403 gcfg->gate->flags, lock);
404
405 if (!IS_ERR(gate)) {
406 gate_hw = &gate->hw;
407 gate_ops = gcfg->gate->ops ?
408 gcfg->gate->ops : &clk_gate_ops;
409 }
410 }
411
412 composite->mux_hw = mux_hw;
413 composite->mux_ops = mux_ops;
414
415 composite->div_hw = div_hw;
416 composite->div_ops = div_ops;
417
418 composite->gate_hw = gate_hw;
419 composite->gate_ops = gate_ops;
420 }
421
422 /* Kernel Timer */
423 struct timer_ker {
424 u8 dppre_shift;
425 struct clk_hw hw;
426 spinlock_t *lock;
427 };
428
429 #define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
430
timer_ker_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)431 static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
432 unsigned long parent_rate)
433 {
434 struct timer_ker *clk_elem = to_timer_ker(hw);
435 u32 timpre;
436 u32 dppre_shift = clk_elem->dppre_shift;
437 u32 prescaler;
438 u32 mul;
439
440 timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;
441
442 prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;
443
444 mul = 2;
445
446 if (prescaler < 4)
447 mul = 1;
448
449 else if (timpre && prescaler > 4)
450 mul = 4;
451
452 return parent_rate * mul;
453 }
454
455 static const struct clk_ops timer_ker_ops = {
456 .recalc_rate = timer_ker_recalc_rate,
457 };
458
clk_register_stm32_timer_ker(struct device * dev,const char * name,const char * parent_name,unsigned long flags,u8 dppre_shift,spinlock_t * lock)459 static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
460 const char *name, const char *parent_name,
461 unsigned long flags,
462 u8 dppre_shift,
463 spinlock_t *lock)
464 {
465 struct timer_ker *element;
466 struct clk_init_data init;
467 struct clk_hw *hw;
468 int err;
469
470 element = kzalloc(sizeof(*element), GFP_KERNEL);
471 if (!element)
472 return ERR_PTR(-ENOMEM);
473
474 init.name = name;
475 init.ops = &timer_ker_ops;
476 init.flags = flags;
477 init.parent_names = &parent_name;
478 init.num_parents = 1;
479
480 element->hw.init = &init;
481 element->lock = lock;
482 element->dppre_shift = dppre_shift;
483
484 hw = &element->hw;
485 err = clk_hw_register(dev, hw);
486
487 if (err) {
488 kfree(element);
489 return ERR_PTR(err);
490 }
491
492 return hw;
493 }
494
495 static const struct clk_div_table d1cpre_div_table[] = {
496 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
497 { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
498 { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
499 { 12, 64 }, { 13, 128 }, { 14, 256 },
500 { 15, 512 },
501 { 0 },
502 };
503
504 static const struct clk_div_table ppre_div_table[] = {
505 { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
506 { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
507 { 0 },
508 };
509
register_core_and_bus_clocks(void)510 static void register_core_and_bus_clocks(void)
511 {
512 /* CORE AND BUS */
513 hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
514 "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
515 d1cpre_div_table, &stm32rcc_lock);
516
517 hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
518 CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
519 d1cpre_div_table, &stm32rcc_lock);
520
521 /* D1 DOMAIN */
522 /* * CPU Systick */
523 hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
524 "d1cpre", 0, 1, 8);
525
526 /* * APB3 peripheral */
527 hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
528 base + RCC_D1CFGR, 4, 3, 0,
529 ppre_div_table, &stm32rcc_lock);
530
531 /* D2 DOMAIN */
532 /* * APB1 peripheral */
533 hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
534 base + RCC_D2CFGR, 4, 3, 0,
535 ppre_div_table, &stm32rcc_lock);
536
537 /* Timers prescaler clocks */
538 clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
539 4, &stm32rcc_lock);
540
541 /* * APB2 peripheral */
542 hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
543 base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
544 &stm32rcc_lock);
545
546 clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
547 &stm32rcc_lock);
548
549 /* D3 DOMAIN */
550 /* * APB4 peripheral */
551 hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
552 base + RCC_D3CFGR, 4, 3, 0,
553 ppre_div_table, &stm32rcc_lock);
554 }
555
556 /* MUX clock configuration */
557 struct stm32_mux_clk {
558 const char *name;
559 const char * const *parents;
560 u8 num_parents;
561 u32 offset;
562 u8 shift;
563 u8 width;
564 u32 flags;
565 };
566
567 #define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
568 {\
569 .name = _name,\
570 .parents = _parents,\
571 .num_parents = ARRAY_SIZE(_parents),\
572 .offset = _mux_offset,\
573 .shift = _mux_shift,\
574 .width = _mux_width,\
575 .flags = _flags,\
576 }
577
578 #define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
579 M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
580
581 static const struct stm32_mux_clk stm32_mclk[] __initconst = {
582 M_MCLOC("per_ck", per_src, RCC_D1CCIPR, 28, 3),
583 M_MCLOC("pllsrc", pll_src, RCC_PLLCKSELR, 0, 3),
584 M_MCLOC("sys_ck", sys_src, RCC_CFGR, 0, 3),
585 M_MCLOC("tracein_ck", tracein_src, RCC_CFGR, 0, 3),
586 };
587
588 /* Oscillary clock configuration */
589 struct stm32_osc_clk {
590 const char *name;
591 const char *parent;
592 u32 gate_offset;
593 u8 bit_idx;
594 u8 bit_rdy;
595 u32 flags;
596 };
597
598 #define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
599 {\
600 .name = _name,\
601 .parent = _parent,\
602 .gate_offset = _gate_offset,\
603 .bit_idx = _bit_idx,\
604 .bit_rdy = _bit_rdy,\
605 .flags = _flags,\
606 }
607
608 #define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
609 OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
610
611 static const struct stm32_osc_clk stm32_oclk[] __initconst = {
612 OSC_CLKF("hsi_ck", "hsidiv", RCC_CR, 0, 2, CLK_IGNORE_UNUSED),
613 OSC_CLKF("hsi_ker", "hsidiv", RCC_CR, 1, 2, CLK_IGNORE_UNUSED),
614 OSC_CLKF("csi_ck", "clk-csi", RCC_CR, 7, 8, CLK_IGNORE_UNUSED),
615 OSC_CLKF("csi_ker", "clk-csi", RCC_CR, 9, 8, CLK_IGNORE_UNUSED),
616 OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR, 12, 13, CLK_IGNORE_UNUSED),
617 OSC_CLKF("lsi_ck", "clk-lsi", RCC_CSR, 0, 1, CLK_IGNORE_UNUSED),
618 };
619
620 /* PLL configuration */
621 struct st32h7_pll_cfg {
622 u8 bit_idx;
623 u32 offset_divr;
624 u8 bit_frac_en;
625 u32 offset_frac;
626 u8 divm;
627 };
628
629 struct stm32_pll_data {
630 const char *name;
631 const char *parent_name;
632 unsigned long flags;
633 const struct st32h7_pll_cfg *cfg;
634 };
635
636 static const struct st32h7_pll_cfg stm32h7_pll1 = {
637 .bit_idx = 24,
638 .offset_divr = RCC_PLL1DIVR,
639 .bit_frac_en = 0,
640 .offset_frac = RCC_PLL1FRACR,
641 .divm = 4,
642 };
643
644 static const struct st32h7_pll_cfg stm32h7_pll2 = {
645 .bit_idx = 26,
646 .offset_divr = RCC_PLL2DIVR,
647 .bit_frac_en = 4,
648 .offset_frac = RCC_PLL2FRACR,
649 .divm = 12,
650 };
651
652 static const struct st32h7_pll_cfg stm32h7_pll3 = {
653 .bit_idx = 28,
654 .offset_divr = RCC_PLL3DIVR,
655 .bit_frac_en = 8,
656 .offset_frac = RCC_PLL3FRACR,
657 .divm = 20,
658 };
659
660 static const struct stm32_pll_data stm32_pll[] = {
661 { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
662 { "vco2", "pllsrc", 0, &stm32h7_pll2 },
663 { "vco3", "pllsrc", 0, &stm32h7_pll3 },
664 };
665
666 struct stm32_fractional_divider {
667 void __iomem *mreg;
668 u8 mshift;
669 u8 mwidth;
670
671 void __iomem *nreg;
672 u8 nshift;
673 u8 nwidth;
674
675 void __iomem *freg_status;
676 u8 freg_bit;
677 void __iomem *freg_value;
678 u8 fshift;
679 u8 fwidth;
680
681 u8 flags;
682 struct clk_hw hw;
683 spinlock_t *lock;
684 };
685
686 struct stm32_pll_obj {
687 spinlock_t *lock;
688 struct stm32_fractional_divider div;
689 struct stm32_ready_gate rgate;
690 struct clk_hw hw;
691 };
692
693 #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
694
pll_is_enabled(struct clk_hw * hw)695 static int pll_is_enabled(struct clk_hw *hw)
696 {
697 struct stm32_pll_obj *clk_elem = to_pll(hw);
698 struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
699
700 __clk_hw_set_clk(_hw, hw);
701
702 return ready_gate_clk_ops.is_enabled(_hw);
703 }
704
pll_enable(struct clk_hw * hw)705 static int pll_enable(struct clk_hw *hw)
706 {
707 struct stm32_pll_obj *clk_elem = to_pll(hw);
708 struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
709
710 __clk_hw_set_clk(_hw, hw);
711
712 return ready_gate_clk_ops.enable(_hw);
713 }
714
pll_disable(struct clk_hw * hw)715 static void pll_disable(struct clk_hw *hw)
716 {
717 struct stm32_pll_obj *clk_elem = to_pll(hw);
718 struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
719
720 __clk_hw_set_clk(_hw, hw);
721
722 ready_gate_clk_ops.disable(_hw);
723 }
724
pll_frac_is_enabled(struct clk_hw * hw)725 static int pll_frac_is_enabled(struct clk_hw *hw)
726 {
727 struct stm32_pll_obj *clk_elem = to_pll(hw);
728 struct stm32_fractional_divider *fd = &clk_elem->div;
729
730 return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
731 }
732
pll_read_frac(struct clk_hw * hw)733 static unsigned long pll_read_frac(struct clk_hw *hw)
734 {
735 struct stm32_pll_obj *clk_elem = to_pll(hw);
736 struct stm32_fractional_divider *fd = &clk_elem->div;
737
738 return (readl(fd->freg_value) >> fd->fshift) &
739 GENMASK(fd->fwidth - 1, 0);
740 }
741
pll_fd_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)742 static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
743 unsigned long parent_rate)
744 {
745 struct stm32_pll_obj *clk_elem = to_pll(hw);
746 struct stm32_fractional_divider *fd = &clk_elem->div;
747 unsigned long m, n;
748 u32 val, mask;
749 u64 rate, rate1 = 0;
750
751 val = readl(fd->mreg);
752 mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
753 m = (val & mask) >> fd->mshift;
754
755 val = readl(fd->nreg);
756 mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
757 n = ((val & mask) >> fd->nshift) + 1;
758
759 if (!n || !m)
760 return parent_rate;
761
762 rate = (u64)parent_rate * n;
763 do_div(rate, m);
764
765 if (pll_frac_is_enabled(hw)) {
766 val = pll_read_frac(hw);
767 rate1 = (u64)parent_rate * (u64)val;
768 do_div(rate1, (m * 8191));
769 }
770
771 return rate + rate1;
772 }
773
774 static const struct clk_ops pll_ops = {
775 .enable = pll_enable,
776 .disable = pll_disable,
777 .is_enabled = pll_is_enabled,
778 .recalc_rate = pll_fd_recalc_rate,
779 };
780
clk_register_stm32_pll(struct device * dev,const char * name,const char * parent,unsigned long flags,const struct st32h7_pll_cfg * cfg,spinlock_t * lock)781 static struct clk_hw *clk_register_stm32_pll(struct device *dev,
782 const char *name,
783 const char *parent,
784 unsigned long flags,
785 const struct st32h7_pll_cfg *cfg,
786 spinlock_t *lock)
787 {
788 struct stm32_pll_obj *pll;
789 struct clk_init_data init = { NULL };
790 struct clk_hw *hw;
791 int ret;
792 struct stm32_fractional_divider *div = NULL;
793 struct stm32_ready_gate *rgate;
794
795 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
796 if (!pll)
797 return ERR_PTR(-ENOMEM);
798
799 init.name = name;
800 init.ops = &pll_ops;
801 init.flags = flags;
802 init.parent_names = &parent;
803 init.num_parents = 1;
804 pll->hw.init = &init;
805
806 hw = &pll->hw;
807 rgate = &pll->rgate;
808
809 rgate->bit_rdy = cfg->bit_idx + 1;
810 rgate->gate.lock = lock;
811 rgate->gate.reg = base + RCC_CR;
812 rgate->gate.bit_idx = cfg->bit_idx;
813
814 div = &pll->div;
815 div->flags = 0;
816 div->mreg = base + RCC_PLLCKSELR;
817 div->mshift = cfg->divm;
818 div->mwidth = 6;
819 div->nreg = base + cfg->offset_divr;
820 div->nshift = 0;
821 div->nwidth = 9;
822
823 div->freg_status = base + RCC_PLLCFGR;
824 div->freg_bit = cfg->bit_frac_en;
825 div->freg_value = base + cfg->offset_frac;
826 div->fshift = 3;
827 div->fwidth = 13;
828
829 div->lock = lock;
830
831 ret = clk_hw_register(dev, hw);
832 if (ret) {
833 kfree(pll);
834 hw = ERR_PTR(ret);
835 }
836
837 return hw;
838 }
839
840 /* ODF CLOCKS */
odf_divider_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)841 static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
842 unsigned long parent_rate)
843 {
844 return clk_divider_ops.recalc_rate(hw, parent_rate);
845 }
846
odf_divider_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)847 static int odf_divider_determine_rate(struct clk_hw *hw,
848 struct clk_rate_request *req)
849 {
850 return clk_divider_ops.determine_rate(hw, req);
851 }
852
odf_divider_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)853 static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
854 unsigned long parent_rate)
855 {
856 struct clk_hw *hwp;
857 int pll_status;
858 int ret;
859
860 hwp = clk_hw_get_parent(hw);
861
862 pll_status = pll_is_enabled(hwp);
863
864 if (pll_status)
865 pll_disable(hwp);
866
867 ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
868
869 if (pll_status)
870 pll_enable(hwp);
871
872 return ret;
873 }
874
875 static const struct clk_ops odf_divider_ops = {
876 .recalc_rate = odf_divider_recalc_rate,
877 .determine_rate = odf_divider_determine_rate,
878 .set_rate = odf_divider_set_rate,
879 };
880
odf_gate_enable(struct clk_hw * hw)881 static int odf_gate_enable(struct clk_hw *hw)
882 {
883 struct clk_hw *hwp;
884 int pll_status;
885 int ret;
886
887 if (clk_gate_ops.is_enabled(hw))
888 return 0;
889
890 hwp = clk_hw_get_parent(hw);
891
892 pll_status = pll_is_enabled(hwp);
893
894 if (pll_status)
895 pll_disable(hwp);
896
897 ret = clk_gate_ops.enable(hw);
898
899 if (pll_status)
900 pll_enable(hwp);
901
902 return ret;
903 }
904
odf_gate_disable(struct clk_hw * hw)905 static void odf_gate_disable(struct clk_hw *hw)
906 {
907 struct clk_hw *hwp;
908 int pll_status;
909
910 if (!clk_gate_ops.is_enabled(hw))
911 return;
912
913 hwp = clk_hw_get_parent(hw);
914
915 pll_status = pll_is_enabled(hwp);
916
917 if (pll_status)
918 pll_disable(hwp);
919
920 clk_gate_ops.disable(hw);
921
922 if (pll_status)
923 pll_enable(hwp);
924 }
925
926 static const struct clk_ops odf_gate_ops = {
927 .enable = odf_gate_enable,
928 .disable = odf_gate_disable,
929 .is_enabled = clk_gate_is_enabled,
930 };
931
932 static struct composite_clk_gcfg odf_clk_gcfg = {
933 M_CFG_DIV(&odf_divider_ops, 0),
934 M_CFG_GATE(&odf_gate_ops, 0),
935 };
936
937 #define M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
938 _rate_shift, _rate_width, _flags)\
939 {\
940 .mux = NULL,\
941 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
942 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
943 .name = _name,\
944 .parent_name = &(const char *) {_parent},\
945 .num_parents = 1,\
946 .flags = _flags,\
947 }
948
949 #define M_ODF(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
950 _rate_shift, _rate_width)\
951 M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
952 _rate_shift, _rate_width, 0)\
953
954 static const struct composite_clk_cfg stm32_odf[3][3] = {
955 {
956 M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR, 9, 7,
957 CLK_IGNORE_UNUSED),
958 M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
959 CLK_IGNORE_UNUSED),
960 M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
961 CLK_IGNORE_UNUSED),
962 },
963
964 {
965 M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR, 9, 7),
966 M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
967 M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
968 },
969 {
970 M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR, 9, 7),
971 M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
972 M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
973 }
974 };
975
976 /* PERIF CLOCKS */
977 struct pclk_t {
978 u32 gate_offset;
979 u8 bit_idx;
980 const char *name;
981 const char *parent;
982 u32 flags;
983 };
984
985 #define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
986 {\
987 .gate_offset = _gate_offset,\
988 .bit_idx = _bit_idx,\
989 .name = _name,\
990 .parent = _parent,\
991 .flags = _flags,\
992 }
993
994 #define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
995 PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
996
997 static const struct pclk_t pclk[] = {
998 PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
999 PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
1000 PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
1001 PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
1002 PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
1003 PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
1004 PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
1005 PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
1006 PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
1007 PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
1008 PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
1009 PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
1010 PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
1011 PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
1012 PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
1013 PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
1014 PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
1015 PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
1016 PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
1017 PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
1018 PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
1019 PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
1020 PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
1021 PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
1022 PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
1023 PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
1024 PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
1025 PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
1026 PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
1027 PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
1028 PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
1029 PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
1030 PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
1031 PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
1032 PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
1033 PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
1034 PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
1035 PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
1036 PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
1037 PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
1038 PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
1039 PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
1040 PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
1041 PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
1042 PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
1043 PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
1044 PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
1045 PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
1046 PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
1047 PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
1048 PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
1049 PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
1050 PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
1051 PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
1052 PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
1053 PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
1054 PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
1055 PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
1056 PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
1057 PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
1058 PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
1059 PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
1060 };
1061
1062 /* KERNEL CLOCKS */
1063 #define KER_CLKF(_gate_offset, _bit_idx,\
1064 _mux_offset, _mux_shift, _mux_width,\
1065 _name, _parent_name,\
1066 _flags) \
1067 { \
1068 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1069 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1070 .name = _name, \
1071 .parent_name = _parent_name, \
1072 .num_parents = ARRAY_SIZE(_parent_name),\
1073 .flags = _flags,\
1074 }
1075
1076 #define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1077 _name, _parent_name) \
1078 KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1079 _name, _parent_name, 0)\
1080
1081 #define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
1082 _name, _parent_name,\
1083 _flags) \
1084 { \
1085 .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1086 .mux = NULL,\
1087 .name = _name, \
1088 .parent_name = _parent_name, \
1089 .num_parents = 1,\
1090 .flags = _flags,\
1091 }
1092
1093 static const struct composite_clk_cfg kclk[] = {
1094 KER_CLK(RCC_AHB3ENR, 16, RCC_D1CCIPR, 16, 1, "sdmmc1", sdmmc_src),
1095 KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR, 4, 2, "quadspi", qspi_src,
1096 CLK_IGNORE_UNUSED),
1097 KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR, 0, 2, "fmc", fmc_src,
1098 CLK_IGNORE_UNUSED),
1099 KER_CLK(RCC_AHB1ENR, 27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src),
1100 KER_CLK(RCC_AHB1ENR, 25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
1101 KER_CLK(RCC_AHB1ENR, 5, RCC_D3CCIPR, 16, 2, "adc12", adc_src),
1102 KER_CLK(RCC_AHB2ENR, 9, RCC_D1CCIPR, 16, 1, "sdmmc2", sdmmc_src),
1103 KER_CLK(RCC_AHB2ENR, 6, RCC_D2CCIP2R, 8, 2, "rng", rng_src),
1104 KER_CLK(RCC_AHB4ENR, 24, RCC_D3CCIPR, 16, 2, "adc3", adc_src),
1105 KER_CLKF(RCC_APB3ENR, 4, RCC_D1CCIPR, 8, 1, "dsi", dsi_src,
1106 CLK_SET_RATE_PARENT),
1107 KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
1108 KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R, 0, 3, "usart8", usart_src2),
1109 KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R, 0, 3, "usart7", usart_src2),
1110 KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
1111 KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
1112 KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
1113 KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
1114 KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R, 0, 3, "uart5", usart_src2),
1115 KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R, 0, 3, "uart4", usart_src2),
1116 KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R, 0, 3, "usart3", usart_src2),
1117 KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R, 0, 3, "usart2", usart_src2),
1118 KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
1119 KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
1120 KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
1121 KER_CLK(RCC_APB1LENR, 9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
1122 KER_CLK(RCC_APB1HENR, 8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
1123 KER_CLK(RCC_APB1HENR, 2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
1124 KER_CLK(RCC_APB2ENR, 29, RCC_CFGR, 14, 1, "hrtim", hrtim_src),
1125 KER_CLK(RCC_APB2ENR, 28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
1126 KER_CLKF(RCC_APB2ENR, 24, RCC_D2CCIP1R, 6, 3, "sai3", sai_src,
1127 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1128 KER_CLKF(RCC_APB2ENR, 23, RCC_D2CCIP1R, 6, 3, "sai2", sai_src,
1129 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1130 KER_CLKF(RCC_APB2ENR, 22, RCC_D2CCIP1R, 0, 3, "sai1", sai_src,
1131 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1132 KER_CLK(RCC_APB2ENR, 20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
1133 KER_CLK(RCC_APB2ENR, 13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
1134 KER_CLK(RCC_APB2ENR, 12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
1135 KER_CLK(RCC_APB2ENR, 5, RCC_D2CCIP2R, 3, 3, "usart6", usart_src1),
1136 KER_CLK(RCC_APB2ENR, 4, RCC_D2CCIP2R, 3, 3, "usart1", usart_src1),
1137 KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 24, 3, "sai4b", sai_src),
1138 KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 21, 3, "sai4a", sai_src),
1139 KER_CLK(RCC_APB4ENR, 12, RCC_D3CCIPR, 13, 3, "lptim5", lptim_src2),
1140 KER_CLK(RCC_APB4ENR, 11, RCC_D3CCIPR, 13, 3, "lptim4", lptim_src2),
1141 KER_CLK(RCC_APB4ENR, 10, RCC_D3CCIPR, 13, 3, "lptim3", lptim_src2),
1142 KER_CLK(RCC_APB4ENR, 9, RCC_D3CCIPR, 10, 3, "lptim2", lptim_src2),
1143 KER_CLK(RCC_APB4ENR, 7, RCC_D3CCIPR, 8, 2, "i2c4", i2c_src2),
1144 KER_CLK(RCC_APB4ENR, 5, RCC_D3CCIPR, 28, 3, "spi6", spi_src3),
1145 KER_CLK(RCC_APB4ENR, 3, RCC_D3CCIPR, 0, 3, "lpuart1", lpuart1_src),
1146 };
1147
1148 static struct composite_clk_gcfg kernel_clk_cfg = {
1149 M_CFG_MUX(NULL, 0),
1150 M_CFG_GATE(NULL, 0),
1151 };
1152
1153 /* RTC clock */
1154 /*
1155 * RTC & LSE registers are protected against parasitic write access.
1156 * PWR_CR_DBP bit must be set to enable write access to RTC registers.
1157 */
1158 /* STM32_PWR_CR */
1159 #define PWR_CR 0x00
1160 /* STM32_PWR_CR bit field */
1161 #define PWR_CR_DBP BIT(8)
1162
1163 static struct composite_clk_gcfg rtc_clk_cfg = {
1164 M_CFG_MUX(NULL, 0),
1165 M_CFG_GATE(NULL, 0),
1166 };
1167
1168 static const struct composite_clk_cfg rtc_clk =
1169 KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);
1170
1171 /* Micro-controller output clock */
1172 static struct composite_clk_gcfg mco_clk_cfg = {
1173 M_CFG_MUX(NULL, 0),
1174 M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
1175 };
1176
1177 #define M_MCO_F(_name, _parents, _mux_offset, _mux_shift, _mux_width,\
1178 _rate_offset, _rate_shift, _rate_width,\
1179 _flags)\
1180 {\
1181 .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1182 .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
1183 .gate = NULL,\
1184 .name = _name,\
1185 .parent_name = _parents,\
1186 .num_parents = ARRAY_SIZE(_parents),\
1187 .flags = _flags,\
1188 }
1189
1190 static const struct composite_clk_cfg mco_clk[] = {
1191 M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
1192 M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
1193 };
1194
stm32h7_rcc_init(struct device_node * np)1195 static void __init stm32h7_rcc_init(struct device_node *np)
1196 {
1197 struct clk_hw_onecell_data *clk_data;
1198 struct composite_cfg c_cfg;
1199 int n;
1200 const char *hse_clk, *lse_clk, *i2s_clk;
1201 struct regmap *pdrm;
1202
1203 clk_data = kzalloc(struct_size(clk_data, hws, STM32H7_MAX_CLKS),
1204 GFP_KERNEL);
1205 if (!clk_data)
1206 return;
1207
1208 clk_data->num = STM32H7_MAX_CLKS;
1209
1210 hws = clk_data->hws;
1211
1212 for (n = 0; n < STM32H7_MAX_CLKS; n++)
1213 hws[n] = ERR_PTR(-ENOENT);
1214
1215 /* get RCC base @ from DT */
1216 base = of_iomap(np, 0);
1217 if (!base) {
1218 pr_err("%pOFn: unable to map resource", np);
1219 goto err_free_clks;
1220 }
1221
1222 pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1223 if (IS_ERR(pdrm))
1224 pr_warn("%s: Unable to get syscfg\n", __func__);
1225 else
1226 /* In any case disable backup domain write protection
1227 * and will never be enabled.
1228 * Needed by LSE & RTC clocks.
1229 */
1230 regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
1231
1232 /* Put parent names from DT */
1233 hse_clk = of_clk_get_parent_name(np, 0);
1234 lse_clk = of_clk_get_parent_name(np, 1);
1235 i2s_clk = of_clk_get_parent_name(np, 2);
1236
1237 sai_src[3] = i2s_clk;
1238 spi_src1[3] = i2s_clk;
1239
1240 /* Register Internal oscillators */
1241 clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
1242 clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
1243 clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
1244 clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);
1245
1246 /* This clock is coming from outside. Frequencies unknown */
1247 hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
1248 0, 0);
1249
1250 hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
1251 base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
1252 &stm32rcc_lock);
1253
1254 hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0,
1255 base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
1256 CLK_DIVIDER_ALLOW_ZERO,
1257 &stm32rcc_lock);
1258
1259 /* Mux system clocks */
1260 for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
1261 hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
1262 stm32_mclk[n].name,
1263 stm32_mclk[n].parents,
1264 stm32_mclk[n].num_parents,
1265 stm32_mclk[n].flags,
1266 stm32_mclk[n].offset + base,
1267 stm32_mclk[n].shift,
1268 stm32_mclk[n].width,
1269 0,
1270 &stm32rcc_lock);
1271
1272 register_core_and_bus_clocks();
1273
1274 /* Oscillary clocks */
1275 for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
1276 hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
1277 stm32_oclk[n].name,
1278 stm32_oclk[n].parent,
1279 stm32_oclk[n].gate_offset + base,
1280 stm32_oclk[n].bit_idx,
1281 stm32_oclk[n].bit_rdy,
1282 stm32_oclk[n].flags,
1283 &stm32rcc_lock);
1284
1285 hws[HSE_CK] = clk_register_ready_gate(NULL,
1286 "hse_ck",
1287 hse_clk,
1288 RCC_CR + base,
1289 16, 17,
1290 0,
1291 &stm32rcc_lock);
1292
1293 hws[LSE_CK] = clk_register_ready_gate(NULL,
1294 "lse_ck",
1295 lse_clk,
1296 RCC_BDCR + base,
1297 0, 1,
1298 0,
1299 &stm32rcc_lock);
1300
1301 hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
1302 "csi_ker_div122", "csi_ker", 0, 1, 122);
1303
1304 /* PLLs */
1305 for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
1306 int odf;
1307
1308 /* Register the VCO */
1309 clk_register_stm32_pll(NULL, stm32_pll[n].name,
1310 stm32_pll[n].parent_name, stm32_pll[n].flags,
1311 stm32_pll[n].cfg,
1312 &stm32rcc_lock);
1313
1314 /* Register the 3 output dividers */
1315 for (odf = 0; odf < 3; odf++) {
1316 int idx = n * 3 + odf;
1317
1318 get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
1319 &c_cfg, &stm32rcc_lock);
1320
1321 hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
1322 stm32_odf[n][odf].name,
1323 stm32_odf[n][odf].parent_name,
1324 stm32_odf[n][odf].num_parents,
1325 c_cfg.mux_hw, c_cfg.mux_ops,
1326 c_cfg.div_hw, c_cfg.div_ops,
1327 c_cfg.gate_hw, c_cfg.gate_ops,
1328 stm32_odf[n][odf].flags);
1329 }
1330 }
1331
1332 /* Peripheral clocks */
1333 for (n = 0; n < ARRAY_SIZE(pclk); n++)
1334 hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
1335 pclk[n].parent,
1336 pclk[n].flags, base + pclk[n].gate_offset,
1337 pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);
1338
1339 /* Kernel clocks */
1340 for (n = 0; n < ARRAY_SIZE(kclk); n++) {
1341 get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
1342 &stm32rcc_lock);
1343
1344 hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
1345 kclk[n].name,
1346 kclk[n].parent_name,
1347 kclk[n].num_parents,
1348 c_cfg.mux_hw, c_cfg.mux_ops,
1349 c_cfg.div_hw, c_cfg.div_ops,
1350 c_cfg.gate_hw, c_cfg.gate_ops,
1351 kclk[n].flags);
1352 }
1353
1354 /* RTC clock (default state is off) */
1355 clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);
1356
1357 get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);
1358
1359 hws[RTC_CK] = clk_hw_register_composite(NULL,
1360 rtc_clk.name,
1361 rtc_clk.parent_name,
1362 rtc_clk.num_parents,
1363 c_cfg.mux_hw, c_cfg.mux_ops,
1364 c_cfg.div_hw, c_cfg.div_ops,
1365 c_cfg.gate_hw, c_cfg.gate_ops,
1366 rtc_clk.flags);
1367
1368 /* Micro-controller clocks */
1369 for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
1370 get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
1371 &stm32rcc_lock);
1372
1373 hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
1374 mco_clk[n].name,
1375 mco_clk[n].parent_name,
1376 mco_clk[n].num_parents,
1377 c_cfg.mux_hw, c_cfg.mux_ops,
1378 c_cfg.div_hw, c_cfg.div_ops,
1379 c_cfg.gate_hw, c_cfg.gate_ops,
1380 mco_clk[n].flags);
1381 }
1382
1383 of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
1384
1385 return;
1386
1387 err_free_clks:
1388 kfree(clk_data);
1389 }
1390
1391 /* The RCC node is a clock and reset controller, and these
1392 * functionalities are supported by different drivers that
1393 * matches the same compatible strings.
1394 */
1395 CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);
1396