xref: /linux/drivers/char/xillybus/xillyusb.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Xillybus Ltd, http://xillybus.com
4  *
5  * Driver for the XillyUSB FPGA/host framework.
6  *
7  * This driver interfaces with a special IP core in an FPGA, setting up
8  * a pipe between a hardware FIFO in the programmable logic and a device
9  * file in the host. The number of such pipes and their attributes are
10  * set up on the logic. This driver detects these automatically and
11  * creates the device files accordingly.
12  */
13 
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <asm/byteorder.h>
20 #include <linux/io.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/spinlock.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/usb.h>
31 
32 #include "xillybus_class.h"
33 
34 MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_ALIAS("xillyusb");
37 MODULE_LICENSE("GPL v2");
38 
39 #define XILLY_RX_TIMEOUT		(10 * HZ / 1000)
40 #define XILLY_RESPONSE_TIMEOUT		(500 * HZ / 1000)
41 
42 #define BUF_SIZE_ORDER			4
43 #define BUFNUM				8
44 #define LOG2_IDT_FIFO_SIZE		16
45 #define LOG2_INITIAL_FIFO_BUF_SIZE	16
46 
47 #define MSG_EP_NUM			1
48 #define IN_EP_NUM			1
49 
50 static const char xillyname[] = "xillyusb";
51 
52 static unsigned int fifo_buf_order;
53 
54 #define USB_VENDOR_ID_XILINX		0x03fd
55 #define USB_VENDOR_ID_ALTERA		0x09fb
56 
57 #define USB_PRODUCT_ID_XILLYUSB		0xebbe
58 
59 static const struct usb_device_id xillyusb_table[] = {
60 	{ USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
61 	{ USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
62 	{ }
63 };
64 
65 MODULE_DEVICE_TABLE(usb, xillyusb_table);
66 
67 struct xillyusb_dev;
68 
69 struct xillyfifo {
70 	unsigned int bufsize; /* In bytes, always a power of 2 */
71 	unsigned int bufnum;
72 	unsigned int size; /* Lazy: Equals bufsize * bufnum */
73 	unsigned int buf_order;
74 
75 	int fill; /* Number of bytes in the FIFO */
76 	spinlock_t lock;
77 	wait_queue_head_t waitq;
78 
79 	unsigned int readpos;
80 	unsigned int readbuf;
81 	unsigned int writepos;
82 	unsigned int writebuf;
83 	char **mem;
84 };
85 
86 struct xillyusb_channel;
87 
88 struct xillyusb_endpoint {
89 	struct xillyusb_dev *xdev;
90 
91 	struct mutex ep_mutex; /* serialize operations on endpoint */
92 
93 	struct list_head buffers;
94 	struct list_head filled_buffers;
95 	spinlock_t buffers_lock; /* protect these two lists */
96 
97 	unsigned int order;
98 	unsigned int buffer_size;
99 
100 	unsigned int fill_mask;
101 
102 	int outstanding_urbs;
103 
104 	struct usb_anchor anchor;
105 
106 	struct xillyfifo fifo;
107 
108 	struct work_struct workitem;
109 
110 	bool shutting_down;
111 	bool drained;
112 	bool wake_on_drain;
113 
114 	u8 ep_num;
115 };
116 
117 struct xillyusb_channel {
118 	struct xillyusb_dev *xdev;
119 
120 	struct xillyfifo *in_fifo;
121 	struct xillyusb_endpoint *out_ep;
122 	struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
123 
124 	struct mutex in_mutex; /* serialize fops on FPGA to host stream */
125 	struct mutex out_mutex; /* serialize fops on host to FPGA stream */
126 	wait_queue_head_t flushq;
127 
128 	int chan_idx;
129 
130 	u32 in_consumed_bytes;
131 	u32 in_current_checkpoint;
132 	u32 out_bytes;
133 
134 	unsigned int in_log2_element_size;
135 	unsigned int out_log2_element_size;
136 	unsigned int in_log2_fifo_size;
137 	unsigned int out_log2_fifo_size;
138 
139 	unsigned int read_data_ok; /* EOF not arrived (yet) */
140 	unsigned int poll_used;
141 	unsigned int flushing;
142 	unsigned int flushed;
143 	unsigned int canceled;
144 
145 	/* Bit fields protected by @lock except for initialization */
146 	unsigned readable:1;
147 	unsigned writable:1;
148 	unsigned open_for_read:1;
149 	unsigned open_for_write:1;
150 	unsigned in_synchronous:1;
151 	unsigned out_synchronous:1;
152 	unsigned in_seekable:1;
153 	unsigned out_seekable:1;
154 };
155 
156 struct xillybuffer {
157 	struct list_head entry;
158 	struct xillyusb_endpoint *ep;
159 	void *buf;
160 	unsigned int len;
161 };
162 
163 struct xillyusb_dev {
164 	struct xillyusb_channel *channels;
165 
166 	struct usb_device	*udev;
167 	struct device		*dev; /* For dev_err() and such */
168 	struct kref		kref;
169 	struct workqueue_struct	*workq;
170 
171 	int error;
172 	spinlock_t error_lock; /* protect @error */
173 	struct work_struct wakeup_workitem;
174 
175 	int num_channels;
176 
177 	struct xillyusb_endpoint *msg_ep;
178 	struct xillyusb_endpoint *in_ep;
179 
180 	struct mutex msg_mutex; /* serialize opcode transmission */
181 	int in_bytes_left;
182 	int leftover_chan_num;
183 	unsigned int in_counter;
184 	struct mutex process_in_mutex; /* synchronize wakeup_all() */
185 };
186 
187 /* FPGA to host opcodes */
188 enum {
189 	OPCODE_DATA = 0,
190 	OPCODE_QUIESCE_ACK = 1,
191 	OPCODE_EOF = 2,
192 	OPCODE_REACHED_CHECKPOINT = 3,
193 	OPCODE_CANCELED_CHECKPOINT = 4,
194 };
195 
196 /* Host to FPGA opcodes */
197 enum {
198 	OPCODE_QUIESCE = 0,
199 	OPCODE_REQ_IDT = 1,
200 	OPCODE_SET_CHECKPOINT = 2,
201 	OPCODE_CLOSE = 3,
202 	OPCODE_SET_PUSH = 4,
203 	OPCODE_UPDATE_PUSH = 5,
204 	OPCODE_CANCEL_CHECKPOINT = 6,
205 	OPCODE_SET_ADDR = 7,
206 };
207 
208 /*
209  * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
210  * calls to each on the same FIFO is not allowed) however it's OK to have
211  * threads calling each of the two functions once on the same FIFO, and
212  * at the same time.
213  */
214 
215 static int fifo_write(struct xillyfifo *fifo,
216 		      const void *data, unsigned int len,
217 		      int (*copier)(void *, const void *, int))
218 {
219 	unsigned int done = 0;
220 	unsigned int todo = len;
221 	unsigned int nmax;
222 	unsigned int writepos = fifo->writepos;
223 	unsigned int writebuf = fifo->writebuf;
224 	unsigned long flags;
225 	int rc;
226 
227 	nmax = fifo->size - READ_ONCE(fifo->fill);
228 
229 	while (1) {
230 		unsigned int nrail = fifo->bufsize - writepos;
231 		unsigned int n = min(todo, nmax);
232 
233 		if (n == 0) {
234 			spin_lock_irqsave(&fifo->lock, flags);
235 			fifo->fill += done;
236 			spin_unlock_irqrestore(&fifo->lock, flags);
237 
238 			fifo->writepos = writepos;
239 			fifo->writebuf = writebuf;
240 
241 			return done;
242 		}
243 
244 		if (n > nrail)
245 			n = nrail;
246 
247 		rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
248 
249 		if (rc)
250 			return rc;
251 
252 		done += n;
253 		todo -= n;
254 
255 		writepos += n;
256 		nmax -= n;
257 
258 		if (writepos == fifo->bufsize) {
259 			writepos = 0;
260 			writebuf++;
261 
262 			if (writebuf == fifo->bufnum)
263 				writebuf = 0;
264 		}
265 	}
266 }
267 
268 static int fifo_read(struct xillyfifo *fifo,
269 		     void *data, unsigned int len,
270 		     int (*copier)(void *, const void *, int))
271 {
272 	unsigned int done = 0;
273 	unsigned int todo = len;
274 	unsigned int fill;
275 	unsigned int readpos = fifo->readpos;
276 	unsigned int readbuf = fifo->readbuf;
277 	unsigned long flags;
278 	int rc;
279 
280 	/*
281 	 * The spinlock here is necessary, because otherwise fifo->fill
282 	 * could have been increased by fifo_write() after writing data
283 	 * to the buffer, but this data would potentially not have been
284 	 * visible on this thread at the time the updated fifo->fill was.
285 	 * That could lead to reading invalid data.
286 	 */
287 
288 	spin_lock_irqsave(&fifo->lock, flags);
289 	fill = fifo->fill;
290 	spin_unlock_irqrestore(&fifo->lock, flags);
291 
292 	while (1) {
293 		unsigned int nrail = fifo->bufsize - readpos;
294 		unsigned int n = min(todo, fill);
295 
296 		if (n == 0) {
297 			spin_lock_irqsave(&fifo->lock, flags);
298 			fifo->fill -= done;
299 			spin_unlock_irqrestore(&fifo->lock, flags);
300 
301 			fifo->readpos = readpos;
302 			fifo->readbuf = readbuf;
303 
304 			return done;
305 		}
306 
307 		if (n > nrail)
308 			n = nrail;
309 
310 		rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
311 
312 		if (rc)
313 			return rc;
314 
315 		done += n;
316 		todo -= n;
317 
318 		readpos += n;
319 		fill -= n;
320 
321 		if (readpos == fifo->bufsize) {
322 			readpos = 0;
323 			readbuf++;
324 
325 			if (readbuf == fifo->bufnum)
326 				readbuf = 0;
327 		}
328 	}
329 }
330 
331 /*
332  * These three wrapper functions are used as the @copier argument to
333  * fifo_write() and fifo_read(), so that they can work directly with
334  * user memory as well.
335  */
336 
337 static int xilly_copy_from_user(void *dst, const void *src, int n)
338 {
339 	if (copy_from_user(dst, (const void __user *)src, n))
340 		return -EFAULT;
341 
342 	return 0;
343 }
344 
345 static int xilly_copy_to_user(void *dst, const void *src, int n)
346 {
347 	if (copy_to_user((void __user *)dst, src, n))
348 		return -EFAULT;
349 
350 	return 0;
351 }
352 
353 static int xilly_memcpy(void *dst, const void *src, int n)
354 {
355 	memcpy(dst, src, n);
356 
357 	return 0;
358 }
359 
360 static int fifo_init(struct xillyfifo *fifo,
361 		     unsigned int log2_size)
362 {
363 	unsigned int log2_bufnum;
364 	unsigned int buf_order;
365 	int i;
366 
367 	unsigned int log2_fifo_buf_size;
368 
369 retry:
370 	log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
371 
372 	if (log2_size > log2_fifo_buf_size) {
373 		log2_bufnum = log2_size - log2_fifo_buf_size;
374 		buf_order = fifo_buf_order;
375 		fifo->bufsize = 1 << log2_fifo_buf_size;
376 	} else {
377 		log2_bufnum = 0;
378 		buf_order = (log2_size > PAGE_SHIFT) ?
379 			log2_size - PAGE_SHIFT : 0;
380 		fifo->bufsize = 1 << log2_size;
381 	}
382 
383 	fifo->bufnum = 1 << log2_bufnum;
384 	fifo->size = fifo->bufnum * fifo->bufsize;
385 	fifo->buf_order = buf_order;
386 
387 	fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
388 
389 	if (!fifo->mem)
390 		return -ENOMEM;
391 
392 	for (i = 0; i < fifo->bufnum; i++) {
393 		fifo->mem[i] = (void *)
394 			__get_free_pages(GFP_KERNEL, buf_order);
395 
396 		if (!fifo->mem[i])
397 			goto memfail;
398 	}
399 
400 	fifo->fill = 0;
401 	fifo->readpos = 0;
402 	fifo->readbuf = 0;
403 	fifo->writepos = 0;
404 	fifo->writebuf = 0;
405 	spin_lock_init(&fifo->lock);
406 	init_waitqueue_head(&fifo->waitq);
407 	return 0;
408 
409 memfail:
410 	for (i--; i >= 0; i--)
411 		free_pages((unsigned long)fifo->mem[i], buf_order);
412 
413 	kfree(fifo->mem);
414 	fifo->mem = NULL;
415 
416 	if (fifo_buf_order) {
417 		fifo_buf_order--;
418 		goto retry;
419 	} else {
420 		return -ENOMEM;
421 	}
422 }
423 
424 static void fifo_mem_release(struct xillyfifo *fifo)
425 {
426 	int i;
427 
428 	if (!fifo->mem)
429 		return;
430 
431 	for (i = 0; i < fifo->bufnum; i++)
432 		free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
433 
434 	kfree(fifo->mem);
435 }
436 
437 /*
438  * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
439  * won't accept any new URB submissions, and its related work item doesn't
440  * and won't run anymore.
441  */
442 
443 static void endpoint_quiesce(struct xillyusb_endpoint *ep)
444 {
445 	mutex_lock(&ep->ep_mutex);
446 	ep->shutting_down = true;
447 	mutex_unlock(&ep->ep_mutex);
448 
449 	usb_kill_anchored_urbs(&ep->anchor);
450 	cancel_work_sync(&ep->workitem);
451 }
452 
453 /*
454  * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
455  * though endpoint_alloc doesn't allocate that memory.
456  */
457 
458 static void endpoint_dealloc(struct xillyusb_endpoint *ep)
459 {
460 	struct list_head *this, *next;
461 
462 	fifo_mem_release(&ep->fifo);
463 
464 	/* Join @filled_buffers with @buffers to free these entries too */
465 	list_splice(&ep->filled_buffers, &ep->buffers);
466 
467 	list_for_each_safe(this, next, &ep->buffers) {
468 		struct xillybuffer *xb =
469 			list_entry(this, struct xillybuffer, entry);
470 
471 		free_pages((unsigned long)xb->buf, ep->order);
472 		kfree(xb);
473 	}
474 
475 	kfree(ep);
476 }
477 
478 static struct xillyusb_endpoint
479 *endpoint_alloc(struct xillyusb_dev *xdev,
480 		u8 ep_num,
481 		void (*work)(struct work_struct *),
482 		unsigned int order,
483 		int bufnum)
484 {
485 	int i;
486 
487 	struct xillyusb_endpoint *ep;
488 
489 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
490 
491 	if (!ep)
492 		return NULL;
493 
494 	INIT_LIST_HEAD(&ep->buffers);
495 	INIT_LIST_HEAD(&ep->filled_buffers);
496 
497 	spin_lock_init(&ep->buffers_lock);
498 	mutex_init(&ep->ep_mutex);
499 
500 	init_usb_anchor(&ep->anchor);
501 	INIT_WORK(&ep->workitem, work);
502 
503 	ep->order = order;
504 	ep->buffer_size =  1 << (PAGE_SHIFT + order);
505 	ep->outstanding_urbs = 0;
506 	ep->drained = true;
507 	ep->wake_on_drain = false;
508 	ep->xdev = xdev;
509 	ep->ep_num = ep_num;
510 	ep->shutting_down = false;
511 
512 	for (i = 0; i < bufnum; i++) {
513 		struct xillybuffer *xb;
514 		unsigned long addr;
515 
516 		xb = kzalloc(sizeof(*xb), GFP_KERNEL);
517 
518 		if (!xb) {
519 			endpoint_dealloc(ep);
520 			return NULL;
521 		}
522 
523 		addr = __get_free_pages(GFP_KERNEL, order);
524 
525 		if (!addr) {
526 			kfree(xb);
527 			endpoint_dealloc(ep);
528 			return NULL;
529 		}
530 
531 		xb->buf = (void *)addr;
532 		xb->ep = ep;
533 		list_add_tail(&xb->entry, &ep->buffers);
534 	}
535 	return ep;
536 }
537 
538 static void cleanup_dev(struct kref *kref)
539 {
540 	struct xillyusb_dev *xdev =
541 		container_of(kref, struct xillyusb_dev, kref);
542 
543 	if (xdev->in_ep)
544 		endpoint_dealloc(xdev->in_ep);
545 
546 	if (xdev->msg_ep)
547 		endpoint_dealloc(xdev->msg_ep);
548 
549 	if (xdev->workq)
550 		destroy_workqueue(xdev->workq);
551 
552 	kfree(xdev->channels); /* Argument may be NULL, and that's fine */
553 	kfree(xdev);
554 }
555 
556 /*
557  * @process_in_mutex is taken to ensure that bulk_in_work() won't call
558  * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
559  * @read_data_ok entries, which will make process_bulk_in() report false
560  * errors if executed. The mechanism relies on that xdev->error is assigned
561  * a non-zero value by report_io_error() prior to queueing wakeup_all(),
562  * which prevents bulk_in_work() from calling process_bulk_in().
563  *
564  * The fact that wakeup_all() and bulk_in_work() are queued on the same
565  * workqueue makes their concurrent execution very unlikely, however the
566  * kernel's API doesn't seem to ensure this strictly.
567  */
568 
569 static void wakeup_all(struct work_struct *work)
570 {
571 	int i;
572 	struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
573 						 wakeup_workitem);
574 
575 	mutex_lock(&xdev->process_in_mutex);
576 
577 	for (i = 0; i < xdev->num_channels; i++) {
578 		struct xillyusb_channel *chan = &xdev->channels[i];
579 
580 		mutex_lock(&chan->lock);
581 
582 		if (chan->in_fifo) {
583 			/*
584 			 * Fake an EOF: Even if such arrives, it won't be
585 			 * processed.
586 			 */
587 			chan->read_data_ok = 0;
588 			wake_up_interruptible(&chan->in_fifo->waitq);
589 		}
590 
591 		if (chan->out_ep)
592 			wake_up_interruptible(&chan->out_ep->fifo.waitq);
593 
594 		mutex_unlock(&chan->lock);
595 
596 		wake_up_interruptible(&chan->flushq);
597 	}
598 
599 	mutex_unlock(&xdev->process_in_mutex);
600 
601 	wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
602 
603 	kref_put(&xdev->kref, cleanup_dev);
604 }
605 
606 static void report_io_error(struct xillyusb_dev *xdev,
607 			    int errcode)
608 {
609 	unsigned long flags;
610 	bool do_once = false;
611 
612 	spin_lock_irqsave(&xdev->error_lock, flags);
613 	if (!xdev->error) {
614 		xdev->error = errcode;
615 		do_once = true;
616 	}
617 	spin_unlock_irqrestore(&xdev->error_lock, flags);
618 
619 	if (do_once) {
620 		kref_get(&xdev->kref); /* xdev is used by work item */
621 		queue_work(xdev->workq, &xdev->wakeup_workitem);
622 	}
623 }
624 
625 /*
626  * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
627  * the previous pointer is never used after its return.
628  */
629 
630 static void safely_assign_in_fifo(struct xillyusb_channel *chan,
631 				  struct xillyfifo *fifo)
632 {
633 	mutex_lock(&chan->lock);
634 	chan->in_fifo = fifo;
635 	mutex_unlock(&chan->lock);
636 
637 	flush_work(&chan->xdev->in_ep->workitem);
638 }
639 
640 static void bulk_in_completer(struct urb *urb)
641 {
642 	struct xillybuffer *xb = urb->context;
643 	struct xillyusb_endpoint *ep = xb->ep;
644 	unsigned long flags;
645 
646 	if (urb->status) {
647 		if (!(urb->status == -ENOENT ||
648 		      urb->status == -ECONNRESET ||
649 		      urb->status == -ESHUTDOWN))
650 			report_io_error(ep->xdev, -EIO);
651 
652 		spin_lock_irqsave(&ep->buffers_lock, flags);
653 		list_add_tail(&xb->entry, &ep->buffers);
654 		ep->outstanding_urbs--;
655 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
656 
657 		return;
658 	}
659 
660 	xb->len = urb->actual_length;
661 
662 	spin_lock_irqsave(&ep->buffers_lock, flags);
663 	list_add_tail(&xb->entry, &ep->filled_buffers);
664 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
665 
666 	if (!ep->shutting_down)
667 		queue_work(ep->xdev->workq, &ep->workitem);
668 }
669 
670 static void bulk_out_completer(struct urb *urb)
671 {
672 	struct xillybuffer *xb = urb->context;
673 	struct xillyusb_endpoint *ep = xb->ep;
674 	unsigned long flags;
675 
676 	if (urb->status &&
677 	    (!(urb->status == -ENOENT ||
678 	       urb->status == -ECONNRESET ||
679 	       urb->status == -ESHUTDOWN)))
680 		report_io_error(ep->xdev, -EIO);
681 
682 	spin_lock_irqsave(&ep->buffers_lock, flags);
683 	list_add_tail(&xb->entry, &ep->buffers);
684 	ep->outstanding_urbs--;
685 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
686 
687 	if (!ep->shutting_down)
688 		queue_work(ep->xdev->workq, &ep->workitem);
689 }
690 
691 static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
692 {
693 	struct xillyusb_dev *xdev = ep->xdev;
694 	struct xillybuffer *xb;
695 	struct urb *urb;
696 
697 	int rc;
698 	unsigned long flags;
699 	unsigned int bufsize = ep->buffer_size;
700 
701 	mutex_lock(&ep->ep_mutex);
702 
703 	if (ep->shutting_down || xdev->error)
704 		goto done;
705 
706 	while (1) {
707 		spin_lock_irqsave(&ep->buffers_lock, flags);
708 
709 		if (list_empty(&ep->buffers)) {
710 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
711 			goto done;
712 		}
713 
714 		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
715 		list_del(&xb->entry);
716 		ep->outstanding_urbs++;
717 
718 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
719 
720 		urb = usb_alloc_urb(0, GFP_KERNEL);
721 		if (!urb) {
722 			report_io_error(xdev, -ENOMEM);
723 			goto relist;
724 		}
725 
726 		usb_fill_bulk_urb(urb, xdev->udev,
727 				  usb_rcvbulkpipe(xdev->udev, ep->ep_num),
728 				  xb->buf, bufsize, bulk_in_completer, xb);
729 
730 		usb_anchor_urb(urb, &ep->anchor);
731 
732 		rc = usb_submit_urb(urb, GFP_KERNEL);
733 
734 		if (rc) {
735 			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
736 					-EIO);
737 			goto unanchor;
738 		}
739 
740 		usb_free_urb(urb); /* This just decrements reference count */
741 	}
742 
743 unanchor:
744 	usb_unanchor_urb(urb);
745 	usb_free_urb(urb);
746 
747 relist:
748 	spin_lock_irqsave(&ep->buffers_lock, flags);
749 	list_add_tail(&xb->entry, &ep->buffers);
750 	ep->outstanding_urbs--;
751 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
752 
753 done:
754 	mutex_unlock(&ep->ep_mutex);
755 }
756 
757 static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
758 {
759 	struct xillyfifo *fifo = &ep->fifo;
760 	struct xillyusb_dev *xdev = ep->xdev;
761 	struct xillybuffer *xb;
762 	struct urb *urb;
763 
764 	int rc;
765 	unsigned int fill;
766 	unsigned long flags;
767 	bool do_wake = false;
768 
769 	mutex_lock(&ep->ep_mutex);
770 
771 	if (ep->shutting_down || xdev->error)
772 		goto done;
773 
774 	fill = READ_ONCE(fifo->fill) & ep->fill_mask;
775 
776 	while (1) {
777 		int count;
778 		unsigned int max_read;
779 
780 		spin_lock_irqsave(&ep->buffers_lock, flags);
781 
782 		/*
783 		 * Race conditions might have the FIFO filled while the
784 		 * endpoint is marked as drained here. That doesn't matter,
785 		 * because the sole purpose of @drained is to ensure that
786 		 * certain data has been sent on the USB channel before
787 		 * shutting it down. Hence knowing that the FIFO appears
788 		 * to be empty with no outstanding URBs at some moment
789 		 * is good enough.
790 		 */
791 
792 		if (!fill) {
793 			ep->drained = !ep->outstanding_urbs;
794 			if (ep->drained && ep->wake_on_drain)
795 				do_wake = true;
796 
797 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
798 			goto done;
799 		}
800 
801 		ep->drained = false;
802 
803 		if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
804 		    list_empty(&ep->buffers)) {
805 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
806 			goto done;
807 		}
808 
809 		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
810 		list_del(&xb->entry);
811 		ep->outstanding_urbs++;
812 
813 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
814 
815 		max_read = min(fill, ep->buffer_size);
816 
817 		count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
818 
819 		/*
820 		 * xilly_memcpy always returns 0 => fifo_read can't fail =>
821 		 * count > 0
822 		 */
823 
824 		urb = usb_alloc_urb(0, GFP_KERNEL);
825 		if (!urb) {
826 			report_io_error(xdev, -ENOMEM);
827 			goto relist;
828 		}
829 
830 		usb_fill_bulk_urb(urb, xdev->udev,
831 				  usb_sndbulkpipe(xdev->udev, ep->ep_num),
832 				  xb->buf, count, bulk_out_completer, xb);
833 
834 		usb_anchor_urb(urb, &ep->anchor);
835 
836 		rc = usb_submit_urb(urb, GFP_KERNEL);
837 
838 		if (rc) {
839 			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
840 					-EIO);
841 			goto unanchor;
842 		}
843 
844 		usb_free_urb(urb); /* This just decrements reference count */
845 
846 		fill -= count;
847 		do_wake = true;
848 	}
849 
850 unanchor:
851 	usb_unanchor_urb(urb);
852 	usb_free_urb(urb);
853 
854 relist:
855 	spin_lock_irqsave(&ep->buffers_lock, flags);
856 	list_add_tail(&xb->entry, &ep->buffers);
857 	ep->outstanding_urbs--;
858 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
859 
860 done:
861 	mutex_unlock(&ep->ep_mutex);
862 
863 	if (do_wake)
864 		wake_up_interruptible(&fifo->waitq);
865 }
866 
867 static void bulk_out_work(struct work_struct *work)
868 {
869 	struct xillyusb_endpoint *ep = container_of(work,
870 						    struct xillyusb_endpoint,
871 						    workitem);
872 	try_queue_bulk_out(ep);
873 }
874 
875 static int process_in_opcode(struct xillyusb_dev *xdev,
876 			     int opcode,
877 			     int chan_num)
878 {
879 	struct xillyusb_channel *chan;
880 	struct device *dev = xdev->dev;
881 	int chan_idx = chan_num >> 1;
882 
883 	if (chan_idx >= xdev->num_channels) {
884 		dev_err(dev, "Received illegal channel ID %d from FPGA\n",
885 			chan_num);
886 		return -EIO;
887 	}
888 
889 	chan = &xdev->channels[chan_idx];
890 
891 	switch (opcode) {
892 	case OPCODE_EOF:
893 		if (!chan->read_data_ok) {
894 			dev_err(dev, "Received unexpected EOF for channel %d\n",
895 				chan_num);
896 			return -EIO;
897 		}
898 
899 		/*
900 		 * A write memory barrier ensures that the FIFO's fill level
901 		 * is visible before read_data_ok turns zero, so the data in
902 		 * the FIFO isn't missed by the consumer.
903 		 */
904 		smp_wmb();
905 		WRITE_ONCE(chan->read_data_ok, 0);
906 		wake_up_interruptible(&chan->in_fifo->waitq);
907 		break;
908 
909 	case OPCODE_REACHED_CHECKPOINT:
910 		chan->flushing = 0;
911 		wake_up_interruptible(&chan->flushq);
912 		break;
913 
914 	case OPCODE_CANCELED_CHECKPOINT:
915 		chan->canceled = 1;
916 		wake_up_interruptible(&chan->flushq);
917 		break;
918 
919 	default:
920 		dev_err(dev, "Received illegal opcode %d from FPGA\n",
921 			opcode);
922 		return -EIO;
923 	}
924 
925 	return 0;
926 }
927 
928 static int process_bulk_in(struct xillybuffer *xb)
929 {
930 	struct xillyusb_endpoint *ep = xb->ep;
931 	struct xillyusb_dev *xdev = ep->xdev;
932 	struct device *dev = xdev->dev;
933 	int dws = xb->len >> 2;
934 	__le32 *p = xb->buf;
935 	u32 ctrlword;
936 	struct xillyusb_channel *chan;
937 	struct xillyfifo *fifo;
938 	int chan_num = 0, opcode;
939 	int chan_idx;
940 	int bytes, count, dwconsume;
941 	int in_bytes_left = 0;
942 	int rc;
943 
944 	if ((dws << 2) != xb->len) {
945 		dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
946 			xb->len);
947 		return -EIO;
948 	}
949 
950 	if (xdev->in_bytes_left) {
951 		bytes = min(xdev->in_bytes_left, dws << 2);
952 		in_bytes_left = xdev->in_bytes_left - bytes;
953 		chan_num = xdev->leftover_chan_num;
954 		goto resume_leftovers;
955 	}
956 
957 	while (dws) {
958 		ctrlword = le32_to_cpu(*p++);
959 		dws--;
960 
961 		chan_num = ctrlword & 0xfff;
962 		count = (ctrlword >> 12) & 0x3ff;
963 		opcode = (ctrlword >> 24) & 0xf;
964 
965 		if (opcode != OPCODE_DATA) {
966 			unsigned int in_counter = xdev->in_counter++ & 0x3ff;
967 
968 			if (count != in_counter) {
969 				dev_err(dev, "Expected opcode counter %d, got %d\n",
970 					in_counter, count);
971 				return -EIO;
972 			}
973 
974 			rc = process_in_opcode(xdev, opcode, chan_num);
975 
976 			if (rc)
977 				return rc;
978 
979 			continue;
980 		}
981 
982 		bytes = min(count + 1, dws << 2);
983 		in_bytes_left = count + 1 - bytes;
984 
985 resume_leftovers:
986 		chan_idx = chan_num >> 1;
987 
988 		if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
989 		    !xdev->channels[chan_idx].read_data_ok) {
990 			dev_err(dev, "Received illegal channel ID %d from FPGA\n",
991 				chan_num);
992 			return -EIO;
993 		}
994 		chan = &xdev->channels[chan_idx];
995 
996 		fifo = chan->in_fifo;
997 
998 		if (unlikely(!fifo))
999 			return -EIO; /* We got really unexpected data */
1000 
1001 		if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
1002 			dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1003 			return -EIO;
1004 		}
1005 
1006 		wake_up_interruptible(&fifo->waitq);
1007 
1008 		dwconsume = (bytes + 3) >> 2;
1009 		dws -= dwconsume;
1010 		p += dwconsume;
1011 	}
1012 
1013 	xdev->in_bytes_left = in_bytes_left;
1014 	xdev->leftover_chan_num = chan_num;
1015 	return 0;
1016 }
1017 
1018 static void bulk_in_work(struct work_struct *work)
1019 {
1020 	struct xillyusb_endpoint *ep =
1021 		container_of(work, struct xillyusb_endpoint, workitem);
1022 	struct xillyusb_dev *xdev = ep->xdev;
1023 	unsigned long flags;
1024 	struct xillybuffer *xb;
1025 	bool consumed = false;
1026 	int rc = 0;
1027 
1028 	mutex_lock(&xdev->process_in_mutex);
1029 
1030 	spin_lock_irqsave(&ep->buffers_lock, flags);
1031 
1032 	while (1) {
1033 		if (rc || list_empty(&ep->filled_buffers)) {
1034 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
1035 			mutex_unlock(&xdev->process_in_mutex);
1036 
1037 			if (rc)
1038 				report_io_error(xdev, rc);
1039 			else if (consumed)
1040 				try_queue_bulk_in(ep);
1041 
1042 			return;
1043 		}
1044 
1045 		xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1046 				      entry);
1047 		list_del(&xb->entry);
1048 
1049 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
1050 
1051 		consumed = true;
1052 
1053 		if (!xdev->error)
1054 			rc = process_bulk_in(xb);
1055 
1056 		spin_lock_irqsave(&ep->buffers_lock, flags);
1057 		list_add_tail(&xb->entry, &ep->buffers);
1058 		ep->outstanding_urbs--;
1059 	}
1060 }
1061 
1062 static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1063 				int chan_num, char opcode, u32 data)
1064 {
1065 	struct xillyusb_endpoint *ep = xdev->msg_ep;
1066 	struct xillyfifo *fifo = &ep->fifo;
1067 	__le32 msg[2];
1068 
1069 	int rc = 0;
1070 
1071 	msg[0] = cpu_to_le32((chan_num & 0xfff) |
1072 			     ((opcode & 0xf) << 24));
1073 	msg[1] = cpu_to_le32(data);
1074 
1075 	mutex_lock(&xdev->msg_mutex);
1076 
1077 	/*
1078 	 * The wait queue is woken with the interruptible variant, so the
1079 	 * wait function matches, however returning because of an interrupt
1080 	 * will mess things up considerably, in particular when the caller is
1081 	 * the release method. And the xdev->error part prevents being stuck
1082 	 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1083 	 */
1084 
1085 	while (wait_event_interruptible(fifo->waitq,
1086 					fifo->fill <= (fifo->size - 8) ||
1087 					xdev->error))
1088 		; /* Empty loop */
1089 
1090 	if (xdev->error) {
1091 		rc = xdev->error;
1092 		goto unlock_done;
1093 	}
1094 
1095 	fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
1096 
1097 	try_queue_bulk_out(ep);
1098 
1099 unlock_done:
1100 	mutex_unlock(&xdev->msg_mutex);
1101 
1102 	return rc;
1103 }
1104 
1105 /*
1106  * Note that flush_downstream() merely waits for the data to arrive to
1107  * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1108  * it does nothing to make it happen (and neither is it necessary).
1109  *
1110  * This function is not reentrant for the same @chan, but this is covered
1111  * by the fact that for any given @chan, it's called either by the open,
1112  * write, llseek and flush fops methods, which can't run in parallel (and the
1113  * write + flush and llseek method handlers are protected with out_mutex).
1114  *
1115  * chan->flushed is there to avoid multiple flushes at the same position,
1116  * in particular as a result of programs that close the file descriptor
1117  * e.g. after a dup2() for redirection.
1118  */
1119 
1120 static int flush_downstream(struct xillyusb_channel *chan,
1121 			    long timeout,
1122 			    bool interruptible)
1123 {
1124 	struct xillyusb_dev *xdev = chan->xdev;
1125 	int chan_num = chan->chan_idx << 1;
1126 	long deadline, left_to_sleep;
1127 	int rc;
1128 
1129 	if (chan->flushed)
1130 		return 0;
1131 
1132 	deadline = jiffies + 1 + timeout;
1133 
1134 	if (chan->flushing) {
1135 		long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1136 
1137 		chan->canceled = 0;
1138 		rc = xillyusb_send_opcode(xdev, chan_num,
1139 					  OPCODE_CANCEL_CHECKPOINT, 0);
1140 
1141 		if (rc)
1142 			return rc; /* Only real error, never -EINTR */
1143 
1144 		/* Ignoring interrupts. Cancellation must be handled */
1145 		while (!chan->canceled) {
1146 			left_to_sleep = cancel_deadline - ((long)jiffies);
1147 
1148 			if (left_to_sleep <= 0) {
1149 				report_io_error(xdev, -EIO);
1150 				return -EIO;
1151 			}
1152 
1153 			rc = wait_event_interruptible_timeout(chan->flushq,
1154 							      chan->canceled ||
1155 							      xdev->error,
1156 							      left_to_sleep);
1157 
1158 			if (xdev->error)
1159 				return xdev->error;
1160 		}
1161 	}
1162 
1163 	chan->flushing = 1;
1164 
1165 	/*
1166 	 * The checkpoint is given in terms of data elements, not bytes. As
1167 	 * a result, if less than an element's worth of data is stored in the
1168 	 * FIFO, it's not flushed, including the flush before closing, which
1169 	 * means that such data is lost. This is consistent with PCIe Xillybus.
1170 	 */
1171 
1172 	rc = xillyusb_send_opcode(xdev, chan_num,
1173 				  OPCODE_SET_CHECKPOINT,
1174 				  chan->out_bytes >>
1175 				  chan->out_log2_element_size);
1176 
1177 	if (rc)
1178 		return rc; /* Only real error, never -EINTR */
1179 
1180 	if (!timeout) {
1181 		while (chan->flushing) {
1182 			rc = wait_event_interruptible(chan->flushq,
1183 						      !chan->flushing ||
1184 						      xdev->error);
1185 			if (xdev->error)
1186 				return xdev->error;
1187 
1188 			if (interruptible && rc)
1189 				return -EINTR;
1190 		}
1191 
1192 		goto done;
1193 	}
1194 
1195 	while (chan->flushing) {
1196 		left_to_sleep = deadline - ((long)jiffies);
1197 
1198 		if (left_to_sleep <= 0)
1199 			return -ETIMEDOUT;
1200 
1201 		rc = wait_event_interruptible_timeout(chan->flushq,
1202 						      !chan->flushing ||
1203 						      xdev->error,
1204 						      left_to_sleep);
1205 
1206 		if (xdev->error)
1207 			return xdev->error;
1208 
1209 		if (interruptible && rc < 0)
1210 			return -EINTR;
1211 	}
1212 
1213 done:
1214 	chan->flushed = 1;
1215 	return 0;
1216 }
1217 
1218 /* request_read_anything(): Ask the FPGA for any little amount of data */
1219 static int request_read_anything(struct xillyusb_channel *chan,
1220 				 char opcode)
1221 {
1222 	struct xillyusb_dev *xdev = chan->xdev;
1223 	unsigned int sh = chan->in_log2_element_size;
1224 	int chan_num = (chan->chan_idx << 1) | 1;
1225 	u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1226 
1227 	return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
1228 }
1229 
1230 static int xillyusb_open(struct inode *inode, struct file *filp)
1231 {
1232 	struct xillyusb_dev *xdev;
1233 	struct xillyusb_channel *chan;
1234 	struct xillyfifo *in_fifo = NULL;
1235 	struct xillyusb_endpoint *out_ep = NULL;
1236 	int rc;
1237 	int index;
1238 
1239 	rc = xillybus_find_inode(inode, (void **)&xdev, &index);
1240 	if (rc)
1241 		return rc;
1242 
1243 	chan = &xdev->channels[index];
1244 	filp->private_data = chan;
1245 
1246 	mutex_lock(&chan->lock);
1247 
1248 	rc = -ENODEV;
1249 
1250 	if (xdev->error)
1251 		goto unmutex_fail;
1252 
1253 	if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1254 	    ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1255 		goto unmutex_fail;
1256 
1257 	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1258 	    chan->in_synchronous) {
1259 		dev_err(xdev->dev,
1260 			"open() failed: O_NONBLOCK not allowed for read on this device\n");
1261 		goto unmutex_fail;
1262 	}
1263 
1264 	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1265 	    chan->out_synchronous) {
1266 		dev_err(xdev->dev,
1267 			"open() failed: O_NONBLOCK not allowed for write on this device\n");
1268 		goto unmutex_fail;
1269 	}
1270 
1271 	rc = -EBUSY;
1272 
1273 	if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1274 	    ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1275 		goto unmutex_fail;
1276 
1277 	kref_get(&xdev->kref);
1278 
1279 	if (filp->f_mode & FMODE_READ)
1280 		chan->open_for_read = 1;
1281 
1282 	if (filp->f_mode & FMODE_WRITE)
1283 		chan->open_for_write = 1;
1284 
1285 	mutex_unlock(&chan->lock);
1286 
1287 	if (filp->f_mode & FMODE_WRITE) {
1288 		out_ep = endpoint_alloc(xdev,
1289 					(chan->chan_idx + 2) | USB_DIR_OUT,
1290 					bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1291 
1292 		if (!out_ep) {
1293 			rc = -ENOMEM;
1294 			goto unopen;
1295 		}
1296 
1297 		rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
1298 
1299 		if (rc)
1300 			goto late_unopen;
1301 
1302 		out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1303 		chan->out_bytes = 0;
1304 		chan->flushed = 0;
1305 
1306 		/*
1307 		 * Sending a flush request to a previously closed stream
1308 		 * effectively opens it, and also waits until the command is
1309 		 * confirmed by the FPGA. The latter is necessary because the
1310 		 * data is sent through a separate BULK OUT endpoint, and the
1311 		 * xHCI controller is free to reorder transmissions.
1312 		 *
1313 		 * This can't go wrong unless there's a serious hardware error
1314 		 * (or the computer is stuck for 500 ms?)
1315 		 */
1316 		rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
1317 
1318 		if (rc == -ETIMEDOUT) {
1319 			rc = -EIO;
1320 			report_io_error(xdev, rc);
1321 		}
1322 
1323 		if (rc)
1324 			goto late_unopen;
1325 	}
1326 
1327 	if (filp->f_mode & FMODE_READ) {
1328 		in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
1329 
1330 		if (!in_fifo) {
1331 			rc = -ENOMEM;
1332 			goto late_unopen;
1333 		}
1334 
1335 		rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
1336 
1337 		if (rc) {
1338 			kfree(in_fifo);
1339 			goto late_unopen;
1340 		}
1341 	}
1342 
1343 	mutex_lock(&chan->lock);
1344 	if (in_fifo) {
1345 		chan->in_fifo = in_fifo;
1346 		chan->read_data_ok = 1;
1347 	}
1348 	if (out_ep)
1349 		chan->out_ep = out_ep;
1350 	mutex_unlock(&chan->lock);
1351 
1352 	if (in_fifo) {
1353 		u32 in_checkpoint = 0;
1354 
1355 		if (!chan->in_synchronous)
1356 			in_checkpoint = in_fifo->size >>
1357 				chan->in_log2_element_size;
1358 
1359 		chan->in_consumed_bytes = 0;
1360 		chan->poll_used = 0;
1361 		chan->in_current_checkpoint = in_checkpoint;
1362 		rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1363 					  OPCODE_SET_CHECKPOINT,
1364 					  in_checkpoint);
1365 
1366 		if (rc) /* Failure guarantees that opcode wasn't sent */
1367 			goto unfifo;
1368 
1369 		/*
1370 		 * In non-blocking mode, request the FPGA to send any data it
1371 		 * has right away. Otherwise, the first read() will always
1372 		 * return -EAGAIN, which is OK strictly speaking, but ugly.
1373 		 * Checking and unrolling if this fails isn't worth the
1374 		 * effort -- the error is propagated to the first read()
1375 		 * anyhow.
1376 		 */
1377 		if (filp->f_flags & O_NONBLOCK)
1378 			request_read_anything(chan, OPCODE_SET_PUSH);
1379 	}
1380 
1381 	return 0;
1382 
1383 unfifo:
1384 	chan->read_data_ok = 0;
1385 	safely_assign_in_fifo(chan, NULL);
1386 	fifo_mem_release(in_fifo);
1387 	kfree(in_fifo);
1388 
1389 	if (out_ep) {
1390 		mutex_lock(&chan->lock);
1391 		chan->out_ep = NULL;
1392 		mutex_unlock(&chan->lock);
1393 	}
1394 
1395 late_unopen:
1396 	if (out_ep)
1397 		endpoint_dealloc(out_ep);
1398 
1399 unopen:
1400 	mutex_lock(&chan->lock);
1401 
1402 	if (filp->f_mode & FMODE_READ)
1403 		chan->open_for_read = 0;
1404 
1405 	if (filp->f_mode & FMODE_WRITE)
1406 		chan->open_for_write = 0;
1407 
1408 	mutex_unlock(&chan->lock);
1409 
1410 	kref_put(&xdev->kref, cleanup_dev);
1411 
1412 	return rc;
1413 
1414 unmutex_fail:
1415 	mutex_unlock(&chan->lock);
1416 	return rc;
1417 }
1418 
1419 static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1420 			     size_t count, loff_t *f_pos)
1421 {
1422 	struct xillyusb_channel *chan = filp->private_data;
1423 	struct xillyusb_dev *xdev = chan->xdev;
1424 	struct xillyfifo *fifo = chan->in_fifo;
1425 	int chan_num = (chan->chan_idx << 1) | 1;
1426 
1427 	long deadline, left_to_sleep;
1428 	int bytes_done = 0;
1429 	bool sent_set_push = false;
1430 	int rc;
1431 
1432 	deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1433 
1434 	rc = mutex_lock_interruptible(&chan->in_mutex);
1435 
1436 	if (rc)
1437 		return rc;
1438 
1439 	while (1) {
1440 		u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1441 		u32 complete_checkpoint, fifo_checkpoint;
1442 		u32 checkpoint;
1443 		s32 diff, leap;
1444 		unsigned int sh = chan->in_log2_element_size;
1445 		bool checkpoint_for_complete;
1446 
1447 		rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
1448 			       count - bytes_done, xilly_copy_to_user);
1449 
1450 		if (rc < 0)
1451 			break;
1452 
1453 		bytes_done += rc;
1454 		chan->in_consumed_bytes += rc;
1455 
1456 		left_to_sleep = deadline - ((long)jiffies);
1457 
1458 		/*
1459 		 * Some 32-bit arithmetic that may wrap. Note that
1460 		 * complete_checkpoint is rounded up to the closest element
1461 		 * boundary, because the read() can't be completed otherwise.
1462 		 * fifo_checkpoint_bytes is rounded down, because it protects
1463 		 * in_fifo from overflowing.
1464 		 */
1465 
1466 		fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1467 		complete_checkpoint_bytes =
1468 			chan->in_consumed_bytes + count - bytes_done;
1469 
1470 		fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1471 		complete_checkpoint =
1472 			(complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1473 
1474 		diff = (fifo_checkpoint - complete_checkpoint) << sh;
1475 
1476 		if (chan->in_synchronous && diff >= 0) {
1477 			checkpoint = complete_checkpoint;
1478 			checkpoint_for_complete = true;
1479 		} else {
1480 			checkpoint = fifo_checkpoint;
1481 			checkpoint_for_complete = false;
1482 		}
1483 
1484 		leap = (checkpoint - chan->in_current_checkpoint) << sh;
1485 
1486 		/*
1487 		 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1488 		 * data is consumed, it's issued only if it moves the
1489 		 * checkpoint by at least an 8th of the FIFO's size, or if
1490 		 * it's necessary to complete the number of bytes requested by
1491 		 * the read() call.
1492 		 *
1493 		 * chan->read_data_ok is checked to spare an unnecessary
1494 		 * submission after receiving EOF, however it's harmless if
1495 		 * such slips away.
1496 		 */
1497 
1498 		if (chan->read_data_ok &&
1499 		    (leap > (fifo->size >> 3) ||
1500 		     (checkpoint_for_complete && leap > 0))) {
1501 			chan->in_current_checkpoint = checkpoint;
1502 			rc = xillyusb_send_opcode(xdev, chan_num,
1503 						  OPCODE_SET_CHECKPOINT,
1504 						  checkpoint);
1505 
1506 			if (rc)
1507 				break;
1508 		}
1509 
1510 		if (bytes_done == count ||
1511 		    (left_to_sleep <= 0 && bytes_done))
1512 			break;
1513 
1514 		/*
1515 		 * Reaching here means that the FIFO was empty when
1516 		 * fifo_read() returned, but not necessarily right now. Error
1517 		 * and EOF are checked and reported only now, so that no data
1518 		 * that managed its way to the FIFO is lost.
1519 		 */
1520 
1521 		if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1522 			/* Has data slipped into the FIFO since fifo_read()? */
1523 			smp_rmb();
1524 			if (READ_ONCE(fifo->fill))
1525 				continue;
1526 
1527 			rc = 0;
1528 			break;
1529 		}
1530 
1531 		if (xdev->error) {
1532 			rc = xdev->error;
1533 			break;
1534 		}
1535 
1536 		if (filp->f_flags & O_NONBLOCK) {
1537 			rc = -EAGAIN;
1538 			break;
1539 		}
1540 
1541 		if (!sent_set_push) {
1542 			rc = xillyusb_send_opcode(xdev, chan_num,
1543 						  OPCODE_SET_PUSH,
1544 						  complete_checkpoint);
1545 
1546 			if (rc)
1547 				break;
1548 
1549 			sent_set_push = true;
1550 		}
1551 
1552 		if (left_to_sleep > 0) {
1553 			/*
1554 			 * Note that when xdev->error is set (e.g. when the
1555 			 * device is unplugged), read_data_ok turns zero and
1556 			 * fifo->waitq is awaken.
1557 			 * Therefore no special attention to xdev->error.
1558 			 */
1559 
1560 			rc = wait_event_interruptible_timeout
1561 				(fifo->waitq,
1562 				 fifo->fill || !chan->read_data_ok,
1563 				 left_to_sleep);
1564 		} else { /* bytes_done == 0 */
1565 			/* Tell FPGA to send anything it has */
1566 			rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
1567 
1568 			if (rc)
1569 				break;
1570 
1571 			rc = wait_event_interruptible
1572 				(fifo->waitq,
1573 				 fifo->fill || !chan->read_data_ok);
1574 		}
1575 
1576 		if (rc < 0) {
1577 			rc = -EINTR;
1578 			break;
1579 		}
1580 	}
1581 
1582 	if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1583 	    !READ_ONCE(fifo->fill))
1584 		request_read_anything(chan, OPCODE_SET_PUSH);
1585 
1586 	mutex_unlock(&chan->in_mutex);
1587 
1588 	if (bytes_done)
1589 		return bytes_done;
1590 
1591 	return rc;
1592 }
1593 
1594 static int xillyusb_flush(struct file *filp, fl_owner_t id)
1595 {
1596 	struct xillyusb_channel *chan = filp->private_data;
1597 	int rc;
1598 
1599 	if (!(filp->f_mode & FMODE_WRITE))
1600 		return 0;
1601 
1602 	rc = mutex_lock_interruptible(&chan->out_mutex);
1603 
1604 	if (rc)
1605 		return rc;
1606 
1607 	/*
1608 	 * One second's timeout on flushing. Interrupts are ignored, because if
1609 	 * the user pressed CTRL-C, that interrupt will still be in flight by
1610 	 * the time we reach here, and the opportunity to flush is lost.
1611 	 */
1612 	rc = flush_downstream(chan, HZ, false);
1613 
1614 	mutex_unlock(&chan->out_mutex);
1615 
1616 	if (rc == -ETIMEDOUT) {
1617 		/* The things you do to use dev_warn() and not pr_warn() */
1618 		struct xillyusb_dev *xdev = chan->xdev;
1619 
1620 		mutex_lock(&chan->lock);
1621 		if (!xdev->error)
1622 			dev_warn(xdev->dev,
1623 				 "Timed out while flushing. Output data may be lost.\n");
1624 		mutex_unlock(&chan->lock);
1625 	}
1626 
1627 	return rc;
1628 }
1629 
1630 static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1631 			      size_t count, loff_t *f_pos)
1632 {
1633 	struct xillyusb_channel *chan = filp->private_data;
1634 	struct xillyusb_dev *xdev = chan->xdev;
1635 	struct xillyfifo *fifo = &chan->out_ep->fifo;
1636 	int rc;
1637 
1638 	rc = mutex_lock_interruptible(&chan->out_mutex);
1639 
1640 	if (rc)
1641 		return rc;
1642 
1643 	while (1) {
1644 		if (xdev->error) {
1645 			rc = xdev->error;
1646 			break;
1647 		}
1648 
1649 		if (count == 0)
1650 			break;
1651 
1652 		rc = fifo_write(fifo, (__force void *)userbuf, count,
1653 				xilly_copy_from_user);
1654 
1655 		if (rc != 0)
1656 			break;
1657 
1658 		if (filp->f_flags & O_NONBLOCK) {
1659 			rc = -EAGAIN;
1660 			break;
1661 		}
1662 
1663 		if (wait_event_interruptible
1664 		    (fifo->waitq,
1665 		     fifo->fill != fifo->size || xdev->error)) {
1666 			rc = -EINTR;
1667 			break;
1668 		}
1669 	}
1670 
1671 	if (rc < 0)
1672 		goto done;
1673 
1674 	chan->out_bytes += rc;
1675 
1676 	if (rc) {
1677 		try_queue_bulk_out(chan->out_ep);
1678 		chan->flushed = 0;
1679 	}
1680 
1681 	if (chan->out_synchronous) {
1682 		int flush_rc = flush_downstream(chan, 0, true);
1683 
1684 		if (flush_rc && !rc)
1685 			rc = flush_rc;
1686 	}
1687 
1688 done:
1689 	mutex_unlock(&chan->out_mutex);
1690 
1691 	return rc;
1692 }
1693 
1694 static int xillyusb_release(struct inode *inode, struct file *filp)
1695 {
1696 	struct xillyusb_channel *chan = filp->private_data;
1697 	struct xillyusb_dev *xdev = chan->xdev;
1698 	int rc_read = 0, rc_write = 0;
1699 
1700 	if (filp->f_mode & FMODE_READ) {
1701 		struct xillyfifo *in_fifo = chan->in_fifo;
1702 
1703 		rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1704 					       OPCODE_CLOSE, 0);
1705 		/*
1706 		 * If rc_read is nonzero, xdev->error indicates a global
1707 		 * device error. The error is reported later, so that
1708 		 * resources are freed.
1709 		 *
1710 		 * Looping on wait_event_interruptible() kinda breaks the idea
1711 		 * of being interruptible, and this should have been
1712 		 * wait_event(). Only it's being waken with
1713 		 * wake_up_interruptible() for the sake of other uses. If
1714 		 * there's a global device error, chan->read_data_ok is
1715 		 * deasserted and the wait queue is awaken, so this is covered.
1716 		 */
1717 
1718 		while (wait_event_interruptible(in_fifo->waitq,
1719 						!chan->read_data_ok))
1720 			; /* Empty loop */
1721 
1722 		safely_assign_in_fifo(chan, NULL);
1723 		fifo_mem_release(in_fifo);
1724 		kfree(in_fifo);
1725 
1726 		mutex_lock(&chan->lock);
1727 		chan->open_for_read = 0;
1728 		mutex_unlock(&chan->lock);
1729 	}
1730 
1731 	if (filp->f_mode & FMODE_WRITE) {
1732 		struct xillyusb_endpoint *ep = chan->out_ep;
1733 		/*
1734 		 * chan->flushing isn't zeroed. If the pre-release flush timed
1735 		 * out, a cancel request will be sent before the next
1736 		 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1737 		 * This is despite that the FPGA forgets about the checkpoint
1738 		 * request as the file closes. Still, in an exceptional race
1739 		 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1740 		 * just before closing that would reach the host after the
1741 		 * file has re-opened.
1742 		 */
1743 
1744 		mutex_lock(&chan->lock);
1745 		chan->out_ep = NULL;
1746 		mutex_unlock(&chan->lock);
1747 
1748 		endpoint_quiesce(ep);
1749 		endpoint_dealloc(ep);
1750 
1751 		/* See comments on rc_read above */
1752 		rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1753 						OPCODE_CLOSE, 0);
1754 
1755 		mutex_lock(&chan->lock);
1756 		chan->open_for_write = 0;
1757 		mutex_unlock(&chan->lock);
1758 	}
1759 
1760 	kref_put(&xdev->kref, cleanup_dev);
1761 
1762 	return rc_read ? rc_read : rc_write;
1763 }
1764 
1765 /*
1766  * Xillybus' API allows device nodes to be seekable, giving the user
1767  * application access to a RAM array on the FPGA (or logic emulating it).
1768  */
1769 
1770 static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1771 {
1772 	struct xillyusb_channel *chan = filp->private_data;
1773 	struct xillyusb_dev *xdev = chan->xdev;
1774 	loff_t pos = filp->f_pos;
1775 	int rc = 0;
1776 	unsigned int log2_element_size = chan->readable ?
1777 		chan->in_log2_element_size : chan->out_log2_element_size;
1778 
1779 	/*
1780 	 * Take both mutexes not allowing interrupts, since it seems like
1781 	 * common applications don't expect an -EINTR here. Besides, multiple
1782 	 * access to a single file descriptor on seekable devices is a mess
1783 	 * anyhow.
1784 	 */
1785 
1786 	mutex_lock(&chan->out_mutex);
1787 	mutex_lock(&chan->in_mutex);
1788 
1789 	switch (whence) {
1790 	case SEEK_SET:
1791 		pos = offset;
1792 		break;
1793 	case SEEK_CUR:
1794 		pos += offset;
1795 		break;
1796 	case SEEK_END:
1797 		pos = offset; /* Going to the end => to the beginning */
1798 		break;
1799 	default:
1800 		rc = -EINVAL;
1801 		goto end;
1802 	}
1803 
1804 	/* In any case, we must finish on an element boundary */
1805 	if (pos & ((1 << log2_element_size) - 1)) {
1806 		rc = -EINVAL;
1807 		goto end;
1808 	}
1809 
1810 	rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1811 				  OPCODE_SET_ADDR,
1812 				  pos >> log2_element_size);
1813 
1814 	if (rc)
1815 		goto end;
1816 
1817 	if (chan->writable) {
1818 		chan->flushed = 0;
1819 		rc = flush_downstream(chan, HZ, false);
1820 	}
1821 
1822 end:
1823 	mutex_unlock(&chan->out_mutex);
1824 	mutex_unlock(&chan->in_mutex);
1825 
1826 	if (rc) /* Return error after releasing mutexes */
1827 		return rc;
1828 
1829 	filp->f_pos = pos;
1830 
1831 	return pos;
1832 }
1833 
1834 static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1835 {
1836 	struct xillyusb_channel *chan = filp->private_data;
1837 	__poll_t mask = 0;
1838 
1839 	if (chan->in_fifo)
1840 		poll_wait(filp, &chan->in_fifo->waitq, wait);
1841 
1842 	if (chan->out_ep)
1843 		poll_wait(filp, &chan->out_ep->fifo.waitq, wait);
1844 
1845 	/*
1846 	 * If this is the first time poll() is called, and the file is
1847 	 * readable, set the relevant flag. Also tell the FPGA to send all it
1848 	 * has, to kickstart the mechanism that ensures there's always some
1849 	 * data in in_fifo unless the stream is dry end-to-end. Note that the
1850 	 * first poll() may not return a EPOLLIN, even if there's data on the
1851 	 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1852 	 * wait queue.
1853 	 */
1854 
1855 	if (!chan->poll_used && chan->in_fifo) {
1856 		chan->poll_used = 1;
1857 		request_read_anything(chan, OPCODE_SET_PUSH);
1858 	}
1859 
1860 	/*
1861 	 * poll() won't play ball regarding read() channels which
1862 	 * are synchronous. Allowing that will create situations where data has
1863 	 * been delivered at the FPGA, and users expecting select() to wake up,
1864 	 * which it may not. So make it never work.
1865 	 */
1866 
1867 	if (chan->in_fifo && !chan->in_synchronous &&
1868 	    (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1869 		mask |= EPOLLIN | EPOLLRDNORM;
1870 
1871 	if (chan->out_ep &&
1872 	    (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1873 		mask |= EPOLLOUT | EPOLLWRNORM;
1874 
1875 	if (chan->xdev->error)
1876 		mask |= EPOLLERR;
1877 
1878 	return mask;
1879 }
1880 
1881 static const struct file_operations xillyusb_fops = {
1882 	.owner      = THIS_MODULE,
1883 	.read       = xillyusb_read,
1884 	.write      = xillyusb_write,
1885 	.open       = xillyusb_open,
1886 	.flush      = xillyusb_flush,
1887 	.release    = xillyusb_release,
1888 	.llseek     = xillyusb_llseek,
1889 	.poll       = xillyusb_poll,
1890 };
1891 
1892 static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1893 {
1894 	xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1895 				      bulk_out_work, 1, 2);
1896 	if (!xdev->msg_ep)
1897 		return -ENOMEM;
1898 
1899 	if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */
1900 		goto dealloc;
1901 
1902 	xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1903 
1904 	xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1905 				     bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1906 	if (!xdev->in_ep)
1907 		goto dealloc;
1908 
1909 	try_queue_bulk_in(xdev->in_ep);
1910 
1911 	return 0;
1912 
1913 dealloc:
1914 	endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */
1915 	xdev->msg_ep = NULL;
1916 	return -ENOMEM;
1917 }
1918 
1919 static int setup_channels(struct xillyusb_dev *xdev,
1920 			  __le16 *chandesc,
1921 			  int num_channels)
1922 {
1923 	struct xillyusb_channel *chan;
1924 	int i;
1925 
1926 	chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL);
1927 	if (!chan)
1928 		return -ENOMEM;
1929 
1930 	xdev->channels = chan;
1931 
1932 	for (i = 0; i < num_channels; i++, chan++) {
1933 		unsigned int in_desc = le16_to_cpu(*chandesc++);
1934 		unsigned int out_desc = le16_to_cpu(*chandesc++);
1935 
1936 		chan->xdev = xdev;
1937 		mutex_init(&chan->in_mutex);
1938 		mutex_init(&chan->out_mutex);
1939 		mutex_init(&chan->lock);
1940 		init_waitqueue_head(&chan->flushq);
1941 
1942 		chan->chan_idx = i;
1943 
1944 		if (in_desc & 0x80) { /* Entry is valid */
1945 			chan->readable = 1;
1946 			chan->in_synchronous = !!(in_desc & 0x40);
1947 			chan->in_seekable = !!(in_desc & 0x20);
1948 			chan->in_log2_element_size = in_desc & 0x0f;
1949 			chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1950 		}
1951 
1952 		/*
1953 		 * A downstream channel should never exist above index 13,
1954 		 * as it would request a nonexistent BULK endpoint > 15.
1955 		 * In the peculiar case that it does, it's ignored silently.
1956 		 */
1957 
1958 		if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1959 			chan->writable = 1;
1960 			chan->out_synchronous = !!(out_desc & 0x40);
1961 			chan->out_seekable = !!(out_desc & 0x20);
1962 			chan->out_log2_element_size = out_desc & 0x0f;
1963 			chan->out_log2_fifo_size =
1964 				((out_desc >> 8) & 0x1f) + 16;
1965 		}
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 static int xillyusb_discovery(struct usb_interface *interface)
1972 {
1973 	int rc;
1974 	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
1975 	__le16 bogus_chandesc[2];
1976 	struct xillyfifo idt_fifo;
1977 	struct xillyusb_channel *chan;
1978 	unsigned int idt_len, names_offset;
1979 	unsigned char *idt;
1980 	int num_channels;
1981 
1982 	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
1983 
1984 	if (rc) {
1985 		dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
1986 		return rc;
1987 	}
1988 
1989 	/* Phase I: Set up one fake upstream channel and obtain IDT */
1990 
1991 	/* Set up a fake IDT with one async IN stream */
1992 	bogus_chandesc[0] = cpu_to_le16(0x80);
1993 	bogus_chandesc[1] = cpu_to_le16(0);
1994 
1995 	rc = setup_channels(xdev, bogus_chandesc, 1);
1996 
1997 	if (rc)
1998 		return rc;
1999 
2000 	rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE);
2001 
2002 	if (rc)
2003 		return rc;
2004 
2005 	chan = xdev->channels;
2006 
2007 	chan->in_fifo = &idt_fifo;
2008 	chan->read_data_ok = 1;
2009 
2010 	xdev->num_channels = 1;
2011 
2012 	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0);
2013 
2014 	if (rc) {
2015 		dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2016 		goto unfifo;
2017 	}
2018 
2019 	rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2020 					      !chan->read_data_ok,
2021 					      XILLY_RESPONSE_TIMEOUT);
2022 
2023 	if (xdev->error) {
2024 		rc = xdev->error;
2025 		goto unfifo;
2026 	}
2027 
2028 	if (rc < 0) {
2029 		rc = -EINTR; /* Interrupt on probe method? Interesting. */
2030 		goto unfifo;
2031 	}
2032 
2033 	if (chan->read_data_ok) {
2034 		rc = -ETIMEDOUT;
2035 		dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2036 		goto unfifo;
2037 	}
2038 
2039 	idt_len = READ_ONCE(idt_fifo.fill);
2040 	idt = kmalloc(idt_len, GFP_KERNEL);
2041 
2042 	if (!idt) {
2043 		rc = -ENOMEM;
2044 		goto unfifo;
2045 	}
2046 
2047 	fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy);
2048 
2049 	if (crc32_le(~0, idt, idt_len) != 0) {
2050 		dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2051 		rc = -ENODEV;
2052 		goto unidt;
2053 	}
2054 
2055 	if (*idt > 0x90) {
2056 		dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2057 			(int)*idt);
2058 		rc = -ENODEV;
2059 		goto unidt;
2060 	}
2061 
2062 	/* Phase II: Set up the streams as defined in IDT */
2063 
2064 	num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2065 	names_offset = 3 + num_channels * 4;
2066 	idt_len -= 4; /* Exclude CRC */
2067 
2068 	if (idt_len < names_offset) {
2069 		dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2070 		rc = -ENODEV;
2071 		goto unidt;
2072 	}
2073 
2074 	rc = setup_channels(xdev, (void *)idt + 3, num_channels);
2075 
2076 	if (rc)
2077 		goto unidt;
2078 
2079 	/*
2080 	 * Except for wildly misbehaving hardware, or if it was disconnected
2081 	 * just after responding with the IDT, there is no reason for any
2082 	 * work item to be running now. To be sure that xdev->channels
2083 	 * is updated on anything that might run in parallel, flush the
2084 	 * workqueue, which rarely does anything.
2085 	 */
2086 	flush_workqueue(xdev->workq);
2087 
2088 	xdev->num_channels = num_channels;
2089 
2090 	fifo_mem_release(&idt_fifo);
2091 	kfree(chan);
2092 
2093 	rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops,
2094 				  THIS_MODULE, xdev,
2095 				  idt + names_offset,
2096 				  idt_len - names_offset,
2097 				  num_channels,
2098 				  xillyname, true);
2099 
2100 	kfree(idt);
2101 
2102 	return rc;
2103 
2104 unidt:
2105 	kfree(idt);
2106 
2107 unfifo:
2108 	safely_assign_in_fifo(chan, NULL);
2109 	fifo_mem_release(&idt_fifo);
2110 
2111 	return rc;
2112 }
2113 
2114 static int xillyusb_probe(struct usb_interface *interface,
2115 			  const struct usb_device_id *id)
2116 {
2117 	struct xillyusb_dev *xdev;
2118 	int rc;
2119 
2120 	xdev = kzalloc(sizeof(*xdev), GFP_KERNEL);
2121 	if (!xdev)
2122 		return -ENOMEM;
2123 
2124 	kref_init(&xdev->kref);
2125 	mutex_init(&xdev->process_in_mutex);
2126 	mutex_init(&xdev->msg_mutex);
2127 
2128 	xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2129 	xdev->dev = &interface->dev;
2130 	xdev->error = 0;
2131 	spin_lock_init(&xdev->error_lock);
2132 	xdev->in_counter = 0;
2133 	xdev->in_bytes_left = 0;
2134 	xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0);
2135 
2136 	if (!xdev->workq) {
2137 		dev_err(&interface->dev, "Failed to allocate work queue\n");
2138 		rc = -ENOMEM;
2139 		goto fail;
2140 	}
2141 
2142 	INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2143 
2144 	usb_set_intfdata(interface, xdev);
2145 
2146 	rc = xillyusb_setup_base_eps(xdev);
2147 	if (rc)
2148 		goto fail;
2149 
2150 	rc = xillyusb_discovery(interface);
2151 	if (rc)
2152 		goto latefail;
2153 
2154 	return 0;
2155 
2156 latefail:
2157 	endpoint_quiesce(xdev->in_ep);
2158 	endpoint_quiesce(xdev->msg_ep);
2159 
2160 fail:
2161 	usb_set_intfdata(interface, NULL);
2162 	kref_put(&xdev->kref, cleanup_dev);
2163 	return rc;
2164 }
2165 
2166 static void xillyusb_disconnect(struct usb_interface *interface)
2167 {
2168 	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2169 	struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2170 	struct xillyfifo *fifo = &msg_ep->fifo;
2171 	int rc;
2172 	int i;
2173 
2174 	xillybus_cleanup_chrdev(xdev, &interface->dev);
2175 
2176 	/*
2177 	 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2178 	 * was disconnected, but makes sense on module unload.
2179 	 */
2180 
2181 	msg_ep->wake_on_drain = true;
2182 	xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2183 
2184 	/*
2185 	 * If the device has been disconnected, sending the opcode causes
2186 	 * a global device error with xdev->error, if such error didn't
2187 	 * occur earlier. Hence timing out means that the USB link is fine,
2188 	 * but somehow the message wasn't sent. Should never happen.
2189 	 */
2190 
2191 	rc = wait_event_interruptible_timeout(fifo->waitq,
2192 					      msg_ep->drained || xdev->error,
2193 					      XILLY_RESPONSE_TIMEOUT);
2194 
2195 	if (!rc)
2196 		dev_err(&interface->dev,
2197 			"Weird timeout condition on sending quiesce request.\n");
2198 
2199 	report_io_error(xdev, -ENODEV); /* Discourage further activity */
2200 
2201 	/*
2202 	 * This device driver is declared with soft_unbind set, or else
2203 	 * sending OPCODE_QUIESCE above would always fail. The price is
2204 	 * that the USB framework didn't kill outstanding URBs, so it has
2205 	 * to be done explicitly before returning from this call.
2206 	 */
2207 
2208 	for (i = 0; i < xdev->num_channels; i++) {
2209 		struct xillyusb_channel *chan = &xdev->channels[i];
2210 
2211 		/*
2212 		 * Lock taken to prevent chan->out_ep from changing. It also
2213 		 * ensures xillyusb_open() and xillyusb_flush() don't access
2214 		 * xdev->dev after being nullified below.
2215 		 */
2216 		mutex_lock(&chan->lock);
2217 		if (chan->out_ep)
2218 			endpoint_quiesce(chan->out_ep);
2219 		mutex_unlock(&chan->lock);
2220 	}
2221 
2222 	endpoint_quiesce(xdev->in_ep);
2223 	endpoint_quiesce(xdev->msg_ep);
2224 
2225 	usb_set_intfdata(interface, NULL);
2226 
2227 	xdev->dev = NULL;
2228 
2229 	kref_put(&xdev->kref, cleanup_dev);
2230 }
2231 
2232 static struct usb_driver xillyusb_driver = {
2233 	.name = xillyname,
2234 	.id_table = xillyusb_table,
2235 	.probe = xillyusb_probe,
2236 	.disconnect = xillyusb_disconnect,
2237 	.soft_unbind = 1,
2238 };
2239 
2240 static int __init xillyusb_init(void)
2241 {
2242 	int rc = 0;
2243 
2244 	if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2245 		fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2246 	else
2247 		fifo_buf_order = 0;
2248 
2249 	rc = usb_register(&xillyusb_driver);
2250 
2251 	return rc;
2252 }
2253 
2254 static void __exit xillyusb_exit(void)
2255 {
2256 	usb_deregister(&xillyusb_driver);
2257 }
2258 
2259 module_init(xillyusb_init);
2260 module_exit(xillyusb_exit);
2261