1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2020 Xillybus Ltd, http://xillybus.com
4 *
5 * Driver for the XillyUSB FPGA/host framework.
6 *
7 * This driver interfaces with a special IP core in an FPGA, setting up
8 * a pipe between a hardware FIFO in the programmable logic and a device
9 * file in the host. The number of such pipes and their attributes are
10 * set up on the logic. This driver detects these automatically and
11 * creates the device files accordingly.
12 */
13
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <asm/byteorder.h>
20 #include <linux/io.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/spinlock.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/usb.h>
31
32 #include "xillybus_class.h"
33
34 MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_ALIAS("xillyusb");
37 MODULE_LICENSE("GPL v2");
38
39 #define XILLY_RX_TIMEOUT (10 * HZ / 1000)
40 #define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000)
41
42 #define BUF_SIZE_ORDER 4
43 #define BUFNUM 8
44 #define LOG2_IDT_FIFO_SIZE 16
45 #define LOG2_INITIAL_FIFO_BUF_SIZE 16
46
47 #define MSG_EP_NUM 1
48 #define IN_EP_NUM 1
49
50 static const char xillyname[] = "xillyusb";
51
52 static unsigned int fifo_buf_order;
53 static struct workqueue_struct *wakeup_wq;
54
55 #define USB_VENDOR_ID_XILINX 0x03fd
56 #define USB_VENDOR_ID_ALTERA 0x09fb
57
58 #define USB_PRODUCT_ID_XILLYUSB 0xebbe
59
60 static const struct usb_device_id xillyusb_table[] = {
61 { USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
62 { USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
63 { }
64 };
65
66 MODULE_DEVICE_TABLE(usb, xillyusb_table);
67
68 struct xillyusb_dev;
69
70 struct xillyfifo {
71 unsigned int bufsize; /* In bytes, always a power of 2 */
72 unsigned int bufnum;
73 unsigned int size; /* Lazy: Equals bufsize * bufnum */
74 unsigned int buf_order;
75
76 int fill; /* Number of bytes in the FIFO */
77 spinlock_t lock;
78 wait_queue_head_t waitq;
79
80 unsigned int readpos;
81 unsigned int readbuf;
82 unsigned int writepos;
83 unsigned int writebuf;
84 char **mem;
85 };
86
87 struct xillyusb_channel;
88
89 struct xillyusb_endpoint {
90 struct xillyusb_dev *xdev;
91
92 struct mutex ep_mutex; /* serialize operations on endpoint */
93
94 struct list_head buffers;
95 struct list_head filled_buffers;
96 spinlock_t buffers_lock; /* protect these two lists */
97
98 unsigned int order;
99 unsigned int buffer_size;
100
101 unsigned int fill_mask;
102
103 int outstanding_urbs;
104
105 struct usb_anchor anchor;
106
107 struct xillyfifo fifo;
108
109 struct work_struct workitem;
110
111 bool shutting_down;
112 bool drained;
113 bool wake_on_drain;
114
115 u8 ep_num;
116 };
117
118 struct xillyusb_channel {
119 struct xillyusb_dev *xdev;
120
121 struct xillyfifo *in_fifo;
122 struct xillyusb_endpoint *out_ep;
123 struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
124
125 struct mutex in_mutex; /* serialize fops on FPGA to host stream */
126 struct mutex out_mutex; /* serialize fops on host to FPGA stream */
127 wait_queue_head_t flushq;
128
129 int chan_idx;
130
131 u32 in_consumed_bytes;
132 u32 in_current_checkpoint;
133 u32 out_bytes;
134
135 unsigned int in_log2_element_size;
136 unsigned int out_log2_element_size;
137 unsigned int in_log2_fifo_size;
138 unsigned int out_log2_fifo_size;
139
140 unsigned int read_data_ok; /* EOF not arrived (yet) */
141 unsigned int poll_used;
142 unsigned int flushing;
143 unsigned int flushed;
144 unsigned int canceled;
145
146 /* Bit fields protected by @lock except for initialization */
147 unsigned readable:1;
148 unsigned writable:1;
149 unsigned open_for_read:1;
150 unsigned open_for_write:1;
151 unsigned in_synchronous:1;
152 unsigned out_synchronous:1;
153 unsigned in_seekable:1;
154 unsigned out_seekable:1;
155 };
156
157 struct xillybuffer {
158 struct list_head entry;
159 struct xillyusb_endpoint *ep;
160 void *buf;
161 unsigned int len;
162 };
163
164 struct xillyusb_dev {
165 struct xillyusb_channel *channels;
166
167 struct usb_device *udev;
168 struct device *dev; /* For dev_err() and such */
169 struct kref kref;
170 struct workqueue_struct *workq;
171
172 int error;
173 spinlock_t error_lock; /* protect @error */
174 struct work_struct wakeup_workitem;
175
176 int num_channels;
177
178 struct xillyusb_endpoint *msg_ep;
179 struct xillyusb_endpoint *in_ep;
180
181 struct mutex msg_mutex; /* serialize opcode transmission */
182 int in_bytes_left;
183 int leftover_chan_num;
184 unsigned int in_counter;
185 struct mutex process_in_mutex; /* synchronize wakeup_all() */
186 };
187
188 /*
189 * kref_mutex is used in xillyusb_open() to prevent the xillyusb_dev
190 * struct from being freed during the gap between being found by
191 * xillybus_find_inode() and having its reference count incremented.
192 */
193
194 static DEFINE_MUTEX(kref_mutex);
195
196 /* FPGA to host opcodes */
197 enum {
198 OPCODE_DATA = 0,
199 OPCODE_QUIESCE_ACK = 1,
200 OPCODE_EOF = 2,
201 OPCODE_REACHED_CHECKPOINT = 3,
202 OPCODE_CANCELED_CHECKPOINT = 4,
203 };
204
205 /* Host to FPGA opcodes */
206 enum {
207 OPCODE_QUIESCE = 0,
208 OPCODE_REQ_IDT = 1,
209 OPCODE_SET_CHECKPOINT = 2,
210 OPCODE_CLOSE = 3,
211 OPCODE_SET_PUSH = 4,
212 OPCODE_UPDATE_PUSH = 5,
213 OPCODE_CANCEL_CHECKPOINT = 6,
214 OPCODE_SET_ADDR = 7,
215 };
216
217 /*
218 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
219 * calls to each on the same FIFO is not allowed) however it's OK to have
220 * threads calling each of the two functions once on the same FIFO, and
221 * at the same time.
222 */
223
fifo_write(struct xillyfifo * fifo,const void * data,unsigned int len,int (* copier)(void *,const void *,int))224 static int fifo_write(struct xillyfifo *fifo,
225 const void *data, unsigned int len,
226 int (*copier)(void *, const void *, int))
227 {
228 unsigned int done = 0;
229 unsigned int todo = len;
230 unsigned int nmax;
231 unsigned int writepos = fifo->writepos;
232 unsigned int writebuf = fifo->writebuf;
233 unsigned long flags;
234 int rc;
235
236 nmax = fifo->size - READ_ONCE(fifo->fill);
237
238 while (1) {
239 unsigned int nrail = fifo->bufsize - writepos;
240 unsigned int n = min(todo, nmax);
241
242 if (n == 0) {
243 spin_lock_irqsave(&fifo->lock, flags);
244 fifo->fill += done;
245 spin_unlock_irqrestore(&fifo->lock, flags);
246
247 fifo->writepos = writepos;
248 fifo->writebuf = writebuf;
249
250 return done;
251 }
252
253 if (n > nrail)
254 n = nrail;
255
256 rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
257
258 if (rc)
259 return rc;
260
261 done += n;
262 todo -= n;
263
264 writepos += n;
265 nmax -= n;
266
267 if (writepos == fifo->bufsize) {
268 writepos = 0;
269 writebuf++;
270
271 if (writebuf == fifo->bufnum)
272 writebuf = 0;
273 }
274 }
275 }
276
fifo_read(struct xillyfifo * fifo,void * data,unsigned int len,int (* copier)(void *,const void *,int))277 static int fifo_read(struct xillyfifo *fifo,
278 void *data, unsigned int len,
279 int (*copier)(void *, const void *, int))
280 {
281 unsigned int done = 0;
282 unsigned int todo = len;
283 unsigned int fill;
284 unsigned int readpos = fifo->readpos;
285 unsigned int readbuf = fifo->readbuf;
286 unsigned long flags;
287 int rc;
288
289 /*
290 * The spinlock here is necessary, because otherwise fifo->fill
291 * could have been increased by fifo_write() after writing data
292 * to the buffer, but this data would potentially not have been
293 * visible on this thread at the time the updated fifo->fill was.
294 * That could lead to reading invalid data.
295 */
296
297 spin_lock_irqsave(&fifo->lock, flags);
298 fill = fifo->fill;
299 spin_unlock_irqrestore(&fifo->lock, flags);
300
301 while (1) {
302 unsigned int nrail = fifo->bufsize - readpos;
303 unsigned int n = min(todo, fill);
304
305 if (n == 0) {
306 spin_lock_irqsave(&fifo->lock, flags);
307 fifo->fill -= done;
308 spin_unlock_irqrestore(&fifo->lock, flags);
309
310 fifo->readpos = readpos;
311 fifo->readbuf = readbuf;
312
313 return done;
314 }
315
316 if (n > nrail)
317 n = nrail;
318
319 rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
320
321 if (rc)
322 return rc;
323
324 done += n;
325 todo -= n;
326
327 readpos += n;
328 fill -= n;
329
330 if (readpos == fifo->bufsize) {
331 readpos = 0;
332 readbuf++;
333
334 if (readbuf == fifo->bufnum)
335 readbuf = 0;
336 }
337 }
338 }
339
340 /*
341 * These three wrapper functions are used as the @copier argument to
342 * fifo_write() and fifo_read(), so that they can work directly with
343 * user memory as well.
344 */
345
xilly_copy_from_user(void * dst,const void * src,int n)346 static int xilly_copy_from_user(void *dst, const void *src, int n)
347 {
348 if (copy_from_user(dst, (const void __user *)src, n))
349 return -EFAULT;
350
351 return 0;
352 }
353
xilly_copy_to_user(void * dst,const void * src,int n)354 static int xilly_copy_to_user(void *dst, const void *src, int n)
355 {
356 if (copy_to_user((void __user *)dst, src, n))
357 return -EFAULT;
358
359 return 0;
360 }
361
xilly_memcpy(void * dst,const void * src,int n)362 static int xilly_memcpy(void *dst, const void *src, int n)
363 {
364 memcpy(dst, src, n);
365
366 return 0;
367 }
368
fifo_init(struct xillyfifo * fifo,unsigned int log2_size)369 static int fifo_init(struct xillyfifo *fifo,
370 unsigned int log2_size)
371 {
372 unsigned int log2_bufnum;
373 unsigned int buf_order;
374 int i;
375
376 unsigned int log2_fifo_buf_size;
377
378 retry:
379 log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
380
381 if (log2_size > log2_fifo_buf_size) {
382 log2_bufnum = log2_size - log2_fifo_buf_size;
383 buf_order = fifo_buf_order;
384 fifo->bufsize = 1 << log2_fifo_buf_size;
385 } else {
386 log2_bufnum = 0;
387 buf_order = (log2_size > PAGE_SHIFT) ?
388 log2_size - PAGE_SHIFT : 0;
389 fifo->bufsize = 1 << log2_size;
390 }
391
392 fifo->bufnum = 1 << log2_bufnum;
393 fifo->size = fifo->bufnum * fifo->bufsize;
394 fifo->buf_order = buf_order;
395
396 fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
397
398 if (!fifo->mem)
399 return -ENOMEM;
400
401 for (i = 0; i < fifo->bufnum; i++) {
402 fifo->mem[i] = (void *)
403 __get_free_pages(GFP_KERNEL, buf_order);
404
405 if (!fifo->mem[i])
406 goto memfail;
407 }
408
409 fifo->fill = 0;
410 fifo->readpos = 0;
411 fifo->readbuf = 0;
412 fifo->writepos = 0;
413 fifo->writebuf = 0;
414 spin_lock_init(&fifo->lock);
415 init_waitqueue_head(&fifo->waitq);
416 return 0;
417
418 memfail:
419 for (i--; i >= 0; i--)
420 free_pages((unsigned long)fifo->mem[i], buf_order);
421
422 kfree(fifo->mem);
423 fifo->mem = NULL;
424
425 if (fifo_buf_order) {
426 fifo_buf_order--;
427 goto retry;
428 } else {
429 return -ENOMEM;
430 }
431 }
432
fifo_mem_release(struct xillyfifo * fifo)433 static void fifo_mem_release(struct xillyfifo *fifo)
434 {
435 int i;
436
437 if (!fifo->mem)
438 return;
439
440 for (i = 0; i < fifo->bufnum; i++)
441 free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
442
443 kfree(fifo->mem);
444 }
445
446 /*
447 * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
448 * won't accept any new URB submissions, and its related work item doesn't
449 * and won't run anymore.
450 */
451
endpoint_quiesce(struct xillyusb_endpoint * ep)452 static void endpoint_quiesce(struct xillyusb_endpoint *ep)
453 {
454 mutex_lock(&ep->ep_mutex);
455 ep->shutting_down = true;
456 mutex_unlock(&ep->ep_mutex);
457
458 usb_kill_anchored_urbs(&ep->anchor);
459 cancel_work_sync(&ep->workitem);
460 }
461
462 /*
463 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
464 * though endpoint_alloc doesn't allocate that memory.
465 */
466
endpoint_dealloc(struct xillyusb_endpoint * ep)467 static void endpoint_dealloc(struct xillyusb_endpoint *ep)
468 {
469 struct list_head *this, *next;
470
471 fifo_mem_release(&ep->fifo);
472
473 /* Join @filled_buffers with @buffers to free these entries too */
474 list_splice(&ep->filled_buffers, &ep->buffers);
475
476 list_for_each_safe(this, next, &ep->buffers) {
477 struct xillybuffer *xb =
478 list_entry(this, struct xillybuffer, entry);
479
480 free_pages((unsigned long)xb->buf, ep->order);
481 kfree(xb);
482 }
483
484 kfree(ep);
485 }
486
487 static struct xillyusb_endpoint
endpoint_alloc(struct xillyusb_dev * xdev,u8 ep_num,void (* work)(struct work_struct *),unsigned int order,int bufnum)488 *endpoint_alloc(struct xillyusb_dev *xdev,
489 u8 ep_num,
490 void (*work)(struct work_struct *),
491 unsigned int order,
492 int bufnum)
493 {
494 int i;
495
496 struct xillyusb_endpoint *ep;
497
498 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
499
500 if (!ep)
501 return NULL;
502
503 INIT_LIST_HEAD(&ep->buffers);
504 INIT_LIST_HEAD(&ep->filled_buffers);
505
506 spin_lock_init(&ep->buffers_lock);
507 mutex_init(&ep->ep_mutex);
508
509 init_usb_anchor(&ep->anchor);
510 INIT_WORK(&ep->workitem, work);
511
512 ep->order = order;
513 ep->buffer_size = 1 << (PAGE_SHIFT + order);
514 ep->outstanding_urbs = 0;
515 ep->drained = true;
516 ep->wake_on_drain = false;
517 ep->xdev = xdev;
518 ep->ep_num = ep_num;
519 ep->shutting_down = false;
520
521 for (i = 0; i < bufnum; i++) {
522 struct xillybuffer *xb;
523 unsigned long addr;
524
525 xb = kzalloc(sizeof(*xb), GFP_KERNEL);
526
527 if (!xb) {
528 endpoint_dealloc(ep);
529 return NULL;
530 }
531
532 addr = __get_free_pages(GFP_KERNEL, order);
533
534 if (!addr) {
535 kfree(xb);
536 endpoint_dealloc(ep);
537 return NULL;
538 }
539
540 xb->buf = (void *)addr;
541 xb->ep = ep;
542 list_add_tail(&xb->entry, &ep->buffers);
543 }
544 return ep;
545 }
546
cleanup_dev(struct kref * kref)547 static void cleanup_dev(struct kref *kref)
548 {
549 struct xillyusb_dev *xdev =
550 container_of(kref, struct xillyusb_dev, kref);
551
552 if (xdev->in_ep)
553 endpoint_dealloc(xdev->in_ep);
554
555 if (xdev->msg_ep)
556 endpoint_dealloc(xdev->msg_ep);
557
558 if (xdev->workq)
559 destroy_workqueue(xdev->workq);
560
561 usb_put_dev(xdev->udev);
562 kfree(xdev->channels); /* Argument may be NULL, and that's fine */
563 kfree(xdev);
564 }
565
566 /*
567 * @process_in_mutex is taken to ensure that bulk_in_work() won't call
568 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
569 * @read_data_ok entries, which will make process_bulk_in() report false
570 * errors if executed. The mechanism relies on that xdev->error is assigned
571 * a non-zero value by report_io_error() prior to queueing wakeup_all(),
572 * which prevents bulk_in_work() from calling process_bulk_in().
573 */
574
wakeup_all(struct work_struct * work)575 static void wakeup_all(struct work_struct *work)
576 {
577 int i;
578 struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
579 wakeup_workitem);
580
581 mutex_lock(&xdev->process_in_mutex);
582
583 for (i = 0; i < xdev->num_channels; i++) {
584 struct xillyusb_channel *chan = &xdev->channels[i];
585
586 mutex_lock(&chan->lock);
587
588 if (chan->in_fifo) {
589 /*
590 * Fake an EOF: Even if such arrives, it won't be
591 * processed.
592 */
593 chan->read_data_ok = 0;
594 wake_up_interruptible(&chan->in_fifo->waitq);
595 }
596
597 if (chan->out_ep)
598 wake_up_interruptible(&chan->out_ep->fifo.waitq);
599
600 mutex_unlock(&chan->lock);
601
602 wake_up_interruptible(&chan->flushq);
603 }
604
605 mutex_unlock(&xdev->process_in_mutex);
606
607 wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
608
609 kref_put(&xdev->kref, cleanup_dev);
610 }
611
report_io_error(struct xillyusb_dev * xdev,int errcode)612 static void report_io_error(struct xillyusb_dev *xdev,
613 int errcode)
614 {
615 unsigned long flags;
616 bool do_once = false;
617
618 spin_lock_irqsave(&xdev->error_lock, flags);
619 if (!xdev->error) {
620 xdev->error = errcode;
621 do_once = true;
622 }
623 spin_unlock_irqrestore(&xdev->error_lock, flags);
624
625 if (do_once) {
626 kref_get(&xdev->kref); /* xdev is used by work item */
627 queue_work(wakeup_wq, &xdev->wakeup_workitem);
628 }
629 }
630
631 /*
632 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
633 * the previous pointer is never used after its return.
634 */
635
safely_assign_in_fifo(struct xillyusb_channel * chan,struct xillyfifo * fifo)636 static void safely_assign_in_fifo(struct xillyusb_channel *chan,
637 struct xillyfifo *fifo)
638 {
639 mutex_lock(&chan->lock);
640 chan->in_fifo = fifo;
641 mutex_unlock(&chan->lock);
642
643 flush_work(&chan->xdev->in_ep->workitem);
644 }
645
bulk_in_completer(struct urb * urb)646 static void bulk_in_completer(struct urb *urb)
647 {
648 struct xillybuffer *xb = urb->context;
649 struct xillyusb_endpoint *ep = xb->ep;
650 unsigned long flags;
651
652 if (urb->status) {
653 if (!(urb->status == -ENOENT ||
654 urb->status == -ECONNRESET ||
655 urb->status == -ESHUTDOWN))
656 report_io_error(ep->xdev, -EIO);
657
658 spin_lock_irqsave(&ep->buffers_lock, flags);
659 list_add_tail(&xb->entry, &ep->buffers);
660 ep->outstanding_urbs--;
661 spin_unlock_irqrestore(&ep->buffers_lock, flags);
662
663 return;
664 }
665
666 xb->len = urb->actual_length;
667
668 spin_lock_irqsave(&ep->buffers_lock, flags);
669 list_add_tail(&xb->entry, &ep->filled_buffers);
670 spin_unlock_irqrestore(&ep->buffers_lock, flags);
671
672 if (!ep->shutting_down)
673 queue_work(ep->xdev->workq, &ep->workitem);
674 }
675
bulk_out_completer(struct urb * urb)676 static void bulk_out_completer(struct urb *urb)
677 {
678 struct xillybuffer *xb = urb->context;
679 struct xillyusb_endpoint *ep = xb->ep;
680 unsigned long flags;
681
682 if (urb->status &&
683 (!(urb->status == -ENOENT ||
684 urb->status == -ECONNRESET ||
685 urb->status == -ESHUTDOWN)))
686 report_io_error(ep->xdev, -EIO);
687
688 spin_lock_irqsave(&ep->buffers_lock, flags);
689 list_add_tail(&xb->entry, &ep->buffers);
690 ep->outstanding_urbs--;
691 spin_unlock_irqrestore(&ep->buffers_lock, flags);
692
693 if (!ep->shutting_down)
694 queue_work(ep->xdev->workq, &ep->workitem);
695 }
696
try_queue_bulk_in(struct xillyusb_endpoint * ep)697 static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
698 {
699 struct xillyusb_dev *xdev = ep->xdev;
700 struct xillybuffer *xb;
701 struct urb *urb;
702
703 int rc;
704 unsigned long flags;
705 unsigned int bufsize = ep->buffer_size;
706
707 mutex_lock(&ep->ep_mutex);
708
709 if (ep->shutting_down || xdev->error)
710 goto done;
711
712 while (1) {
713 spin_lock_irqsave(&ep->buffers_lock, flags);
714
715 if (list_empty(&ep->buffers)) {
716 spin_unlock_irqrestore(&ep->buffers_lock, flags);
717 goto done;
718 }
719
720 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
721 list_del(&xb->entry);
722 ep->outstanding_urbs++;
723
724 spin_unlock_irqrestore(&ep->buffers_lock, flags);
725
726 urb = usb_alloc_urb(0, GFP_KERNEL);
727 if (!urb) {
728 report_io_error(xdev, -ENOMEM);
729 goto relist;
730 }
731
732 usb_fill_bulk_urb(urb, xdev->udev,
733 usb_rcvbulkpipe(xdev->udev, ep->ep_num),
734 xb->buf, bufsize, bulk_in_completer, xb);
735
736 usb_anchor_urb(urb, &ep->anchor);
737
738 rc = usb_submit_urb(urb, GFP_KERNEL);
739
740 if (rc) {
741 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
742 -EIO);
743 goto unanchor;
744 }
745
746 usb_free_urb(urb); /* This just decrements reference count */
747 }
748
749 unanchor:
750 usb_unanchor_urb(urb);
751 usb_free_urb(urb);
752
753 relist:
754 spin_lock_irqsave(&ep->buffers_lock, flags);
755 list_add_tail(&xb->entry, &ep->buffers);
756 ep->outstanding_urbs--;
757 spin_unlock_irqrestore(&ep->buffers_lock, flags);
758
759 done:
760 mutex_unlock(&ep->ep_mutex);
761 }
762
try_queue_bulk_out(struct xillyusb_endpoint * ep)763 static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
764 {
765 struct xillyfifo *fifo = &ep->fifo;
766 struct xillyusb_dev *xdev = ep->xdev;
767 struct xillybuffer *xb;
768 struct urb *urb;
769
770 int rc;
771 unsigned int fill;
772 unsigned long flags;
773 bool do_wake = false;
774
775 mutex_lock(&ep->ep_mutex);
776
777 if (ep->shutting_down || xdev->error)
778 goto done;
779
780 fill = READ_ONCE(fifo->fill) & ep->fill_mask;
781
782 while (1) {
783 int count;
784 unsigned int max_read;
785
786 spin_lock_irqsave(&ep->buffers_lock, flags);
787
788 /*
789 * Race conditions might have the FIFO filled while the
790 * endpoint is marked as drained here. That doesn't matter,
791 * because the sole purpose of @drained is to ensure that
792 * certain data has been sent on the USB channel before
793 * shutting it down. Hence knowing that the FIFO appears
794 * to be empty with no outstanding URBs at some moment
795 * is good enough.
796 */
797
798 if (!fill) {
799 ep->drained = !ep->outstanding_urbs;
800 if (ep->drained && ep->wake_on_drain)
801 do_wake = true;
802
803 spin_unlock_irqrestore(&ep->buffers_lock, flags);
804 goto done;
805 }
806
807 ep->drained = false;
808
809 if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
810 list_empty(&ep->buffers)) {
811 spin_unlock_irqrestore(&ep->buffers_lock, flags);
812 goto done;
813 }
814
815 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
816 list_del(&xb->entry);
817 ep->outstanding_urbs++;
818
819 spin_unlock_irqrestore(&ep->buffers_lock, flags);
820
821 max_read = min(fill, ep->buffer_size);
822
823 count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
824
825 /*
826 * xilly_memcpy always returns 0 => fifo_read can't fail =>
827 * count > 0
828 */
829
830 urb = usb_alloc_urb(0, GFP_KERNEL);
831 if (!urb) {
832 report_io_error(xdev, -ENOMEM);
833 goto relist;
834 }
835
836 usb_fill_bulk_urb(urb, xdev->udev,
837 usb_sndbulkpipe(xdev->udev, ep->ep_num),
838 xb->buf, count, bulk_out_completer, xb);
839
840 usb_anchor_urb(urb, &ep->anchor);
841
842 rc = usb_submit_urb(urb, GFP_KERNEL);
843
844 if (rc) {
845 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
846 -EIO);
847 goto unanchor;
848 }
849
850 usb_free_urb(urb); /* This just decrements reference count */
851
852 fill -= count;
853 do_wake = true;
854 }
855
856 unanchor:
857 usb_unanchor_urb(urb);
858 usb_free_urb(urb);
859
860 relist:
861 spin_lock_irqsave(&ep->buffers_lock, flags);
862 list_add_tail(&xb->entry, &ep->buffers);
863 ep->outstanding_urbs--;
864 spin_unlock_irqrestore(&ep->buffers_lock, flags);
865
866 done:
867 mutex_unlock(&ep->ep_mutex);
868
869 if (do_wake)
870 wake_up_interruptible(&fifo->waitq);
871 }
872
bulk_out_work(struct work_struct * work)873 static void bulk_out_work(struct work_struct *work)
874 {
875 struct xillyusb_endpoint *ep = container_of(work,
876 struct xillyusb_endpoint,
877 workitem);
878 try_queue_bulk_out(ep);
879 }
880
process_in_opcode(struct xillyusb_dev * xdev,int opcode,int chan_num)881 static int process_in_opcode(struct xillyusb_dev *xdev,
882 int opcode,
883 int chan_num)
884 {
885 struct xillyusb_channel *chan;
886 struct device *dev = xdev->dev;
887 int chan_idx = chan_num >> 1;
888
889 if (chan_idx >= xdev->num_channels) {
890 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
891 chan_num);
892 return -EIO;
893 }
894
895 chan = &xdev->channels[chan_idx];
896
897 switch (opcode) {
898 case OPCODE_EOF:
899 if (!chan->read_data_ok) {
900 dev_err(dev, "Received unexpected EOF for channel %d\n",
901 chan_num);
902 return -EIO;
903 }
904
905 /*
906 * A write memory barrier ensures that the FIFO's fill level
907 * is visible before read_data_ok turns zero, so the data in
908 * the FIFO isn't missed by the consumer.
909 */
910 smp_wmb();
911 WRITE_ONCE(chan->read_data_ok, 0);
912 wake_up_interruptible(&chan->in_fifo->waitq);
913 break;
914
915 case OPCODE_REACHED_CHECKPOINT:
916 chan->flushing = 0;
917 wake_up_interruptible(&chan->flushq);
918 break;
919
920 case OPCODE_CANCELED_CHECKPOINT:
921 chan->canceled = 1;
922 wake_up_interruptible(&chan->flushq);
923 break;
924
925 default:
926 dev_err(dev, "Received illegal opcode %d from FPGA\n",
927 opcode);
928 return -EIO;
929 }
930
931 return 0;
932 }
933
process_bulk_in(struct xillybuffer * xb)934 static int process_bulk_in(struct xillybuffer *xb)
935 {
936 struct xillyusb_endpoint *ep = xb->ep;
937 struct xillyusb_dev *xdev = ep->xdev;
938 struct device *dev = xdev->dev;
939 int dws = xb->len >> 2;
940 __le32 *p = xb->buf;
941 u32 ctrlword;
942 struct xillyusb_channel *chan;
943 struct xillyfifo *fifo;
944 int chan_num = 0, opcode;
945 int chan_idx;
946 int bytes, count, dwconsume;
947 int in_bytes_left = 0;
948 int rc;
949
950 if ((dws << 2) != xb->len) {
951 dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
952 xb->len);
953 return -EIO;
954 }
955
956 if (xdev->in_bytes_left) {
957 bytes = min(xdev->in_bytes_left, dws << 2);
958 in_bytes_left = xdev->in_bytes_left - bytes;
959 chan_num = xdev->leftover_chan_num;
960 goto resume_leftovers;
961 }
962
963 while (dws) {
964 ctrlword = le32_to_cpu(*p++);
965 dws--;
966
967 chan_num = ctrlword & 0xfff;
968 count = (ctrlword >> 12) & 0x3ff;
969 opcode = (ctrlword >> 24) & 0xf;
970
971 if (opcode != OPCODE_DATA) {
972 unsigned int in_counter = xdev->in_counter++ & 0x3ff;
973
974 if (count != in_counter) {
975 dev_err(dev, "Expected opcode counter %d, got %d\n",
976 in_counter, count);
977 return -EIO;
978 }
979
980 rc = process_in_opcode(xdev, opcode, chan_num);
981
982 if (rc)
983 return rc;
984
985 continue;
986 }
987
988 bytes = min(count + 1, dws << 2);
989 in_bytes_left = count + 1 - bytes;
990
991 resume_leftovers:
992 chan_idx = chan_num >> 1;
993
994 if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
995 !xdev->channels[chan_idx].read_data_ok) {
996 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
997 chan_num);
998 return -EIO;
999 }
1000 chan = &xdev->channels[chan_idx];
1001
1002 fifo = chan->in_fifo;
1003
1004 if (unlikely(!fifo))
1005 return -EIO; /* We got really unexpected data */
1006
1007 if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
1008 dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1009 return -EIO;
1010 }
1011
1012 wake_up_interruptible(&fifo->waitq);
1013
1014 dwconsume = (bytes + 3) >> 2;
1015 dws -= dwconsume;
1016 p += dwconsume;
1017 }
1018
1019 xdev->in_bytes_left = in_bytes_left;
1020 xdev->leftover_chan_num = chan_num;
1021 return 0;
1022 }
1023
bulk_in_work(struct work_struct * work)1024 static void bulk_in_work(struct work_struct *work)
1025 {
1026 struct xillyusb_endpoint *ep =
1027 container_of(work, struct xillyusb_endpoint, workitem);
1028 struct xillyusb_dev *xdev = ep->xdev;
1029 unsigned long flags;
1030 struct xillybuffer *xb;
1031 bool consumed = false;
1032 int rc = 0;
1033
1034 mutex_lock(&xdev->process_in_mutex);
1035
1036 spin_lock_irqsave(&ep->buffers_lock, flags);
1037
1038 while (1) {
1039 if (rc || list_empty(&ep->filled_buffers)) {
1040 spin_unlock_irqrestore(&ep->buffers_lock, flags);
1041 mutex_unlock(&xdev->process_in_mutex);
1042
1043 if (rc)
1044 report_io_error(xdev, rc);
1045 else if (consumed)
1046 try_queue_bulk_in(ep);
1047
1048 return;
1049 }
1050
1051 xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1052 entry);
1053 list_del(&xb->entry);
1054
1055 spin_unlock_irqrestore(&ep->buffers_lock, flags);
1056
1057 consumed = true;
1058
1059 if (!xdev->error)
1060 rc = process_bulk_in(xb);
1061
1062 spin_lock_irqsave(&ep->buffers_lock, flags);
1063 list_add_tail(&xb->entry, &ep->buffers);
1064 ep->outstanding_urbs--;
1065 }
1066 }
1067
xillyusb_send_opcode(struct xillyusb_dev * xdev,int chan_num,char opcode,u32 data)1068 static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1069 int chan_num, char opcode, u32 data)
1070 {
1071 struct xillyusb_endpoint *ep = xdev->msg_ep;
1072 struct xillyfifo *fifo = &ep->fifo;
1073 __le32 msg[2];
1074
1075 int rc = 0;
1076
1077 msg[0] = cpu_to_le32((chan_num & 0xfff) |
1078 ((opcode & 0xf) << 24));
1079 msg[1] = cpu_to_le32(data);
1080
1081 mutex_lock(&xdev->msg_mutex);
1082
1083 /*
1084 * The wait queue is woken with the interruptible variant, so the
1085 * wait function matches, however returning because of an interrupt
1086 * will mess things up considerably, in particular when the caller is
1087 * the release method. And the xdev->error part prevents being stuck
1088 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1089 */
1090
1091 while (wait_event_interruptible(fifo->waitq,
1092 fifo->fill <= (fifo->size - 8) ||
1093 xdev->error))
1094 ; /* Empty loop */
1095
1096 if (xdev->error) {
1097 rc = xdev->error;
1098 goto unlock_done;
1099 }
1100
1101 fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
1102
1103 try_queue_bulk_out(ep);
1104
1105 unlock_done:
1106 mutex_unlock(&xdev->msg_mutex);
1107
1108 return rc;
1109 }
1110
1111 /*
1112 * Note that flush_downstream() merely waits for the data to arrive to
1113 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1114 * it does nothing to make it happen (and neither is it necessary).
1115 *
1116 * This function is not reentrant for the same @chan, but this is covered
1117 * by the fact that for any given @chan, it's called either by the open,
1118 * write, llseek and flush fops methods, which can't run in parallel (and the
1119 * write + flush and llseek method handlers are protected with out_mutex).
1120 *
1121 * chan->flushed is there to avoid multiple flushes at the same position,
1122 * in particular as a result of programs that close the file descriptor
1123 * e.g. after a dup2() for redirection.
1124 */
1125
flush_downstream(struct xillyusb_channel * chan,long timeout,bool interruptible)1126 static int flush_downstream(struct xillyusb_channel *chan,
1127 long timeout,
1128 bool interruptible)
1129 {
1130 struct xillyusb_dev *xdev = chan->xdev;
1131 int chan_num = chan->chan_idx << 1;
1132 long deadline, left_to_sleep;
1133 int rc;
1134
1135 if (chan->flushed)
1136 return 0;
1137
1138 deadline = jiffies + 1 + timeout;
1139
1140 if (chan->flushing) {
1141 long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1142
1143 chan->canceled = 0;
1144 rc = xillyusb_send_opcode(xdev, chan_num,
1145 OPCODE_CANCEL_CHECKPOINT, 0);
1146
1147 if (rc)
1148 return rc; /* Only real error, never -EINTR */
1149
1150 /* Ignoring interrupts. Cancellation must be handled */
1151 while (!chan->canceled) {
1152 left_to_sleep = cancel_deadline - ((long)jiffies);
1153
1154 if (left_to_sleep <= 0) {
1155 report_io_error(xdev, -EIO);
1156 return -EIO;
1157 }
1158
1159 rc = wait_event_interruptible_timeout(chan->flushq,
1160 chan->canceled ||
1161 xdev->error,
1162 left_to_sleep);
1163
1164 if (xdev->error)
1165 return xdev->error;
1166 }
1167 }
1168
1169 chan->flushing = 1;
1170
1171 /*
1172 * The checkpoint is given in terms of data elements, not bytes. As
1173 * a result, if less than an element's worth of data is stored in the
1174 * FIFO, it's not flushed, including the flush before closing, which
1175 * means that such data is lost. This is consistent with PCIe Xillybus.
1176 */
1177
1178 rc = xillyusb_send_opcode(xdev, chan_num,
1179 OPCODE_SET_CHECKPOINT,
1180 chan->out_bytes >>
1181 chan->out_log2_element_size);
1182
1183 if (rc)
1184 return rc; /* Only real error, never -EINTR */
1185
1186 if (!timeout) {
1187 while (chan->flushing) {
1188 rc = wait_event_interruptible(chan->flushq,
1189 !chan->flushing ||
1190 xdev->error);
1191 if (xdev->error)
1192 return xdev->error;
1193
1194 if (interruptible && rc)
1195 return -EINTR;
1196 }
1197
1198 goto done;
1199 }
1200
1201 while (chan->flushing) {
1202 left_to_sleep = deadline - ((long)jiffies);
1203
1204 if (left_to_sleep <= 0)
1205 return -ETIMEDOUT;
1206
1207 rc = wait_event_interruptible_timeout(chan->flushq,
1208 !chan->flushing ||
1209 xdev->error,
1210 left_to_sleep);
1211
1212 if (xdev->error)
1213 return xdev->error;
1214
1215 if (interruptible && rc < 0)
1216 return -EINTR;
1217 }
1218
1219 done:
1220 chan->flushed = 1;
1221 return 0;
1222 }
1223
1224 /* request_read_anything(): Ask the FPGA for any little amount of data */
request_read_anything(struct xillyusb_channel * chan,char opcode)1225 static int request_read_anything(struct xillyusb_channel *chan,
1226 char opcode)
1227 {
1228 struct xillyusb_dev *xdev = chan->xdev;
1229 unsigned int sh = chan->in_log2_element_size;
1230 int chan_num = (chan->chan_idx << 1) | 1;
1231 u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1232
1233 return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
1234 }
1235
xillyusb_open(struct inode * inode,struct file * filp)1236 static int xillyusb_open(struct inode *inode, struct file *filp)
1237 {
1238 struct xillyusb_dev *xdev;
1239 struct xillyusb_channel *chan;
1240 struct xillyfifo *in_fifo = NULL;
1241 struct xillyusb_endpoint *out_ep = NULL;
1242 int rc;
1243 int index;
1244
1245 mutex_lock(&kref_mutex);
1246
1247 rc = xillybus_find_inode(inode, (void **)&xdev, &index);
1248 if (rc) {
1249 mutex_unlock(&kref_mutex);
1250 return rc;
1251 }
1252
1253 kref_get(&xdev->kref);
1254 mutex_unlock(&kref_mutex);
1255
1256 chan = &xdev->channels[index];
1257 filp->private_data = chan;
1258
1259 mutex_lock(&chan->lock);
1260
1261 rc = -ENODEV;
1262
1263 if (xdev->error)
1264 goto unmutex_fail;
1265
1266 if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1267 ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1268 goto unmutex_fail;
1269
1270 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1271 chan->in_synchronous) {
1272 dev_err(xdev->dev,
1273 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1274 goto unmutex_fail;
1275 }
1276
1277 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1278 chan->out_synchronous) {
1279 dev_err(xdev->dev,
1280 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1281 goto unmutex_fail;
1282 }
1283
1284 rc = -EBUSY;
1285
1286 if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1287 ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1288 goto unmutex_fail;
1289
1290 if (filp->f_mode & FMODE_READ)
1291 chan->open_for_read = 1;
1292
1293 if (filp->f_mode & FMODE_WRITE)
1294 chan->open_for_write = 1;
1295
1296 mutex_unlock(&chan->lock);
1297
1298 if (filp->f_mode & FMODE_WRITE) {
1299 out_ep = endpoint_alloc(xdev,
1300 (chan->chan_idx + 2) | USB_DIR_OUT,
1301 bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1302
1303 if (!out_ep) {
1304 rc = -ENOMEM;
1305 goto unopen;
1306 }
1307
1308 rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
1309
1310 if (rc)
1311 goto late_unopen;
1312
1313 out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1314 chan->out_bytes = 0;
1315 chan->flushed = 0;
1316
1317 /*
1318 * Sending a flush request to a previously closed stream
1319 * effectively opens it, and also waits until the command is
1320 * confirmed by the FPGA. The latter is necessary because the
1321 * data is sent through a separate BULK OUT endpoint, and the
1322 * xHCI controller is free to reorder transmissions.
1323 *
1324 * This can't go wrong unless there's a serious hardware error
1325 * (or the computer is stuck for 500 ms?)
1326 */
1327 rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
1328
1329 if (rc == -ETIMEDOUT) {
1330 rc = -EIO;
1331 report_io_error(xdev, rc);
1332 }
1333
1334 if (rc)
1335 goto late_unopen;
1336 }
1337
1338 if (filp->f_mode & FMODE_READ) {
1339 in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
1340
1341 if (!in_fifo) {
1342 rc = -ENOMEM;
1343 goto late_unopen;
1344 }
1345
1346 rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
1347
1348 if (rc) {
1349 kfree(in_fifo);
1350 goto late_unopen;
1351 }
1352 }
1353
1354 mutex_lock(&chan->lock);
1355 if (in_fifo) {
1356 chan->in_fifo = in_fifo;
1357 chan->read_data_ok = 1;
1358 }
1359 if (out_ep)
1360 chan->out_ep = out_ep;
1361 mutex_unlock(&chan->lock);
1362
1363 if (in_fifo) {
1364 u32 in_checkpoint = 0;
1365
1366 if (!chan->in_synchronous)
1367 in_checkpoint = in_fifo->size >>
1368 chan->in_log2_element_size;
1369
1370 chan->in_consumed_bytes = 0;
1371 chan->poll_used = 0;
1372 chan->in_current_checkpoint = in_checkpoint;
1373 rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1374 OPCODE_SET_CHECKPOINT,
1375 in_checkpoint);
1376
1377 if (rc) /* Failure guarantees that opcode wasn't sent */
1378 goto unfifo;
1379
1380 /*
1381 * In non-blocking mode, request the FPGA to send any data it
1382 * has right away. Otherwise, the first read() will always
1383 * return -EAGAIN, which is OK strictly speaking, but ugly.
1384 * Checking and unrolling if this fails isn't worth the
1385 * effort -- the error is propagated to the first read()
1386 * anyhow.
1387 */
1388 if (filp->f_flags & O_NONBLOCK)
1389 request_read_anything(chan, OPCODE_SET_PUSH);
1390 }
1391
1392 return 0;
1393
1394 unfifo:
1395 chan->read_data_ok = 0;
1396 safely_assign_in_fifo(chan, NULL);
1397 fifo_mem_release(in_fifo);
1398 kfree(in_fifo);
1399
1400 if (out_ep) {
1401 mutex_lock(&chan->lock);
1402 chan->out_ep = NULL;
1403 mutex_unlock(&chan->lock);
1404 }
1405
1406 late_unopen:
1407 if (out_ep)
1408 endpoint_dealloc(out_ep);
1409
1410 unopen:
1411 mutex_lock(&chan->lock);
1412
1413 if (filp->f_mode & FMODE_READ)
1414 chan->open_for_read = 0;
1415
1416 if (filp->f_mode & FMODE_WRITE)
1417 chan->open_for_write = 0;
1418
1419 mutex_unlock(&chan->lock);
1420
1421 kref_put(&xdev->kref, cleanup_dev);
1422
1423 return rc;
1424
1425 unmutex_fail:
1426 kref_put(&xdev->kref, cleanup_dev);
1427 mutex_unlock(&chan->lock);
1428 return rc;
1429 }
1430
xillyusb_read(struct file * filp,char __user * userbuf,size_t count,loff_t * f_pos)1431 static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1432 size_t count, loff_t *f_pos)
1433 {
1434 struct xillyusb_channel *chan = filp->private_data;
1435 struct xillyusb_dev *xdev = chan->xdev;
1436 struct xillyfifo *fifo = chan->in_fifo;
1437 int chan_num = (chan->chan_idx << 1) | 1;
1438
1439 long deadline, left_to_sleep;
1440 int bytes_done = 0;
1441 bool sent_set_push = false;
1442 int rc;
1443
1444 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1445
1446 rc = mutex_lock_interruptible(&chan->in_mutex);
1447
1448 if (rc)
1449 return rc;
1450
1451 while (1) {
1452 u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1453 u32 complete_checkpoint, fifo_checkpoint;
1454 u32 checkpoint;
1455 s32 diff, leap;
1456 unsigned int sh = chan->in_log2_element_size;
1457 bool checkpoint_for_complete;
1458
1459 rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
1460 count - bytes_done, xilly_copy_to_user);
1461
1462 if (rc < 0)
1463 break;
1464
1465 bytes_done += rc;
1466 chan->in_consumed_bytes += rc;
1467
1468 left_to_sleep = deadline - ((long)jiffies);
1469
1470 /*
1471 * Some 32-bit arithmetic that may wrap. Note that
1472 * complete_checkpoint is rounded up to the closest element
1473 * boundary, because the read() can't be completed otherwise.
1474 * fifo_checkpoint_bytes is rounded down, because it protects
1475 * in_fifo from overflowing.
1476 */
1477
1478 fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1479 complete_checkpoint_bytes =
1480 chan->in_consumed_bytes + count - bytes_done;
1481
1482 fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1483 complete_checkpoint =
1484 (complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1485
1486 diff = (fifo_checkpoint - complete_checkpoint) << sh;
1487
1488 if (chan->in_synchronous && diff >= 0) {
1489 checkpoint = complete_checkpoint;
1490 checkpoint_for_complete = true;
1491 } else {
1492 checkpoint = fifo_checkpoint;
1493 checkpoint_for_complete = false;
1494 }
1495
1496 leap = (checkpoint - chan->in_current_checkpoint) << sh;
1497
1498 /*
1499 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1500 * data is consumed, it's issued only if it moves the
1501 * checkpoint by at least an 8th of the FIFO's size, or if
1502 * it's necessary to complete the number of bytes requested by
1503 * the read() call.
1504 *
1505 * chan->read_data_ok is checked to spare an unnecessary
1506 * submission after receiving EOF, however it's harmless if
1507 * such slips away.
1508 */
1509
1510 if (chan->read_data_ok &&
1511 (leap > (fifo->size >> 3) ||
1512 (checkpoint_for_complete && leap > 0))) {
1513 chan->in_current_checkpoint = checkpoint;
1514 rc = xillyusb_send_opcode(xdev, chan_num,
1515 OPCODE_SET_CHECKPOINT,
1516 checkpoint);
1517
1518 if (rc)
1519 break;
1520 }
1521
1522 if (bytes_done == count ||
1523 (left_to_sleep <= 0 && bytes_done))
1524 break;
1525
1526 /*
1527 * Reaching here means that the FIFO was empty when
1528 * fifo_read() returned, but not necessarily right now. Error
1529 * and EOF are checked and reported only now, so that no data
1530 * that managed its way to the FIFO is lost.
1531 */
1532
1533 if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1534 /* Has data slipped into the FIFO since fifo_read()? */
1535 smp_rmb();
1536 if (READ_ONCE(fifo->fill))
1537 continue;
1538
1539 rc = 0;
1540 break;
1541 }
1542
1543 if (xdev->error) {
1544 rc = xdev->error;
1545 break;
1546 }
1547
1548 if (filp->f_flags & O_NONBLOCK) {
1549 rc = -EAGAIN;
1550 break;
1551 }
1552
1553 if (!sent_set_push) {
1554 rc = xillyusb_send_opcode(xdev, chan_num,
1555 OPCODE_SET_PUSH,
1556 complete_checkpoint);
1557
1558 if (rc)
1559 break;
1560
1561 sent_set_push = true;
1562 }
1563
1564 if (left_to_sleep > 0) {
1565 /*
1566 * Note that when xdev->error is set (e.g. when the
1567 * device is unplugged), read_data_ok turns zero and
1568 * fifo->waitq is awaken.
1569 * Therefore no special attention to xdev->error.
1570 */
1571
1572 rc = wait_event_interruptible_timeout
1573 (fifo->waitq,
1574 fifo->fill || !chan->read_data_ok,
1575 left_to_sleep);
1576 } else { /* bytes_done == 0 */
1577 /* Tell FPGA to send anything it has */
1578 rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
1579
1580 if (rc)
1581 break;
1582
1583 rc = wait_event_interruptible
1584 (fifo->waitq,
1585 fifo->fill || !chan->read_data_ok);
1586 }
1587
1588 if (rc < 0) {
1589 rc = -EINTR;
1590 break;
1591 }
1592 }
1593
1594 if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1595 !READ_ONCE(fifo->fill))
1596 request_read_anything(chan, OPCODE_SET_PUSH);
1597
1598 mutex_unlock(&chan->in_mutex);
1599
1600 if (bytes_done)
1601 return bytes_done;
1602
1603 return rc;
1604 }
1605
xillyusb_flush(struct file * filp,fl_owner_t id)1606 static int xillyusb_flush(struct file *filp, fl_owner_t id)
1607 {
1608 struct xillyusb_channel *chan = filp->private_data;
1609 int rc;
1610
1611 if (!(filp->f_mode & FMODE_WRITE))
1612 return 0;
1613
1614 rc = mutex_lock_interruptible(&chan->out_mutex);
1615
1616 if (rc)
1617 return rc;
1618
1619 /*
1620 * One second's timeout on flushing. Interrupts are ignored, because if
1621 * the user pressed CTRL-C, that interrupt will still be in flight by
1622 * the time we reach here, and the opportunity to flush is lost.
1623 */
1624 rc = flush_downstream(chan, HZ, false);
1625
1626 mutex_unlock(&chan->out_mutex);
1627
1628 if (rc == -ETIMEDOUT) {
1629 /* The things you do to use dev_warn() and not pr_warn() */
1630 struct xillyusb_dev *xdev = chan->xdev;
1631
1632 mutex_lock(&chan->lock);
1633 if (!xdev->error)
1634 dev_warn(xdev->dev,
1635 "Timed out while flushing. Output data may be lost.\n");
1636 mutex_unlock(&chan->lock);
1637 }
1638
1639 return rc;
1640 }
1641
xillyusb_write(struct file * filp,const char __user * userbuf,size_t count,loff_t * f_pos)1642 static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1643 size_t count, loff_t *f_pos)
1644 {
1645 struct xillyusb_channel *chan = filp->private_data;
1646 struct xillyusb_dev *xdev = chan->xdev;
1647 struct xillyfifo *fifo = &chan->out_ep->fifo;
1648 int rc;
1649
1650 rc = mutex_lock_interruptible(&chan->out_mutex);
1651
1652 if (rc)
1653 return rc;
1654
1655 while (1) {
1656 if (xdev->error) {
1657 rc = xdev->error;
1658 break;
1659 }
1660
1661 if (count == 0)
1662 break;
1663
1664 rc = fifo_write(fifo, (__force void *)userbuf, count,
1665 xilly_copy_from_user);
1666
1667 if (rc != 0)
1668 break;
1669
1670 if (filp->f_flags & O_NONBLOCK) {
1671 rc = -EAGAIN;
1672 break;
1673 }
1674
1675 if (wait_event_interruptible
1676 (fifo->waitq,
1677 fifo->fill != fifo->size || xdev->error)) {
1678 rc = -EINTR;
1679 break;
1680 }
1681 }
1682
1683 if (rc < 0)
1684 goto done;
1685
1686 chan->out_bytes += rc;
1687
1688 if (rc) {
1689 try_queue_bulk_out(chan->out_ep);
1690 chan->flushed = 0;
1691 }
1692
1693 if (chan->out_synchronous) {
1694 int flush_rc = flush_downstream(chan, 0, true);
1695
1696 if (flush_rc && !rc)
1697 rc = flush_rc;
1698 }
1699
1700 done:
1701 mutex_unlock(&chan->out_mutex);
1702
1703 return rc;
1704 }
1705
xillyusb_release(struct inode * inode,struct file * filp)1706 static int xillyusb_release(struct inode *inode, struct file *filp)
1707 {
1708 struct xillyusb_channel *chan = filp->private_data;
1709 struct xillyusb_dev *xdev = chan->xdev;
1710 int rc_read = 0, rc_write = 0;
1711
1712 if (filp->f_mode & FMODE_READ) {
1713 struct xillyfifo *in_fifo = chan->in_fifo;
1714
1715 rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1716 OPCODE_CLOSE, 0);
1717 /*
1718 * If rc_read is nonzero, xdev->error indicates a global
1719 * device error. The error is reported later, so that
1720 * resources are freed.
1721 *
1722 * Looping on wait_event_interruptible() kinda breaks the idea
1723 * of being interruptible, and this should have been
1724 * wait_event(). Only it's being waken with
1725 * wake_up_interruptible() for the sake of other uses. If
1726 * there's a global device error, chan->read_data_ok is
1727 * deasserted and the wait queue is awaken, so this is covered.
1728 */
1729
1730 while (wait_event_interruptible(in_fifo->waitq,
1731 !chan->read_data_ok))
1732 ; /* Empty loop */
1733
1734 safely_assign_in_fifo(chan, NULL);
1735 fifo_mem_release(in_fifo);
1736 kfree(in_fifo);
1737
1738 mutex_lock(&chan->lock);
1739 chan->open_for_read = 0;
1740 mutex_unlock(&chan->lock);
1741 }
1742
1743 if (filp->f_mode & FMODE_WRITE) {
1744 struct xillyusb_endpoint *ep = chan->out_ep;
1745 /*
1746 * chan->flushing isn't zeroed. If the pre-release flush timed
1747 * out, a cancel request will be sent before the next
1748 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1749 * This is despite that the FPGA forgets about the checkpoint
1750 * request as the file closes. Still, in an exceptional race
1751 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1752 * just before closing that would reach the host after the
1753 * file has re-opened.
1754 */
1755
1756 mutex_lock(&chan->lock);
1757 chan->out_ep = NULL;
1758 mutex_unlock(&chan->lock);
1759
1760 endpoint_quiesce(ep);
1761 endpoint_dealloc(ep);
1762
1763 /* See comments on rc_read above */
1764 rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1765 OPCODE_CLOSE, 0);
1766
1767 mutex_lock(&chan->lock);
1768 chan->open_for_write = 0;
1769 mutex_unlock(&chan->lock);
1770 }
1771
1772 kref_put(&xdev->kref, cleanup_dev);
1773
1774 return rc_read ? rc_read : rc_write;
1775 }
1776
1777 /*
1778 * Xillybus' API allows device nodes to be seekable, giving the user
1779 * application access to a RAM array on the FPGA (or logic emulating it).
1780 */
1781
xillyusb_llseek(struct file * filp,loff_t offset,int whence)1782 static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1783 {
1784 struct xillyusb_channel *chan = filp->private_data;
1785 struct xillyusb_dev *xdev = chan->xdev;
1786 loff_t pos = filp->f_pos;
1787 int rc = 0;
1788 unsigned int log2_element_size = chan->readable ?
1789 chan->in_log2_element_size : chan->out_log2_element_size;
1790
1791 /*
1792 * Take both mutexes not allowing interrupts, since it seems like
1793 * common applications don't expect an -EINTR here. Besides, multiple
1794 * access to a single file descriptor on seekable devices is a mess
1795 * anyhow.
1796 */
1797
1798 mutex_lock(&chan->out_mutex);
1799 mutex_lock(&chan->in_mutex);
1800
1801 switch (whence) {
1802 case SEEK_SET:
1803 pos = offset;
1804 break;
1805 case SEEK_CUR:
1806 pos += offset;
1807 break;
1808 case SEEK_END:
1809 pos = offset; /* Going to the end => to the beginning */
1810 break;
1811 default:
1812 rc = -EINVAL;
1813 goto end;
1814 }
1815
1816 /* In any case, we must finish on an element boundary */
1817 if (pos & ((1 << log2_element_size) - 1)) {
1818 rc = -EINVAL;
1819 goto end;
1820 }
1821
1822 rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1823 OPCODE_SET_ADDR,
1824 pos >> log2_element_size);
1825
1826 if (rc)
1827 goto end;
1828
1829 if (chan->writable) {
1830 chan->flushed = 0;
1831 rc = flush_downstream(chan, HZ, false);
1832 }
1833
1834 end:
1835 mutex_unlock(&chan->out_mutex);
1836 mutex_unlock(&chan->in_mutex);
1837
1838 if (rc) /* Return error after releasing mutexes */
1839 return rc;
1840
1841 filp->f_pos = pos;
1842
1843 return pos;
1844 }
1845
xillyusb_poll(struct file * filp,poll_table * wait)1846 static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1847 {
1848 struct xillyusb_channel *chan = filp->private_data;
1849 __poll_t mask = 0;
1850
1851 if (chan->in_fifo)
1852 poll_wait(filp, &chan->in_fifo->waitq, wait);
1853
1854 if (chan->out_ep)
1855 poll_wait(filp, &chan->out_ep->fifo.waitq, wait);
1856
1857 /*
1858 * If this is the first time poll() is called, and the file is
1859 * readable, set the relevant flag. Also tell the FPGA to send all it
1860 * has, to kickstart the mechanism that ensures there's always some
1861 * data in in_fifo unless the stream is dry end-to-end. Note that the
1862 * first poll() may not return a EPOLLIN, even if there's data on the
1863 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1864 * wait queue.
1865 */
1866
1867 if (!chan->poll_used && chan->in_fifo) {
1868 chan->poll_used = 1;
1869 request_read_anything(chan, OPCODE_SET_PUSH);
1870 }
1871
1872 /*
1873 * poll() won't play ball regarding read() channels which
1874 * are synchronous. Allowing that will create situations where data has
1875 * been delivered at the FPGA, and users expecting select() to wake up,
1876 * which it may not. So make it never work.
1877 */
1878
1879 if (chan->in_fifo && !chan->in_synchronous &&
1880 (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1881 mask |= EPOLLIN | EPOLLRDNORM;
1882
1883 if (chan->out_ep &&
1884 (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1885 mask |= EPOLLOUT | EPOLLWRNORM;
1886
1887 if (chan->xdev->error)
1888 mask |= EPOLLERR;
1889
1890 return mask;
1891 }
1892
1893 static const struct file_operations xillyusb_fops = {
1894 .owner = THIS_MODULE,
1895 .read = xillyusb_read,
1896 .write = xillyusb_write,
1897 .open = xillyusb_open,
1898 .flush = xillyusb_flush,
1899 .release = xillyusb_release,
1900 .llseek = xillyusb_llseek,
1901 .poll = xillyusb_poll,
1902 };
1903
xillyusb_setup_base_eps(struct xillyusb_dev * xdev)1904 static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1905 {
1906 struct usb_device *udev = xdev->udev;
1907
1908 /* Verify that device has the two fundamental bulk in/out endpoints */
1909 if (usb_pipe_type_check(udev, usb_sndbulkpipe(udev, MSG_EP_NUM)) ||
1910 usb_pipe_type_check(udev, usb_rcvbulkpipe(udev, IN_EP_NUM)))
1911 return -ENODEV;
1912
1913 xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1914 bulk_out_work, 1, 2);
1915 if (!xdev->msg_ep)
1916 return -ENOMEM;
1917
1918 if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */
1919 goto dealloc;
1920
1921 xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1922
1923 xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1924 bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1925 if (!xdev->in_ep)
1926 goto dealloc;
1927
1928 try_queue_bulk_in(xdev->in_ep);
1929
1930 return 0;
1931
1932 dealloc:
1933 endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */
1934 xdev->msg_ep = NULL;
1935 return -ENOMEM;
1936 }
1937
setup_channels(struct xillyusb_dev * xdev,__le16 * chandesc,int num_channels)1938 static int setup_channels(struct xillyusb_dev *xdev,
1939 __le16 *chandesc,
1940 int num_channels)
1941 {
1942 struct usb_device *udev = xdev->udev;
1943 struct xillyusb_channel *chan, *new_channels;
1944 int i;
1945
1946 chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL);
1947 if (!chan)
1948 return -ENOMEM;
1949
1950 new_channels = chan;
1951
1952 for (i = 0; i < num_channels; i++, chan++) {
1953 unsigned int in_desc = le16_to_cpu(*chandesc++);
1954 unsigned int out_desc = le16_to_cpu(*chandesc++);
1955
1956 chan->xdev = xdev;
1957 mutex_init(&chan->in_mutex);
1958 mutex_init(&chan->out_mutex);
1959 mutex_init(&chan->lock);
1960 init_waitqueue_head(&chan->flushq);
1961
1962 chan->chan_idx = i;
1963
1964 if (in_desc & 0x80) { /* Entry is valid */
1965 chan->readable = 1;
1966 chan->in_synchronous = !!(in_desc & 0x40);
1967 chan->in_seekable = !!(in_desc & 0x20);
1968 chan->in_log2_element_size = in_desc & 0x0f;
1969 chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1970 }
1971
1972 /*
1973 * A downstream channel should never exist above index 13,
1974 * as it would request a nonexistent BULK endpoint > 15.
1975 * In the peculiar case that it does, it's ignored silently.
1976 */
1977
1978 if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1979 if (usb_pipe_type_check(udev,
1980 usb_sndbulkpipe(udev, i + 2))) {
1981 dev_err(xdev->dev,
1982 "Missing BULK OUT endpoint %d\n",
1983 i + 2);
1984 kfree(new_channels);
1985 return -ENODEV;
1986 }
1987
1988 chan->writable = 1;
1989 chan->out_synchronous = !!(out_desc & 0x40);
1990 chan->out_seekable = !!(out_desc & 0x20);
1991 chan->out_log2_element_size = out_desc & 0x0f;
1992 chan->out_log2_fifo_size =
1993 ((out_desc >> 8) & 0x1f) + 16;
1994 }
1995 }
1996
1997 xdev->channels = new_channels;
1998 return 0;
1999 }
2000
xillyusb_discovery(struct usb_interface * interface)2001 static int xillyusb_discovery(struct usb_interface *interface)
2002 {
2003 int rc;
2004 struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2005 __le16 bogus_chandesc[2];
2006 struct xillyfifo idt_fifo;
2007 struct xillyusb_channel *chan;
2008 unsigned int idt_len, names_offset;
2009 unsigned char *idt;
2010 int num_channels;
2011
2012 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2013
2014 if (rc) {
2015 dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
2016 return rc;
2017 }
2018
2019 /* Phase I: Set up one fake upstream channel and obtain IDT */
2020
2021 /* Set up a fake IDT with one async IN stream */
2022 bogus_chandesc[0] = cpu_to_le16(0x80);
2023 bogus_chandesc[1] = cpu_to_le16(0);
2024
2025 rc = setup_channels(xdev, bogus_chandesc, 1);
2026
2027 if (rc)
2028 return rc;
2029
2030 rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE);
2031
2032 if (rc)
2033 return rc;
2034
2035 chan = xdev->channels;
2036
2037 chan->in_fifo = &idt_fifo;
2038 chan->read_data_ok = 1;
2039
2040 xdev->num_channels = 1;
2041
2042 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0);
2043
2044 if (rc) {
2045 dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2046 goto unfifo;
2047 }
2048
2049 rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2050 !chan->read_data_ok,
2051 XILLY_RESPONSE_TIMEOUT);
2052
2053 if (xdev->error) {
2054 rc = xdev->error;
2055 goto unfifo;
2056 }
2057
2058 if (rc < 0) {
2059 rc = -EINTR; /* Interrupt on probe method? Interesting. */
2060 goto unfifo;
2061 }
2062
2063 if (chan->read_data_ok) {
2064 rc = -ETIMEDOUT;
2065 dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2066 goto unfifo;
2067 }
2068
2069 idt_len = READ_ONCE(idt_fifo.fill);
2070 idt = kmalloc(idt_len, GFP_KERNEL);
2071
2072 if (!idt) {
2073 rc = -ENOMEM;
2074 goto unfifo;
2075 }
2076
2077 fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy);
2078
2079 if (crc32_le(~0, idt, idt_len) != 0) {
2080 dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2081 rc = -ENODEV;
2082 goto unidt;
2083 }
2084
2085 if (*idt > 0x90) {
2086 dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2087 (int)*idt);
2088 rc = -ENODEV;
2089 goto unidt;
2090 }
2091
2092 /* Phase II: Set up the streams as defined in IDT */
2093
2094 num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2095 names_offset = 3 + num_channels * 4;
2096 idt_len -= 4; /* Exclude CRC */
2097
2098 if (idt_len < names_offset) {
2099 dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2100 rc = -ENODEV;
2101 goto unidt;
2102 }
2103
2104 rc = setup_channels(xdev, (void *)idt + 3, num_channels);
2105
2106 if (rc)
2107 goto unidt;
2108
2109 /*
2110 * Except for wildly misbehaving hardware, or if it was disconnected
2111 * just after responding with the IDT, there is no reason for any
2112 * work item to be running now. To be sure that xdev->channels
2113 * is updated on anything that might run in parallel, flush the
2114 * device's workqueue and the wakeup work item. This rarely
2115 * does anything.
2116 */
2117 flush_workqueue(xdev->workq);
2118 flush_work(&xdev->wakeup_workitem);
2119
2120 xdev->num_channels = num_channels;
2121
2122 fifo_mem_release(&idt_fifo);
2123 kfree(chan);
2124
2125 rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops,
2126 THIS_MODULE, xdev,
2127 idt + names_offset,
2128 idt_len - names_offset,
2129 num_channels,
2130 xillyname, true);
2131
2132 kfree(idt);
2133
2134 return rc;
2135
2136 unidt:
2137 kfree(idt);
2138
2139 unfifo:
2140 safely_assign_in_fifo(chan, NULL);
2141 fifo_mem_release(&idt_fifo);
2142
2143 return rc;
2144 }
2145
xillyusb_probe(struct usb_interface * interface,const struct usb_device_id * id)2146 static int xillyusb_probe(struct usb_interface *interface,
2147 const struct usb_device_id *id)
2148 {
2149 struct xillyusb_dev *xdev;
2150 int rc;
2151
2152 xdev = kzalloc(sizeof(*xdev), GFP_KERNEL);
2153 if (!xdev)
2154 return -ENOMEM;
2155
2156 kref_init(&xdev->kref);
2157 mutex_init(&xdev->process_in_mutex);
2158 mutex_init(&xdev->msg_mutex);
2159
2160 xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2161 xdev->dev = &interface->dev;
2162 xdev->error = 0;
2163 spin_lock_init(&xdev->error_lock);
2164 xdev->in_counter = 0;
2165 xdev->in_bytes_left = 0;
2166 xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0);
2167
2168 if (!xdev->workq) {
2169 dev_err(&interface->dev, "Failed to allocate work queue\n");
2170 rc = -ENOMEM;
2171 goto fail;
2172 }
2173
2174 INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2175
2176 usb_set_intfdata(interface, xdev);
2177
2178 rc = xillyusb_setup_base_eps(xdev);
2179 if (rc)
2180 goto fail;
2181
2182 rc = xillyusb_discovery(interface);
2183 if (rc)
2184 goto latefail;
2185
2186 return 0;
2187
2188 latefail:
2189 endpoint_quiesce(xdev->in_ep);
2190 endpoint_quiesce(xdev->msg_ep);
2191
2192 fail:
2193 usb_set_intfdata(interface, NULL);
2194 kref_put(&xdev->kref, cleanup_dev);
2195 return rc;
2196 }
2197
xillyusb_disconnect(struct usb_interface * interface)2198 static void xillyusb_disconnect(struct usb_interface *interface)
2199 {
2200 struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2201 struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2202 struct xillyfifo *fifo = &msg_ep->fifo;
2203 int rc;
2204 int i;
2205
2206 xillybus_cleanup_chrdev(xdev, &interface->dev);
2207
2208 /*
2209 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2210 * was disconnected, but makes sense on module unload.
2211 */
2212
2213 msg_ep->wake_on_drain = true;
2214 xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2215
2216 /*
2217 * If the device has been disconnected, sending the opcode causes
2218 * a global device error with xdev->error, if such error didn't
2219 * occur earlier. Hence timing out means that the USB link is fine,
2220 * but somehow the message wasn't sent. Should never happen.
2221 */
2222
2223 rc = wait_event_interruptible_timeout(fifo->waitq,
2224 msg_ep->drained || xdev->error,
2225 XILLY_RESPONSE_TIMEOUT);
2226
2227 if (!rc)
2228 dev_err(&interface->dev,
2229 "Weird timeout condition on sending quiesce request.\n");
2230
2231 report_io_error(xdev, -ENODEV); /* Discourage further activity */
2232
2233 /*
2234 * This device driver is declared with soft_unbind set, or else
2235 * sending OPCODE_QUIESCE above would always fail. The price is
2236 * that the USB framework didn't kill outstanding URBs, so it has
2237 * to be done explicitly before returning from this call.
2238 */
2239
2240 for (i = 0; i < xdev->num_channels; i++) {
2241 struct xillyusb_channel *chan = &xdev->channels[i];
2242
2243 /*
2244 * Lock taken to prevent chan->out_ep from changing. It also
2245 * ensures xillyusb_open() and xillyusb_flush() don't access
2246 * xdev->dev after being nullified below.
2247 */
2248 mutex_lock(&chan->lock);
2249 if (chan->out_ep)
2250 endpoint_quiesce(chan->out_ep);
2251 mutex_unlock(&chan->lock);
2252 }
2253
2254 endpoint_quiesce(xdev->in_ep);
2255 endpoint_quiesce(xdev->msg_ep);
2256
2257 usb_set_intfdata(interface, NULL);
2258
2259 xdev->dev = NULL;
2260
2261 mutex_lock(&kref_mutex);
2262 kref_put(&xdev->kref, cleanup_dev);
2263 mutex_unlock(&kref_mutex);
2264 }
2265
2266 static struct usb_driver xillyusb_driver = {
2267 .name = xillyname,
2268 .id_table = xillyusb_table,
2269 .probe = xillyusb_probe,
2270 .disconnect = xillyusb_disconnect,
2271 .soft_unbind = 1,
2272 };
2273
xillyusb_init(void)2274 static int __init xillyusb_init(void)
2275 {
2276 int rc = 0;
2277
2278 wakeup_wq = alloc_workqueue(xillyname, 0, 0);
2279 if (!wakeup_wq)
2280 return -ENOMEM;
2281
2282 if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2283 fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2284 else
2285 fifo_buf_order = 0;
2286
2287 rc = usb_register(&xillyusb_driver);
2288
2289 if (rc)
2290 destroy_workqueue(wakeup_wq);
2291
2292 return rc;
2293 }
2294
xillyusb_exit(void)2295 static void __exit xillyusb_exit(void)
2296 {
2297 usb_deregister(&xillyusb_driver);
2298
2299 destroy_workqueue(wakeup_wq);
2300 }
2301
2302 module_init(xillyusb_init);
2303 module_exit(xillyusb_exit);
2304