xref: /linux/drivers/base/cacheinfo.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31 	return ci_cacheinfo(cpu);
32 }
33 
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36 					   struct cacheinfo *sib_leaf)
37 {
38 	return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40 
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43 	const char *size_prop;
44 	const char *line_size_props[2];
45 	const char *nr_sets_prop;
46 };
47 
48 static const struct cache_type_info cache_type_info[] = {
49 	{
50 		.size_prop       = "cache-size",
51 		.line_size_props = { "cache-line-size",
52 				     "cache-block-size", },
53 		.nr_sets_prop    = "cache-sets",
54 	}, {
55 		.size_prop       = "i-cache-size",
56 		.line_size_props = { "i-cache-line-size",
57 				     "i-cache-block-size", },
58 		.nr_sets_prop    = "i-cache-sets",
59 	}, {
60 		.size_prop       = "d-cache-size",
61 		.line_size_props = { "d-cache-line-size",
62 				     "d-cache-block-size", },
63 		.nr_sets_prop    = "d-cache-sets",
64 	},
65 };
66 
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69 	if (type == CACHE_TYPE_UNIFIED)
70 		return 0;
71 	return type;
72 }
73 
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76 	const char *propname;
77 	int ct_idx;
78 
79 	ct_idx = get_cacheinfo_idx(this_leaf->type);
80 	propname = cache_type_info[ct_idx].size_prop;
81 
82 	if (of_property_read_u32(np, propname, &this_leaf->size))
83 		this_leaf->size = 0;
84 }
85 
86 /* not cache_line_size() because that's a macro in include/linux/cache.h */
87 static void cache_get_line_size(struct cacheinfo *this_leaf,
88 				struct device_node *np)
89 {
90 	int i, lim, ct_idx;
91 
92 	ct_idx = get_cacheinfo_idx(this_leaf->type);
93 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
94 
95 	for (i = 0; i < lim; i++) {
96 		int ret;
97 		u32 line_size;
98 		const char *propname;
99 
100 		propname = cache_type_info[ct_idx].line_size_props[i];
101 		ret = of_property_read_u32(np, propname, &line_size);
102 		if (!ret) {
103 			this_leaf->coherency_line_size = line_size;
104 			break;
105 		}
106 	}
107 }
108 
109 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
110 {
111 	const char *propname;
112 	int ct_idx;
113 
114 	ct_idx = get_cacheinfo_idx(this_leaf->type);
115 	propname = cache_type_info[ct_idx].nr_sets_prop;
116 
117 	if (of_property_read_u32(np, propname, &this_leaf->number_of_sets))
118 		this_leaf->number_of_sets = 0;
119 }
120 
121 static void cache_associativity(struct cacheinfo *this_leaf)
122 {
123 	unsigned int line_size = this_leaf->coherency_line_size;
124 	unsigned int nr_sets = this_leaf->number_of_sets;
125 	unsigned int size = this_leaf->size;
126 
127 	/*
128 	 * If the cache is fully associative, there is no need to
129 	 * check the other properties.
130 	 */
131 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
132 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
133 }
134 
135 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
136 				  struct device_node *np)
137 {
138 	return of_property_read_bool(np, "cache-unified");
139 }
140 
141 static void cache_of_set_props(struct cacheinfo *this_leaf,
142 			       struct device_node *np)
143 {
144 	/*
145 	 * init_cache_level must setup the cache level correctly
146 	 * overriding the architecturally specified levels, so
147 	 * if type is NONE at this stage, it should be unified
148 	 */
149 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
150 	    cache_node_is_unified(this_leaf, np))
151 		this_leaf->type = CACHE_TYPE_UNIFIED;
152 	cache_size(this_leaf, np);
153 	cache_get_line_size(this_leaf, np);
154 	cache_nr_sets(this_leaf, np);
155 	cache_associativity(this_leaf);
156 }
157 
158 static int cache_setup_of_node(unsigned int cpu)
159 {
160 	struct device_node *np;
161 	struct cacheinfo *this_leaf;
162 	struct device *cpu_dev = get_cpu_device(cpu);
163 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
164 	unsigned int index = 0;
165 
166 	/* skip if fw_token is already populated */
167 	if (this_cpu_ci->info_list->fw_token) {
168 		return 0;
169 	}
170 
171 	if (!cpu_dev) {
172 		pr_err("No cpu device for CPU %d\n", cpu);
173 		return -ENODEV;
174 	}
175 	np = cpu_dev->of_node;
176 	if (!np) {
177 		pr_err("Failed to find cpu%d device node\n", cpu);
178 		return -ENOENT;
179 	}
180 
181 	while (index < cache_leaves(cpu)) {
182 		this_leaf = this_cpu_ci->info_list + index;
183 		if (this_leaf->level != 1)
184 			np = of_find_next_cache_node(np);
185 		else
186 			np = of_node_get(np);/* cpu node itself */
187 		if (!np)
188 			break;
189 		cache_of_set_props(this_leaf, np);
190 		this_leaf->fw_token = np;
191 		index++;
192 	}
193 
194 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
195 		return -ENOENT;
196 
197 	return 0;
198 }
199 #else
200 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
201 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
202 					   struct cacheinfo *sib_leaf)
203 {
204 	/*
205 	 * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
206 	 * shared caches for all other levels. This will be used only if
207 	 * arch specific code has not populated shared_cpu_map
208 	 */
209 	return !(this_leaf->level == 1);
210 }
211 #endif
212 
213 int __weak cache_setup_acpi(unsigned int cpu)
214 {
215 	return -ENOTSUPP;
216 }
217 
218 static int cache_shared_cpu_map_setup(unsigned int cpu)
219 {
220 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221 	struct cacheinfo *this_leaf, *sib_leaf;
222 	unsigned int index;
223 	int ret = 0;
224 
225 	if (this_cpu_ci->cpu_map_populated)
226 		return 0;
227 
228 	if (of_have_populated_dt())
229 		ret = cache_setup_of_node(cpu);
230 	else if (!acpi_disabled)
231 		ret = cache_setup_acpi(cpu);
232 
233 	if (ret)
234 		return ret;
235 
236 	for (index = 0; index < cache_leaves(cpu); index++) {
237 		unsigned int i;
238 
239 		this_leaf = this_cpu_ci->info_list + index;
240 		/* skip if shared_cpu_map is already populated */
241 		if (!cpumask_empty(&this_leaf->shared_cpu_map))
242 			continue;
243 
244 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245 		for_each_online_cpu(i) {
246 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
247 
248 			if (i == cpu || !sib_cpu_ci->info_list)
249 				continue;/* skip if itself or no cacheinfo */
250 			sib_leaf = sib_cpu_ci->info_list + index;
251 			if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252 				cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253 				cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
254 			}
255 		}
256 	}
257 
258 	return 0;
259 }
260 
261 static void cache_shared_cpu_map_remove(unsigned int cpu)
262 {
263 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
264 	struct cacheinfo *this_leaf, *sib_leaf;
265 	unsigned int sibling, index;
266 
267 	for (index = 0; index < cache_leaves(cpu); index++) {
268 		this_leaf = this_cpu_ci->info_list + index;
269 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
270 			struct cpu_cacheinfo *sib_cpu_ci;
271 
272 			if (sibling == cpu) /* skip itself */
273 				continue;
274 
275 			sib_cpu_ci = get_cpu_cacheinfo(sibling);
276 			if (!sib_cpu_ci->info_list)
277 				continue;
278 
279 			sib_leaf = sib_cpu_ci->info_list + index;
280 			cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
281 			cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
282 		}
283 		if (of_have_populated_dt())
284 			of_node_put(this_leaf->fw_token);
285 	}
286 }
287 
288 static void free_cache_attributes(unsigned int cpu)
289 {
290 	if (!per_cpu_cacheinfo(cpu))
291 		return;
292 
293 	cache_shared_cpu_map_remove(cpu);
294 
295 	kfree(per_cpu_cacheinfo(cpu));
296 	per_cpu_cacheinfo(cpu) = NULL;
297 }
298 
299 int __weak init_cache_level(unsigned int cpu)
300 {
301 	return -ENOENT;
302 }
303 
304 int __weak populate_cache_leaves(unsigned int cpu)
305 {
306 	return -ENOENT;
307 }
308 
309 static int detect_cache_attributes(unsigned int cpu)
310 {
311 	int ret;
312 
313 	if (init_cache_level(cpu) || !cache_leaves(cpu))
314 		return -ENOENT;
315 
316 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
317 					 sizeof(struct cacheinfo), GFP_KERNEL);
318 	if (per_cpu_cacheinfo(cpu) == NULL)
319 		return -ENOMEM;
320 
321 	/*
322 	 * populate_cache_leaves() may completely setup the cache leaves and
323 	 * shared_cpu_map or it may leave it partially setup.
324 	 */
325 	ret = populate_cache_leaves(cpu);
326 	if (ret)
327 		goto free_ci;
328 	/*
329 	 * For systems using DT for cache hierarchy, fw_token
330 	 * and shared_cpu_map will be set up here only if they are
331 	 * not populated already
332 	 */
333 	ret = cache_shared_cpu_map_setup(cpu);
334 	if (ret) {
335 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
336 		goto free_ci;
337 	}
338 
339 	return 0;
340 
341 free_ci:
342 	free_cache_attributes(cpu);
343 	return ret;
344 }
345 
346 /* pointer to cpuX/cache device */
347 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
348 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
349 
350 static cpumask_t cache_dev_map;
351 
352 /* pointer to array of devices for cpuX/cache/indexY */
353 static DEFINE_PER_CPU(struct device **, ci_index_dev);
354 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
355 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
356 
357 #define show_one(file_name, object)				\
358 static ssize_t file_name##_show(struct device *dev,		\
359 		struct device_attribute *attr, char *buf)	\
360 {								\
361 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
362 	return sprintf(buf, "%u\n", this_leaf->object);		\
363 }
364 
365 show_one(id, id);
366 show_one(level, level);
367 show_one(coherency_line_size, coherency_line_size);
368 show_one(number_of_sets, number_of_sets);
369 show_one(physical_line_partition, physical_line_partition);
370 show_one(ways_of_associativity, ways_of_associativity);
371 
372 static ssize_t size_show(struct device *dev,
373 			 struct device_attribute *attr, char *buf)
374 {
375 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
376 
377 	return sprintf(buf, "%uK\n", this_leaf->size >> 10);
378 }
379 
380 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
381 {
382 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
383 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
384 
385 	return cpumap_print_to_pagebuf(list, buf, mask);
386 }
387 
388 static ssize_t shared_cpu_map_show(struct device *dev,
389 				   struct device_attribute *attr, char *buf)
390 {
391 	return shared_cpumap_show_func(dev, false, buf);
392 }
393 
394 static ssize_t shared_cpu_list_show(struct device *dev,
395 				    struct device_attribute *attr, char *buf)
396 {
397 	return shared_cpumap_show_func(dev, true, buf);
398 }
399 
400 static ssize_t type_show(struct device *dev,
401 			 struct device_attribute *attr, char *buf)
402 {
403 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
404 
405 	switch (this_leaf->type) {
406 	case CACHE_TYPE_DATA:
407 		return sprintf(buf, "Data\n");
408 	case CACHE_TYPE_INST:
409 		return sprintf(buf, "Instruction\n");
410 	case CACHE_TYPE_UNIFIED:
411 		return sprintf(buf, "Unified\n");
412 	default:
413 		return -EINVAL;
414 	}
415 }
416 
417 static ssize_t allocation_policy_show(struct device *dev,
418 				      struct device_attribute *attr, char *buf)
419 {
420 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
421 	unsigned int ci_attr = this_leaf->attributes;
422 	int n = 0;
423 
424 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
425 		n = sprintf(buf, "ReadWriteAllocate\n");
426 	else if (ci_attr & CACHE_READ_ALLOCATE)
427 		n = sprintf(buf, "ReadAllocate\n");
428 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
429 		n = sprintf(buf, "WriteAllocate\n");
430 	return n;
431 }
432 
433 static ssize_t write_policy_show(struct device *dev,
434 				 struct device_attribute *attr, char *buf)
435 {
436 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
437 	unsigned int ci_attr = this_leaf->attributes;
438 	int n = 0;
439 
440 	if (ci_attr & CACHE_WRITE_THROUGH)
441 		n = sprintf(buf, "WriteThrough\n");
442 	else if (ci_attr & CACHE_WRITE_BACK)
443 		n = sprintf(buf, "WriteBack\n");
444 	return n;
445 }
446 
447 static DEVICE_ATTR_RO(id);
448 static DEVICE_ATTR_RO(level);
449 static DEVICE_ATTR_RO(type);
450 static DEVICE_ATTR_RO(coherency_line_size);
451 static DEVICE_ATTR_RO(ways_of_associativity);
452 static DEVICE_ATTR_RO(number_of_sets);
453 static DEVICE_ATTR_RO(size);
454 static DEVICE_ATTR_RO(allocation_policy);
455 static DEVICE_ATTR_RO(write_policy);
456 static DEVICE_ATTR_RO(shared_cpu_map);
457 static DEVICE_ATTR_RO(shared_cpu_list);
458 static DEVICE_ATTR_RO(physical_line_partition);
459 
460 static struct attribute *cache_default_attrs[] = {
461 	&dev_attr_id.attr,
462 	&dev_attr_type.attr,
463 	&dev_attr_level.attr,
464 	&dev_attr_shared_cpu_map.attr,
465 	&dev_attr_shared_cpu_list.attr,
466 	&dev_attr_coherency_line_size.attr,
467 	&dev_attr_ways_of_associativity.attr,
468 	&dev_attr_number_of_sets.attr,
469 	&dev_attr_size.attr,
470 	&dev_attr_allocation_policy.attr,
471 	&dev_attr_write_policy.attr,
472 	&dev_attr_physical_line_partition.attr,
473 	NULL
474 };
475 
476 static umode_t
477 cache_default_attrs_is_visible(struct kobject *kobj,
478 			       struct attribute *attr, int unused)
479 {
480 	struct device *dev = kobj_to_dev(kobj);
481 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
482 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
483 	umode_t mode = attr->mode;
484 
485 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
486 		return mode;
487 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
488 		return mode;
489 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
490 		return mode;
491 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
492 		return mode;
493 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
494 		return mode;
495 	if ((attr == &dev_attr_coherency_line_size.attr) &&
496 	    this_leaf->coherency_line_size)
497 		return mode;
498 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
499 	    this_leaf->size) /* allow 0 = full associativity */
500 		return mode;
501 	if ((attr == &dev_attr_number_of_sets.attr) &&
502 	    this_leaf->number_of_sets)
503 		return mode;
504 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
505 		return mode;
506 	if ((attr == &dev_attr_write_policy.attr) &&
507 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
508 		return mode;
509 	if ((attr == &dev_attr_allocation_policy.attr) &&
510 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
511 		return mode;
512 	if ((attr == &dev_attr_physical_line_partition.attr) &&
513 	    this_leaf->physical_line_partition)
514 		return mode;
515 
516 	return 0;
517 }
518 
519 static const struct attribute_group cache_default_group = {
520 	.attrs = cache_default_attrs,
521 	.is_visible = cache_default_attrs_is_visible,
522 };
523 
524 static const struct attribute_group *cache_default_groups[] = {
525 	&cache_default_group,
526 	NULL,
527 };
528 
529 static const struct attribute_group *cache_private_groups[] = {
530 	&cache_default_group,
531 	NULL, /* Place holder for private group */
532 	NULL,
533 };
534 
535 const struct attribute_group *
536 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
537 {
538 	return NULL;
539 }
540 
541 static const struct attribute_group **
542 cache_get_attribute_groups(struct cacheinfo *this_leaf)
543 {
544 	const struct attribute_group *priv_group =
545 			cache_get_priv_group(this_leaf);
546 
547 	if (!priv_group)
548 		return cache_default_groups;
549 
550 	if (!cache_private_groups[1])
551 		cache_private_groups[1] = priv_group;
552 
553 	return cache_private_groups;
554 }
555 
556 /* Add/Remove cache interface for CPU device */
557 static void cpu_cache_sysfs_exit(unsigned int cpu)
558 {
559 	int i;
560 	struct device *ci_dev;
561 
562 	if (per_cpu_index_dev(cpu)) {
563 		for (i = 0; i < cache_leaves(cpu); i++) {
564 			ci_dev = per_cache_index_dev(cpu, i);
565 			if (!ci_dev)
566 				continue;
567 			device_unregister(ci_dev);
568 		}
569 		kfree(per_cpu_index_dev(cpu));
570 		per_cpu_index_dev(cpu) = NULL;
571 	}
572 	device_unregister(per_cpu_cache_dev(cpu));
573 	per_cpu_cache_dev(cpu) = NULL;
574 }
575 
576 static int cpu_cache_sysfs_init(unsigned int cpu)
577 {
578 	struct device *dev = get_cpu_device(cpu);
579 
580 	if (per_cpu_cacheinfo(cpu) == NULL)
581 		return -ENOENT;
582 
583 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
584 	if (IS_ERR(per_cpu_cache_dev(cpu)))
585 		return PTR_ERR(per_cpu_cache_dev(cpu));
586 
587 	/* Allocate all required memory */
588 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
589 					 sizeof(struct device *), GFP_KERNEL);
590 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
591 		goto err_out;
592 
593 	return 0;
594 
595 err_out:
596 	cpu_cache_sysfs_exit(cpu);
597 	return -ENOMEM;
598 }
599 
600 static int cache_add_dev(unsigned int cpu)
601 {
602 	unsigned int i;
603 	int rc;
604 	struct device *ci_dev, *parent;
605 	struct cacheinfo *this_leaf;
606 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
607 	const struct attribute_group **cache_groups;
608 
609 	rc = cpu_cache_sysfs_init(cpu);
610 	if (unlikely(rc < 0))
611 		return rc;
612 
613 	parent = per_cpu_cache_dev(cpu);
614 	for (i = 0; i < cache_leaves(cpu); i++) {
615 		this_leaf = this_cpu_ci->info_list + i;
616 		if (this_leaf->disable_sysfs)
617 			continue;
618 		cache_groups = cache_get_attribute_groups(this_leaf);
619 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
620 					   "index%1u", i);
621 		if (IS_ERR(ci_dev)) {
622 			rc = PTR_ERR(ci_dev);
623 			goto err;
624 		}
625 		per_cache_index_dev(cpu, i) = ci_dev;
626 	}
627 	cpumask_set_cpu(cpu, &cache_dev_map);
628 
629 	return 0;
630 err:
631 	cpu_cache_sysfs_exit(cpu);
632 	return rc;
633 }
634 
635 static int cacheinfo_cpu_online(unsigned int cpu)
636 {
637 	int rc = detect_cache_attributes(cpu);
638 
639 	if (rc)
640 		return rc;
641 	rc = cache_add_dev(cpu);
642 	if (rc)
643 		free_cache_attributes(cpu);
644 	return rc;
645 }
646 
647 static int cacheinfo_cpu_pre_down(unsigned int cpu)
648 {
649 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
650 		cpu_cache_sysfs_exit(cpu);
651 
652 	free_cache_attributes(cpu);
653 	return 0;
654 }
655 
656 static int __init cacheinfo_sysfs_init(void)
657 {
658 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
659 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
660 }
661 device_initcall(cacheinfo_sysfs_init);
662