1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cacheinfo support - processor cache information via sysfs
4 *
5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 * Author: Sudeep Holla <sudeep.holla@arm.com>
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx) \
29 (per_cpu_cacheinfo(cpu) + (idx))
30
31 /* Set if no cache information is found in DT/ACPI. */
32 static bool use_arch_info;
33
get_cpu_cacheinfo(unsigned int cpu)34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
35 {
36 return ci_cacheinfo(cpu);
37 }
38
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40 struct cacheinfo *sib_leaf)
41 {
42 /*
43 * For non DT/ACPI systems, assume unique level 1 caches,
44 * system-wide shared caches for all other levels.
45 */
46 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47 use_arch_info)
48 return (this_leaf->level != 1) && (sib_leaf->level != 1);
49
50 if ((sib_leaf->attributes & CACHE_ID) &&
51 (this_leaf->attributes & CACHE_ID))
52 return sib_leaf->id == this_leaf->id;
53
54 return sib_leaf->fw_token == this_leaf->fw_token;
55 }
56
last_level_cache_is_valid(unsigned int cpu)57 bool last_level_cache_is_valid(unsigned int cpu)
58 {
59 struct cacheinfo *llc;
60
61 if (!cache_leaves(cpu))
62 return false;
63
64 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
65
66 return (llc->attributes & CACHE_ID) || !!llc->fw_token;
67
68 }
69
last_level_cache_is_shared(unsigned int cpu_x,unsigned int cpu_y)70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
71 {
72 struct cacheinfo *llc_x, *llc_y;
73
74 if (!last_level_cache_is_valid(cpu_x) ||
75 !last_level_cache_is_valid(cpu_y))
76 return false;
77
78 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
80
81 return cache_leaves_are_shared(llc_x, llc_y);
82 }
83
84 #ifdef CONFIG_OF
85
86 static bool of_check_cache_nodes(struct device_node *np);
87
88 /* OF properties to query for a given cache type */
89 struct cache_type_info {
90 const char *size_prop;
91 const char *line_size_props[2];
92 const char *nr_sets_prop;
93 };
94
95 static const struct cache_type_info cache_type_info[] = {
96 {
97 .size_prop = "cache-size",
98 .line_size_props = { "cache-line-size",
99 "cache-block-size", },
100 .nr_sets_prop = "cache-sets",
101 }, {
102 .size_prop = "i-cache-size",
103 .line_size_props = { "i-cache-line-size",
104 "i-cache-block-size", },
105 .nr_sets_prop = "i-cache-sets",
106 }, {
107 .size_prop = "d-cache-size",
108 .line_size_props = { "d-cache-line-size",
109 "d-cache-block-size", },
110 .nr_sets_prop = "d-cache-sets",
111 },
112 };
113
get_cacheinfo_idx(enum cache_type type)114 static inline int get_cacheinfo_idx(enum cache_type type)
115 {
116 if (type == CACHE_TYPE_UNIFIED)
117 return 0;
118 return type;
119 }
120
cache_size(struct cacheinfo * this_leaf,struct device_node * np)121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122 {
123 const char *propname;
124 int ct_idx;
125
126 ct_idx = get_cacheinfo_idx(this_leaf->type);
127 propname = cache_type_info[ct_idx].size_prop;
128
129 of_property_read_u32(np, propname, &this_leaf->size);
130 }
131
132 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)133 static void cache_get_line_size(struct cacheinfo *this_leaf,
134 struct device_node *np)
135 {
136 int i, lim, ct_idx;
137
138 ct_idx = get_cacheinfo_idx(this_leaf->type);
139 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140
141 for (i = 0; i < lim; i++) {
142 int ret;
143 u32 line_size;
144 const char *propname;
145
146 propname = cache_type_info[ct_idx].line_size_props[i];
147 ret = of_property_read_u32(np, propname, &line_size);
148 if (!ret) {
149 this_leaf->coherency_line_size = line_size;
150 break;
151 }
152 }
153 }
154
cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156 {
157 const char *propname;
158 int ct_idx;
159
160 ct_idx = get_cacheinfo_idx(this_leaf->type);
161 propname = cache_type_info[ct_idx].nr_sets_prop;
162
163 of_property_read_u32(np, propname, &this_leaf->number_of_sets);
164 }
165
cache_associativity(struct cacheinfo * this_leaf)166 static void cache_associativity(struct cacheinfo *this_leaf)
167 {
168 unsigned int line_size = this_leaf->coherency_line_size;
169 unsigned int nr_sets = this_leaf->number_of_sets;
170 unsigned int size = this_leaf->size;
171
172 /*
173 * If the cache is fully associative, there is no need to
174 * check the other properties.
175 */
176 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178 }
179
cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)180 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181 struct device_node *np)
182 {
183 return of_property_read_bool(np, "cache-unified");
184 }
185
cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)186 static void cache_of_set_props(struct cacheinfo *this_leaf,
187 struct device_node *np)
188 {
189 /*
190 * init_cache_level must setup the cache level correctly
191 * overriding the architecturally specified levels, so
192 * if type is NONE at this stage, it should be unified
193 */
194 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195 cache_node_is_unified(this_leaf, np))
196 this_leaf->type = CACHE_TYPE_UNIFIED;
197 cache_size(this_leaf, np);
198 cache_get_line_size(this_leaf, np);
199 cache_nr_sets(this_leaf, np);
200 cache_associativity(this_leaf);
201 }
202
cache_setup_of_node(unsigned int cpu)203 static int cache_setup_of_node(unsigned int cpu)
204 {
205 struct cacheinfo *this_leaf;
206 unsigned int index = 0;
207
208 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
209 if (!np) {
210 pr_err("Failed to find cpu%d device node\n", cpu);
211 return -ENOENT;
212 }
213
214 if (!of_check_cache_nodes(np)) {
215 return -ENOENT;
216 }
217
218 while (index < cache_leaves(cpu)) {
219 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
220 if (this_leaf->level != 1) {
221 struct device_node *prev __free(device_node) = np;
222 np = of_find_next_cache_node(np);
223 if (!np)
224 break;
225 }
226 cache_of_set_props(this_leaf, np);
227 this_leaf->fw_token = np;
228 index++;
229 }
230
231 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
232 return -ENOENT;
233
234 return 0;
235 }
236
of_check_cache_nodes(struct device_node * np)237 static bool of_check_cache_nodes(struct device_node *np)
238 {
239 if (of_property_present(np, "cache-size") ||
240 of_property_present(np, "i-cache-size") ||
241 of_property_present(np, "d-cache-size") ||
242 of_property_present(np, "cache-unified"))
243 return true;
244
245 struct device_node *next __free(device_node) = of_find_next_cache_node(np);
246 if (next) {
247 return true;
248 }
249
250 return false;
251 }
252
of_count_cache_leaves(struct device_node * np)253 static int of_count_cache_leaves(struct device_node *np)
254 {
255 unsigned int leaves = 0;
256
257 if (of_property_read_bool(np, "cache-size"))
258 ++leaves;
259 if (of_property_read_bool(np, "i-cache-size"))
260 ++leaves;
261 if (of_property_read_bool(np, "d-cache-size"))
262 ++leaves;
263
264 if (!leaves) {
265 /* The '[i-|d-|]cache-size' property is required, but
266 * if absent, fallback on the 'cache-unified' property.
267 */
268 if (of_property_read_bool(np, "cache-unified"))
269 return 1;
270 else
271 return 2;
272 }
273
274 return leaves;
275 }
276
init_of_cache_level(unsigned int cpu)277 int init_of_cache_level(unsigned int cpu)
278 {
279 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
280 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
281 unsigned int levels = 0, leaves, level;
282
283 if (!of_check_cache_nodes(np)) {
284 return -ENOENT;
285 }
286
287 leaves = of_count_cache_leaves(np);
288 if (leaves > 0)
289 levels = 1;
290
291 while (1) {
292 struct device_node *prev __free(device_node) = np;
293 np = of_find_next_cache_node(np);
294 if (!np)
295 break;
296
297 if (!of_device_is_compatible(np, "cache"))
298 return -EINVAL;
299 if (of_property_read_u32(np, "cache-level", &level))
300 return -EINVAL;
301 if (level <= levels)
302 return -EINVAL;
303
304 leaves += of_count_cache_leaves(np);
305 levels = level;
306 }
307
308 this_cpu_ci->num_levels = levels;
309 this_cpu_ci->num_leaves = leaves;
310
311 return 0;
312 }
313
314 #else
cache_setup_of_node(unsigned int cpu)315 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
init_of_cache_level(unsigned int cpu)316 int init_of_cache_level(unsigned int cpu) { return 0; }
317 #endif
318
cache_setup_acpi(unsigned int cpu)319 int __weak cache_setup_acpi(unsigned int cpu)
320 {
321 return -ENOTSUPP;
322 }
323
324 unsigned int coherency_max_size;
325
cache_setup_properties(unsigned int cpu)326 static int cache_setup_properties(unsigned int cpu)
327 {
328 int ret = 0;
329
330 if (of_have_populated_dt())
331 ret = cache_setup_of_node(cpu);
332 else if (!acpi_disabled)
333 ret = cache_setup_acpi(cpu);
334
335 // Assume there is no cache information available in DT/ACPI from now.
336 if (ret && use_arch_cache_info())
337 use_arch_info = true;
338
339 return ret;
340 }
341
cache_shared_cpu_map_setup(unsigned int cpu)342 static int cache_shared_cpu_map_setup(unsigned int cpu)
343 {
344 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
345 struct cacheinfo *this_leaf, *sib_leaf;
346 unsigned int index, sib_index;
347 int ret = 0;
348
349 if (this_cpu_ci->cpu_map_populated)
350 return 0;
351
352 /*
353 * skip setting up cache properties if LLC is valid, just need
354 * to update the shared cpu_map if the cache attributes were
355 * populated early before all the cpus are brought online
356 */
357 if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
358 ret = cache_setup_properties(cpu);
359 if (ret)
360 return ret;
361 }
362
363 for (index = 0; index < cache_leaves(cpu); index++) {
364 unsigned int i;
365
366 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
367
368 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
369 for_each_online_cpu(i) {
370 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
371
372 if (i == cpu || !sib_cpu_ci->info_list)
373 continue;/* skip if itself or no cacheinfo */
374 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
375 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
376
377 /*
378 * Comparing cache IDs only makes sense if the leaves
379 * belong to the same cache level of same type. Skip
380 * the check if level and type do not match.
381 */
382 if (sib_leaf->level != this_leaf->level ||
383 sib_leaf->type != this_leaf->type)
384 continue;
385
386 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
387 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
388 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
389 break;
390 }
391 }
392 }
393 /* record the maximum cache line size */
394 if (this_leaf->coherency_line_size > coherency_max_size)
395 coherency_max_size = this_leaf->coherency_line_size;
396 }
397
398 /* shared_cpu_map is now populated for the cpu */
399 this_cpu_ci->cpu_map_populated = true;
400 return 0;
401 }
402
cache_shared_cpu_map_remove(unsigned int cpu)403 static void cache_shared_cpu_map_remove(unsigned int cpu)
404 {
405 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
406 struct cacheinfo *this_leaf, *sib_leaf;
407 unsigned int sibling, index, sib_index;
408
409 for (index = 0; index < cache_leaves(cpu); index++) {
410 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
411 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
412 struct cpu_cacheinfo *sib_cpu_ci =
413 get_cpu_cacheinfo(sibling);
414
415 if (sibling == cpu || !sib_cpu_ci->info_list)
416 continue;/* skip if itself or no cacheinfo */
417
418 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
419 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
420
421 /*
422 * Comparing cache IDs only makes sense if the leaves
423 * belong to the same cache level of same type. Skip
424 * the check if level and type do not match.
425 */
426 if (sib_leaf->level != this_leaf->level ||
427 sib_leaf->type != this_leaf->type)
428 continue;
429
430 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
431 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
432 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
433 break;
434 }
435 }
436 }
437 }
438
439 /* cpu is no longer populated in the shared map */
440 this_cpu_ci->cpu_map_populated = false;
441 }
442
free_cache_attributes(unsigned int cpu)443 static void free_cache_attributes(unsigned int cpu)
444 {
445 if (!per_cpu_cacheinfo(cpu))
446 return;
447
448 cache_shared_cpu_map_remove(cpu);
449 }
450
early_cache_level(unsigned int cpu)451 int __weak early_cache_level(unsigned int cpu)
452 {
453 return -ENOENT;
454 }
455
init_cache_level(unsigned int cpu)456 int __weak init_cache_level(unsigned int cpu)
457 {
458 return -ENOENT;
459 }
460
populate_cache_leaves(unsigned int cpu)461 int __weak populate_cache_leaves(unsigned int cpu)
462 {
463 return -ENOENT;
464 }
465
466 static inline
allocate_cache_info(int cpu)467 int allocate_cache_info(int cpu)
468 {
469 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
470 sizeof(struct cacheinfo), GFP_ATOMIC);
471 if (!per_cpu_cacheinfo(cpu)) {
472 cache_leaves(cpu) = 0;
473 return -ENOMEM;
474 }
475
476 return 0;
477 }
478
fetch_cache_info(unsigned int cpu)479 int fetch_cache_info(unsigned int cpu)
480 {
481 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
482 unsigned int levels = 0, split_levels = 0;
483 int ret;
484
485 if (acpi_disabled) {
486 ret = init_of_cache_level(cpu);
487 } else {
488 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
489 if (!ret) {
490 this_cpu_ci->num_levels = levels;
491 /*
492 * This assumes that:
493 * - there cannot be any split caches (data/instruction)
494 * above a unified cache
495 * - data/instruction caches come by pair
496 */
497 this_cpu_ci->num_leaves = levels + split_levels;
498 }
499 }
500
501 if (ret || !cache_leaves(cpu)) {
502 ret = early_cache_level(cpu);
503 if (ret)
504 return ret;
505
506 if (!cache_leaves(cpu))
507 return -ENOENT;
508
509 this_cpu_ci->early_ci_levels = true;
510 }
511
512 return allocate_cache_info(cpu);
513 }
514
init_level_allocate_ci(unsigned int cpu)515 static inline int init_level_allocate_ci(unsigned int cpu)
516 {
517 unsigned int early_leaves = cache_leaves(cpu);
518
519 /* Since early initialization/allocation of the cacheinfo is allowed
520 * via fetch_cache_info() and this also gets called as CPU hotplug
521 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
522 * as it will happen only once (the cacheinfo memory is never freed).
523 * Just populate the cacheinfo. However, if the cacheinfo has been
524 * allocated early through the arch-specific early_cache_level() call,
525 * there is a chance the info is wrong (this can happen on arm64). In
526 * that case, call init_cache_level() anyway to give the arch-specific
527 * code a chance to make things right.
528 */
529 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
530 return 0;
531
532 if (init_cache_level(cpu) || !cache_leaves(cpu))
533 return -ENOENT;
534
535 /*
536 * Now that we have properly initialized the cache level info, make
537 * sure we don't try to do that again the next time we are called
538 * (e.g. as CPU hotplug callbacks).
539 */
540 ci_cacheinfo(cpu)->early_ci_levels = false;
541
542 if (cache_leaves(cpu) <= early_leaves)
543 return 0;
544
545 kfree(per_cpu_cacheinfo(cpu));
546 return allocate_cache_info(cpu);
547 }
548
detect_cache_attributes(unsigned int cpu)549 int detect_cache_attributes(unsigned int cpu)
550 {
551 int ret;
552
553 ret = init_level_allocate_ci(cpu);
554 if (ret)
555 return ret;
556
557 /*
558 * If LLC is valid the cache leaves were already populated so just go to
559 * update the cpu map.
560 */
561 if (!last_level_cache_is_valid(cpu)) {
562 /*
563 * populate_cache_leaves() may completely setup the cache leaves and
564 * shared_cpu_map or it may leave it partially setup.
565 */
566 ret = populate_cache_leaves(cpu);
567 if (ret)
568 goto free_ci;
569 }
570
571 /*
572 * For systems using DT for cache hierarchy, fw_token
573 * and shared_cpu_map will be set up here only if they are
574 * not populated already
575 */
576 ret = cache_shared_cpu_map_setup(cpu);
577 if (ret) {
578 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
579 goto free_ci;
580 }
581
582 return 0;
583
584 free_ci:
585 free_cache_attributes(cpu);
586 return ret;
587 }
588
589 /* pointer to cpuX/cache device */
590 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
591 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
592
593 static cpumask_t cache_dev_map;
594
595 /* pointer to array of devices for cpuX/cache/indexY */
596 static DEFINE_PER_CPU(struct device **, ci_index_dev);
597 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
598 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
599
600 #define show_one(file_name, object) \
601 static ssize_t file_name##_show(struct device *dev, \
602 struct device_attribute *attr, char *buf) \
603 { \
604 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
605 return sysfs_emit(buf, "%u\n", this_leaf->object); \
606 }
607
608 show_one(id, id);
609 show_one(level, level);
610 show_one(coherency_line_size, coherency_line_size);
611 show_one(number_of_sets, number_of_sets);
612 show_one(physical_line_partition, physical_line_partition);
613 show_one(ways_of_associativity, ways_of_associativity);
614
size_show(struct device * dev,struct device_attribute * attr,char * buf)615 static ssize_t size_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
617 {
618 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
619
620 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
621 }
622
shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)623 static ssize_t shared_cpu_map_show(struct device *dev,
624 struct device_attribute *attr, char *buf)
625 {
626 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
627 const struct cpumask *mask = &this_leaf->shared_cpu_map;
628
629 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
630 }
631
shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)632 static ssize_t shared_cpu_list_show(struct device *dev,
633 struct device_attribute *attr, char *buf)
634 {
635 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
636 const struct cpumask *mask = &this_leaf->shared_cpu_map;
637
638 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
639 }
640
type_show(struct device * dev,struct device_attribute * attr,char * buf)641 static ssize_t type_show(struct device *dev,
642 struct device_attribute *attr, char *buf)
643 {
644 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
645 const char *output;
646
647 switch (this_leaf->type) {
648 case CACHE_TYPE_DATA:
649 output = "Data";
650 break;
651 case CACHE_TYPE_INST:
652 output = "Instruction";
653 break;
654 case CACHE_TYPE_UNIFIED:
655 output = "Unified";
656 break;
657 default:
658 return -EINVAL;
659 }
660
661 return sysfs_emit(buf, "%s\n", output);
662 }
663
allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)664 static ssize_t allocation_policy_show(struct device *dev,
665 struct device_attribute *attr, char *buf)
666 {
667 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
668 unsigned int ci_attr = this_leaf->attributes;
669 const char *output;
670
671 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
672 output = "ReadWriteAllocate";
673 else if (ci_attr & CACHE_READ_ALLOCATE)
674 output = "ReadAllocate";
675 else if (ci_attr & CACHE_WRITE_ALLOCATE)
676 output = "WriteAllocate";
677 else
678 return 0;
679
680 return sysfs_emit(buf, "%s\n", output);
681 }
682
write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)683 static ssize_t write_policy_show(struct device *dev,
684 struct device_attribute *attr, char *buf)
685 {
686 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
687 unsigned int ci_attr = this_leaf->attributes;
688 int n = 0;
689
690 if (ci_attr & CACHE_WRITE_THROUGH)
691 n = sysfs_emit(buf, "WriteThrough\n");
692 else if (ci_attr & CACHE_WRITE_BACK)
693 n = sysfs_emit(buf, "WriteBack\n");
694 return n;
695 }
696
697 static DEVICE_ATTR_RO(id);
698 static DEVICE_ATTR_RO(level);
699 static DEVICE_ATTR_RO(type);
700 static DEVICE_ATTR_RO(coherency_line_size);
701 static DEVICE_ATTR_RO(ways_of_associativity);
702 static DEVICE_ATTR_RO(number_of_sets);
703 static DEVICE_ATTR_RO(size);
704 static DEVICE_ATTR_RO(allocation_policy);
705 static DEVICE_ATTR_RO(write_policy);
706 static DEVICE_ATTR_RO(shared_cpu_map);
707 static DEVICE_ATTR_RO(shared_cpu_list);
708 static DEVICE_ATTR_RO(physical_line_partition);
709
710 static struct attribute *cache_default_attrs[] = {
711 &dev_attr_id.attr,
712 &dev_attr_type.attr,
713 &dev_attr_level.attr,
714 &dev_attr_shared_cpu_map.attr,
715 &dev_attr_shared_cpu_list.attr,
716 &dev_attr_coherency_line_size.attr,
717 &dev_attr_ways_of_associativity.attr,
718 &dev_attr_number_of_sets.attr,
719 &dev_attr_size.attr,
720 &dev_attr_allocation_policy.attr,
721 &dev_attr_write_policy.attr,
722 &dev_attr_physical_line_partition.attr,
723 NULL
724 };
725
726 static umode_t
cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)727 cache_default_attrs_is_visible(struct kobject *kobj,
728 struct attribute *attr, int unused)
729 {
730 struct device *dev = kobj_to_dev(kobj);
731 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
732 const struct cpumask *mask = &this_leaf->shared_cpu_map;
733 umode_t mode = attr->mode;
734
735 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
736 return mode;
737 if ((attr == &dev_attr_type.attr) && this_leaf->type)
738 return mode;
739 if ((attr == &dev_attr_level.attr) && this_leaf->level)
740 return mode;
741 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
742 return mode;
743 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
744 return mode;
745 if ((attr == &dev_attr_coherency_line_size.attr) &&
746 this_leaf->coherency_line_size)
747 return mode;
748 if ((attr == &dev_attr_ways_of_associativity.attr) &&
749 this_leaf->size) /* allow 0 = full associativity */
750 return mode;
751 if ((attr == &dev_attr_number_of_sets.attr) &&
752 this_leaf->number_of_sets)
753 return mode;
754 if ((attr == &dev_attr_size.attr) && this_leaf->size)
755 return mode;
756 if ((attr == &dev_attr_write_policy.attr) &&
757 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
758 return mode;
759 if ((attr == &dev_attr_allocation_policy.attr) &&
760 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
761 return mode;
762 if ((attr == &dev_attr_physical_line_partition.attr) &&
763 this_leaf->physical_line_partition)
764 return mode;
765
766 return 0;
767 }
768
769 static const struct attribute_group cache_default_group = {
770 .attrs = cache_default_attrs,
771 .is_visible = cache_default_attrs_is_visible,
772 };
773
774 static const struct attribute_group *cache_default_groups[] = {
775 &cache_default_group,
776 NULL,
777 };
778
779 static const struct attribute_group *cache_private_groups[] = {
780 &cache_default_group,
781 NULL, /* Place holder for private group */
782 NULL,
783 };
784
785 const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)786 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
787 {
788 return NULL;
789 }
790
791 static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo * this_leaf)792 cache_get_attribute_groups(struct cacheinfo *this_leaf)
793 {
794 const struct attribute_group *priv_group =
795 cache_get_priv_group(this_leaf);
796
797 if (!priv_group)
798 return cache_default_groups;
799
800 if (!cache_private_groups[1])
801 cache_private_groups[1] = priv_group;
802
803 return cache_private_groups;
804 }
805
806 /* Add/Remove cache interface for CPU device */
cpu_cache_sysfs_exit(unsigned int cpu)807 static void cpu_cache_sysfs_exit(unsigned int cpu)
808 {
809 int i;
810 struct device *ci_dev;
811
812 if (per_cpu_index_dev(cpu)) {
813 for (i = 0; i < cache_leaves(cpu); i++) {
814 ci_dev = per_cache_index_dev(cpu, i);
815 if (!ci_dev)
816 continue;
817 device_unregister(ci_dev);
818 }
819 kfree(per_cpu_index_dev(cpu));
820 per_cpu_index_dev(cpu) = NULL;
821 }
822 device_unregister(per_cpu_cache_dev(cpu));
823 per_cpu_cache_dev(cpu) = NULL;
824 }
825
cpu_cache_sysfs_init(unsigned int cpu)826 static int cpu_cache_sysfs_init(unsigned int cpu)
827 {
828 struct device *dev = get_cpu_device(cpu);
829
830 if (per_cpu_cacheinfo(cpu) == NULL)
831 return -ENOENT;
832
833 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
834 if (IS_ERR(per_cpu_cache_dev(cpu)))
835 return PTR_ERR(per_cpu_cache_dev(cpu));
836
837 /* Allocate all required memory */
838 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
839 sizeof(struct device *), GFP_KERNEL);
840 if (unlikely(per_cpu_index_dev(cpu) == NULL))
841 goto err_out;
842
843 return 0;
844
845 err_out:
846 cpu_cache_sysfs_exit(cpu);
847 return -ENOMEM;
848 }
849
cache_add_dev(unsigned int cpu)850 static int cache_add_dev(unsigned int cpu)
851 {
852 unsigned int i;
853 int rc;
854 struct device *ci_dev, *parent;
855 struct cacheinfo *this_leaf;
856 const struct attribute_group **cache_groups;
857
858 rc = cpu_cache_sysfs_init(cpu);
859 if (unlikely(rc < 0))
860 return rc;
861
862 parent = per_cpu_cache_dev(cpu);
863 for (i = 0; i < cache_leaves(cpu); i++) {
864 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
865 if (this_leaf->disable_sysfs)
866 continue;
867 if (this_leaf->type == CACHE_TYPE_NOCACHE)
868 break;
869 cache_groups = cache_get_attribute_groups(this_leaf);
870 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
871 "index%1u", i);
872 if (IS_ERR(ci_dev)) {
873 rc = PTR_ERR(ci_dev);
874 goto err;
875 }
876 per_cache_index_dev(cpu, i) = ci_dev;
877 }
878 cpumask_set_cpu(cpu, &cache_dev_map);
879
880 return 0;
881 err:
882 cpu_cache_sysfs_exit(cpu);
883 return rc;
884 }
885
cpu_map_shared_cache(bool online,unsigned int cpu,cpumask_t ** map)886 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
887 cpumask_t **map)
888 {
889 struct cacheinfo *llc, *sib_llc;
890 unsigned int sibling;
891
892 if (!last_level_cache_is_valid(cpu))
893 return 0;
894
895 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
896
897 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
898 return 0;
899
900 if (online) {
901 *map = &llc->shared_cpu_map;
902 return cpumask_weight(*map);
903 }
904
905 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
906 for_each_cpu(sibling, &llc->shared_cpu_map) {
907 if (sibling == cpu || !last_level_cache_is_valid(sibling))
908 continue;
909 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
910 *map = &sib_llc->shared_cpu_map;
911 return cpumask_weight(*map);
912 }
913
914 return 0;
915 }
916
917 /*
918 * Calculate the size of the per-CPU data cache slice. This can be
919 * used to estimate the size of the data cache slice that can be used
920 * by one CPU under ideal circumstances. UNIFIED caches are counted
921 * in addition to DATA caches. So, please consider code cache usage
922 * when use the result.
923 *
924 * Because the cache inclusive/non-inclusive information isn't
925 * available, we just use the size of the per-CPU slice of LLC to make
926 * the result more predictable across architectures.
927 */
update_per_cpu_data_slice_size_cpu(unsigned int cpu)928 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
929 {
930 struct cpu_cacheinfo *ci;
931 struct cacheinfo *llc;
932 unsigned int nr_shared;
933
934 if (!last_level_cache_is_valid(cpu))
935 return;
936
937 ci = ci_cacheinfo(cpu);
938 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
939
940 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
941 return;
942
943 nr_shared = cpumask_weight(&llc->shared_cpu_map);
944 if (nr_shared)
945 ci->per_cpu_data_slice_size = llc->size / nr_shared;
946 }
947
update_per_cpu_data_slice_size(bool cpu_online,unsigned int cpu,cpumask_t * cpu_map)948 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
949 cpumask_t *cpu_map)
950 {
951 unsigned int icpu;
952
953 for_each_cpu(icpu, cpu_map) {
954 if (!cpu_online && icpu == cpu)
955 continue;
956 update_per_cpu_data_slice_size_cpu(icpu);
957 setup_pcp_cacheinfo(icpu);
958 }
959 }
960
cacheinfo_cpu_online(unsigned int cpu)961 static int cacheinfo_cpu_online(unsigned int cpu)
962 {
963 int rc = detect_cache_attributes(cpu);
964 cpumask_t *cpu_map;
965
966 if (rc)
967 return rc;
968 rc = cache_add_dev(cpu);
969 if (rc)
970 goto err;
971 if (cpu_map_shared_cache(true, cpu, &cpu_map))
972 update_per_cpu_data_slice_size(true, cpu, cpu_map);
973 return 0;
974 err:
975 free_cache_attributes(cpu);
976 return rc;
977 }
978
cacheinfo_cpu_pre_down(unsigned int cpu)979 static int cacheinfo_cpu_pre_down(unsigned int cpu)
980 {
981 cpumask_t *cpu_map;
982 unsigned int nr_shared;
983
984 nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
985 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
986 cpu_cache_sysfs_exit(cpu);
987
988 free_cache_attributes(cpu);
989 if (nr_shared > 1)
990 update_per_cpu_data_slice_size(false, cpu, cpu_map);
991 return 0;
992 }
993
cacheinfo_sysfs_init(void)994 static int __init cacheinfo_sysfs_init(void)
995 {
996 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
997 "base/cacheinfo:online",
998 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
999 }
1000 device_initcall(cacheinfo_sysfs_init);
1001