xref: /linux/drivers/base/cacheinfo.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)		\
29 				(per_cpu_cacheinfo(cpu) + (idx))
30 
31 /* Set if no cache information is found in DT/ACPI. */
32 static bool use_arch_info;
33 
34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
35 {
36 	return ci_cacheinfo(cpu);
37 }
38 
39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40 					   struct cacheinfo *sib_leaf)
41 {
42 	/*
43 	 * For non DT/ACPI systems, assume unique level 1 caches,
44 	 * system-wide shared caches for all other levels.
45 	 */
46 	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47 	    use_arch_info)
48 		return (this_leaf->level != 1) && (sib_leaf->level != 1);
49 
50 	if ((sib_leaf->attributes & CACHE_ID) &&
51 	    (this_leaf->attributes & CACHE_ID))
52 		return sib_leaf->id == this_leaf->id;
53 
54 	return sib_leaf->fw_token == this_leaf->fw_token;
55 }
56 
57 bool last_level_cache_is_valid(unsigned int cpu)
58 {
59 	struct cacheinfo *llc;
60 
61 	if (!cache_leaves(cpu))
62 		return false;
63 
64 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
65 
66 	return (llc->attributes & CACHE_ID) || !!llc->fw_token;
67 
68 }
69 
70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
71 {
72 	struct cacheinfo *llc_x, *llc_y;
73 
74 	if (!last_level_cache_is_valid(cpu_x) ||
75 	    !last_level_cache_is_valid(cpu_y))
76 		return false;
77 
78 	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79 	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
80 
81 	return cache_leaves_are_shared(llc_x, llc_y);
82 }
83 
84 #ifdef CONFIG_OF
85 
86 static bool of_check_cache_nodes(struct device_node *np);
87 
88 /* OF properties to query for a given cache type */
89 struct cache_type_info {
90 	const char *size_prop;
91 	const char *line_size_props[2];
92 	const char *nr_sets_prop;
93 };
94 
95 static const struct cache_type_info cache_type_info[] = {
96 	{
97 		.size_prop       = "cache-size",
98 		.line_size_props = { "cache-line-size",
99 				     "cache-block-size", },
100 		.nr_sets_prop    = "cache-sets",
101 	}, {
102 		.size_prop       = "i-cache-size",
103 		.line_size_props = { "i-cache-line-size",
104 				     "i-cache-block-size", },
105 		.nr_sets_prop    = "i-cache-sets",
106 	}, {
107 		.size_prop       = "d-cache-size",
108 		.line_size_props = { "d-cache-line-size",
109 				     "d-cache-block-size", },
110 		.nr_sets_prop    = "d-cache-sets",
111 	},
112 };
113 
114 static inline int get_cacheinfo_idx(enum cache_type type)
115 {
116 	if (type == CACHE_TYPE_UNIFIED)
117 		return 0;
118 	return type;
119 }
120 
121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122 {
123 	const char *propname;
124 	int ct_idx;
125 
126 	ct_idx = get_cacheinfo_idx(this_leaf->type);
127 	propname = cache_type_info[ct_idx].size_prop;
128 
129 	of_property_read_u32(np, propname, &this_leaf->size);
130 }
131 
132 /* not cache_line_size() because that's a macro in include/linux/cache.h */
133 static void cache_get_line_size(struct cacheinfo *this_leaf,
134 				struct device_node *np)
135 {
136 	int i, lim, ct_idx;
137 
138 	ct_idx = get_cacheinfo_idx(this_leaf->type);
139 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140 
141 	for (i = 0; i < lim; i++) {
142 		int ret;
143 		u32 line_size;
144 		const char *propname;
145 
146 		propname = cache_type_info[ct_idx].line_size_props[i];
147 		ret = of_property_read_u32(np, propname, &line_size);
148 		if (!ret) {
149 			this_leaf->coherency_line_size = line_size;
150 			break;
151 		}
152 	}
153 }
154 
155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156 {
157 	const char *propname;
158 	int ct_idx;
159 
160 	ct_idx = get_cacheinfo_idx(this_leaf->type);
161 	propname = cache_type_info[ct_idx].nr_sets_prop;
162 
163 	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
164 }
165 
166 static void cache_associativity(struct cacheinfo *this_leaf)
167 {
168 	unsigned int line_size = this_leaf->coherency_line_size;
169 	unsigned int nr_sets = this_leaf->number_of_sets;
170 	unsigned int size = this_leaf->size;
171 
172 	/*
173 	 * If the cache is fully associative, there is no need to
174 	 * check the other properties.
175 	 */
176 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178 }
179 
180 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181 				  struct device_node *np)
182 {
183 	return of_property_read_bool(np, "cache-unified");
184 }
185 
186 static void cache_of_set_props(struct cacheinfo *this_leaf,
187 			       struct device_node *np)
188 {
189 	/*
190 	 * init_cache_level must setup the cache level correctly
191 	 * overriding the architecturally specified levels, so
192 	 * if type is NONE at this stage, it should be unified
193 	 */
194 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195 	    cache_node_is_unified(this_leaf, np))
196 		this_leaf->type = CACHE_TYPE_UNIFIED;
197 	cache_size(this_leaf, np);
198 	cache_get_line_size(this_leaf, np);
199 	cache_nr_sets(this_leaf, np);
200 	cache_associativity(this_leaf);
201 }
202 
203 static int cache_setup_of_node(unsigned int cpu)
204 {
205 	struct cacheinfo *this_leaf;
206 	unsigned int index = 0;
207 
208 	struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
209 	if (!np) {
210 		pr_err("Failed to find cpu%d device node\n", cpu);
211 		return -ENOENT;
212 	}
213 
214 	if (!of_check_cache_nodes(np)) {
215 		return -ENOENT;
216 	}
217 
218 	while (index < cache_leaves(cpu)) {
219 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
220 		if (this_leaf->level != 1) {
221 			struct device_node *prev __free(device_node) = np;
222 			np = of_find_next_cache_node(np);
223 			if (!np)
224 				break;
225 		}
226 		cache_of_set_props(this_leaf, np);
227 		this_leaf->fw_token = np;
228 		index++;
229 	}
230 
231 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
232 		return -ENOENT;
233 
234 	return 0;
235 }
236 
237 static bool of_check_cache_nodes(struct device_node *np)
238 {
239 	if (of_property_present(np, "cache-size")   ||
240 	    of_property_present(np, "i-cache-size") ||
241 	    of_property_present(np, "d-cache-size") ||
242 	    of_property_present(np, "cache-unified"))
243 		return true;
244 
245 	struct device_node *next __free(device_node) = of_find_next_cache_node(np);
246 	if (next) {
247 		return true;
248 	}
249 
250 	return false;
251 }
252 
253 static int of_count_cache_leaves(struct device_node *np)
254 {
255 	unsigned int leaves = 0;
256 
257 	if (of_property_present(np, "cache-size"))
258 		++leaves;
259 	if (of_property_present(np, "i-cache-size"))
260 		++leaves;
261 	if (of_property_present(np, "d-cache-size"))
262 		++leaves;
263 
264 	if (!leaves) {
265 		/* The '[i-|d-|]cache-size' property is required, but
266 		 * if absent, fallback on the 'cache-unified' property.
267 		 */
268 		if (of_property_read_bool(np, "cache-unified"))
269 			return 1;
270 		else
271 			return 2;
272 	}
273 
274 	return leaves;
275 }
276 
277 int init_of_cache_level(unsigned int cpu)
278 {
279 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
280 	struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
281 	unsigned int levels = 0, leaves, level;
282 
283 	if (!of_check_cache_nodes(np)) {
284 		return -ENOENT;
285 	}
286 
287 	leaves = of_count_cache_leaves(np);
288 	if (leaves > 0)
289 		levels = 1;
290 
291 	while (1) {
292 		struct device_node *prev __free(device_node) = np;
293 		np = of_find_next_cache_node(np);
294 		if (!np)
295 			break;
296 
297 		if (!of_device_is_compatible(np, "cache"))
298 			return -EINVAL;
299 		if (of_property_read_u32(np, "cache-level", &level))
300 			return -EINVAL;
301 		if (level <= levels)
302 			return -EINVAL;
303 
304 		leaves += of_count_cache_leaves(np);
305 		levels = level;
306 	}
307 
308 	this_cpu_ci->num_levels = levels;
309 	this_cpu_ci->num_leaves = leaves;
310 
311 	return 0;
312 }
313 
314 #else
315 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
316 int init_of_cache_level(unsigned int cpu) { return 0; }
317 #endif
318 
319 int __weak cache_setup_acpi(unsigned int cpu)
320 {
321 	return -ENOTSUPP;
322 }
323 
324 unsigned int coherency_max_size;
325 
326 static int cache_setup_properties(unsigned int cpu)
327 {
328 	int ret = 0;
329 
330 	if (of_have_populated_dt())
331 		ret = cache_setup_of_node(cpu);
332 	else if (!acpi_disabled)
333 		ret = cache_setup_acpi(cpu);
334 
335 	// Assume there is no cache information available in DT/ACPI from now.
336 	if (ret && use_arch_cache_info())
337 		use_arch_info = true;
338 
339 	return ret;
340 }
341 
342 static int cache_shared_cpu_map_setup(unsigned int cpu)
343 {
344 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
345 	struct cacheinfo *this_leaf, *sib_leaf;
346 	unsigned int index, sib_index;
347 	int ret = 0;
348 
349 	if (this_cpu_ci->cpu_map_populated)
350 		return 0;
351 
352 	/*
353 	 * skip setting up cache properties if LLC is valid, just need
354 	 * to update the shared cpu_map if the cache attributes were
355 	 * populated early before all the cpus are brought online
356 	 */
357 	if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
358 		ret = cache_setup_properties(cpu);
359 		if (ret)
360 			return ret;
361 	}
362 
363 	for (index = 0; index < cache_leaves(cpu); index++) {
364 		unsigned int i;
365 
366 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
367 
368 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
369 		for_each_online_cpu(i) {
370 			if (i == cpu || !per_cpu_cacheinfo(i))
371 				continue;/* skip if itself or no cacheinfo */
372 			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
373 				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
374 
375 				/*
376 				 * Comparing cache IDs only makes sense if the leaves
377 				 * belong to the same cache level of same type. Skip
378 				 * the check if level and type do not match.
379 				 */
380 				if (sib_leaf->level != this_leaf->level ||
381 				    sib_leaf->type != this_leaf->type)
382 					continue;
383 
384 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
385 					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
386 					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
387 					break;
388 				}
389 			}
390 		}
391 		/* record the maximum cache line size */
392 		if (this_leaf->coherency_line_size > coherency_max_size)
393 			coherency_max_size = this_leaf->coherency_line_size;
394 	}
395 
396 	/* shared_cpu_map is now populated for the cpu */
397 	this_cpu_ci->cpu_map_populated = true;
398 	return 0;
399 }
400 
401 static void cache_shared_cpu_map_remove(unsigned int cpu)
402 {
403 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
404 	struct cacheinfo *this_leaf, *sib_leaf;
405 	unsigned int sibling, index, sib_index;
406 
407 	for (index = 0; index < cache_leaves(cpu); index++) {
408 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
409 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
410 			if (sibling == cpu || !per_cpu_cacheinfo(sibling))
411 				continue;/* skip if itself or no cacheinfo */
412 
413 			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
414 				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
415 
416 				/*
417 				 * Comparing cache IDs only makes sense if the leaves
418 				 * belong to the same cache level of same type. Skip
419 				 * the check if level and type do not match.
420 				 */
421 				if (sib_leaf->level != this_leaf->level ||
422 				    sib_leaf->type != this_leaf->type)
423 					continue;
424 
425 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
426 					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
427 					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
428 					break;
429 				}
430 			}
431 		}
432 	}
433 
434 	/* cpu is no longer populated in the shared map */
435 	this_cpu_ci->cpu_map_populated = false;
436 }
437 
438 static void free_cache_attributes(unsigned int cpu)
439 {
440 	if (!per_cpu_cacheinfo(cpu))
441 		return;
442 
443 	cache_shared_cpu_map_remove(cpu);
444 }
445 
446 int __weak early_cache_level(unsigned int cpu)
447 {
448 	return -ENOENT;
449 }
450 
451 int __weak init_cache_level(unsigned int cpu)
452 {
453 	return -ENOENT;
454 }
455 
456 int __weak populate_cache_leaves(unsigned int cpu)
457 {
458 	return -ENOENT;
459 }
460 
461 static inline
462 int allocate_cache_info(int cpu)
463 {
464 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
465 					 sizeof(struct cacheinfo), GFP_ATOMIC);
466 	if (!per_cpu_cacheinfo(cpu)) {
467 		cache_leaves(cpu) = 0;
468 		return -ENOMEM;
469 	}
470 
471 	return 0;
472 }
473 
474 int fetch_cache_info(unsigned int cpu)
475 {
476 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
477 	unsigned int levels = 0, split_levels = 0;
478 	int ret;
479 
480 	if (acpi_disabled) {
481 		ret = init_of_cache_level(cpu);
482 	} else {
483 		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
484 		if (!ret) {
485 			this_cpu_ci->num_levels = levels;
486 			/*
487 			 * This assumes that:
488 			 * - there cannot be any split caches (data/instruction)
489 			 *   above a unified cache
490 			 * - data/instruction caches come by pair
491 			 */
492 			this_cpu_ci->num_leaves = levels + split_levels;
493 		}
494 	}
495 
496 	if (ret || !cache_leaves(cpu)) {
497 		ret = early_cache_level(cpu);
498 		if (ret)
499 			return ret;
500 
501 		if (!cache_leaves(cpu))
502 			return -ENOENT;
503 
504 		this_cpu_ci->early_ci_levels = true;
505 	}
506 
507 	return allocate_cache_info(cpu);
508 }
509 
510 static inline int init_level_allocate_ci(unsigned int cpu)
511 {
512 	unsigned int early_leaves = cache_leaves(cpu);
513 
514 	/* Since early initialization/allocation of the cacheinfo is allowed
515 	 * via fetch_cache_info() and this also gets called as CPU hotplug
516 	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
517 	 * as it will happen only once (the cacheinfo memory is never freed).
518 	 * Just populate the cacheinfo. However, if the cacheinfo has been
519 	 * allocated early through the arch-specific early_cache_level() call,
520 	 * there is a chance the info is wrong (this can happen on arm64). In
521 	 * that case, call init_cache_level() anyway to give the arch-specific
522 	 * code a chance to make things right.
523 	 */
524 	if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
525 		return 0;
526 
527 	if (init_cache_level(cpu) || !cache_leaves(cpu))
528 		return -ENOENT;
529 
530 	/*
531 	 * Now that we have properly initialized the cache level info, make
532 	 * sure we don't try to do that again the next time we are called
533 	 * (e.g. as CPU hotplug callbacks).
534 	 */
535 	ci_cacheinfo(cpu)->early_ci_levels = false;
536 
537 	if (cache_leaves(cpu) <= early_leaves)
538 		return 0;
539 
540 	kfree(per_cpu_cacheinfo(cpu));
541 	return allocate_cache_info(cpu);
542 }
543 
544 int detect_cache_attributes(unsigned int cpu)
545 {
546 	int ret;
547 
548 	ret = init_level_allocate_ci(cpu);
549 	if (ret)
550 		return ret;
551 
552 	/*
553 	 * If LLC is valid the cache leaves were already populated so just go to
554 	 * update the cpu map.
555 	 */
556 	if (!last_level_cache_is_valid(cpu)) {
557 		/*
558 		 * populate_cache_leaves() may completely setup the cache leaves and
559 		 * shared_cpu_map or it may leave it partially setup.
560 		 */
561 		ret = populate_cache_leaves(cpu);
562 		if (ret)
563 			goto free_ci;
564 	}
565 
566 	/*
567 	 * For systems using DT for cache hierarchy, fw_token
568 	 * and shared_cpu_map will be set up here only if they are
569 	 * not populated already
570 	 */
571 	ret = cache_shared_cpu_map_setup(cpu);
572 	if (ret) {
573 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
574 		goto free_ci;
575 	}
576 
577 	return 0;
578 
579 free_ci:
580 	free_cache_attributes(cpu);
581 	return ret;
582 }
583 
584 /* pointer to cpuX/cache device */
585 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
586 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
587 
588 static cpumask_t cache_dev_map;
589 
590 /* pointer to array of devices for cpuX/cache/indexY */
591 static DEFINE_PER_CPU(struct device **, ci_index_dev);
592 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
593 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
594 
595 #define show_one(file_name, object)				\
596 static ssize_t file_name##_show(struct device *dev,		\
597 		struct device_attribute *attr, char *buf)	\
598 {								\
599 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
600 	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
601 }
602 
603 show_one(id, id);
604 show_one(level, level);
605 show_one(coherency_line_size, coherency_line_size);
606 show_one(number_of_sets, number_of_sets);
607 show_one(physical_line_partition, physical_line_partition);
608 show_one(ways_of_associativity, ways_of_associativity);
609 
610 static ssize_t size_show(struct device *dev,
611 			 struct device_attribute *attr, char *buf)
612 {
613 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
614 
615 	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
616 }
617 
618 static ssize_t shared_cpu_map_show(struct device *dev,
619 				   struct device_attribute *attr, char *buf)
620 {
621 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
622 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
623 
624 	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
625 }
626 
627 static ssize_t shared_cpu_list_show(struct device *dev,
628 				    struct device_attribute *attr, char *buf)
629 {
630 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
631 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
632 
633 	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
634 }
635 
636 static ssize_t type_show(struct device *dev,
637 			 struct device_attribute *attr, char *buf)
638 {
639 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
640 	const char *output;
641 
642 	switch (this_leaf->type) {
643 	case CACHE_TYPE_DATA:
644 		output = "Data";
645 		break;
646 	case CACHE_TYPE_INST:
647 		output = "Instruction";
648 		break;
649 	case CACHE_TYPE_UNIFIED:
650 		output = "Unified";
651 		break;
652 	default:
653 		return -EINVAL;
654 	}
655 
656 	return sysfs_emit(buf, "%s\n", output);
657 }
658 
659 static ssize_t allocation_policy_show(struct device *dev,
660 				      struct device_attribute *attr, char *buf)
661 {
662 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
663 	unsigned int ci_attr = this_leaf->attributes;
664 	const char *output;
665 
666 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
667 		output = "ReadWriteAllocate";
668 	else if (ci_attr & CACHE_READ_ALLOCATE)
669 		output = "ReadAllocate";
670 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
671 		output = "WriteAllocate";
672 	else
673 		return 0;
674 
675 	return sysfs_emit(buf, "%s\n", output);
676 }
677 
678 static ssize_t write_policy_show(struct device *dev,
679 				 struct device_attribute *attr, char *buf)
680 {
681 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
682 	unsigned int ci_attr = this_leaf->attributes;
683 	int n = 0;
684 
685 	if (ci_attr & CACHE_WRITE_THROUGH)
686 		n = sysfs_emit(buf, "WriteThrough\n");
687 	else if (ci_attr & CACHE_WRITE_BACK)
688 		n = sysfs_emit(buf, "WriteBack\n");
689 	return n;
690 }
691 
692 static DEVICE_ATTR_RO(id);
693 static DEVICE_ATTR_RO(level);
694 static DEVICE_ATTR_RO(type);
695 static DEVICE_ATTR_RO(coherency_line_size);
696 static DEVICE_ATTR_RO(ways_of_associativity);
697 static DEVICE_ATTR_RO(number_of_sets);
698 static DEVICE_ATTR_RO(size);
699 static DEVICE_ATTR_RO(allocation_policy);
700 static DEVICE_ATTR_RO(write_policy);
701 static DEVICE_ATTR_RO(shared_cpu_map);
702 static DEVICE_ATTR_RO(shared_cpu_list);
703 static DEVICE_ATTR_RO(physical_line_partition);
704 
705 static struct attribute *cache_default_attrs[] = {
706 	&dev_attr_id.attr,
707 	&dev_attr_type.attr,
708 	&dev_attr_level.attr,
709 	&dev_attr_shared_cpu_map.attr,
710 	&dev_attr_shared_cpu_list.attr,
711 	&dev_attr_coherency_line_size.attr,
712 	&dev_attr_ways_of_associativity.attr,
713 	&dev_attr_number_of_sets.attr,
714 	&dev_attr_size.attr,
715 	&dev_attr_allocation_policy.attr,
716 	&dev_attr_write_policy.attr,
717 	&dev_attr_physical_line_partition.attr,
718 	NULL
719 };
720 
721 static umode_t
722 cache_default_attrs_is_visible(struct kobject *kobj,
723 			       struct attribute *attr, int unused)
724 {
725 	struct device *dev = kobj_to_dev(kobj);
726 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
727 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
728 	umode_t mode = attr->mode;
729 
730 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
731 		return mode;
732 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
733 		return mode;
734 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
735 		return mode;
736 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
737 		return mode;
738 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
739 		return mode;
740 	if ((attr == &dev_attr_coherency_line_size.attr) &&
741 	    this_leaf->coherency_line_size)
742 		return mode;
743 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
744 	    this_leaf->size) /* allow 0 = full associativity */
745 		return mode;
746 	if ((attr == &dev_attr_number_of_sets.attr) &&
747 	    this_leaf->number_of_sets)
748 		return mode;
749 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
750 		return mode;
751 	if ((attr == &dev_attr_write_policy.attr) &&
752 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
753 		return mode;
754 	if ((attr == &dev_attr_allocation_policy.attr) &&
755 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
756 		return mode;
757 	if ((attr == &dev_attr_physical_line_partition.attr) &&
758 	    this_leaf->physical_line_partition)
759 		return mode;
760 
761 	return 0;
762 }
763 
764 static const struct attribute_group cache_default_group = {
765 	.attrs = cache_default_attrs,
766 	.is_visible = cache_default_attrs_is_visible,
767 };
768 
769 static const struct attribute_group *cache_default_groups[] = {
770 	&cache_default_group,
771 	NULL,
772 };
773 
774 static const struct attribute_group *cache_private_groups[] = {
775 	&cache_default_group,
776 	NULL, /* Place holder for private group */
777 	NULL,
778 };
779 
780 const struct attribute_group *
781 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
782 {
783 	return NULL;
784 }
785 
786 static const struct attribute_group **
787 cache_get_attribute_groups(struct cacheinfo *this_leaf)
788 {
789 	const struct attribute_group *priv_group =
790 			cache_get_priv_group(this_leaf);
791 
792 	if (!priv_group)
793 		return cache_default_groups;
794 
795 	if (!cache_private_groups[1])
796 		cache_private_groups[1] = priv_group;
797 
798 	return cache_private_groups;
799 }
800 
801 /* Add/Remove cache interface for CPU device */
802 static void cpu_cache_sysfs_exit(unsigned int cpu)
803 {
804 	int i;
805 	struct device *ci_dev;
806 
807 	if (per_cpu_index_dev(cpu)) {
808 		for (i = 0; i < cache_leaves(cpu); i++) {
809 			ci_dev = per_cache_index_dev(cpu, i);
810 			if (!ci_dev)
811 				continue;
812 			device_unregister(ci_dev);
813 		}
814 		kfree(per_cpu_index_dev(cpu));
815 		per_cpu_index_dev(cpu) = NULL;
816 	}
817 	device_unregister(per_cpu_cache_dev(cpu));
818 	per_cpu_cache_dev(cpu) = NULL;
819 }
820 
821 static int cpu_cache_sysfs_init(unsigned int cpu)
822 {
823 	struct device *dev = get_cpu_device(cpu);
824 
825 	if (per_cpu_cacheinfo(cpu) == NULL)
826 		return -ENOENT;
827 
828 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
829 	if (IS_ERR(per_cpu_cache_dev(cpu)))
830 		return PTR_ERR(per_cpu_cache_dev(cpu));
831 
832 	/* Allocate all required memory */
833 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
834 					 sizeof(struct device *), GFP_KERNEL);
835 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
836 		goto err_out;
837 
838 	return 0;
839 
840 err_out:
841 	cpu_cache_sysfs_exit(cpu);
842 	return -ENOMEM;
843 }
844 
845 static int cache_add_dev(unsigned int cpu)
846 {
847 	unsigned int i;
848 	int rc;
849 	struct device *ci_dev, *parent;
850 	struct cacheinfo *this_leaf;
851 	const struct attribute_group **cache_groups;
852 
853 	rc = cpu_cache_sysfs_init(cpu);
854 	if (unlikely(rc < 0))
855 		return rc;
856 
857 	parent = per_cpu_cache_dev(cpu);
858 	for (i = 0; i < cache_leaves(cpu); i++) {
859 		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
860 		if (this_leaf->disable_sysfs)
861 			continue;
862 		if (this_leaf->type == CACHE_TYPE_NOCACHE)
863 			break;
864 		cache_groups = cache_get_attribute_groups(this_leaf);
865 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
866 					   "index%1u", i);
867 		if (IS_ERR(ci_dev)) {
868 			rc = PTR_ERR(ci_dev);
869 			goto err;
870 		}
871 		per_cache_index_dev(cpu, i) = ci_dev;
872 	}
873 	cpumask_set_cpu(cpu, &cache_dev_map);
874 
875 	return 0;
876 err:
877 	cpu_cache_sysfs_exit(cpu);
878 	return rc;
879 }
880 
881 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
882 					 cpumask_t **map)
883 {
884 	struct cacheinfo *llc, *sib_llc;
885 	unsigned int sibling;
886 
887 	if (!last_level_cache_is_valid(cpu))
888 		return 0;
889 
890 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
891 
892 	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
893 		return 0;
894 
895 	if (online) {
896 		*map = &llc->shared_cpu_map;
897 		return cpumask_weight(*map);
898 	}
899 
900 	/* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
901 	for_each_cpu(sibling, &llc->shared_cpu_map) {
902 		if (sibling == cpu || !last_level_cache_is_valid(sibling))
903 			continue;
904 		sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
905 		*map = &sib_llc->shared_cpu_map;
906 		return cpumask_weight(*map);
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * Calculate the size of the per-CPU data cache slice.  This can be
914  * used to estimate the size of the data cache slice that can be used
915  * by one CPU under ideal circumstances.  UNIFIED caches are counted
916  * in addition to DATA caches.  So, please consider code cache usage
917  * when use the result.
918  *
919  * Because the cache inclusive/non-inclusive information isn't
920  * available, we just use the size of the per-CPU slice of LLC to make
921  * the result more predictable across architectures.
922  */
923 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
924 {
925 	struct cpu_cacheinfo *ci;
926 	struct cacheinfo *llc;
927 	unsigned int nr_shared;
928 
929 	if (!last_level_cache_is_valid(cpu))
930 		return;
931 
932 	ci = ci_cacheinfo(cpu);
933 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
934 
935 	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
936 		return;
937 
938 	nr_shared = cpumask_weight(&llc->shared_cpu_map);
939 	if (nr_shared)
940 		ci->per_cpu_data_slice_size = llc->size / nr_shared;
941 }
942 
943 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
944 					   cpumask_t *cpu_map)
945 {
946 	unsigned int icpu;
947 
948 	for_each_cpu(icpu, cpu_map) {
949 		if (!cpu_online && icpu == cpu)
950 			continue;
951 		update_per_cpu_data_slice_size_cpu(icpu);
952 		setup_pcp_cacheinfo(icpu);
953 	}
954 }
955 
956 static int cacheinfo_cpu_online(unsigned int cpu)
957 {
958 	int rc = detect_cache_attributes(cpu);
959 	cpumask_t *cpu_map;
960 
961 	if (rc)
962 		return rc;
963 	rc = cache_add_dev(cpu);
964 	if (rc)
965 		goto err;
966 	if (cpu_map_shared_cache(true, cpu, &cpu_map))
967 		update_per_cpu_data_slice_size(true, cpu, cpu_map);
968 	return 0;
969 err:
970 	free_cache_attributes(cpu);
971 	return rc;
972 }
973 
974 static int cacheinfo_cpu_pre_down(unsigned int cpu)
975 {
976 	cpumask_t *cpu_map;
977 	unsigned int nr_shared;
978 
979 	nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
980 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
981 		cpu_cache_sysfs_exit(cpu);
982 
983 	free_cache_attributes(cpu);
984 	if (nr_shared > 1)
985 		update_per_cpu_data_slice_size(false, cpu, cpu_map);
986 	return 0;
987 }
988 
989 static int __init cacheinfo_sysfs_init(void)
990 {
991 	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
992 				 "base/cacheinfo:online",
993 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
994 }
995 device_initcall(cacheinfo_sysfs_init);
996