1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cacheinfo support - processor cache information via sysfs 4 * 5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c 6 * Author: Sudeep Holla <sudeep.holla@arm.com> 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/bitops.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/compiler.h> 14 #include <linux/cpu.h> 15 #include <linux/device.h> 16 #include <linux/init.h> 17 #include <linux/of.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/smp.h> 21 #include <linux/sysfs.h> 22 23 /* pointer to per cpu cacheinfo */ 24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); 25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) 26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) 27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) 28 #define per_cpu_cacheinfo_idx(cpu, idx) \ 29 (per_cpu_cacheinfo(cpu) + (idx)) 30 31 /* Set if no cache information is found in DT/ACPI. */ 32 static bool use_arch_info; 33 34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) 35 { 36 return ci_cacheinfo(cpu); 37 } 38 39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 40 struct cacheinfo *sib_leaf) 41 { 42 /* 43 * For non DT/ACPI systems, assume unique level 1 caches, 44 * system-wide shared caches for all other levels. 45 */ 46 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || 47 use_arch_info) 48 return (this_leaf->level != 1) && (sib_leaf->level != 1); 49 50 if ((sib_leaf->attributes & CACHE_ID) && 51 (this_leaf->attributes & CACHE_ID)) 52 return sib_leaf->id == this_leaf->id; 53 54 return sib_leaf->fw_token == this_leaf->fw_token; 55 } 56 57 bool last_level_cache_is_valid(unsigned int cpu) 58 { 59 struct cacheinfo *llc; 60 61 if (!cache_leaves(cpu)) 62 return false; 63 64 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 65 66 return (llc->attributes & CACHE_ID) || !!llc->fw_token; 67 68 } 69 70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) 71 { 72 struct cacheinfo *llc_x, *llc_y; 73 74 if (!last_level_cache_is_valid(cpu_x) || 75 !last_level_cache_is_valid(cpu_y)) 76 return false; 77 78 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); 79 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); 80 81 return cache_leaves_are_shared(llc_x, llc_y); 82 } 83 84 #ifdef CONFIG_OF 85 86 static bool of_check_cache_nodes(struct device_node *np); 87 88 /* OF properties to query for a given cache type */ 89 struct cache_type_info { 90 const char *size_prop; 91 const char *line_size_props[2]; 92 const char *nr_sets_prop; 93 }; 94 95 static const struct cache_type_info cache_type_info[] = { 96 { 97 .size_prop = "cache-size", 98 .line_size_props = { "cache-line-size", 99 "cache-block-size", }, 100 .nr_sets_prop = "cache-sets", 101 }, { 102 .size_prop = "i-cache-size", 103 .line_size_props = { "i-cache-line-size", 104 "i-cache-block-size", }, 105 .nr_sets_prop = "i-cache-sets", 106 }, { 107 .size_prop = "d-cache-size", 108 .line_size_props = { "d-cache-line-size", 109 "d-cache-block-size", }, 110 .nr_sets_prop = "d-cache-sets", 111 }, 112 }; 113 114 static inline int get_cacheinfo_idx(enum cache_type type) 115 { 116 if (type == CACHE_TYPE_UNIFIED) 117 return 0; 118 return type; 119 } 120 121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) 122 { 123 const char *propname; 124 int ct_idx; 125 126 ct_idx = get_cacheinfo_idx(this_leaf->type); 127 propname = cache_type_info[ct_idx].size_prop; 128 129 of_property_read_u32(np, propname, &this_leaf->size); 130 } 131 132 /* not cache_line_size() because that's a macro in include/linux/cache.h */ 133 static void cache_get_line_size(struct cacheinfo *this_leaf, 134 struct device_node *np) 135 { 136 int i, lim, ct_idx; 137 138 ct_idx = get_cacheinfo_idx(this_leaf->type); 139 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); 140 141 for (i = 0; i < lim; i++) { 142 int ret; 143 u32 line_size; 144 const char *propname; 145 146 propname = cache_type_info[ct_idx].line_size_props[i]; 147 ret = of_property_read_u32(np, propname, &line_size); 148 if (!ret) { 149 this_leaf->coherency_line_size = line_size; 150 break; 151 } 152 } 153 } 154 155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) 156 { 157 const char *propname; 158 int ct_idx; 159 160 ct_idx = get_cacheinfo_idx(this_leaf->type); 161 propname = cache_type_info[ct_idx].nr_sets_prop; 162 163 of_property_read_u32(np, propname, &this_leaf->number_of_sets); 164 } 165 166 static void cache_associativity(struct cacheinfo *this_leaf) 167 { 168 unsigned int line_size = this_leaf->coherency_line_size; 169 unsigned int nr_sets = this_leaf->number_of_sets; 170 unsigned int size = this_leaf->size; 171 172 /* 173 * If the cache is fully associative, there is no need to 174 * check the other properties. 175 */ 176 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) 177 this_leaf->ways_of_associativity = (size / nr_sets) / line_size; 178 } 179 180 static bool cache_node_is_unified(struct cacheinfo *this_leaf, 181 struct device_node *np) 182 { 183 return of_property_read_bool(np, "cache-unified"); 184 } 185 186 static void cache_of_set_props(struct cacheinfo *this_leaf, 187 struct device_node *np) 188 { 189 /* 190 * init_cache_level must setup the cache level correctly 191 * overriding the architecturally specified levels, so 192 * if type is NONE at this stage, it should be unified 193 */ 194 if (this_leaf->type == CACHE_TYPE_NOCACHE && 195 cache_node_is_unified(this_leaf, np)) 196 this_leaf->type = CACHE_TYPE_UNIFIED; 197 cache_size(this_leaf, np); 198 cache_get_line_size(this_leaf, np); 199 cache_nr_sets(this_leaf, np); 200 cache_associativity(this_leaf); 201 } 202 203 static int cache_setup_of_node(unsigned int cpu) 204 { 205 struct cacheinfo *this_leaf; 206 unsigned int index = 0; 207 208 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); 209 if (!np) { 210 pr_err("Failed to find cpu%d device node\n", cpu); 211 return -ENOENT; 212 } 213 214 if (!of_check_cache_nodes(np)) { 215 return -ENOENT; 216 } 217 218 while (index < cache_leaves(cpu)) { 219 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 220 if (this_leaf->level != 1) { 221 struct device_node *prev __free(device_node) = np; 222 np = of_find_next_cache_node(np); 223 if (!np) 224 break; 225 } 226 cache_of_set_props(this_leaf, np); 227 this_leaf->fw_token = np; 228 index++; 229 } 230 231 if (index != cache_leaves(cpu)) /* not all OF nodes populated */ 232 return -ENOENT; 233 234 return 0; 235 } 236 237 static bool of_check_cache_nodes(struct device_node *np) 238 { 239 if (of_property_present(np, "cache-size") || 240 of_property_present(np, "i-cache-size") || 241 of_property_present(np, "d-cache-size") || 242 of_property_present(np, "cache-unified")) 243 return true; 244 245 struct device_node *next __free(device_node) = of_find_next_cache_node(np); 246 if (next) { 247 return true; 248 } 249 250 return false; 251 } 252 253 static int of_count_cache_leaves(struct device_node *np) 254 { 255 unsigned int leaves = 0; 256 257 if (of_property_present(np, "cache-size")) 258 ++leaves; 259 if (of_property_present(np, "i-cache-size")) 260 ++leaves; 261 if (of_property_present(np, "d-cache-size")) 262 ++leaves; 263 264 if (!leaves) { 265 /* The '[i-|d-|]cache-size' property is required, but 266 * if absent, fallback on the 'cache-unified' property. 267 */ 268 if (of_property_read_bool(np, "cache-unified")) 269 return 1; 270 else 271 return 2; 272 } 273 274 return leaves; 275 } 276 277 int init_of_cache_level(unsigned int cpu) 278 { 279 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 280 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); 281 unsigned int levels = 0, leaves, level; 282 283 if (!of_check_cache_nodes(np)) { 284 return -ENOENT; 285 } 286 287 leaves = of_count_cache_leaves(np); 288 if (leaves > 0) 289 levels = 1; 290 291 while (1) { 292 struct device_node *prev __free(device_node) = np; 293 np = of_find_next_cache_node(np); 294 if (!np) 295 break; 296 297 if (!of_device_is_compatible(np, "cache")) 298 return -EINVAL; 299 if (of_property_read_u32(np, "cache-level", &level)) 300 return -EINVAL; 301 if (level <= levels) 302 return -EINVAL; 303 304 leaves += of_count_cache_leaves(np); 305 levels = level; 306 } 307 308 this_cpu_ci->num_levels = levels; 309 this_cpu_ci->num_leaves = leaves; 310 311 return 0; 312 } 313 314 #else 315 static inline int cache_setup_of_node(unsigned int cpu) { return 0; } 316 int init_of_cache_level(unsigned int cpu) { return 0; } 317 #endif 318 319 int __weak cache_setup_acpi(unsigned int cpu) 320 { 321 return -ENOTSUPP; 322 } 323 324 unsigned int coherency_max_size; 325 326 static int cache_setup_properties(unsigned int cpu) 327 { 328 int ret = 0; 329 330 if (of_have_populated_dt()) 331 ret = cache_setup_of_node(cpu); 332 else if (!acpi_disabled) 333 ret = cache_setup_acpi(cpu); 334 335 // Assume there is no cache information available in DT/ACPI from now. 336 if (ret && use_arch_cache_info()) 337 use_arch_info = true; 338 339 return ret; 340 } 341 342 static int cache_shared_cpu_map_setup(unsigned int cpu) 343 { 344 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 345 struct cacheinfo *this_leaf, *sib_leaf; 346 unsigned int index, sib_index; 347 int ret = 0; 348 349 if (this_cpu_ci->cpu_map_populated) 350 return 0; 351 352 /* 353 * skip setting up cache properties if LLC is valid, just need 354 * to update the shared cpu_map if the cache attributes were 355 * populated early before all the cpus are brought online 356 */ 357 if (!last_level_cache_is_valid(cpu) && !use_arch_info) { 358 ret = cache_setup_properties(cpu); 359 if (ret) 360 return ret; 361 } 362 363 for (index = 0; index < cache_leaves(cpu); index++) { 364 unsigned int i; 365 366 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 367 368 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 369 for_each_online_cpu(i) { 370 if (i == cpu || !per_cpu_cacheinfo(i)) 371 continue;/* skip if itself or no cacheinfo */ 372 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { 373 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); 374 375 /* 376 * Comparing cache IDs only makes sense if the leaves 377 * belong to the same cache level of same type. Skip 378 * the check if level and type do not match. 379 */ 380 if (sib_leaf->level != this_leaf->level || 381 sib_leaf->type != this_leaf->type) 382 continue; 383 384 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 385 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); 386 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 387 break; 388 } 389 } 390 } 391 /* record the maximum cache line size */ 392 if (this_leaf->coherency_line_size > coherency_max_size) 393 coherency_max_size = this_leaf->coherency_line_size; 394 } 395 396 /* shared_cpu_map is now populated for the cpu */ 397 this_cpu_ci->cpu_map_populated = true; 398 return 0; 399 } 400 401 static void cache_shared_cpu_map_remove(unsigned int cpu) 402 { 403 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 404 struct cacheinfo *this_leaf, *sib_leaf; 405 unsigned int sibling, index, sib_index; 406 407 for (index = 0; index < cache_leaves(cpu); index++) { 408 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 409 for_each_cpu(sibling, &this_leaf->shared_cpu_map) { 410 if (sibling == cpu || !per_cpu_cacheinfo(sibling)) 411 continue;/* skip if itself or no cacheinfo */ 412 413 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { 414 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); 415 416 /* 417 * Comparing cache IDs only makes sense if the leaves 418 * belong to the same cache level of same type. Skip 419 * the check if level and type do not match. 420 */ 421 if (sib_leaf->level != this_leaf->level || 422 sib_leaf->type != this_leaf->type) 423 continue; 424 425 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 426 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); 427 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); 428 break; 429 } 430 } 431 } 432 } 433 434 /* cpu is no longer populated in the shared map */ 435 this_cpu_ci->cpu_map_populated = false; 436 } 437 438 static void free_cache_attributes(unsigned int cpu) 439 { 440 if (!per_cpu_cacheinfo(cpu)) 441 return; 442 443 cache_shared_cpu_map_remove(cpu); 444 } 445 446 int __weak early_cache_level(unsigned int cpu) 447 { 448 return -ENOENT; 449 } 450 451 int __weak init_cache_level(unsigned int cpu) 452 { 453 return -ENOENT; 454 } 455 456 int __weak populate_cache_leaves(unsigned int cpu) 457 { 458 return -ENOENT; 459 } 460 461 static inline 462 int allocate_cache_info(int cpu) 463 { 464 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), 465 sizeof(struct cacheinfo), GFP_ATOMIC); 466 if (!per_cpu_cacheinfo(cpu)) { 467 cache_leaves(cpu) = 0; 468 return -ENOMEM; 469 } 470 471 return 0; 472 } 473 474 int fetch_cache_info(unsigned int cpu) 475 { 476 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 477 unsigned int levels = 0, split_levels = 0; 478 int ret; 479 480 if (acpi_disabled) { 481 ret = init_of_cache_level(cpu); 482 } else { 483 ret = acpi_get_cache_info(cpu, &levels, &split_levels); 484 if (!ret) { 485 this_cpu_ci->num_levels = levels; 486 /* 487 * This assumes that: 488 * - there cannot be any split caches (data/instruction) 489 * above a unified cache 490 * - data/instruction caches come by pair 491 */ 492 this_cpu_ci->num_leaves = levels + split_levels; 493 } 494 } 495 496 if (ret || !cache_leaves(cpu)) { 497 ret = early_cache_level(cpu); 498 if (ret) 499 return ret; 500 501 if (!cache_leaves(cpu)) 502 return -ENOENT; 503 504 this_cpu_ci->early_ci_levels = true; 505 } 506 507 return allocate_cache_info(cpu); 508 } 509 510 static inline int init_level_allocate_ci(unsigned int cpu) 511 { 512 unsigned int early_leaves = cache_leaves(cpu); 513 514 /* Since early initialization/allocation of the cacheinfo is allowed 515 * via fetch_cache_info() and this also gets called as CPU hotplug 516 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped 517 * as it will happen only once (the cacheinfo memory is never freed). 518 * Just populate the cacheinfo. However, if the cacheinfo has been 519 * allocated early through the arch-specific early_cache_level() call, 520 * there is a chance the info is wrong (this can happen on arm64). In 521 * that case, call init_cache_level() anyway to give the arch-specific 522 * code a chance to make things right. 523 */ 524 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) 525 return 0; 526 527 if (init_cache_level(cpu) || !cache_leaves(cpu)) 528 return -ENOENT; 529 530 /* 531 * Now that we have properly initialized the cache level info, make 532 * sure we don't try to do that again the next time we are called 533 * (e.g. as CPU hotplug callbacks). 534 */ 535 ci_cacheinfo(cpu)->early_ci_levels = false; 536 537 if (cache_leaves(cpu) <= early_leaves) 538 return 0; 539 540 kfree(per_cpu_cacheinfo(cpu)); 541 return allocate_cache_info(cpu); 542 } 543 544 int detect_cache_attributes(unsigned int cpu) 545 { 546 int ret; 547 548 ret = init_level_allocate_ci(cpu); 549 if (ret) 550 return ret; 551 552 /* 553 * If LLC is valid the cache leaves were already populated so just go to 554 * update the cpu map. 555 */ 556 if (!last_level_cache_is_valid(cpu)) { 557 /* 558 * populate_cache_leaves() may completely setup the cache leaves and 559 * shared_cpu_map or it may leave it partially setup. 560 */ 561 ret = populate_cache_leaves(cpu); 562 if (ret) 563 goto free_ci; 564 } 565 566 /* 567 * For systems using DT for cache hierarchy, fw_token 568 * and shared_cpu_map will be set up here only if they are 569 * not populated already 570 */ 571 ret = cache_shared_cpu_map_setup(cpu); 572 if (ret) { 573 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); 574 goto free_ci; 575 } 576 577 return 0; 578 579 free_ci: 580 free_cache_attributes(cpu); 581 return ret; 582 } 583 584 /* pointer to cpuX/cache device */ 585 static DEFINE_PER_CPU(struct device *, ci_cache_dev); 586 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) 587 588 static cpumask_t cache_dev_map; 589 590 /* pointer to array of devices for cpuX/cache/indexY */ 591 static DEFINE_PER_CPU(struct device **, ci_index_dev); 592 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) 593 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) 594 595 #define show_one(file_name, object) \ 596 static ssize_t file_name##_show(struct device *dev, \ 597 struct device_attribute *attr, char *buf) \ 598 { \ 599 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 600 return sysfs_emit(buf, "%u\n", this_leaf->object); \ 601 } 602 603 show_one(id, id); 604 show_one(level, level); 605 show_one(coherency_line_size, coherency_line_size); 606 show_one(number_of_sets, number_of_sets); 607 show_one(physical_line_partition, physical_line_partition); 608 show_one(ways_of_associativity, ways_of_associativity); 609 610 static ssize_t size_show(struct device *dev, 611 struct device_attribute *attr, char *buf) 612 { 613 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 614 615 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); 616 } 617 618 static ssize_t shared_cpu_map_show(struct device *dev, 619 struct device_attribute *attr, char *buf) 620 { 621 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 622 const struct cpumask *mask = &this_leaf->shared_cpu_map; 623 624 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); 625 } 626 627 static ssize_t shared_cpu_list_show(struct device *dev, 628 struct device_attribute *attr, char *buf) 629 { 630 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 631 const struct cpumask *mask = &this_leaf->shared_cpu_map; 632 633 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); 634 } 635 636 static ssize_t type_show(struct device *dev, 637 struct device_attribute *attr, char *buf) 638 { 639 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 640 const char *output; 641 642 switch (this_leaf->type) { 643 case CACHE_TYPE_DATA: 644 output = "Data"; 645 break; 646 case CACHE_TYPE_INST: 647 output = "Instruction"; 648 break; 649 case CACHE_TYPE_UNIFIED: 650 output = "Unified"; 651 break; 652 default: 653 return -EINVAL; 654 } 655 656 return sysfs_emit(buf, "%s\n", output); 657 } 658 659 static ssize_t allocation_policy_show(struct device *dev, 660 struct device_attribute *attr, char *buf) 661 { 662 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 663 unsigned int ci_attr = this_leaf->attributes; 664 const char *output; 665 666 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) 667 output = "ReadWriteAllocate"; 668 else if (ci_attr & CACHE_READ_ALLOCATE) 669 output = "ReadAllocate"; 670 else if (ci_attr & CACHE_WRITE_ALLOCATE) 671 output = "WriteAllocate"; 672 else 673 return 0; 674 675 return sysfs_emit(buf, "%s\n", output); 676 } 677 678 static ssize_t write_policy_show(struct device *dev, 679 struct device_attribute *attr, char *buf) 680 { 681 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 682 unsigned int ci_attr = this_leaf->attributes; 683 int n = 0; 684 685 if (ci_attr & CACHE_WRITE_THROUGH) 686 n = sysfs_emit(buf, "WriteThrough\n"); 687 else if (ci_attr & CACHE_WRITE_BACK) 688 n = sysfs_emit(buf, "WriteBack\n"); 689 return n; 690 } 691 692 static DEVICE_ATTR_RO(id); 693 static DEVICE_ATTR_RO(level); 694 static DEVICE_ATTR_RO(type); 695 static DEVICE_ATTR_RO(coherency_line_size); 696 static DEVICE_ATTR_RO(ways_of_associativity); 697 static DEVICE_ATTR_RO(number_of_sets); 698 static DEVICE_ATTR_RO(size); 699 static DEVICE_ATTR_RO(allocation_policy); 700 static DEVICE_ATTR_RO(write_policy); 701 static DEVICE_ATTR_RO(shared_cpu_map); 702 static DEVICE_ATTR_RO(shared_cpu_list); 703 static DEVICE_ATTR_RO(physical_line_partition); 704 705 static struct attribute *cache_default_attrs[] = { 706 &dev_attr_id.attr, 707 &dev_attr_type.attr, 708 &dev_attr_level.attr, 709 &dev_attr_shared_cpu_map.attr, 710 &dev_attr_shared_cpu_list.attr, 711 &dev_attr_coherency_line_size.attr, 712 &dev_attr_ways_of_associativity.attr, 713 &dev_attr_number_of_sets.attr, 714 &dev_attr_size.attr, 715 &dev_attr_allocation_policy.attr, 716 &dev_attr_write_policy.attr, 717 &dev_attr_physical_line_partition.attr, 718 NULL 719 }; 720 721 static umode_t 722 cache_default_attrs_is_visible(struct kobject *kobj, 723 struct attribute *attr, int unused) 724 { 725 struct device *dev = kobj_to_dev(kobj); 726 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 727 const struct cpumask *mask = &this_leaf->shared_cpu_map; 728 umode_t mode = attr->mode; 729 730 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) 731 return mode; 732 if ((attr == &dev_attr_type.attr) && this_leaf->type) 733 return mode; 734 if ((attr == &dev_attr_level.attr) && this_leaf->level) 735 return mode; 736 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) 737 return mode; 738 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) 739 return mode; 740 if ((attr == &dev_attr_coherency_line_size.attr) && 741 this_leaf->coherency_line_size) 742 return mode; 743 if ((attr == &dev_attr_ways_of_associativity.attr) && 744 this_leaf->size) /* allow 0 = full associativity */ 745 return mode; 746 if ((attr == &dev_attr_number_of_sets.attr) && 747 this_leaf->number_of_sets) 748 return mode; 749 if ((attr == &dev_attr_size.attr) && this_leaf->size) 750 return mode; 751 if ((attr == &dev_attr_write_policy.attr) && 752 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) 753 return mode; 754 if ((attr == &dev_attr_allocation_policy.attr) && 755 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) 756 return mode; 757 if ((attr == &dev_attr_physical_line_partition.attr) && 758 this_leaf->physical_line_partition) 759 return mode; 760 761 return 0; 762 } 763 764 static const struct attribute_group cache_default_group = { 765 .attrs = cache_default_attrs, 766 .is_visible = cache_default_attrs_is_visible, 767 }; 768 769 static const struct attribute_group *cache_default_groups[] = { 770 &cache_default_group, 771 NULL, 772 }; 773 774 static const struct attribute_group *cache_private_groups[] = { 775 &cache_default_group, 776 NULL, /* Place holder for private group */ 777 NULL, 778 }; 779 780 const struct attribute_group * 781 __weak cache_get_priv_group(struct cacheinfo *this_leaf) 782 { 783 return NULL; 784 } 785 786 static const struct attribute_group ** 787 cache_get_attribute_groups(struct cacheinfo *this_leaf) 788 { 789 const struct attribute_group *priv_group = 790 cache_get_priv_group(this_leaf); 791 792 if (!priv_group) 793 return cache_default_groups; 794 795 if (!cache_private_groups[1]) 796 cache_private_groups[1] = priv_group; 797 798 return cache_private_groups; 799 } 800 801 /* Add/Remove cache interface for CPU device */ 802 static void cpu_cache_sysfs_exit(unsigned int cpu) 803 { 804 int i; 805 struct device *ci_dev; 806 807 if (per_cpu_index_dev(cpu)) { 808 for (i = 0; i < cache_leaves(cpu); i++) { 809 ci_dev = per_cache_index_dev(cpu, i); 810 if (!ci_dev) 811 continue; 812 device_unregister(ci_dev); 813 } 814 kfree(per_cpu_index_dev(cpu)); 815 per_cpu_index_dev(cpu) = NULL; 816 } 817 device_unregister(per_cpu_cache_dev(cpu)); 818 per_cpu_cache_dev(cpu) = NULL; 819 } 820 821 static int cpu_cache_sysfs_init(unsigned int cpu) 822 { 823 struct device *dev = get_cpu_device(cpu); 824 825 if (per_cpu_cacheinfo(cpu) == NULL) 826 return -ENOENT; 827 828 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); 829 if (IS_ERR(per_cpu_cache_dev(cpu))) 830 return PTR_ERR(per_cpu_cache_dev(cpu)); 831 832 /* Allocate all required memory */ 833 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), 834 sizeof(struct device *), GFP_KERNEL); 835 if (unlikely(per_cpu_index_dev(cpu) == NULL)) 836 goto err_out; 837 838 return 0; 839 840 err_out: 841 cpu_cache_sysfs_exit(cpu); 842 return -ENOMEM; 843 } 844 845 static int cache_add_dev(unsigned int cpu) 846 { 847 unsigned int i; 848 int rc; 849 struct device *ci_dev, *parent; 850 struct cacheinfo *this_leaf; 851 const struct attribute_group **cache_groups; 852 853 rc = cpu_cache_sysfs_init(cpu); 854 if (unlikely(rc < 0)) 855 return rc; 856 857 parent = per_cpu_cache_dev(cpu); 858 for (i = 0; i < cache_leaves(cpu); i++) { 859 this_leaf = per_cpu_cacheinfo_idx(cpu, i); 860 if (this_leaf->disable_sysfs) 861 continue; 862 if (this_leaf->type == CACHE_TYPE_NOCACHE) 863 break; 864 cache_groups = cache_get_attribute_groups(this_leaf); 865 ci_dev = cpu_device_create(parent, this_leaf, cache_groups, 866 "index%1u", i); 867 if (IS_ERR(ci_dev)) { 868 rc = PTR_ERR(ci_dev); 869 goto err; 870 } 871 per_cache_index_dev(cpu, i) = ci_dev; 872 } 873 cpumask_set_cpu(cpu, &cache_dev_map); 874 875 return 0; 876 err: 877 cpu_cache_sysfs_exit(cpu); 878 return rc; 879 } 880 881 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu, 882 cpumask_t **map) 883 { 884 struct cacheinfo *llc, *sib_llc; 885 unsigned int sibling; 886 887 if (!last_level_cache_is_valid(cpu)) 888 return 0; 889 890 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 891 892 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 893 return 0; 894 895 if (online) { 896 *map = &llc->shared_cpu_map; 897 return cpumask_weight(*map); 898 } 899 900 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */ 901 for_each_cpu(sibling, &llc->shared_cpu_map) { 902 if (sibling == cpu || !last_level_cache_is_valid(sibling)) 903 continue; 904 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1); 905 *map = &sib_llc->shared_cpu_map; 906 return cpumask_weight(*map); 907 } 908 909 return 0; 910 } 911 912 /* 913 * Calculate the size of the per-CPU data cache slice. This can be 914 * used to estimate the size of the data cache slice that can be used 915 * by one CPU under ideal circumstances. UNIFIED caches are counted 916 * in addition to DATA caches. So, please consider code cache usage 917 * when use the result. 918 * 919 * Because the cache inclusive/non-inclusive information isn't 920 * available, we just use the size of the per-CPU slice of LLC to make 921 * the result more predictable across architectures. 922 */ 923 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu) 924 { 925 struct cpu_cacheinfo *ci; 926 struct cacheinfo *llc; 927 unsigned int nr_shared; 928 929 if (!last_level_cache_is_valid(cpu)) 930 return; 931 932 ci = ci_cacheinfo(cpu); 933 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 934 935 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 936 return; 937 938 nr_shared = cpumask_weight(&llc->shared_cpu_map); 939 if (nr_shared) 940 ci->per_cpu_data_slice_size = llc->size / nr_shared; 941 } 942 943 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu, 944 cpumask_t *cpu_map) 945 { 946 unsigned int icpu; 947 948 for_each_cpu(icpu, cpu_map) { 949 if (!cpu_online && icpu == cpu) 950 continue; 951 update_per_cpu_data_slice_size_cpu(icpu); 952 setup_pcp_cacheinfo(icpu); 953 } 954 } 955 956 static int cacheinfo_cpu_online(unsigned int cpu) 957 { 958 int rc = detect_cache_attributes(cpu); 959 cpumask_t *cpu_map; 960 961 if (rc) 962 return rc; 963 rc = cache_add_dev(cpu); 964 if (rc) 965 goto err; 966 if (cpu_map_shared_cache(true, cpu, &cpu_map)) 967 update_per_cpu_data_slice_size(true, cpu, cpu_map); 968 return 0; 969 err: 970 free_cache_attributes(cpu); 971 return rc; 972 } 973 974 static int cacheinfo_cpu_pre_down(unsigned int cpu) 975 { 976 cpumask_t *cpu_map; 977 unsigned int nr_shared; 978 979 nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map); 980 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) 981 cpu_cache_sysfs_exit(cpu); 982 983 free_cache_attributes(cpu); 984 if (nr_shared > 1) 985 update_per_cpu_data_slice_size(false, cpu, cpu_map); 986 return 0; 987 } 988 989 static int __init cacheinfo_sysfs_init(void) 990 { 991 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, 992 "base/cacheinfo:online", 993 cacheinfo_cpu_online, cacheinfo_cpu_pre_down); 994 } 995 device_initcall(cacheinfo_sysfs_init); 996