1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cacheinfo support - processor cache information via sysfs 4 * 5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c 6 * Author: Sudeep Holla <sudeep.holla@arm.com> 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/bitops.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/compiler.h> 14 #include <linux/cpu.h> 15 #include <linux/device.h> 16 #include <linux/init.h> 17 #include <linux/of.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/smp.h> 21 #include <linux/sysfs.h> 22 23 /* pointer to per cpu cacheinfo */ 24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); 25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) 26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) 27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) 28 #define per_cpu_cacheinfo_idx(cpu, idx) \ 29 (per_cpu_cacheinfo(cpu) + (idx)) 30 31 /* Set if no cache information is found in DT/ACPI. */ 32 static bool use_arch_info; 33 34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) 35 { 36 return ci_cacheinfo(cpu); 37 } 38 39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 40 struct cacheinfo *sib_leaf) 41 { 42 /* 43 * For non DT/ACPI systems, assume unique level 1 caches, 44 * system-wide shared caches for all other levels. 45 */ 46 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || 47 use_arch_info) 48 return (this_leaf->level != 1) && (sib_leaf->level != 1); 49 50 if ((sib_leaf->attributes & CACHE_ID) && 51 (this_leaf->attributes & CACHE_ID)) 52 return sib_leaf->id == this_leaf->id; 53 54 return sib_leaf->fw_token == this_leaf->fw_token; 55 } 56 57 bool last_level_cache_is_valid(unsigned int cpu) 58 { 59 struct cacheinfo *llc; 60 61 if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu)) 62 return false; 63 64 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 65 66 return (llc->attributes & CACHE_ID) || !!llc->fw_token; 67 68 } 69 70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) 71 { 72 struct cacheinfo *llc_x, *llc_y; 73 74 if (!last_level_cache_is_valid(cpu_x) || 75 !last_level_cache_is_valid(cpu_y)) 76 return false; 77 78 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); 79 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); 80 81 return cache_leaves_are_shared(llc_x, llc_y); 82 } 83 84 #ifdef CONFIG_OF 85 86 static bool of_check_cache_nodes(struct device_node *np); 87 88 /* OF properties to query for a given cache type */ 89 struct cache_type_info { 90 const char *size_prop; 91 const char *line_size_props[2]; 92 const char *nr_sets_prop; 93 }; 94 95 static const struct cache_type_info cache_type_info[] = { 96 { 97 .size_prop = "cache-size", 98 .line_size_props = { "cache-line-size", 99 "cache-block-size", }, 100 .nr_sets_prop = "cache-sets", 101 }, { 102 .size_prop = "i-cache-size", 103 .line_size_props = { "i-cache-line-size", 104 "i-cache-block-size", }, 105 .nr_sets_prop = "i-cache-sets", 106 }, { 107 .size_prop = "d-cache-size", 108 .line_size_props = { "d-cache-line-size", 109 "d-cache-block-size", }, 110 .nr_sets_prop = "d-cache-sets", 111 }, 112 }; 113 114 static inline int get_cacheinfo_idx(enum cache_type type) 115 { 116 if (type == CACHE_TYPE_UNIFIED) 117 return 0; 118 return type; 119 } 120 121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) 122 { 123 const char *propname; 124 int ct_idx; 125 126 ct_idx = get_cacheinfo_idx(this_leaf->type); 127 propname = cache_type_info[ct_idx].size_prop; 128 129 of_property_read_u32(np, propname, &this_leaf->size); 130 } 131 132 /* not cache_line_size() because that's a macro in include/linux/cache.h */ 133 static void cache_get_line_size(struct cacheinfo *this_leaf, 134 struct device_node *np) 135 { 136 int i, lim, ct_idx; 137 138 ct_idx = get_cacheinfo_idx(this_leaf->type); 139 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); 140 141 for (i = 0; i < lim; i++) { 142 int ret; 143 u32 line_size; 144 const char *propname; 145 146 propname = cache_type_info[ct_idx].line_size_props[i]; 147 ret = of_property_read_u32(np, propname, &line_size); 148 if (!ret) { 149 this_leaf->coherency_line_size = line_size; 150 break; 151 } 152 } 153 } 154 155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) 156 { 157 const char *propname; 158 int ct_idx; 159 160 ct_idx = get_cacheinfo_idx(this_leaf->type); 161 propname = cache_type_info[ct_idx].nr_sets_prop; 162 163 of_property_read_u32(np, propname, &this_leaf->number_of_sets); 164 } 165 166 static void cache_associativity(struct cacheinfo *this_leaf) 167 { 168 unsigned int line_size = this_leaf->coherency_line_size; 169 unsigned int nr_sets = this_leaf->number_of_sets; 170 unsigned int size = this_leaf->size; 171 172 /* 173 * If the cache is fully associative, there is no need to 174 * check the other properties. 175 */ 176 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) 177 this_leaf->ways_of_associativity = (size / nr_sets) / line_size; 178 } 179 180 static bool cache_node_is_unified(struct cacheinfo *this_leaf, 181 struct device_node *np) 182 { 183 return of_property_read_bool(np, "cache-unified"); 184 } 185 186 static void cache_of_set_props(struct cacheinfo *this_leaf, 187 struct device_node *np) 188 { 189 /* 190 * init_cache_level must setup the cache level correctly 191 * overriding the architecturally specified levels, so 192 * if type is NONE at this stage, it should be unified 193 */ 194 if (this_leaf->type == CACHE_TYPE_NOCACHE && 195 cache_node_is_unified(this_leaf, np)) 196 this_leaf->type = CACHE_TYPE_UNIFIED; 197 cache_size(this_leaf, np); 198 cache_get_line_size(this_leaf, np); 199 cache_nr_sets(this_leaf, np); 200 cache_associativity(this_leaf); 201 } 202 203 static int cache_setup_of_node(unsigned int cpu) 204 { 205 struct cacheinfo *this_leaf; 206 unsigned int index = 0; 207 208 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); 209 if (!np) { 210 pr_err("Failed to find cpu%d device node\n", cpu); 211 return -ENOENT; 212 } 213 214 if (!of_check_cache_nodes(np)) { 215 return -ENOENT; 216 } 217 218 while (index < cache_leaves(cpu)) { 219 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 220 if (this_leaf->level != 1) { 221 struct device_node *prev __free(device_node) = np; 222 np = of_find_next_cache_node(np); 223 if (!np) 224 break; 225 } 226 cache_of_set_props(this_leaf, np); 227 this_leaf->fw_token = np; 228 index++; 229 } 230 231 if (index != cache_leaves(cpu)) /* not all OF nodes populated */ 232 return -ENOENT; 233 234 return 0; 235 } 236 237 static bool of_check_cache_nodes(struct device_node *np) 238 { 239 if (of_property_present(np, "cache-size") || 240 of_property_present(np, "i-cache-size") || 241 of_property_present(np, "d-cache-size") || 242 of_property_present(np, "cache-unified")) 243 return true; 244 245 struct device_node *next __free(device_node) = of_find_next_cache_node(np); 246 if (next) { 247 return true; 248 } 249 250 return false; 251 } 252 253 static int of_count_cache_leaves(struct device_node *np) 254 { 255 unsigned int leaves = 0; 256 257 if (of_property_present(np, "cache-size")) 258 ++leaves; 259 if (of_property_present(np, "i-cache-size")) 260 ++leaves; 261 if (of_property_present(np, "d-cache-size")) 262 ++leaves; 263 264 if (!leaves) { 265 /* The '[i-|d-|]cache-size' property is required, but 266 * if absent, fallback on the 'cache-unified' property. 267 */ 268 if (of_property_read_bool(np, "cache-unified")) 269 return 1; 270 else 271 return 2; 272 } 273 274 return leaves; 275 } 276 277 int init_of_cache_level(unsigned int cpu) 278 { 279 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 280 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); 281 unsigned int levels = 0, leaves, level; 282 283 if (!of_check_cache_nodes(np)) { 284 return -ENOENT; 285 } 286 287 leaves = of_count_cache_leaves(np); 288 if (leaves > 0) 289 levels = 1; 290 291 while (1) { 292 struct device_node *prev __free(device_node) = np; 293 np = of_find_next_cache_node(np); 294 if (!np) 295 break; 296 297 if (!of_device_is_compatible(np, "cache")) 298 return -EINVAL; 299 if (of_property_read_u32(np, "cache-level", &level)) 300 return -EINVAL; 301 if (level <= levels) 302 return -EINVAL; 303 304 leaves += of_count_cache_leaves(np); 305 levels = level; 306 } 307 308 this_cpu_ci->num_levels = levels; 309 this_cpu_ci->num_leaves = leaves; 310 311 return 0; 312 } 313 314 #else 315 static inline int cache_setup_of_node(unsigned int cpu) { return 0; } 316 int init_of_cache_level(unsigned int cpu) { return 0; } 317 #endif 318 319 int __weak cache_setup_acpi(unsigned int cpu) 320 { 321 return -ENOTSUPP; 322 } 323 324 unsigned int coherency_max_size; 325 326 static int cache_setup_properties(unsigned int cpu) 327 { 328 int ret = 0; 329 330 if (of_have_populated_dt()) 331 ret = cache_setup_of_node(cpu); 332 else if (!acpi_disabled) 333 ret = cache_setup_acpi(cpu); 334 335 // Assume there is no cache information available in DT/ACPI from now. 336 if (ret && use_arch_cache_info()) 337 use_arch_info = true; 338 339 return ret; 340 } 341 342 static int cache_shared_cpu_map_setup(unsigned int cpu) 343 { 344 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 345 struct cacheinfo *this_leaf, *sib_leaf; 346 unsigned int index, sib_index; 347 int ret = 0; 348 349 if (this_cpu_ci->cpu_map_populated) 350 return 0; 351 352 /* 353 * skip setting up cache properties if LLC is valid, just need 354 * to update the shared cpu_map if the cache attributes were 355 * populated early before all the cpus are brought online 356 */ 357 if (!last_level_cache_is_valid(cpu) && !use_arch_info) { 358 ret = cache_setup_properties(cpu); 359 if (ret) 360 return ret; 361 } 362 363 for (index = 0; index < cache_leaves(cpu); index++) { 364 unsigned int i; 365 366 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 367 368 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 369 for_each_online_cpu(i) { 370 if (i == cpu || !per_cpu_cacheinfo(i)) 371 continue;/* skip if itself or no cacheinfo */ 372 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { 373 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); 374 375 /* 376 * Comparing cache IDs only makes sense if the leaves 377 * belong to the same cache level of same type. Skip 378 * the check if level and type do not match. 379 */ 380 if (sib_leaf->level != this_leaf->level || 381 sib_leaf->type != this_leaf->type) 382 continue; 383 384 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 385 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); 386 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 387 break; 388 } 389 } 390 } 391 /* record the maximum cache line size */ 392 if (this_leaf->coherency_line_size > coherency_max_size) 393 coherency_max_size = this_leaf->coherency_line_size; 394 } 395 396 /* shared_cpu_map is now populated for the cpu */ 397 this_cpu_ci->cpu_map_populated = true; 398 return 0; 399 } 400 401 static void cache_shared_cpu_map_remove(unsigned int cpu) 402 { 403 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 404 struct cacheinfo *this_leaf, *sib_leaf; 405 unsigned int sibling, index, sib_index; 406 407 for (index = 0; index < cache_leaves(cpu); index++) { 408 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 409 for_each_cpu(sibling, &this_leaf->shared_cpu_map) { 410 if (sibling == cpu || !per_cpu_cacheinfo(sibling)) 411 continue;/* skip if itself or no cacheinfo */ 412 413 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { 414 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); 415 416 /* 417 * Comparing cache IDs only makes sense if the leaves 418 * belong to the same cache level of same type. Skip 419 * the check if level and type do not match. 420 */ 421 if (sib_leaf->level != this_leaf->level || 422 sib_leaf->type != this_leaf->type) 423 continue; 424 425 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 426 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); 427 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); 428 break; 429 } 430 } 431 } 432 } 433 434 /* cpu is no longer populated in the shared map */ 435 this_cpu_ci->cpu_map_populated = false; 436 } 437 438 static void free_cache_attributes(unsigned int cpu) 439 { 440 if (!per_cpu_cacheinfo(cpu)) 441 return; 442 443 cache_shared_cpu_map_remove(cpu); 444 } 445 446 int __weak early_cache_level(unsigned int cpu) 447 { 448 return -ENOENT; 449 } 450 451 int __weak init_cache_level(unsigned int cpu) 452 { 453 return -ENOENT; 454 } 455 456 int __weak populate_cache_leaves(unsigned int cpu) 457 { 458 return -ENOENT; 459 } 460 461 static inline int allocate_cache_info(int cpu) 462 { 463 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC); 464 if (!per_cpu_cacheinfo(cpu)) { 465 cache_leaves(cpu) = 0; 466 return -ENOMEM; 467 } 468 469 return 0; 470 } 471 472 int fetch_cache_info(unsigned int cpu) 473 { 474 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 475 unsigned int levels = 0, split_levels = 0; 476 int ret; 477 478 if (acpi_disabled) { 479 ret = init_of_cache_level(cpu); 480 } else { 481 ret = acpi_get_cache_info(cpu, &levels, &split_levels); 482 if (!ret) { 483 this_cpu_ci->num_levels = levels; 484 /* 485 * This assumes that: 486 * - there cannot be any split caches (data/instruction) 487 * above a unified cache 488 * - data/instruction caches come by pair 489 */ 490 this_cpu_ci->num_leaves = levels + split_levels; 491 } 492 } 493 494 if (ret || !cache_leaves(cpu)) { 495 ret = early_cache_level(cpu); 496 if (ret) 497 return ret; 498 499 if (!cache_leaves(cpu)) 500 return -ENOENT; 501 502 this_cpu_ci->early_ci_levels = true; 503 } 504 505 return allocate_cache_info(cpu); 506 } 507 508 static inline int init_level_allocate_ci(unsigned int cpu) 509 { 510 unsigned int early_leaves = cache_leaves(cpu); 511 512 /* Since early initialization/allocation of the cacheinfo is allowed 513 * via fetch_cache_info() and this also gets called as CPU hotplug 514 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped 515 * as it will happen only once (the cacheinfo memory is never freed). 516 * Just populate the cacheinfo. However, if the cacheinfo has been 517 * allocated early through the arch-specific early_cache_level() call, 518 * there is a chance the info is wrong (this can happen on arm64). In 519 * that case, call init_cache_level() anyway to give the arch-specific 520 * code a chance to make things right. 521 */ 522 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) 523 return 0; 524 525 if (init_cache_level(cpu) || !cache_leaves(cpu)) 526 return -ENOENT; 527 528 /* 529 * Now that we have properly initialized the cache level info, make 530 * sure we don't try to do that again the next time we are called 531 * (e.g. as CPU hotplug callbacks). 532 */ 533 ci_cacheinfo(cpu)->early_ci_levels = false; 534 535 /* 536 * Some architectures (e.g., x86) do not use early initialization. 537 * Allocate memory now in such case. 538 */ 539 if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu)) 540 return 0; 541 542 kfree(per_cpu_cacheinfo(cpu)); 543 return allocate_cache_info(cpu); 544 } 545 546 int detect_cache_attributes(unsigned int cpu) 547 { 548 int ret; 549 550 ret = init_level_allocate_ci(cpu); 551 if (ret) 552 return ret; 553 554 /* 555 * If LLC is valid the cache leaves were already populated so just go to 556 * update the cpu map. 557 */ 558 if (!last_level_cache_is_valid(cpu)) { 559 /* 560 * populate_cache_leaves() may completely setup the cache leaves and 561 * shared_cpu_map or it may leave it partially setup. 562 */ 563 ret = populate_cache_leaves(cpu); 564 if (ret) 565 goto free_ci; 566 } 567 568 /* 569 * For systems using DT for cache hierarchy, fw_token 570 * and shared_cpu_map will be set up here only if they are 571 * not populated already 572 */ 573 ret = cache_shared_cpu_map_setup(cpu); 574 if (ret) { 575 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); 576 goto free_ci; 577 } 578 579 return 0; 580 581 free_ci: 582 free_cache_attributes(cpu); 583 return ret; 584 } 585 586 /* pointer to cpuX/cache device */ 587 static DEFINE_PER_CPU(struct device *, ci_cache_dev); 588 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) 589 590 static cpumask_t cache_dev_map; 591 592 /* pointer to array of devices for cpuX/cache/indexY */ 593 static DEFINE_PER_CPU(struct device **, ci_index_dev); 594 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) 595 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) 596 597 #define show_one(file_name, object) \ 598 static ssize_t file_name##_show(struct device *dev, \ 599 struct device_attribute *attr, char *buf) \ 600 { \ 601 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 602 return sysfs_emit(buf, "%u\n", this_leaf->object); \ 603 } 604 605 show_one(id, id); 606 show_one(level, level); 607 show_one(coherency_line_size, coherency_line_size); 608 show_one(number_of_sets, number_of_sets); 609 show_one(physical_line_partition, physical_line_partition); 610 show_one(ways_of_associativity, ways_of_associativity); 611 612 static ssize_t size_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 616 617 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); 618 } 619 620 static ssize_t shared_cpu_map_show(struct device *dev, 621 struct device_attribute *attr, char *buf) 622 { 623 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 624 const struct cpumask *mask = &this_leaf->shared_cpu_map; 625 626 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); 627 } 628 629 static ssize_t shared_cpu_list_show(struct device *dev, 630 struct device_attribute *attr, char *buf) 631 { 632 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 633 const struct cpumask *mask = &this_leaf->shared_cpu_map; 634 635 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); 636 } 637 638 static ssize_t type_show(struct device *dev, 639 struct device_attribute *attr, char *buf) 640 { 641 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 642 const char *output; 643 644 switch (this_leaf->type) { 645 case CACHE_TYPE_DATA: 646 output = "Data"; 647 break; 648 case CACHE_TYPE_INST: 649 output = "Instruction"; 650 break; 651 case CACHE_TYPE_UNIFIED: 652 output = "Unified"; 653 break; 654 default: 655 return -EINVAL; 656 } 657 658 return sysfs_emit(buf, "%s\n", output); 659 } 660 661 static ssize_t allocation_policy_show(struct device *dev, 662 struct device_attribute *attr, char *buf) 663 { 664 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 665 unsigned int ci_attr = this_leaf->attributes; 666 const char *output; 667 668 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) 669 output = "ReadWriteAllocate"; 670 else if (ci_attr & CACHE_READ_ALLOCATE) 671 output = "ReadAllocate"; 672 else if (ci_attr & CACHE_WRITE_ALLOCATE) 673 output = "WriteAllocate"; 674 else 675 return 0; 676 677 return sysfs_emit(buf, "%s\n", output); 678 } 679 680 static ssize_t write_policy_show(struct device *dev, 681 struct device_attribute *attr, char *buf) 682 { 683 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 684 unsigned int ci_attr = this_leaf->attributes; 685 int n = 0; 686 687 if (ci_attr & CACHE_WRITE_THROUGH) 688 n = sysfs_emit(buf, "WriteThrough\n"); 689 else if (ci_attr & CACHE_WRITE_BACK) 690 n = sysfs_emit(buf, "WriteBack\n"); 691 return n; 692 } 693 694 static DEVICE_ATTR_RO(id); 695 static DEVICE_ATTR_RO(level); 696 static DEVICE_ATTR_RO(type); 697 static DEVICE_ATTR_RO(coherency_line_size); 698 static DEVICE_ATTR_RO(ways_of_associativity); 699 static DEVICE_ATTR_RO(number_of_sets); 700 static DEVICE_ATTR_RO(size); 701 static DEVICE_ATTR_RO(allocation_policy); 702 static DEVICE_ATTR_RO(write_policy); 703 static DEVICE_ATTR_RO(shared_cpu_map); 704 static DEVICE_ATTR_RO(shared_cpu_list); 705 static DEVICE_ATTR_RO(physical_line_partition); 706 707 static struct attribute *cache_default_attrs[] = { 708 &dev_attr_id.attr, 709 &dev_attr_type.attr, 710 &dev_attr_level.attr, 711 &dev_attr_shared_cpu_map.attr, 712 &dev_attr_shared_cpu_list.attr, 713 &dev_attr_coherency_line_size.attr, 714 &dev_attr_ways_of_associativity.attr, 715 &dev_attr_number_of_sets.attr, 716 &dev_attr_size.attr, 717 &dev_attr_allocation_policy.attr, 718 &dev_attr_write_policy.attr, 719 &dev_attr_physical_line_partition.attr, 720 NULL 721 }; 722 723 static umode_t 724 cache_default_attrs_is_visible(struct kobject *kobj, 725 struct attribute *attr, int unused) 726 { 727 struct device *dev = kobj_to_dev(kobj); 728 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 729 const struct cpumask *mask = &this_leaf->shared_cpu_map; 730 umode_t mode = attr->mode; 731 732 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) 733 return mode; 734 if ((attr == &dev_attr_type.attr) && this_leaf->type) 735 return mode; 736 if ((attr == &dev_attr_level.attr) && this_leaf->level) 737 return mode; 738 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) 739 return mode; 740 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) 741 return mode; 742 if ((attr == &dev_attr_coherency_line_size.attr) && 743 this_leaf->coherency_line_size) 744 return mode; 745 if ((attr == &dev_attr_ways_of_associativity.attr) && 746 this_leaf->size) /* allow 0 = full associativity */ 747 return mode; 748 if ((attr == &dev_attr_number_of_sets.attr) && 749 this_leaf->number_of_sets) 750 return mode; 751 if ((attr == &dev_attr_size.attr) && this_leaf->size) 752 return mode; 753 if ((attr == &dev_attr_write_policy.attr) && 754 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) 755 return mode; 756 if ((attr == &dev_attr_allocation_policy.attr) && 757 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) 758 return mode; 759 if ((attr == &dev_attr_physical_line_partition.attr) && 760 this_leaf->physical_line_partition) 761 return mode; 762 763 return 0; 764 } 765 766 static const struct attribute_group cache_default_group = { 767 .attrs = cache_default_attrs, 768 .is_visible = cache_default_attrs_is_visible, 769 }; 770 771 static const struct attribute_group *cache_default_groups[] = { 772 &cache_default_group, 773 NULL, 774 }; 775 776 static const struct attribute_group *cache_private_groups[] = { 777 &cache_default_group, 778 NULL, /* Place holder for private group */ 779 NULL, 780 }; 781 782 const struct attribute_group * 783 __weak cache_get_priv_group(struct cacheinfo *this_leaf) 784 { 785 return NULL; 786 } 787 788 static const struct attribute_group ** 789 cache_get_attribute_groups(struct cacheinfo *this_leaf) 790 { 791 const struct attribute_group *priv_group = 792 cache_get_priv_group(this_leaf); 793 794 if (!priv_group) 795 return cache_default_groups; 796 797 if (!cache_private_groups[1]) 798 cache_private_groups[1] = priv_group; 799 800 return cache_private_groups; 801 } 802 803 /* Add/Remove cache interface for CPU device */ 804 static void cpu_cache_sysfs_exit(unsigned int cpu) 805 { 806 int i; 807 struct device *ci_dev; 808 809 if (per_cpu_index_dev(cpu)) { 810 for (i = 0; i < cache_leaves(cpu); i++) { 811 ci_dev = per_cache_index_dev(cpu, i); 812 if (!ci_dev) 813 continue; 814 device_unregister(ci_dev); 815 } 816 kfree(per_cpu_index_dev(cpu)); 817 per_cpu_index_dev(cpu) = NULL; 818 } 819 device_unregister(per_cpu_cache_dev(cpu)); 820 per_cpu_cache_dev(cpu) = NULL; 821 } 822 823 static int cpu_cache_sysfs_init(unsigned int cpu) 824 { 825 struct device *dev = get_cpu_device(cpu); 826 827 if (per_cpu_cacheinfo(cpu) == NULL) 828 return -ENOENT; 829 830 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); 831 if (IS_ERR(per_cpu_cache_dev(cpu))) 832 return PTR_ERR(per_cpu_cache_dev(cpu)); 833 834 /* Allocate all required memory */ 835 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), 836 sizeof(struct device *), GFP_KERNEL); 837 if (unlikely(per_cpu_index_dev(cpu) == NULL)) 838 goto err_out; 839 840 return 0; 841 842 err_out: 843 cpu_cache_sysfs_exit(cpu); 844 return -ENOMEM; 845 } 846 847 static int cache_add_dev(unsigned int cpu) 848 { 849 unsigned int i; 850 int rc; 851 struct device *ci_dev, *parent; 852 struct cacheinfo *this_leaf; 853 const struct attribute_group **cache_groups; 854 855 rc = cpu_cache_sysfs_init(cpu); 856 if (unlikely(rc < 0)) 857 return rc; 858 859 parent = per_cpu_cache_dev(cpu); 860 for (i = 0; i < cache_leaves(cpu); i++) { 861 this_leaf = per_cpu_cacheinfo_idx(cpu, i); 862 if (this_leaf->disable_sysfs) 863 continue; 864 if (this_leaf->type == CACHE_TYPE_NOCACHE) 865 break; 866 cache_groups = cache_get_attribute_groups(this_leaf); 867 ci_dev = cpu_device_create(parent, this_leaf, cache_groups, 868 "index%1u", i); 869 if (IS_ERR(ci_dev)) { 870 rc = PTR_ERR(ci_dev); 871 goto err; 872 } 873 per_cache_index_dev(cpu, i) = ci_dev; 874 } 875 cpumask_set_cpu(cpu, &cache_dev_map); 876 877 return 0; 878 err: 879 cpu_cache_sysfs_exit(cpu); 880 return rc; 881 } 882 883 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu, 884 cpumask_t **map) 885 { 886 struct cacheinfo *llc, *sib_llc; 887 unsigned int sibling; 888 889 if (!last_level_cache_is_valid(cpu)) 890 return 0; 891 892 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 893 894 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 895 return 0; 896 897 if (online) { 898 *map = &llc->shared_cpu_map; 899 return cpumask_weight(*map); 900 } 901 902 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */ 903 for_each_cpu(sibling, &llc->shared_cpu_map) { 904 if (sibling == cpu || !last_level_cache_is_valid(sibling)) 905 continue; 906 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1); 907 *map = &sib_llc->shared_cpu_map; 908 return cpumask_weight(*map); 909 } 910 911 return 0; 912 } 913 914 /* 915 * Calculate the size of the per-CPU data cache slice. This can be 916 * used to estimate the size of the data cache slice that can be used 917 * by one CPU under ideal circumstances. UNIFIED caches are counted 918 * in addition to DATA caches. So, please consider code cache usage 919 * when use the result. 920 * 921 * Because the cache inclusive/non-inclusive information isn't 922 * available, we just use the size of the per-CPU slice of LLC to make 923 * the result more predictable across architectures. 924 */ 925 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu) 926 { 927 struct cpu_cacheinfo *ci; 928 struct cacheinfo *llc; 929 unsigned int nr_shared; 930 931 if (!last_level_cache_is_valid(cpu)) 932 return; 933 934 ci = ci_cacheinfo(cpu); 935 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 936 937 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 938 return; 939 940 nr_shared = cpumask_weight(&llc->shared_cpu_map); 941 if (nr_shared) 942 ci->per_cpu_data_slice_size = llc->size / nr_shared; 943 } 944 945 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu, 946 cpumask_t *cpu_map) 947 { 948 unsigned int icpu; 949 950 for_each_cpu(icpu, cpu_map) { 951 if (!cpu_online && icpu == cpu) 952 continue; 953 update_per_cpu_data_slice_size_cpu(icpu); 954 setup_pcp_cacheinfo(icpu); 955 } 956 } 957 958 static int cacheinfo_cpu_online(unsigned int cpu) 959 { 960 int rc = detect_cache_attributes(cpu); 961 cpumask_t *cpu_map; 962 963 if (rc) 964 return rc; 965 rc = cache_add_dev(cpu); 966 if (rc) 967 goto err; 968 if (cpu_map_shared_cache(true, cpu, &cpu_map)) 969 update_per_cpu_data_slice_size(true, cpu, cpu_map); 970 return 0; 971 err: 972 free_cache_attributes(cpu); 973 return rc; 974 } 975 976 static int cacheinfo_cpu_pre_down(unsigned int cpu) 977 { 978 cpumask_t *cpu_map; 979 unsigned int nr_shared; 980 981 nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map); 982 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) 983 cpu_cache_sysfs_exit(cpu); 984 985 free_cache_attributes(cpu); 986 if (nr_shared > 1) 987 update_per_cpu_data_slice_size(false, cpu, cpu_map); 988 return 0; 989 } 990 991 static int __init cacheinfo_sysfs_init(void) 992 { 993 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, 994 "base/cacheinfo:online", 995 cacheinfo_cpu_online, cacheinfo_cpu_pre_down); 996 } 997 device_initcall(cacheinfo_sysfs_init); 998