1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cacheinfo support - processor cache information via sysfs 4 * 5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c 6 * Author: Sudeep Holla <sudeep.holla@arm.com> 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/bitops.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/compiler.h> 14 #include <linux/cpu.h> 15 #include <linux/device.h> 16 #include <linux/init.h> 17 #include <linux/of.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/smp.h> 21 #include <linux/sysfs.h> 22 23 /* pointer to per cpu cacheinfo */ 24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); 25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) 26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) 27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) 28 #define per_cpu_cacheinfo_idx(cpu, idx) \ 29 (per_cpu_cacheinfo(cpu) + (idx)) 30 31 /* Set if no cache information is found in DT/ACPI. */ 32 static bool use_arch_info; 33 34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) 35 { 36 return ci_cacheinfo(cpu); 37 } 38 39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 40 struct cacheinfo *sib_leaf) 41 { 42 /* 43 * For non DT/ACPI systems, assume unique level 1 caches, 44 * system-wide shared caches for all other levels. 45 */ 46 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || 47 use_arch_info) 48 return (this_leaf->level != 1) && (sib_leaf->level != 1); 49 50 if ((sib_leaf->attributes & CACHE_ID) && 51 (this_leaf->attributes & CACHE_ID)) 52 return sib_leaf->id == this_leaf->id; 53 54 return sib_leaf->fw_token == this_leaf->fw_token; 55 } 56 57 bool last_level_cache_is_valid(unsigned int cpu) 58 { 59 struct cacheinfo *llc; 60 61 if (!cache_leaves(cpu)) 62 return false; 63 64 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 65 66 return (llc->attributes & CACHE_ID) || !!llc->fw_token; 67 68 } 69 70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) 71 { 72 struct cacheinfo *llc_x, *llc_y; 73 74 if (!last_level_cache_is_valid(cpu_x) || 75 !last_level_cache_is_valid(cpu_y)) 76 return false; 77 78 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); 79 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); 80 81 return cache_leaves_are_shared(llc_x, llc_y); 82 } 83 84 #ifdef CONFIG_OF 85 86 static bool of_check_cache_nodes(struct device_node *np); 87 88 /* OF properties to query for a given cache type */ 89 struct cache_type_info { 90 const char *size_prop; 91 const char *line_size_props[2]; 92 const char *nr_sets_prop; 93 }; 94 95 static const struct cache_type_info cache_type_info[] = { 96 { 97 .size_prop = "cache-size", 98 .line_size_props = { "cache-line-size", 99 "cache-block-size", }, 100 .nr_sets_prop = "cache-sets", 101 }, { 102 .size_prop = "i-cache-size", 103 .line_size_props = { "i-cache-line-size", 104 "i-cache-block-size", }, 105 .nr_sets_prop = "i-cache-sets", 106 }, { 107 .size_prop = "d-cache-size", 108 .line_size_props = { "d-cache-line-size", 109 "d-cache-block-size", }, 110 .nr_sets_prop = "d-cache-sets", 111 }, 112 }; 113 114 static inline int get_cacheinfo_idx(enum cache_type type) 115 { 116 if (type == CACHE_TYPE_UNIFIED) 117 return 0; 118 return type; 119 } 120 121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) 122 { 123 const char *propname; 124 int ct_idx; 125 126 ct_idx = get_cacheinfo_idx(this_leaf->type); 127 propname = cache_type_info[ct_idx].size_prop; 128 129 of_property_read_u32(np, propname, &this_leaf->size); 130 } 131 132 /* not cache_line_size() because that's a macro in include/linux/cache.h */ 133 static void cache_get_line_size(struct cacheinfo *this_leaf, 134 struct device_node *np) 135 { 136 int i, lim, ct_idx; 137 138 ct_idx = get_cacheinfo_idx(this_leaf->type); 139 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); 140 141 for (i = 0; i < lim; i++) { 142 int ret; 143 u32 line_size; 144 const char *propname; 145 146 propname = cache_type_info[ct_idx].line_size_props[i]; 147 ret = of_property_read_u32(np, propname, &line_size); 148 if (!ret) { 149 this_leaf->coherency_line_size = line_size; 150 break; 151 } 152 } 153 } 154 155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) 156 { 157 const char *propname; 158 int ct_idx; 159 160 ct_idx = get_cacheinfo_idx(this_leaf->type); 161 propname = cache_type_info[ct_idx].nr_sets_prop; 162 163 of_property_read_u32(np, propname, &this_leaf->number_of_sets); 164 } 165 166 static void cache_associativity(struct cacheinfo *this_leaf) 167 { 168 unsigned int line_size = this_leaf->coherency_line_size; 169 unsigned int nr_sets = this_leaf->number_of_sets; 170 unsigned int size = this_leaf->size; 171 172 /* 173 * If the cache is fully associative, there is no need to 174 * check the other properties. 175 */ 176 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) 177 this_leaf->ways_of_associativity = (size / nr_sets) / line_size; 178 } 179 180 static bool cache_node_is_unified(struct cacheinfo *this_leaf, 181 struct device_node *np) 182 { 183 return of_property_read_bool(np, "cache-unified"); 184 } 185 186 static void cache_of_set_props(struct cacheinfo *this_leaf, 187 struct device_node *np) 188 { 189 /* 190 * init_cache_level must setup the cache level correctly 191 * overriding the architecturally specified levels, so 192 * if type is NONE at this stage, it should be unified 193 */ 194 if (this_leaf->type == CACHE_TYPE_NOCACHE && 195 cache_node_is_unified(this_leaf, np)) 196 this_leaf->type = CACHE_TYPE_UNIFIED; 197 cache_size(this_leaf, np); 198 cache_get_line_size(this_leaf, np); 199 cache_nr_sets(this_leaf, np); 200 cache_associativity(this_leaf); 201 } 202 203 static int cache_setup_of_node(unsigned int cpu) 204 { 205 struct device_node *np, *prev; 206 struct cacheinfo *this_leaf; 207 unsigned int index = 0; 208 209 np = of_cpu_device_node_get(cpu); 210 if (!np) { 211 pr_err("Failed to find cpu%d device node\n", cpu); 212 return -ENOENT; 213 } 214 215 if (!of_check_cache_nodes(np)) { 216 of_node_put(np); 217 return -ENOENT; 218 } 219 220 prev = np; 221 222 while (index < cache_leaves(cpu)) { 223 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 224 if (this_leaf->level != 1) { 225 np = of_find_next_cache_node(np); 226 of_node_put(prev); 227 prev = np; 228 if (!np) 229 break; 230 } 231 cache_of_set_props(this_leaf, np); 232 this_leaf->fw_token = np; 233 index++; 234 } 235 236 of_node_put(np); 237 238 if (index != cache_leaves(cpu)) /* not all OF nodes populated */ 239 return -ENOENT; 240 241 return 0; 242 } 243 244 static bool of_check_cache_nodes(struct device_node *np) 245 { 246 struct device_node *next; 247 248 if (of_property_present(np, "cache-size") || 249 of_property_present(np, "i-cache-size") || 250 of_property_present(np, "d-cache-size") || 251 of_property_present(np, "cache-unified")) 252 return true; 253 254 next = of_find_next_cache_node(np); 255 if (next) { 256 of_node_put(next); 257 return true; 258 } 259 260 return false; 261 } 262 263 static int of_count_cache_leaves(struct device_node *np) 264 { 265 unsigned int leaves = 0; 266 267 if (of_property_read_bool(np, "cache-size")) 268 ++leaves; 269 if (of_property_read_bool(np, "i-cache-size")) 270 ++leaves; 271 if (of_property_read_bool(np, "d-cache-size")) 272 ++leaves; 273 274 if (!leaves) { 275 /* The '[i-|d-|]cache-size' property is required, but 276 * if absent, fallback on the 'cache-unified' property. 277 */ 278 if (of_property_read_bool(np, "cache-unified")) 279 return 1; 280 else 281 return 2; 282 } 283 284 return leaves; 285 } 286 287 int init_of_cache_level(unsigned int cpu) 288 { 289 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 290 struct device_node *np = of_cpu_device_node_get(cpu); 291 struct device_node *prev = NULL; 292 unsigned int levels = 0, leaves, level; 293 294 if (!of_check_cache_nodes(np)) { 295 of_node_put(np); 296 return -ENOENT; 297 } 298 299 leaves = of_count_cache_leaves(np); 300 if (leaves > 0) 301 levels = 1; 302 303 prev = np; 304 while ((np = of_find_next_cache_node(np))) { 305 of_node_put(prev); 306 prev = np; 307 if (!of_device_is_compatible(np, "cache")) 308 goto err_out; 309 if (of_property_read_u32(np, "cache-level", &level)) 310 goto err_out; 311 if (level <= levels) 312 goto err_out; 313 314 leaves += of_count_cache_leaves(np); 315 levels = level; 316 } 317 318 of_node_put(np); 319 this_cpu_ci->num_levels = levels; 320 this_cpu_ci->num_leaves = leaves; 321 322 return 0; 323 324 err_out: 325 of_node_put(np); 326 return -EINVAL; 327 } 328 329 #else 330 static inline int cache_setup_of_node(unsigned int cpu) { return 0; } 331 int init_of_cache_level(unsigned int cpu) { return 0; } 332 #endif 333 334 int __weak cache_setup_acpi(unsigned int cpu) 335 { 336 return -ENOTSUPP; 337 } 338 339 unsigned int coherency_max_size; 340 341 static int cache_setup_properties(unsigned int cpu) 342 { 343 int ret = 0; 344 345 if (of_have_populated_dt()) 346 ret = cache_setup_of_node(cpu); 347 else if (!acpi_disabled) 348 ret = cache_setup_acpi(cpu); 349 350 // Assume there is no cache information available in DT/ACPI from now. 351 if (ret && use_arch_cache_info()) 352 use_arch_info = true; 353 354 return ret; 355 } 356 357 static int cache_shared_cpu_map_setup(unsigned int cpu) 358 { 359 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 360 struct cacheinfo *this_leaf, *sib_leaf; 361 unsigned int index, sib_index; 362 int ret = 0; 363 364 if (this_cpu_ci->cpu_map_populated) 365 return 0; 366 367 /* 368 * skip setting up cache properties if LLC is valid, just need 369 * to update the shared cpu_map if the cache attributes were 370 * populated early before all the cpus are brought online 371 */ 372 if (!last_level_cache_is_valid(cpu) && !use_arch_info) { 373 ret = cache_setup_properties(cpu); 374 if (ret) 375 return ret; 376 } 377 378 for (index = 0; index < cache_leaves(cpu); index++) { 379 unsigned int i; 380 381 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 382 383 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 384 for_each_online_cpu(i) { 385 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 386 387 if (i == cpu || !sib_cpu_ci->info_list) 388 continue;/* skip if itself or no cacheinfo */ 389 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { 390 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); 391 392 /* 393 * Comparing cache IDs only makes sense if the leaves 394 * belong to the same cache level of same type. Skip 395 * the check if level and type do not match. 396 */ 397 if (sib_leaf->level != this_leaf->level || 398 sib_leaf->type != this_leaf->type) 399 continue; 400 401 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 402 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); 403 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 404 break; 405 } 406 } 407 } 408 /* record the maximum cache line size */ 409 if (this_leaf->coherency_line_size > coherency_max_size) 410 coherency_max_size = this_leaf->coherency_line_size; 411 } 412 413 /* shared_cpu_map is now populated for the cpu */ 414 this_cpu_ci->cpu_map_populated = true; 415 return 0; 416 } 417 418 static void cache_shared_cpu_map_remove(unsigned int cpu) 419 { 420 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 421 struct cacheinfo *this_leaf, *sib_leaf; 422 unsigned int sibling, index, sib_index; 423 424 for (index = 0; index < cache_leaves(cpu); index++) { 425 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 426 for_each_cpu(sibling, &this_leaf->shared_cpu_map) { 427 struct cpu_cacheinfo *sib_cpu_ci = 428 get_cpu_cacheinfo(sibling); 429 430 if (sibling == cpu || !sib_cpu_ci->info_list) 431 continue;/* skip if itself or no cacheinfo */ 432 433 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { 434 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); 435 436 /* 437 * Comparing cache IDs only makes sense if the leaves 438 * belong to the same cache level of same type. Skip 439 * the check if level and type do not match. 440 */ 441 if (sib_leaf->level != this_leaf->level || 442 sib_leaf->type != this_leaf->type) 443 continue; 444 445 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 446 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); 447 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); 448 break; 449 } 450 } 451 } 452 } 453 454 /* cpu is no longer populated in the shared map */ 455 this_cpu_ci->cpu_map_populated = false; 456 } 457 458 static void free_cache_attributes(unsigned int cpu) 459 { 460 if (!per_cpu_cacheinfo(cpu)) 461 return; 462 463 cache_shared_cpu_map_remove(cpu); 464 } 465 466 int __weak early_cache_level(unsigned int cpu) 467 { 468 return -ENOENT; 469 } 470 471 int __weak init_cache_level(unsigned int cpu) 472 { 473 return -ENOENT; 474 } 475 476 int __weak populate_cache_leaves(unsigned int cpu) 477 { 478 return -ENOENT; 479 } 480 481 static inline 482 int allocate_cache_info(int cpu) 483 { 484 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), 485 sizeof(struct cacheinfo), GFP_ATOMIC); 486 if (!per_cpu_cacheinfo(cpu)) { 487 cache_leaves(cpu) = 0; 488 return -ENOMEM; 489 } 490 491 return 0; 492 } 493 494 int fetch_cache_info(unsigned int cpu) 495 { 496 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 497 unsigned int levels = 0, split_levels = 0; 498 int ret; 499 500 if (acpi_disabled) { 501 ret = init_of_cache_level(cpu); 502 } else { 503 ret = acpi_get_cache_info(cpu, &levels, &split_levels); 504 if (!ret) { 505 this_cpu_ci->num_levels = levels; 506 /* 507 * This assumes that: 508 * - there cannot be any split caches (data/instruction) 509 * above a unified cache 510 * - data/instruction caches come by pair 511 */ 512 this_cpu_ci->num_leaves = levels + split_levels; 513 } 514 } 515 516 if (ret || !cache_leaves(cpu)) { 517 ret = early_cache_level(cpu); 518 if (ret) 519 return ret; 520 521 if (!cache_leaves(cpu)) 522 return -ENOENT; 523 524 this_cpu_ci->early_ci_levels = true; 525 } 526 527 return allocate_cache_info(cpu); 528 } 529 530 static inline int init_level_allocate_ci(unsigned int cpu) 531 { 532 unsigned int early_leaves = cache_leaves(cpu); 533 534 /* Since early initialization/allocation of the cacheinfo is allowed 535 * via fetch_cache_info() and this also gets called as CPU hotplug 536 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped 537 * as it will happen only once (the cacheinfo memory is never freed). 538 * Just populate the cacheinfo. However, if the cacheinfo has been 539 * allocated early through the arch-specific early_cache_level() call, 540 * there is a chance the info is wrong (this can happen on arm64). In 541 * that case, call init_cache_level() anyway to give the arch-specific 542 * code a chance to make things right. 543 */ 544 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) 545 return 0; 546 547 if (init_cache_level(cpu) || !cache_leaves(cpu)) 548 return -ENOENT; 549 550 /* 551 * Now that we have properly initialized the cache level info, make 552 * sure we don't try to do that again the next time we are called 553 * (e.g. as CPU hotplug callbacks). 554 */ 555 ci_cacheinfo(cpu)->early_ci_levels = false; 556 557 if (cache_leaves(cpu) <= early_leaves) 558 return 0; 559 560 kfree(per_cpu_cacheinfo(cpu)); 561 return allocate_cache_info(cpu); 562 } 563 564 int detect_cache_attributes(unsigned int cpu) 565 { 566 int ret; 567 568 ret = init_level_allocate_ci(cpu); 569 if (ret) 570 return ret; 571 572 /* 573 * If LLC is valid the cache leaves were already populated so just go to 574 * update the cpu map. 575 */ 576 if (!last_level_cache_is_valid(cpu)) { 577 /* 578 * populate_cache_leaves() may completely setup the cache leaves and 579 * shared_cpu_map or it may leave it partially setup. 580 */ 581 ret = populate_cache_leaves(cpu); 582 if (ret) 583 goto free_ci; 584 } 585 586 /* 587 * For systems using DT for cache hierarchy, fw_token 588 * and shared_cpu_map will be set up here only if they are 589 * not populated already 590 */ 591 ret = cache_shared_cpu_map_setup(cpu); 592 if (ret) { 593 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); 594 goto free_ci; 595 } 596 597 return 0; 598 599 free_ci: 600 free_cache_attributes(cpu); 601 return ret; 602 } 603 604 /* pointer to cpuX/cache device */ 605 static DEFINE_PER_CPU(struct device *, ci_cache_dev); 606 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) 607 608 static cpumask_t cache_dev_map; 609 610 /* pointer to array of devices for cpuX/cache/indexY */ 611 static DEFINE_PER_CPU(struct device **, ci_index_dev); 612 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) 613 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) 614 615 #define show_one(file_name, object) \ 616 static ssize_t file_name##_show(struct device *dev, \ 617 struct device_attribute *attr, char *buf) \ 618 { \ 619 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 620 return sysfs_emit(buf, "%u\n", this_leaf->object); \ 621 } 622 623 show_one(id, id); 624 show_one(level, level); 625 show_one(coherency_line_size, coherency_line_size); 626 show_one(number_of_sets, number_of_sets); 627 show_one(physical_line_partition, physical_line_partition); 628 show_one(ways_of_associativity, ways_of_associativity); 629 630 static ssize_t size_show(struct device *dev, 631 struct device_attribute *attr, char *buf) 632 { 633 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 634 635 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); 636 } 637 638 static ssize_t shared_cpu_map_show(struct device *dev, 639 struct device_attribute *attr, char *buf) 640 { 641 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 642 const struct cpumask *mask = &this_leaf->shared_cpu_map; 643 644 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); 645 } 646 647 static ssize_t shared_cpu_list_show(struct device *dev, 648 struct device_attribute *attr, char *buf) 649 { 650 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 651 const struct cpumask *mask = &this_leaf->shared_cpu_map; 652 653 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); 654 } 655 656 static ssize_t type_show(struct device *dev, 657 struct device_attribute *attr, char *buf) 658 { 659 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 660 const char *output; 661 662 switch (this_leaf->type) { 663 case CACHE_TYPE_DATA: 664 output = "Data"; 665 break; 666 case CACHE_TYPE_INST: 667 output = "Instruction"; 668 break; 669 case CACHE_TYPE_UNIFIED: 670 output = "Unified"; 671 break; 672 default: 673 return -EINVAL; 674 } 675 676 return sysfs_emit(buf, "%s\n", output); 677 } 678 679 static ssize_t allocation_policy_show(struct device *dev, 680 struct device_attribute *attr, char *buf) 681 { 682 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 683 unsigned int ci_attr = this_leaf->attributes; 684 const char *output; 685 686 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) 687 output = "ReadWriteAllocate"; 688 else if (ci_attr & CACHE_READ_ALLOCATE) 689 output = "ReadAllocate"; 690 else if (ci_attr & CACHE_WRITE_ALLOCATE) 691 output = "WriteAllocate"; 692 else 693 return 0; 694 695 return sysfs_emit(buf, "%s\n", output); 696 } 697 698 static ssize_t write_policy_show(struct device *dev, 699 struct device_attribute *attr, char *buf) 700 { 701 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 702 unsigned int ci_attr = this_leaf->attributes; 703 int n = 0; 704 705 if (ci_attr & CACHE_WRITE_THROUGH) 706 n = sysfs_emit(buf, "WriteThrough\n"); 707 else if (ci_attr & CACHE_WRITE_BACK) 708 n = sysfs_emit(buf, "WriteBack\n"); 709 return n; 710 } 711 712 static DEVICE_ATTR_RO(id); 713 static DEVICE_ATTR_RO(level); 714 static DEVICE_ATTR_RO(type); 715 static DEVICE_ATTR_RO(coherency_line_size); 716 static DEVICE_ATTR_RO(ways_of_associativity); 717 static DEVICE_ATTR_RO(number_of_sets); 718 static DEVICE_ATTR_RO(size); 719 static DEVICE_ATTR_RO(allocation_policy); 720 static DEVICE_ATTR_RO(write_policy); 721 static DEVICE_ATTR_RO(shared_cpu_map); 722 static DEVICE_ATTR_RO(shared_cpu_list); 723 static DEVICE_ATTR_RO(physical_line_partition); 724 725 static struct attribute *cache_default_attrs[] = { 726 &dev_attr_id.attr, 727 &dev_attr_type.attr, 728 &dev_attr_level.attr, 729 &dev_attr_shared_cpu_map.attr, 730 &dev_attr_shared_cpu_list.attr, 731 &dev_attr_coherency_line_size.attr, 732 &dev_attr_ways_of_associativity.attr, 733 &dev_attr_number_of_sets.attr, 734 &dev_attr_size.attr, 735 &dev_attr_allocation_policy.attr, 736 &dev_attr_write_policy.attr, 737 &dev_attr_physical_line_partition.attr, 738 NULL 739 }; 740 741 static umode_t 742 cache_default_attrs_is_visible(struct kobject *kobj, 743 struct attribute *attr, int unused) 744 { 745 struct device *dev = kobj_to_dev(kobj); 746 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 747 const struct cpumask *mask = &this_leaf->shared_cpu_map; 748 umode_t mode = attr->mode; 749 750 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) 751 return mode; 752 if ((attr == &dev_attr_type.attr) && this_leaf->type) 753 return mode; 754 if ((attr == &dev_attr_level.attr) && this_leaf->level) 755 return mode; 756 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) 757 return mode; 758 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) 759 return mode; 760 if ((attr == &dev_attr_coherency_line_size.attr) && 761 this_leaf->coherency_line_size) 762 return mode; 763 if ((attr == &dev_attr_ways_of_associativity.attr) && 764 this_leaf->size) /* allow 0 = full associativity */ 765 return mode; 766 if ((attr == &dev_attr_number_of_sets.attr) && 767 this_leaf->number_of_sets) 768 return mode; 769 if ((attr == &dev_attr_size.attr) && this_leaf->size) 770 return mode; 771 if ((attr == &dev_attr_write_policy.attr) && 772 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) 773 return mode; 774 if ((attr == &dev_attr_allocation_policy.attr) && 775 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) 776 return mode; 777 if ((attr == &dev_attr_physical_line_partition.attr) && 778 this_leaf->physical_line_partition) 779 return mode; 780 781 return 0; 782 } 783 784 static const struct attribute_group cache_default_group = { 785 .attrs = cache_default_attrs, 786 .is_visible = cache_default_attrs_is_visible, 787 }; 788 789 static const struct attribute_group *cache_default_groups[] = { 790 &cache_default_group, 791 NULL, 792 }; 793 794 static const struct attribute_group *cache_private_groups[] = { 795 &cache_default_group, 796 NULL, /* Place holder for private group */ 797 NULL, 798 }; 799 800 const struct attribute_group * 801 __weak cache_get_priv_group(struct cacheinfo *this_leaf) 802 { 803 return NULL; 804 } 805 806 static const struct attribute_group ** 807 cache_get_attribute_groups(struct cacheinfo *this_leaf) 808 { 809 const struct attribute_group *priv_group = 810 cache_get_priv_group(this_leaf); 811 812 if (!priv_group) 813 return cache_default_groups; 814 815 if (!cache_private_groups[1]) 816 cache_private_groups[1] = priv_group; 817 818 return cache_private_groups; 819 } 820 821 /* Add/Remove cache interface for CPU device */ 822 static void cpu_cache_sysfs_exit(unsigned int cpu) 823 { 824 int i; 825 struct device *ci_dev; 826 827 if (per_cpu_index_dev(cpu)) { 828 for (i = 0; i < cache_leaves(cpu); i++) { 829 ci_dev = per_cache_index_dev(cpu, i); 830 if (!ci_dev) 831 continue; 832 device_unregister(ci_dev); 833 } 834 kfree(per_cpu_index_dev(cpu)); 835 per_cpu_index_dev(cpu) = NULL; 836 } 837 device_unregister(per_cpu_cache_dev(cpu)); 838 per_cpu_cache_dev(cpu) = NULL; 839 } 840 841 static int cpu_cache_sysfs_init(unsigned int cpu) 842 { 843 struct device *dev = get_cpu_device(cpu); 844 845 if (per_cpu_cacheinfo(cpu) == NULL) 846 return -ENOENT; 847 848 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); 849 if (IS_ERR(per_cpu_cache_dev(cpu))) 850 return PTR_ERR(per_cpu_cache_dev(cpu)); 851 852 /* Allocate all required memory */ 853 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), 854 sizeof(struct device *), GFP_KERNEL); 855 if (unlikely(per_cpu_index_dev(cpu) == NULL)) 856 goto err_out; 857 858 return 0; 859 860 err_out: 861 cpu_cache_sysfs_exit(cpu); 862 return -ENOMEM; 863 } 864 865 static int cache_add_dev(unsigned int cpu) 866 { 867 unsigned int i; 868 int rc; 869 struct device *ci_dev, *parent; 870 struct cacheinfo *this_leaf; 871 const struct attribute_group **cache_groups; 872 873 rc = cpu_cache_sysfs_init(cpu); 874 if (unlikely(rc < 0)) 875 return rc; 876 877 parent = per_cpu_cache_dev(cpu); 878 for (i = 0; i < cache_leaves(cpu); i++) { 879 this_leaf = per_cpu_cacheinfo_idx(cpu, i); 880 if (this_leaf->disable_sysfs) 881 continue; 882 if (this_leaf->type == CACHE_TYPE_NOCACHE) 883 break; 884 cache_groups = cache_get_attribute_groups(this_leaf); 885 ci_dev = cpu_device_create(parent, this_leaf, cache_groups, 886 "index%1u", i); 887 if (IS_ERR(ci_dev)) { 888 rc = PTR_ERR(ci_dev); 889 goto err; 890 } 891 per_cache_index_dev(cpu, i) = ci_dev; 892 } 893 cpumask_set_cpu(cpu, &cache_dev_map); 894 895 return 0; 896 err: 897 cpu_cache_sysfs_exit(cpu); 898 return rc; 899 } 900 901 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu, 902 cpumask_t **map) 903 { 904 struct cacheinfo *llc, *sib_llc; 905 unsigned int sibling; 906 907 if (!last_level_cache_is_valid(cpu)) 908 return 0; 909 910 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 911 912 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 913 return 0; 914 915 if (online) { 916 *map = &llc->shared_cpu_map; 917 return cpumask_weight(*map); 918 } 919 920 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */ 921 for_each_cpu(sibling, &llc->shared_cpu_map) { 922 if (sibling == cpu || !last_level_cache_is_valid(sibling)) 923 continue; 924 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1); 925 *map = &sib_llc->shared_cpu_map; 926 return cpumask_weight(*map); 927 } 928 929 return 0; 930 } 931 932 /* 933 * Calculate the size of the per-CPU data cache slice. This can be 934 * used to estimate the size of the data cache slice that can be used 935 * by one CPU under ideal circumstances. UNIFIED caches are counted 936 * in addition to DATA caches. So, please consider code cache usage 937 * when use the result. 938 * 939 * Because the cache inclusive/non-inclusive information isn't 940 * available, we just use the size of the per-CPU slice of LLC to make 941 * the result more predictable across architectures. 942 */ 943 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu) 944 { 945 struct cpu_cacheinfo *ci; 946 struct cacheinfo *llc; 947 unsigned int nr_shared; 948 949 if (!last_level_cache_is_valid(cpu)) 950 return; 951 952 ci = ci_cacheinfo(cpu); 953 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 954 955 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 956 return; 957 958 nr_shared = cpumask_weight(&llc->shared_cpu_map); 959 if (nr_shared) 960 ci->per_cpu_data_slice_size = llc->size / nr_shared; 961 } 962 963 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu, 964 cpumask_t *cpu_map) 965 { 966 unsigned int icpu; 967 968 for_each_cpu(icpu, cpu_map) { 969 if (!cpu_online && icpu == cpu) 970 continue; 971 update_per_cpu_data_slice_size_cpu(icpu); 972 setup_pcp_cacheinfo(icpu); 973 } 974 } 975 976 static int cacheinfo_cpu_online(unsigned int cpu) 977 { 978 int rc = detect_cache_attributes(cpu); 979 cpumask_t *cpu_map; 980 981 if (rc) 982 return rc; 983 rc = cache_add_dev(cpu); 984 if (rc) 985 goto err; 986 if (cpu_map_shared_cache(true, cpu, &cpu_map)) 987 update_per_cpu_data_slice_size(true, cpu, cpu_map); 988 return 0; 989 err: 990 free_cache_attributes(cpu); 991 return rc; 992 } 993 994 static int cacheinfo_cpu_pre_down(unsigned int cpu) 995 { 996 cpumask_t *cpu_map; 997 unsigned int nr_shared; 998 999 nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map); 1000 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) 1001 cpu_cache_sysfs_exit(cpu); 1002 1003 free_cache_attributes(cpu); 1004 if (nr_shared > 1) 1005 update_per_cpu_data_slice_size(false, cpu, cpu_map); 1006 return 0; 1007 } 1008 1009 static int __init cacheinfo_sysfs_init(void) 1010 { 1011 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, 1012 "base/cacheinfo:online", 1013 cacheinfo_cpu_online, cacheinfo_cpu_pre_down); 1014 } 1015 device_initcall(cacheinfo_sysfs_init); 1016