xref: /linux/drivers/base/cacheinfo.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31 	return ci_cacheinfo(cpu);
32 }
33 
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36 					   struct cacheinfo *sib_leaf)
37 {
38 	return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40 
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43 	const char *size_prop;
44 	const char *line_size_props[2];
45 	const char *nr_sets_prop;
46 };
47 
48 static const struct cache_type_info cache_type_info[] = {
49 	{
50 		.size_prop       = "cache-size",
51 		.line_size_props = { "cache-line-size",
52 				     "cache-block-size", },
53 		.nr_sets_prop    = "cache-sets",
54 	}, {
55 		.size_prop       = "i-cache-size",
56 		.line_size_props = { "i-cache-line-size",
57 				     "i-cache-block-size", },
58 		.nr_sets_prop    = "i-cache-sets",
59 	}, {
60 		.size_prop       = "d-cache-size",
61 		.line_size_props = { "d-cache-line-size",
62 				     "d-cache-block-size", },
63 		.nr_sets_prop    = "d-cache-sets",
64 	},
65 };
66 
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69 	if (type == CACHE_TYPE_UNIFIED)
70 		return 0;
71 	return type;
72 }
73 
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76 	const char *propname;
77 	int ct_idx;
78 
79 	ct_idx = get_cacheinfo_idx(this_leaf->type);
80 	propname = cache_type_info[ct_idx].size_prop;
81 
82 	of_property_read_u32(np, propname, &this_leaf->size);
83 }
84 
85 /* not cache_line_size() because that's a macro in include/linux/cache.h */
86 static void cache_get_line_size(struct cacheinfo *this_leaf,
87 				struct device_node *np)
88 {
89 	int i, lim, ct_idx;
90 
91 	ct_idx = get_cacheinfo_idx(this_leaf->type);
92 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
93 
94 	for (i = 0; i < lim; i++) {
95 		int ret;
96 		u32 line_size;
97 		const char *propname;
98 
99 		propname = cache_type_info[ct_idx].line_size_props[i];
100 		ret = of_property_read_u32(np, propname, &line_size);
101 		if (!ret) {
102 			this_leaf->coherency_line_size = line_size;
103 			break;
104 		}
105 	}
106 }
107 
108 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
109 {
110 	const char *propname;
111 	int ct_idx;
112 
113 	ct_idx = get_cacheinfo_idx(this_leaf->type);
114 	propname = cache_type_info[ct_idx].nr_sets_prop;
115 
116 	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
117 }
118 
119 static void cache_associativity(struct cacheinfo *this_leaf)
120 {
121 	unsigned int line_size = this_leaf->coherency_line_size;
122 	unsigned int nr_sets = this_leaf->number_of_sets;
123 	unsigned int size = this_leaf->size;
124 
125 	/*
126 	 * If the cache is fully associative, there is no need to
127 	 * check the other properties.
128 	 */
129 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
130 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
131 }
132 
133 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
134 				  struct device_node *np)
135 {
136 	return of_property_read_bool(np, "cache-unified");
137 }
138 
139 static void cache_of_set_props(struct cacheinfo *this_leaf,
140 			       struct device_node *np)
141 {
142 	/*
143 	 * init_cache_level must setup the cache level correctly
144 	 * overriding the architecturally specified levels, so
145 	 * if type is NONE at this stage, it should be unified
146 	 */
147 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
148 	    cache_node_is_unified(this_leaf, np))
149 		this_leaf->type = CACHE_TYPE_UNIFIED;
150 	cache_size(this_leaf, np);
151 	cache_get_line_size(this_leaf, np);
152 	cache_nr_sets(this_leaf, np);
153 	cache_associativity(this_leaf);
154 }
155 
156 static int cache_setup_of_node(unsigned int cpu)
157 {
158 	struct device_node *np;
159 	struct cacheinfo *this_leaf;
160 	struct device *cpu_dev = get_cpu_device(cpu);
161 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
162 	unsigned int index = 0;
163 
164 	/* skip if fw_token is already populated */
165 	if (this_cpu_ci->info_list->fw_token) {
166 		return 0;
167 	}
168 
169 	if (!cpu_dev) {
170 		pr_err("No cpu device for CPU %d\n", cpu);
171 		return -ENODEV;
172 	}
173 	np = cpu_dev->of_node;
174 	if (!np) {
175 		pr_err("Failed to find cpu%d device node\n", cpu);
176 		return -ENOENT;
177 	}
178 
179 	while (index < cache_leaves(cpu)) {
180 		this_leaf = this_cpu_ci->info_list + index;
181 		if (this_leaf->level != 1)
182 			np = of_find_next_cache_node(np);
183 		else
184 			np = of_node_get(np);/* cpu node itself */
185 		if (!np)
186 			break;
187 		cache_of_set_props(this_leaf, np);
188 		this_leaf->fw_token = np;
189 		index++;
190 	}
191 
192 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
193 		return -ENOENT;
194 
195 	return 0;
196 }
197 #else
198 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
199 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
200 					   struct cacheinfo *sib_leaf)
201 {
202 	/*
203 	 * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
204 	 * shared caches for all other levels. This will be used only if
205 	 * arch specific code has not populated shared_cpu_map
206 	 */
207 	return !(this_leaf->level == 1);
208 }
209 #endif
210 
211 int __weak cache_setup_acpi(unsigned int cpu)
212 {
213 	return -ENOTSUPP;
214 }
215 
216 unsigned int coherency_max_size;
217 
218 static int cache_shared_cpu_map_setup(unsigned int cpu)
219 {
220 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221 	struct cacheinfo *this_leaf, *sib_leaf;
222 	unsigned int index;
223 	int ret = 0;
224 
225 	if (this_cpu_ci->cpu_map_populated)
226 		return 0;
227 
228 	if (of_have_populated_dt())
229 		ret = cache_setup_of_node(cpu);
230 	else if (!acpi_disabled)
231 		ret = cache_setup_acpi(cpu);
232 
233 	if (ret)
234 		return ret;
235 
236 	for (index = 0; index < cache_leaves(cpu); index++) {
237 		unsigned int i;
238 
239 		this_leaf = this_cpu_ci->info_list + index;
240 		/* skip if shared_cpu_map is already populated */
241 		if (!cpumask_empty(&this_leaf->shared_cpu_map))
242 			continue;
243 
244 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245 		for_each_online_cpu(i) {
246 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
247 
248 			if (i == cpu || !sib_cpu_ci->info_list)
249 				continue;/* skip if itself or no cacheinfo */
250 			sib_leaf = sib_cpu_ci->info_list + index;
251 			if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252 				cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253 				cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
254 			}
255 		}
256 		/* record the maximum cache line size */
257 		if (this_leaf->coherency_line_size > coherency_max_size)
258 			coherency_max_size = this_leaf->coherency_line_size;
259 	}
260 
261 	return 0;
262 }
263 
264 static void cache_shared_cpu_map_remove(unsigned int cpu)
265 {
266 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
267 	struct cacheinfo *this_leaf, *sib_leaf;
268 	unsigned int sibling, index;
269 
270 	for (index = 0; index < cache_leaves(cpu); index++) {
271 		this_leaf = this_cpu_ci->info_list + index;
272 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
273 			struct cpu_cacheinfo *sib_cpu_ci;
274 
275 			if (sibling == cpu) /* skip itself */
276 				continue;
277 
278 			sib_cpu_ci = get_cpu_cacheinfo(sibling);
279 			if (!sib_cpu_ci->info_list)
280 				continue;
281 
282 			sib_leaf = sib_cpu_ci->info_list + index;
283 			cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
284 			cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
285 		}
286 		if (of_have_populated_dt())
287 			of_node_put(this_leaf->fw_token);
288 	}
289 }
290 
291 static void free_cache_attributes(unsigned int cpu)
292 {
293 	if (!per_cpu_cacheinfo(cpu))
294 		return;
295 
296 	cache_shared_cpu_map_remove(cpu);
297 
298 	kfree(per_cpu_cacheinfo(cpu));
299 	per_cpu_cacheinfo(cpu) = NULL;
300 	cache_leaves(cpu) = 0;
301 }
302 
303 int __weak init_cache_level(unsigned int cpu)
304 {
305 	return -ENOENT;
306 }
307 
308 int __weak populate_cache_leaves(unsigned int cpu)
309 {
310 	return -ENOENT;
311 }
312 
313 static int detect_cache_attributes(unsigned int cpu)
314 {
315 	int ret;
316 
317 	if (init_cache_level(cpu) || !cache_leaves(cpu))
318 		return -ENOENT;
319 
320 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
321 					 sizeof(struct cacheinfo), GFP_KERNEL);
322 	if (per_cpu_cacheinfo(cpu) == NULL)
323 		return -ENOMEM;
324 
325 	/*
326 	 * populate_cache_leaves() may completely setup the cache leaves and
327 	 * shared_cpu_map or it may leave it partially setup.
328 	 */
329 	ret = populate_cache_leaves(cpu);
330 	if (ret)
331 		goto free_ci;
332 	/*
333 	 * For systems using DT for cache hierarchy, fw_token
334 	 * and shared_cpu_map will be set up here only if they are
335 	 * not populated already
336 	 */
337 	ret = cache_shared_cpu_map_setup(cpu);
338 	if (ret) {
339 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
340 		goto free_ci;
341 	}
342 
343 	return 0;
344 
345 free_ci:
346 	free_cache_attributes(cpu);
347 	return ret;
348 }
349 
350 /* pointer to cpuX/cache device */
351 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
352 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
353 
354 static cpumask_t cache_dev_map;
355 
356 /* pointer to array of devices for cpuX/cache/indexY */
357 static DEFINE_PER_CPU(struct device **, ci_index_dev);
358 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
359 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
360 
361 #define show_one(file_name, object)				\
362 static ssize_t file_name##_show(struct device *dev,		\
363 		struct device_attribute *attr, char *buf)	\
364 {								\
365 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
366 	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
367 }
368 
369 show_one(id, id);
370 show_one(level, level);
371 show_one(coherency_line_size, coherency_line_size);
372 show_one(number_of_sets, number_of_sets);
373 show_one(physical_line_partition, physical_line_partition);
374 show_one(ways_of_associativity, ways_of_associativity);
375 
376 static ssize_t size_show(struct device *dev,
377 			 struct device_attribute *attr, char *buf)
378 {
379 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
380 
381 	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
382 }
383 
384 static ssize_t shared_cpu_map_show(struct device *dev,
385 				   struct device_attribute *attr, char *buf)
386 {
387 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
388 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
389 
390 	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
391 }
392 
393 static ssize_t shared_cpu_list_show(struct device *dev,
394 				    struct device_attribute *attr, char *buf)
395 {
396 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
397 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
398 
399 	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
400 }
401 
402 static ssize_t type_show(struct device *dev,
403 			 struct device_attribute *attr, char *buf)
404 {
405 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
406 	const char *output;
407 
408 	switch (this_leaf->type) {
409 	case CACHE_TYPE_DATA:
410 		output = "Data";
411 		break;
412 	case CACHE_TYPE_INST:
413 		output = "Instruction";
414 		break;
415 	case CACHE_TYPE_UNIFIED:
416 		output = "Unified";
417 		break;
418 	default:
419 		return -EINVAL;
420 	}
421 
422 	return sysfs_emit(buf, "%s\n", output);
423 }
424 
425 static ssize_t allocation_policy_show(struct device *dev,
426 				      struct device_attribute *attr, char *buf)
427 {
428 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
429 	unsigned int ci_attr = this_leaf->attributes;
430 	const char *output;
431 
432 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
433 		output = "ReadWriteAllocate";
434 	else if (ci_attr & CACHE_READ_ALLOCATE)
435 		output = "ReadAllocate";
436 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
437 		output = "WriteAllocate";
438 	else
439 		return 0;
440 
441 	return sysfs_emit(buf, "%s\n", output);
442 }
443 
444 static ssize_t write_policy_show(struct device *dev,
445 				 struct device_attribute *attr, char *buf)
446 {
447 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
448 	unsigned int ci_attr = this_leaf->attributes;
449 	int n = 0;
450 
451 	if (ci_attr & CACHE_WRITE_THROUGH)
452 		n = sysfs_emit(buf, "WriteThrough\n");
453 	else if (ci_attr & CACHE_WRITE_BACK)
454 		n = sysfs_emit(buf, "WriteBack\n");
455 	return n;
456 }
457 
458 static DEVICE_ATTR_RO(id);
459 static DEVICE_ATTR_RO(level);
460 static DEVICE_ATTR_RO(type);
461 static DEVICE_ATTR_RO(coherency_line_size);
462 static DEVICE_ATTR_RO(ways_of_associativity);
463 static DEVICE_ATTR_RO(number_of_sets);
464 static DEVICE_ATTR_RO(size);
465 static DEVICE_ATTR_RO(allocation_policy);
466 static DEVICE_ATTR_RO(write_policy);
467 static DEVICE_ATTR_RO(shared_cpu_map);
468 static DEVICE_ATTR_RO(shared_cpu_list);
469 static DEVICE_ATTR_RO(physical_line_partition);
470 
471 static struct attribute *cache_default_attrs[] = {
472 	&dev_attr_id.attr,
473 	&dev_attr_type.attr,
474 	&dev_attr_level.attr,
475 	&dev_attr_shared_cpu_map.attr,
476 	&dev_attr_shared_cpu_list.attr,
477 	&dev_attr_coherency_line_size.attr,
478 	&dev_attr_ways_of_associativity.attr,
479 	&dev_attr_number_of_sets.attr,
480 	&dev_attr_size.attr,
481 	&dev_attr_allocation_policy.attr,
482 	&dev_attr_write_policy.attr,
483 	&dev_attr_physical_line_partition.attr,
484 	NULL
485 };
486 
487 static umode_t
488 cache_default_attrs_is_visible(struct kobject *kobj,
489 			       struct attribute *attr, int unused)
490 {
491 	struct device *dev = kobj_to_dev(kobj);
492 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
493 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
494 	umode_t mode = attr->mode;
495 
496 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
497 		return mode;
498 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
499 		return mode;
500 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
501 		return mode;
502 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
503 		return mode;
504 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
505 		return mode;
506 	if ((attr == &dev_attr_coherency_line_size.attr) &&
507 	    this_leaf->coherency_line_size)
508 		return mode;
509 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
510 	    this_leaf->size) /* allow 0 = full associativity */
511 		return mode;
512 	if ((attr == &dev_attr_number_of_sets.attr) &&
513 	    this_leaf->number_of_sets)
514 		return mode;
515 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
516 		return mode;
517 	if ((attr == &dev_attr_write_policy.attr) &&
518 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
519 		return mode;
520 	if ((attr == &dev_attr_allocation_policy.attr) &&
521 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
522 		return mode;
523 	if ((attr == &dev_attr_physical_line_partition.attr) &&
524 	    this_leaf->physical_line_partition)
525 		return mode;
526 
527 	return 0;
528 }
529 
530 static const struct attribute_group cache_default_group = {
531 	.attrs = cache_default_attrs,
532 	.is_visible = cache_default_attrs_is_visible,
533 };
534 
535 static const struct attribute_group *cache_default_groups[] = {
536 	&cache_default_group,
537 	NULL,
538 };
539 
540 static const struct attribute_group *cache_private_groups[] = {
541 	&cache_default_group,
542 	NULL, /* Place holder for private group */
543 	NULL,
544 };
545 
546 const struct attribute_group *
547 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
548 {
549 	return NULL;
550 }
551 
552 static const struct attribute_group **
553 cache_get_attribute_groups(struct cacheinfo *this_leaf)
554 {
555 	const struct attribute_group *priv_group =
556 			cache_get_priv_group(this_leaf);
557 
558 	if (!priv_group)
559 		return cache_default_groups;
560 
561 	if (!cache_private_groups[1])
562 		cache_private_groups[1] = priv_group;
563 
564 	return cache_private_groups;
565 }
566 
567 /* Add/Remove cache interface for CPU device */
568 static void cpu_cache_sysfs_exit(unsigned int cpu)
569 {
570 	int i;
571 	struct device *ci_dev;
572 
573 	if (per_cpu_index_dev(cpu)) {
574 		for (i = 0; i < cache_leaves(cpu); i++) {
575 			ci_dev = per_cache_index_dev(cpu, i);
576 			if (!ci_dev)
577 				continue;
578 			device_unregister(ci_dev);
579 		}
580 		kfree(per_cpu_index_dev(cpu));
581 		per_cpu_index_dev(cpu) = NULL;
582 	}
583 	device_unregister(per_cpu_cache_dev(cpu));
584 	per_cpu_cache_dev(cpu) = NULL;
585 }
586 
587 static int cpu_cache_sysfs_init(unsigned int cpu)
588 {
589 	struct device *dev = get_cpu_device(cpu);
590 
591 	if (per_cpu_cacheinfo(cpu) == NULL)
592 		return -ENOENT;
593 
594 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
595 	if (IS_ERR(per_cpu_cache_dev(cpu)))
596 		return PTR_ERR(per_cpu_cache_dev(cpu));
597 
598 	/* Allocate all required memory */
599 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
600 					 sizeof(struct device *), GFP_KERNEL);
601 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
602 		goto err_out;
603 
604 	return 0;
605 
606 err_out:
607 	cpu_cache_sysfs_exit(cpu);
608 	return -ENOMEM;
609 }
610 
611 static int cache_add_dev(unsigned int cpu)
612 {
613 	unsigned int i;
614 	int rc;
615 	struct device *ci_dev, *parent;
616 	struct cacheinfo *this_leaf;
617 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
618 	const struct attribute_group **cache_groups;
619 
620 	rc = cpu_cache_sysfs_init(cpu);
621 	if (unlikely(rc < 0))
622 		return rc;
623 
624 	parent = per_cpu_cache_dev(cpu);
625 	for (i = 0; i < cache_leaves(cpu); i++) {
626 		this_leaf = this_cpu_ci->info_list + i;
627 		if (this_leaf->disable_sysfs)
628 			continue;
629 		if (this_leaf->type == CACHE_TYPE_NOCACHE)
630 			break;
631 		cache_groups = cache_get_attribute_groups(this_leaf);
632 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
633 					   "index%1u", i);
634 		if (IS_ERR(ci_dev)) {
635 			rc = PTR_ERR(ci_dev);
636 			goto err;
637 		}
638 		per_cache_index_dev(cpu, i) = ci_dev;
639 	}
640 	cpumask_set_cpu(cpu, &cache_dev_map);
641 
642 	return 0;
643 err:
644 	cpu_cache_sysfs_exit(cpu);
645 	return rc;
646 }
647 
648 static int cacheinfo_cpu_online(unsigned int cpu)
649 {
650 	int rc = detect_cache_attributes(cpu);
651 
652 	if (rc)
653 		return rc;
654 	rc = cache_add_dev(cpu);
655 	if (rc)
656 		free_cache_attributes(cpu);
657 	return rc;
658 }
659 
660 static int cacheinfo_cpu_pre_down(unsigned int cpu)
661 {
662 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
663 		cpu_cache_sysfs_exit(cpu);
664 
665 	free_cache_attributes(cpu);
666 	return 0;
667 }
668 
669 static int __init cacheinfo_sysfs_init(void)
670 {
671 	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
672 				 "base/cacheinfo:online",
673 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
674 }
675 device_initcall(cacheinfo_sysfs_init);
676