1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cacheinfo support - processor cache information via sysfs 4 * 5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c 6 * Author: Sudeep Holla <sudeep.holla@arm.com> 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/bitops.h> 13 #include <linux/cacheinfo.h> 14 #include <linux/compiler.h> 15 #include <linux/cpu.h> 16 #include <linux/device.h> 17 #include <linux/init.h> 18 #include <linux/of.h> 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/smp.h> 22 #include <linux/sysfs.h> 23 24 /* pointer to per cpu cacheinfo */ 25 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); 26 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) 27 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) 28 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) 29 #define per_cpu_cacheinfo_idx(cpu, idx) \ 30 (per_cpu_cacheinfo(cpu) + (idx)) 31 32 /* Set if no cache information is found in DT/ACPI. */ 33 static bool use_arch_info; 34 35 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) 36 { 37 return ci_cacheinfo(cpu); 38 } 39 40 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 41 struct cacheinfo *sib_leaf) 42 { 43 /* 44 * For non DT/ACPI systems, assume unique level 1 caches, 45 * system-wide shared caches for all other levels. 46 */ 47 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || 48 use_arch_info) 49 return (this_leaf->level != 1) && (sib_leaf->level != 1); 50 51 if ((sib_leaf->attributes & CACHE_ID) && 52 (this_leaf->attributes & CACHE_ID)) 53 return sib_leaf->id == this_leaf->id; 54 55 return sib_leaf->fw_token == this_leaf->fw_token; 56 } 57 58 bool last_level_cache_is_valid(unsigned int cpu) 59 { 60 struct cacheinfo *llc; 61 62 if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu)) 63 return false; 64 65 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 66 67 return (llc->attributes & CACHE_ID) || !!llc->fw_token; 68 69 } 70 71 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) 72 { 73 struct cacheinfo *llc_x, *llc_y; 74 75 if (!last_level_cache_is_valid(cpu_x) || 76 !last_level_cache_is_valid(cpu_y)) 77 return false; 78 79 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); 80 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); 81 82 return cache_leaves_are_shared(llc_x, llc_y); 83 } 84 85 #ifdef CONFIG_OF 86 87 static bool of_check_cache_nodes(struct device_node *np); 88 89 /* OF properties to query for a given cache type */ 90 struct cache_type_info { 91 const char *size_prop; 92 const char *line_size_props[2]; 93 const char *nr_sets_prop; 94 }; 95 96 static const struct cache_type_info cache_type_info[] = { 97 { 98 .size_prop = "cache-size", 99 .line_size_props = { "cache-line-size", 100 "cache-block-size", }, 101 .nr_sets_prop = "cache-sets", 102 }, { 103 .size_prop = "i-cache-size", 104 .line_size_props = { "i-cache-line-size", 105 "i-cache-block-size", }, 106 .nr_sets_prop = "i-cache-sets", 107 }, { 108 .size_prop = "d-cache-size", 109 .line_size_props = { "d-cache-line-size", 110 "d-cache-block-size", }, 111 .nr_sets_prop = "d-cache-sets", 112 }, 113 }; 114 115 static inline int get_cacheinfo_idx(enum cache_type type) 116 { 117 if (type == CACHE_TYPE_UNIFIED) 118 return 0; 119 return type; 120 } 121 122 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) 123 { 124 const char *propname; 125 int ct_idx; 126 127 ct_idx = get_cacheinfo_idx(this_leaf->type); 128 propname = cache_type_info[ct_idx].size_prop; 129 130 of_property_read_u32(np, propname, &this_leaf->size); 131 } 132 133 /* not cache_line_size() because that's a macro in include/linux/cache.h */ 134 static void cache_get_line_size(struct cacheinfo *this_leaf, 135 struct device_node *np) 136 { 137 int i, lim, ct_idx; 138 139 ct_idx = get_cacheinfo_idx(this_leaf->type); 140 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); 141 142 for (i = 0; i < lim; i++) { 143 int ret; 144 u32 line_size; 145 const char *propname; 146 147 propname = cache_type_info[ct_idx].line_size_props[i]; 148 ret = of_property_read_u32(np, propname, &line_size); 149 if (!ret) { 150 this_leaf->coherency_line_size = line_size; 151 break; 152 } 153 } 154 } 155 156 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) 157 { 158 const char *propname; 159 int ct_idx; 160 161 ct_idx = get_cacheinfo_idx(this_leaf->type); 162 propname = cache_type_info[ct_idx].nr_sets_prop; 163 164 of_property_read_u32(np, propname, &this_leaf->number_of_sets); 165 } 166 167 static void cache_associativity(struct cacheinfo *this_leaf) 168 { 169 unsigned int line_size = this_leaf->coherency_line_size; 170 unsigned int nr_sets = this_leaf->number_of_sets; 171 unsigned int size = this_leaf->size; 172 173 /* 174 * If the cache is fully associative, there is no need to 175 * check the other properties. 176 */ 177 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) 178 this_leaf->ways_of_associativity = (size / nr_sets) / line_size; 179 } 180 181 static bool cache_node_is_unified(struct cacheinfo *this_leaf, 182 struct device_node *np) 183 { 184 return of_property_read_bool(np, "cache-unified"); 185 } 186 187 static bool match_cache_node(struct device_node *cpu, 188 const struct device_node *cache_node) 189 { 190 struct device_node *prev, *cache = of_find_next_cache_node(cpu); 191 192 while (cache) { 193 if (cache == cache_node) { 194 of_node_put(cache); 195 return true; 196 } 197 198 prev = cache; 199 cache = of_find_next_cache_node(cache); 200 of_node_put(prev); 201 } 202 203 return false; 204 } 205 206 #ifndef arch_compact_of_hwid 207 #define arch_compact_of_hwid(_x) (_x) 208 #endif 209 210 static void cache_of_set_id(struct cacheinfo *this_leaf, 211 struct device_node *cache_node) 212 { 213 struct device_node *cpu; 214 u32 min_id = ~0; 215 216 for_each_of_cpu_node(cpu) { 217 u64 id = of_get_cpu_hwid(cpu, 0); 218 219 id = arch_compact_of_hwid(id); 220 if (FIELD_GET(GENMASK_ULL(63, 32), id)) { 221 of_node_put(cpu); 222 return; 223 } 224 225 if (match_cache_node(cpu, cache_node)) 226 min_id = min(min_id, id); 227 } 228 229 if (min_id != ~0) { 230 this_leaf->id = min_id; 231 this_leaf->attributes |= CACHE_ID; 232 } 233 } 234 235 static void cache_of_set_props(struct cacheinfo *this_leaf, 236 struct device_node *np) 237 { 238 /* 239 * init_cache_level must setup the cache level correctly 240 * overriding the architecturally specified levels, so 241 * if type is NONE at this stage, it should be unified 242 */ 243 if (this_leaf->type == CACHE_TYPE_NOCACHE && 244 cache_node_is_unified(this_leaf, np)) 245 this_leaf->type = CACHE_TYPE_UNIFIED; 246 cache_size(this_leaf, np); 247 cache_get_line_size(this_leaf, np); 248 cache_nr_sets(this_leaf, np); 249 cache_associativity(this_leaf); 250 cache_of_set_id(this_leaf, np); 251 } 252 253 static int cache_setup_of_node(unsigned int cpu) 254 { 255 struct cacheinfo *this_leaf; 256 unsigned int index = 0; 257 258 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); 259 if (!np) { 260 pr_err("Failed to find cpu%d device node\n", cpu); 261 return -ENOENT; 262 } 263 264 if (!of_check_cache_nodes(np)) { 265 return -ENOENT; 266 } 267 268 while (index < cache_leaves(cpu)) { 269 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 270 if (this_leaf->level != 1) { 271 struct device_node *prev __free(device_node) = np; 272 np = of_find_next_cache_node(np); 273 if (!np) 274 break; 275 } 276 cache_of_set_props(this_leaf, np); 277 this_leaf->fw_token = np; 278 index++; 279 } 280 281 if (index != cache_leaves(cpu)) /* not all OF nodes populated */ 282 return -ENOENT; 283 284 return 0; 285 } 286 287 static bool of_check_cache_nodes(struct device_node *np) 288 { 289 if (of_property_present(np, "cache-size") || 290 of_property_present(np, "i-cache-size") || 291 of_property_present(np, "d-cache-size") || 292 of_property_present(np, "cache-unified")) 293 return true; 294 295 struct device_node *next __free(device_node) = of_find_next_cache_node(np); 296 if (next) { 297 return true; 298 } 299 300 return false; 301 } 302 303 static int of_count_cache_leaves(struct device_node *np) 304 { 305 unsigned int leaves = 0; 306 307 if (of_property_present(np, "cache-size")) 308 ++leaves; 309 if (of_property_present(np, "i-cache-size")) 310 ++leaves; 311 if (of_property_present(np, "d-cache-size")) 312 ++leaves; 313 314 if (!leaves) { 315 /* The '[i-|d-|]cache-size' property is required, but 316 * if absent, fallback on the 'cache-unified' property. 317 */ 318 if (of_property_read_bool(np, "cache-unified")) 319 return 1; 320 else 321 return 2; 322 } 323 324 return leaves; 325 } 326 327 int init_of_cache_level(unsigned int cpu) 328 { 329 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 330 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); 331 unsigned int levels = 0, leaves, level; 332 333 if (!of_check_cache_nodes(np)) { 334 return -ENOENT; 335 } 336 337 leaves = of_count_cache_leaves(np); 338 if (leaves > 0) 339 levels = 1; 340 341 while (1) { 342 struct device_node *prev __free(device_node) = np; 343 np = of_find_next_cache_node(np); 344 if (!np) 345 break; 346 347 if (!of_device_is_compatible(np, "cache")) 348 return -EINVAL; 349 if (of_property_read_u32(np, "cache-level", &level)) 350 return -EINVAL; 351 if (level <= levels) 352 return -EINVAL; 353 354 leaves += of_count_cache_leaves(np); 355 levels = level; 356 } 357 358 this_cpu_ci->num_levels = levels; 359 this_cpu_ci->num_leaves = leaves; 360 361 return 0; 362 } 363 364 #else 365 static inline int cache_setup_of_node(unsigned int cpu) { return 0; } 366 int init_of_cache_level(unsigned int cpu) { return 0; } 367 #endif 368 369 int __weak cache_setup_acpi(unsigned int cpu) 370 { 371 return -ENOTSUPP; 372 } 373 374 unsigned int coherency_max_size; 375 376 static int cache_setup_properties(unsigned int cpu) 377 { 378 int ret = 0; 379 380 if (of_have_populated_dt()) 381 ret = cache_setup_of_node(cpu); 382 else if (!acpi_disabled) 383 ret = cache_setup_acpi(cpu); 384 385 // Assume there is no cache information available in DT/ACPI from now. 386 if (ret && use_arch_cache_info()) 387 use_arch_info = true; 388 389 return ret; 390 } 391 392 static int cache_shared_cpu_map_setup(unsigned int cpu) 393 { 394 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 395 struct cacheinfo *this_leaf, *sib_leaf; 396 unsigned int index, sib_index; 397 int ret = 0; 398 399 if (this_cpu_ci->cpu_map_populated) 400 return 0; 401 402 /* 403 * skip setting up cache properties if LLC is valid, just need 404 * to update the shared cpu_map if the cache attributes were 405 * populated early before all the cpus are brought online 406 */ 407 if (!last_level_cache_is_valid(cpu) && !use_arch_info) { 408 ret = cache_setup_properties(cpu); 409 if (ret) 410 return ret; 411 } 412 413 for (index = 0; index < cache_leaves(cpu); index++) { 414 unsigned int i; 415 416 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 417 418 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 419 for_each_online_cpu(i) { 420 if (i == cpu || !per_cpu_cacheinfo(i)) 421 continue;/* skip if itself or no cacheinfo */ 422 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { 423 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); 424 425 /* 426 * Comparing cache IDs only makes sense if the leaves 427 * belong to the same cache level of same type. Skip 428 * the check if level and type do not match. 429 */ 430 if (sib_leaf->level != this_leaf->level || 431 sib_leaf->type != this_leaf->type) 432 continue; 433 434 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 435 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); 436 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 437 break; 438 } 439 } 440 } 441 /* record the maximum cache line size */ 442 if (this_leaf->coherency_line_size > coherency_max_size) 443 coherency_max_size = this_leaf->coherency_line_size; 444 } 445 446 /* shared_cpu_map is now populated for the cpu */ 447 this_cpu_ci->cpu_map_populated = true; 448 return 0; 449 } 450 451 static void cache_shared_cpu_map_remove(unsigned int cpu) 452 { 453 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 454 struct cacheinfo *this_leaf, *sib_leaf; 455 unsigned int sibling, index, sib_index; 456 457 for (index = 0; index < cache_leaves(cpu); index++) { 458 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 459 for_each_cpu(sibling, &this_leaf->shared_cpu_map) { 460 if (sibling == cpu || !per_cpu_cacheinfo(sibling)) 461 continue;/* skip if itself or no cacheinfo */ 462 463 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { 464 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); 465 466 /* 467 * Comparing cache IDs only makes sense if the leaves 468 * belong to the same cache level of same type. Skip 469 * the check if level and type do not match. 470 */ 471 if (sib_leaf->level != this_leaf->level || 472 sib_leaf->type != this_leaf->type) 473 continue; 474 475 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 476 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); 477 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); 478 break; 479 } 480 } 481 } 482 } 483 484 /* cpu is no longer populated in the shared map */ 485 this_cpu_ci->cpu_map_populated = false; 486 } 487 488 static void free_cache_attributes(unsigned int cpu) 489 { 490 if (!per_cpu_cacheinfo(cpu)) 491 return; 492 493 cache_shared_cpu_map_remove(cpu); 494 } 495 496 int __weak early_cache_level(unsigned int cpu) 497 { 498 return -ENOENT; 499 } 500 501 int __weak init_cache_level(unsigned int cpu) 502 { 503 return -ENOENT; 504 } 505 506 int __weak populate_cache_leaves(unsigned int cpu) 507 { 508 return -ENOENT; 509 } 510 511 static inline int allocate_cache_info(int cpu) 512 { 513 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC); 514 if (!per_cpu_cacheinfo(cpu)) { 515 cache_leaves(cpu) = 0; 516 return -ENOMEM; 517 } 518 519 return 0; 520 } 521 522 int fetch_cache_info(unsigned int cpu) 523 { 524 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 525 unsigned int levels = 0, split_levels = 0; 526 int ret; 527 528 if (acpi_disabled) { 529 ret = init_of_cache_level(cpu); 530 } else { 531 ret = acpi_get_cache_info(cpu, &levels, &split_levels); 532 if (!ret) { 533 this_cpu_ci->num_levels = levels; 534 /* 535 * This assumes that: 536 * - there cannot be any split caches (data/instruction) 537 * above a unified cache 538 * - data/instruction caches come by pair 539 */ 540 this_cpu_ci->num_leaves = levels + split_levels; 541 } 542 } 543 544 if (ret || !cache_leaves(cpu)) { 545 ret = early_cache_level(cpu); 546 if (ret) 547 return ret; 548 549 if (!cache_leaves(cpu)) 550 return -ENOENT; 551 552 this_cpu_ci->early_ci_levels = true; 553 } 554 555 return allocate_cache_info(cpu); 556 } 557 558 static inline int init_level_allocate_ci(unsigned int cpu) 559 { 560 unsigned int early_leaves = cache_leaves(cpu); 561 562 /* Since early initialization/allocation of the cacheinfo is allowed 563 * via fetch_cache_info() and this also gets called as CPU hotplug 564 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped 565 * as it will happen only once (the cacheinfo memory is never freed). 566 * Just populate the cacheinfo. However, if the cacheinfo has been 567 * allocated early through the arch-specific early_cache_level() call, 568 * there is a chance the info is wrong (this can happen on arm64). In 569 * that case, call init_cache_level() anyway to give the arch-specific 570 * code a chance to make things right. 571 */ 572 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) 573 return 0; 574 575 if (init_cache_level(cpu) || !cache_leaves(cpu)) 576 return -ENOENT; 577 578 /* 579 * Now that we have properly initialized the cache level info, make 580 * sure we don't try to do that again the next time we are called 581 * (e.g. as CPU hotplug callbacks). 582 */ 583 ci_cacheinfo(cpu)->early_ci_levels = false; 584 585 /* 586 * Some architectures (e.g., x86) do not use early initialization. 587 * Allocate memory now in such case. 588 */ 589 if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu)) 590 return 0; 591 592 kfree(per_cpu_cacheinfo(cpu)); 593 return allocate_cache_info(cpu); 594 } 595 596 int detect_cache_attributes(unsigned int cpu) 597 { 598 int ret; 599 600 ret = init_level_allocate_ci(cpu); 601 if (ret) 602 return ret; 603 604 /* 605 * If LLC is valid the cache leaves were already populated so just go to 606 * update the cpu map. 607 */ 608 if (!last_level_cache_is_valid(cpu)) { 609 /* 610 * populate_cache_leaves() may completely setup the cache leaves and 611 * shared_cpu_map or it may leave it partially setup. 612 */ 613 ret = populate_cache_leaves(cpu); 614 if (ret) 615 goto free_ci; 616 } 617 618 /* 619 * For systems using DT for cache hierarchy, fw_token 620 * and shared_cpu_map will be set up here only if they are 621 * not populated already 622 */ 623 ret = cache_shared_cpu_map_setup(cpu); 624 if (ret) { 625 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); 626 goto free_ci; 627 } 628 629 return 0; 630 631 free_ci: 632 free_cache_attributes(cpu); 633 return ret; 634 } 635 636 /* pointer to cpuX/cache device */ 637 static DEFINE_PER_CPU(struct device *, ci_cache_dev); 638 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) 639 640 static cpumask_t cache_dev_map; 641 642 /* pointer to array of devices for cpuX/cache/indexY */ 643 static DEFINE_PER_CPU(struct device **, ci_index_dev); 644 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) 645 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) 646 647 #define show_one(file_name, object) \ 648 static ssize_t file_name##_show(struct device *dev, \ 649 struct device_attribute *attr, char *buf) \ 650 { \ 651 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 652 return sysfs_emit(buf, "%u\n", this_leaf->object); \ 653 } 654 655 show_one(id, id); 656 show_one(level, level); 657 show_one(coherency_line_size, coherency_line_size); 658 show_one(number_of_sets, number_of_sets); 659 show_one(physical_line_partition, physical_line_partition); 660 show_one(ways_of_associativity, ways_of_associativity); 661 662 static ssize_t size_show(struct device *dev, 663 struct device_attribute *attr, char *buf) 664 { 665 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 666 667 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); 668 } 669 670 static ssize_t shared_cpu_map_show(struct device *dev, 671 struct device_attribute *attr, char *buf) 672 { 673 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 674 const struct cpumask *mask = &this_leaf->shared_cpu_map; 675 676 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); 677 } 678 679 static ssize_t shared_cpu_list_show(struct device *dev, 680 struct device_attribute *attr, char *buf) 681 { 682 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 683 const struct cpumask *mask = &this_leaf->shared_cpu_map; 684 685 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); 686 } 687 688 static ssize_t type_show(struct device *dev, 689 struct device_attribute *attr, char *buf) 690 { 691 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 692 const char *output; 693 694 switch (this_leaf->type) { 695 case CACHE_TYPE_DATA: 696 output = "Data"; 697 break; 698 case CACHE_TYPE_INST: 699 output = "Instruction"; 700 break; 701 case CACHE_TYPE_UNIFIED: 702 output = "Unified"; 703 break; 704 default: 705 return -EINVAL; 706 } 707 708 return sysfs_emit(buf, "%s\n", output); 709 } 710 711 static ssize_t allocation_policy_show(struct device *dev, 712 struct device_attribute *attr, char *buf) 713 { 714 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 715 unsigned int ci_attr = this_leaf->attributes; 716 const char *output; 717 718 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) 719 output = "ReadWriteAllocate"; 720 else if (ci_attr & CACHE_READ_ALLOCATE) 721 output = "ReadAllocate"; 722 else if (ci_attr & CACHE_WRITE_ALLOCATE) 723 output = "WriteAllocate"; 724 else 725 return 0; 726 727 return sysfs_emit(buf, "%s\n", output); 728 } 729 730 static ssize_t write_policy_show(struct device *dev, 731 struct device_attribute *attr, char *buf) 732 { 733 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 734 unsigned int ci_attr = this_leaf->attributes; 735 int n = 0; 736 737 if (ci_attr & CACHE_WRITE_THROUGH) 738 n = sysfs_emit(buf, "WriteThrough\n"); 739 else if (ci_attr & CACHE_WRITE_BACK) 740 n = sysfs_emit(buf, "WriteBack\n"); 741 return n; 742 } 743 744 static DEVICE_ATTR_RO(id); 745 static DEVICE_ATTR_RO(level); 746 static DEVICE_ATTR_RO(type); 747 static DEVICE_ATTR_RO(coherency_line_size); 748 static DEVICE_ATTR_RO(ways_of_associativity); 749 static DEVICE_ATTR_RO(number_of_sets); 750 static DEVICE_ATTR_RO(size); 751 static DEVICE_ATTR_RO(allocation_policy); 752 static DEVICE_ATTR_RO(write_policy); 753 static DEVICE_ATTR_RO(shared_cpu_map); 754 static DEVICE_ATTR_RO(shared_cpu_list); 755 static DEVICE_ATTR_RO(physical_line_partition); 756 757 static struct attribute *cache_default_attrs[] = { 758 &dev_attr_id.attr, 759 &dev_attr_type.attr, 760 &dev_attr_level.attr, 761 &dev_attr_shared_cpu_map.attr, 762 &dev_attr_shared_cpu_list.attr, 763 &dev_attr_coherency_line_size.attr, 764 &dev_attr_ways_of_associativity.attr, 765 &dev_attr_number_of_sets.attr, 766 &dev_attr_size.attr, 767 &dev_attr_allocation_policy.attr, 768 &dev_attr_write_policy.attr, 769 &dev_attr_physical_line_partition.attr, 770 NULL 771 }; 772 773 static umode_t 774 cache_default_attrs_is_visible(struct kobject *kobj, 775 struct attribute *attr, int unused) 776 { 777 struct device *dev = kobj_to_dev(kobj); 778 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 779 const struct cpumask *mask = &this_leaf->shared_cpu_map; 780 umode_t mode = attr->mode; 781 782 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) 783 return mode; 784 if ((attr == &dev_attr_type.attr) && this_leaf->type) 785 return mode; 786 if ((attr == &dev_attr_level.attr) && this_leaf->level) 787 return mode; 788 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) 789 return mode; 790 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) 791 return mode; 792 if ((attr == &dev_attr_coherency_line_size.attr) && 793 this_leaf->coherency_line_size) 794 return mode; 795 if ((attr == &dev_attr_ways_of_associativity.attr) && 796 this_leaf->size) /* allow 0 = full associativity */ 797 return mode; 798 if ((attr == &dev_attr_number_of_sets.attr) && 799 this_leaf->number_of_sets) 800 return mode; 801 if ((attr == &dev_attr_size.attr) && this_leaf->size) 802 return mode; 803 if ((attr == &dev_attr_write_policy.attr) && 804 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) 805 return mode; 806 if ((attr == &dev_attr_allocation_policy.attr) && 807 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) 808 return mode; 809 if ((attr == &dev_attr_physical_line_partition.attr) && 810 this_leaf->physical_line_partition) 811 return mode; 812 813 return 0; 814 } 815 816 static const struct attribute_group cache_default_group = { 817 .attrs = cache_default_attrs, 818 .is_visible = cache_default_attrs_is_visible, 819 }; 820 821 static const struct attribute_group *cache_default_groups[] = { 822 &cache_default_group, 823 NULL, 824 }; 825 826 static const struct attribute_group *cache_private_groups[] = { 827 &cache_default_group, 828 NULL, /* Place holder for private group */ 829 NULL, 830 }; 831 832 const struct attribute_group * 833 __weak cache_get_priv_group(struct cacheinfo *this_leaf) 834 { 835 return NULL; 836 } 837 838 static const struct attribute_group ** 839 cache_get_attribute_groups(struct cacheinfo *this_leaf) 840 { 841 const struct attribute_group *priv_group = 842 cache_get_priv_group(this_leaf); 843 844 if (!priv_group) 845 return cache_default_groups; 846 847 if (!cache_private_groups[1]) 848 cache_private_groups[1] = priv_group; 849 850 return cache_private_groups; 851 } 852 853 /* Add/Remove cache interface for CPU device */ 854 static void cpu_cache_sysfs_exit(unsigned int cpu) 855 { 856 int i; 857 struct device *ci_dev; 858 859 if (per_cpu_index_dev(cpu)) { 860 for (i = 0; i < cache_leaves(cpu); i++) { 861 ci_dev = per_cache_index_dev(cpu, i); 862 if (!ci_dev) 863 continue; 864 device_unregister(ci_dev); 865 } 866 kfree(per_cpu_index_dev(cpu)); 867 per_cpu_index_dev(cpu) = NULL; 868 } 869 device_unregister(per_cpu_cache_dev(cpu)); 870 per_cpu_cache_dev(cpu) = NULL; 871 } 872 873 static int cpu_cache_sysfs_init(unsigned int cpu) 874 { 875 struct device *dev = get_cpu_device(cpu); 876 877 if (per_cpu_cacheinfo(cpu) == NULL) 878 return -ENOENT; 879 880 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); 881 if (IS_ERR(per_cpu_cache_dev(cpu))) 882 return PTR_ERR(per_cpu_cache_dev(cpu)); 883 884 /* Allocate all required memory */ 885 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), 886 sizeof(struct device *), GFP_KERNEL); 887 if (unlikely(per_cpu_index_dev(cpu) == NULL)) 888 goto err_out; 889 890 return 0; 891 892 err_out: 893 cpu_cache_sysfs_exit(cpu); 894 return -ENOMEM; 895 } 896 897 static int cache_add_dev(unsigned int cpu) 898 { 899 unsigned int i; 900 int rc; 901 struct device *ci_dev, *parent; 902 struct cacheinfo *this_leaf; 903 const struct attribute_group **cache_groups; 904 905 rc = cpu_cache_sysfs_init(cpu); 906 if (unlikely(rc < 0)) 907 return rc; 908 909 parent = per_cpu_cache_dev(cpu); 910 for (i = 0; i < cache_leaves(cpu); i++) { 911 this_leaf = per_cpu_cacheinfo_idx(cpu, i); 912 if (this_leaf->disable_sysfs) 913 continue; 914 if (this_leaf->type == CACHE_TYPE_NOCACHE) 915 break; 916 cache_groups = cache_get_attribute_groups(this_leaf); 917 ci_dev = cpu_device_create(parent, this_leaf, cache_groups, 918 "index%1u", i); 919 if (IS_ERR(ci_dev)) { 920 rc = PTR_ERR(ci_dev); 921 goto err; 922 } 923 per_cache_index_dev(cpu, i) = ci_dev; 924 } 925 cpumask_set_cpu(cpu, &cache_dev_map); 926 927 return 0; 928 err: 929 cpu_cache_sysfs_exit(cpu); 930 return rc; 931 } 932 933 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu, 934 cpumask_t **map) 935 { 936 struct cacheinfo *llc, *sib_llc; 937 unsigned int sibling; 938 939 if (!last_level_cache_is_valid(cpu)) 940 return 0; 941 942 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 943 944 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 945 return 0; 946 947 if (online) { 948 *map = &llc->shared_cpu_map; 949 return cpumask_weight(*map); 950 } 951 952 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */ 953 for_each_cpu(sibling, &llc->shared_cpu_map) { 954 if (sibling == cpu || !last_level_cache_is_valid(sibling)) 955 continue; 956 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1); 957 *map = &sib_llc->shared_cpu_map; 958 return cpumask_weight(*map); 959 } 960 961 return 0; 962 } 963 964 /* 965 * Calculate the size of the per-CPU data cache slice. This can be 966 * used to estimate the size of the data cache slice that can be used 967 * by one CPU under ideal circumstances. UNIFIED caches are counted 968 * in addition to DATA caches. So, please consider code cache usage 969 * when use the result. 970 * 971 * Because the cache inclusive/non-inclusive information isn't 972 * available, we just use the size of the per-CPU slice of LLC to make 973 * the result more predictable across architectures. 974 */ 975 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu) 976 { 977 struct cpu_cacheinfo *ci; 978 struct cacheinfo *llc; 979 unsigned int nr_shared; 980 981 if (!last_level_cache_is_valid(cpu)) 982 return; 983 984 ci = ci_cacheinfo(cpu); 985 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 986 987 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) 988 return; 989 990 nr_shared = cpumask_weight(&llc->shared_cpu_map); 991 if (nr_shared) 992 ci->per_cpu_data_slice_size = llc->size / nr_shared; 993 } 994 995 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu, 996 cpumask_t *cpu_map) 997 { 998 unsigned int icpu; 999 1000 for_each_cpu(icpu, cpu_map) { 1001 if (!cpu_online && icpu == cpu) 1002 continue; 1003 update_per_cpu_data_slice_size_cpu(icpu); 1004 setup_pcp_cacheinfo(icpu); 1005 } 1006 } 1007 1008 static int cacheinfo_cpu_online(unsigned int cpu) 1009 { 1010 int rc = detect_cache_attributes(cpu); 1011 cpumask_t *cpu_map; 1012 1013 if (rc) 1014 return rc; 1015 rc = cache_add_dev(cpu); 1016 if (rc) 1017 goto err; 1018 if (cpu_map_shared_cache(true, cpu, &cpu_map)) 1019 update_per_cpu_data_slice_size(true, cpu, cpu_map); 1020 return 0; 1021 err: 1022 free_cache_attributes(cpu); 1023 return rc; 1024 } 1025 1026 static int cacheinfo_cpu_pre_down(unsigned int cpu) 1027 { 1028 cpumask_t *cpu_map; 1029 unsigned int nr_shared; 1030 1031 nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map); 1032 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) 1033 cpu_cache_sysfs_exit(cpu); 1034 1035 free_cache_attributes(cpu); 1036 if (nr_shared > 1) 1037 update_per_cpu_data_slice_size(false, cpu, cpu_map); 1038 return 0; 1039 } 1040 1041 static int __init cacheinfo_sysfs_init(void) 1042 { 1043 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, 1044 "base/cacheinfo:online", 1045 cacheinfo_cpu_online, cacheinfo_cpu_pre_down); 1046 } 1047 device_initcall(cacheinfo_sysfs_init); 1048