xref: /linux/drivers/base/cacheinfo.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)		\
29 				(per_cpu_cacheinfo(cpu) + (idx))
30 
31 /* Set if no cache information is found in DT/ACPI. */
32 static bool use_arch_info;
33 
34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
35 {
36 	return ci_cacheinfo(cpu);
37 }
38 
39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40 					   struct cacheinfo *sib_leaf)
41 {
42 	/*
43 	 * For non DT/ACPI systems, assume unique level 1 caches,
44 	 * system-wide shared caches for all other levels.
45 	 */
46 	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47 	    use_arch_info)
48 		return (this_leaf->level != 1) && (sib_leaf->level != 1);
49 
50 	if ((sib_leaf->attributes & CACHE_ID) &&
51 	    (this_leaf->attributes & CACHE_ID))
52 		return sib_leaf->id == this_leaf->id;
53 
54 	return sib_leaf->fw_token == this_leaf->fw_token;
55 }
56 
57 bool last_level_cache_is_valid(unsigned int cpu)
58 {
59 	struct cacheinfo *llc;
60 
61 	if (!cache_leaves(cpu))
62 		return false;
63 
64 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
65 
66 	return (llc->attributes & CACHE_ID) || !!llc->fw_token;
67 
68 }
69 
70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
71 {
72 	struct cacheinfo *llc_x, *llc_y;
73 
74 	if (!last_level_cache_is_valid(cpu_x) ||
75 	    !last_level_cache_is_valid(cpu_y))
76 		return false;
77 
78 	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79 	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
80 
81 	return cache_leaves_are_shared(llc_x, llc_y);
82 }
83 
84 #ifdef CONFIG_OF
85 
86 static bool of_check_cache_nodes(struct device_node *np);
87 
88 /* OF properties to query for a given cache type */
89 struct cache_type_info {
90 	const char *size_prop;
91 	const char *line_size_props[2];
92 	const char *nr_sets_prop;
93 };
94 
95 static const struct cache_type_info cache_type_info[] = {
96 	{
97 		.size_prop       = "cache-size",
98 		.line_size_props = { "cache-line-size",
99 				     "cache-block-size", },
100 		.nr_sets_prop    = "cache-sets",
101 	}, {
102 		.size_prop       = "i-cache-size",
103 		.line_size_props = { "i-cache-line-size",
104 				     "i-cache-block-size", },
105 		.nr_sets_prop    = "i-cache-sets",
106 	}, {
107 		.size_prop       = "d-cache-size",
108 		.line_size_props = { "d-cache-line-size",
109 				     "d-cache-block-size", },
110 		.nr_sets_prop    = "d-cache-sets",
111 	},
112 };
113 
114 static inline int get_cacheinfo_idx(enum cache_type type)
115 {
116 	if (type == CACHE_TYPE_UNIFIED)
117 		return 0;
118 	return type;
119 }
120 
121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122 {
123 	const char *propname;
124 	int ct_idx;
125 
126 	ct_idx = get_cacheinfo_idx(this_leaf->type);
127 	propname = cache_type_info[ct_idx].size_prop;
128 
129 	of_property_read_u32(np, propname, &this_leaf->size);
130 }
131 
132 /* not cache_line_size() because that's a macro in include/linux/cache.h */
133 static void cache_get_line_size(struct cacheinfo *this_leaf,
134 				struct device_node *np)
135 {
136 	int i, lim, ct_idx;
137 
138 	ct_idx = get_cacheinfo_idx(this_leaf->type);
139 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140 
141 	for (i = 0; i < lim; i++) {
142 		int ret;
143 		u32 line_size;
144 		const char *propname;
145 
146 		propname = cache_type_info[ct_idx].line_size_props[i];
147 		ret = of_property_read_u32(np, propname, &line_size);
148 		if (!ret) {
149 			this_leaf->coherency_line_size = line_size;
150 			break;
151 		}
152 	}
153 }
154 
155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156 {
157 	const char *propname;
158 	int ct_idx;
159 
160 	ct_idx = get_cacheinfo_idx(this_leaf->type);
161 	propname = cache_type_info[ct_idx].nr_sets_prop;
162 
163 	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
164 }
165 
166 static void cache_associativity(struct cacheinfo *this_leaf)
167 {
168 	unsigned int line_size = this_leaf->coherency_line_size;
169 	unsigned int nr_sets = this_leaf->number_of_sets;
170 	unsigned int size = this_leaf->size;
171 
172 	/*
173 	 * If the cache is fully associative, there is no need to
174 	 * check the other properties.
175 	 */
176 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178 }
179 
180 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181 				  struct device_node *np)
182 {
183 	return of_property_read_bool(np, "cache-unified");
184 }
185 
186 static void cache_of_set_props(struct cacheinfo *this_leaf,
187 			       struct device_node *np)
188 {
189 	/*
190 	 * init_cache_level must setup the cache level correctly
191 	 * overriding the architecturally specified levels, so
192 	 * if type is NONE at this stage, it should be unified
193 	 */
194 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195 	    cache_node_is_unified(this_leaf, np))
196 		this_leaf->type = CACHE_TYPE_UNIFIED;
197 	cache_size(this_leaf, np);
198 	cache_get_line_size(this_leaf, np);
199 	cache_nr_sets(this_leaf, np);
200 	cache_associativity(this_leaf);
201 }
202 
203 static int cache_setup_of_node(unsigned int cpu)
204 {
205 	struct device_node *np, *prev;
206 	struct cacheinfo *this_leaf;
207 	unsigned int index = 0;
208 
209 	np = of_cpu_device_node_get(cpu);
210 	if (!np) {
211 		pr_err("Failed to find cpu%d device node\n", cpu);
212 		return -ENOENT;
213 	}
214 
215 	if (!of_check_cache_nodes(np)) {
216 		of_node_put(np);
217 		return -ENOENT;
218 	}
219 
220 	prev = np;
221 
222 	while (index < cache_leaves(cpu)) {
223 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
224 		if (this_leaf->level != 1) {
225 			np = of_find_next_cache_node(np);
226 			of_node_put(prev);
227 			prev = np;
228 			if (!np)
229 				break;
230 		}
231 		cache_of_set_props(this_leaf, np);
232 		this_leaf->fw_token = np;
233 		index++;
234 	}
235 
236 	of_node_put(np);
237 
238 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
239 		return -ENOENT;
240 
241 	return 0;
242 }
243 
244 static bool of_check_cache_nodes(struct device_node *np)
245 {
246 	struct device_node *next;
247 
248 	if (of_property_present(np, "cache-size")   ||
249 	    of_property_present(np, "i-cache-size") ||
250 	    of_property_present(np, "d-cache-size") ||
251 	    of_property_present(np, "cache-unified"))
252 		return true;
253 
254 	next = of_find_next_cache_node(np);
255 	if (next) {
256 		of_node_put(next);
257 		return true;
258 	}
259 
260 	return false;
261 }
262 
263 static int of_count_cache_leaves(struct device_node *np)
264 {
265 	unsigned int leaves = 0;
266 
267 	if (of_property_read_bool(np, "cache-size"))
268 		++leaves;
269 	if (of_property_read_bool(np, "i-cache-size"))
270 		++leaves;
271 	if (of_property_read_bool(np, "d-cache-size"))
272 		++leaves;
273 
274 	if (!leaves) {
275 		/* The '[i-|d-|]cache-size' property is required, but
276 		 * if absent, fallback on the 'cache-unified' property.
277 		 */
278 		if (of_property_read_bool(np, "cache-unified"))
279 			return 1;
280 		else
281 			return 2;
282 	}
283 
284 	return leaves;
285 }
286 
287 int init_of_cache_level(unsigned int cpu)
288 {
289 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
290 	struct device_node *np = of_cpu_device_node_get(cpu);
291 	struct device_node *prev = NULL;
292 	unsigned int levels = 0, leaves, level;
293 
294 	if (!of_check_cache_nodes(np)) {
295 		of_node_put(np);
296 		return -ENOENT;
297 	}
298 
299 	leaves = of_count_cache_leaves(np);
300 	if (leaves > 0)
301 		levels = 1;
302 
303 	prev = np;
304 	while ((np = of_find_next_cache_node(np))) {
305 		of_node_put(prev);
306 		prev = np;
307 		if (!of_device_is_compatible(np, "cache"))
308 			goto err_out;
309 		if (of_property_read_u32(np, "cache-level", &level))
310 			goto err_out;
311 		if (level <= levels)
312 			goto err_out;
313 
314 		leaves += of_count_cache_leaves(np);
315 		levels = level;
316 	}
317 
318 	of_node_put(np);
319 	this_cpu_ci->num_levels = levels;
320 	this_cpu_ci->num_leaves = leaves;
321 
322 	return 0;
323 
324 err_out:
325 	of_node_put(np);
326 	return -EINVAL;
327 }
328 
329 #else
330 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
331 int init_of_cache_level(unsigned int cpu) { return 0; }
332 #endif
333 
334 int __weak cache_setup_acpi(unsigned int cpu)
335 {
336 	return -ENOTSUPP;
337 }
338 
339 unsigned int coherency_max_size;
340 
341 static int cache_setup_properties(unsigned int cpu)
342 {
343 	int ret = 0;
344 
345 	if (of_have_populated_dt())
346 		ret = cache_setup_of_node(cpu);
347 	else if (!acpi_disabled)
348 		ret = cache_setup_acpi(cpu);
349 
350 	// Assume there is no cache information available in DT/ACPI from now.
351 	if (ret && use_arch_cache_info())
352 		use_arch_info = true;
353 
354 	return ret;
355 }
356 
357 static int cache_shared_cpu_map_setup(unsigned int cpu)
358 {
359 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
360 	struct cacheinfo *this_leaf, *sib_leaf;
361 	unsigned int index, sib_index;
362 	int ret = 0;
363 
364 	if (this_cpu_ci->cpu_map_populated)
365 		return 0;
366 
367 	/*
368 	 * skip setting up cache properties if LLC is valid, just need
369 	 * to update the shared cpu_map if the cache attributes were
370 	 * populated early before all the cpus are brought online
371 	 */
372 	if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
373 		ret = cache_setup_properties(cpu);
374 		if (ret)
375 			return ret;
376 	}
377 
378 	for (index = 0; index < cache_leaves(cpu); index++) {
379 		unsigned int i;
380 
381 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
382 
383 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
384 		for_each_online_cpu(i) {
385 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
386 
387 			if (i == cpu || !sib_cpu_ci->info_list)
388 				continue;/* skip if itself or no cacheinfo */
389 			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
390 				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
391 
392 				/*
393 				 * Comparing cache IDs only makes sense if the leaves
394 				 * belong to the same cache level of same type. Skip
395 				 * the check if level and type do not match.
396 				 */
397 				if (sib_leaf->level != this_leaf->level ||
398 				    sib_leaf->type != this_leaf->type)
399 					continue;
400 
401 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
402 					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
403 					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
404 					break;
405 				}
406 			}
407 		}
408 		/* record the maximum cache line size */
409 		if (this_leaf->coherency_line_size > coherency_max_size)
410 			coherency_max_size = this_leaf->coherency_line_size;
411 	}
412 
413 	/* shared_cpu_map is now populated for the cpu */
414 	this_cpu_ci->cpu_map_populated = true;
415 	return 0;
416 }
417 
418 static void cache_shared_cpu_map_remove(unsigned int cpu)
419 {
420 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
421 	struct cacheinfo *this_leaf, *sib_leaf;
422 	unsigned int sibling, index, sib_index;
423 
424 	for (index = 0; index < cache_leaves(cpu); index++) {
425 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
426 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
427 			struct cpu_cacheinfo *sib_cpu_ci =
428 						get_cpu_cacheinfo(sibling);
429 
430 			if (sibling == cpu || !sib_cpu_ci->info_list)
431 				continue;/* skip if itself or no cacheinfo */
432 
433 			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
434 				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
435 
436 				/*
437 				 * Comparing cache IDs only makes sense if the leaves
438 				 * belong to the same cache level of same type. Skip
439 				 * the check if level and type do not match.
440 				 */
441 				if (sib_leaf->level != this_leaf->level ||
442 				    sib_leaf->type != this_leaf->type)
443 					continue;
444 
445 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
446 					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
447 					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
448 					break;
449 				}
450 			}
451 		}
452 	}
453 
454 	/* cpu is no longer populated in the shared map */
455 	this_cpu_ci->cpu_map_populated = false;
456 }
457 
458 static void free_cache_attributes(unsigned int cpu)
459 {
460 	if (!per_cpu_cacheinfo(cpu))
461 		return;
462 
463 	cache_shared_cpu_map_remove(cpu);
464 }
465 
466 int __weak early_cache_level(unsigned int cpu)
467 {
468 	return -ENOENT;
469 }
470 
471 int __weak init_cache_level(unsigned int cpu)
472 {
473 	return -ENOENT;
474 }
475 
476 int __weak populate_cache_leaves(unsigned int cpu)
477 {
478 	return -ENOENT;
479 }
480 
481 static inline
482 int allocate_cache_info(int cpu)
483 {
484 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
485 					 sizeof(struct cacheinfo), GFP_ATOMIC);
486 	if (!per_cpu_cacheinfo(cpu)) {
487 		cache_leaves(cpu) = 0;
488 		return -ENOMEM;
489 	}
490 
491 	return 0;
492 }
493 
494 int fetch_cache_info(unsigned int cpu)
495 {
496 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
497 	unsigned int levels = 0, split_levels = 0;
498 	int ret;
499 
500 	if (acpi_disabled) {
501 		ret = init_of_cache_level(cpu);
502 	} else {
503 		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
504 		if (!ret) {
505 			this_cpu_ci->num_levels = levels;
506 			/*
507 			 * This assumes that:
508 			 * - there cannot be any split caches (data/instruction)
509 			 *   above a unified cache
510 			 * - data/instruction caches come by pair
511 			 */
512 			this_cpu_ci->num_leaves = levels + split_levels;
513 		}
514 	}
515 
516 	if (ret || !cache_leaves(cpu)) {
517 		ret = early_cache_level(cpu);
518 		if (ret)
519 			return ret;
520 
521 		if (!cache_leaves(cpu))
522 			return -ENOENT;
523 
524 		this_cpu_ci->early_ci_levels = true;
525 	}
526 
527 	return allocate_cache_info(cpu);
528 }
529 
530 static inline int init_level_allocate_ci(unsigned int cpu)
531 {
532 	unsigned int early_leaves = cache_leaves(cpu);
533 
534 	/* Since early initialization/allocation of the cacheinfo is allowed
535 	 * via fetch_cache_info() and this also gets called as CPU hotplug
536 	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
537 	 * as it will happen only once (the cacheinfo memory is never freed).
538 	 * Just populate the cacheinfo. However, if the cacheinfo has been
539 	 * allocated early through the arch-specific early_cache_level() call,
540 	 * there is a chance the info is wrong (this can happen on arm64). In
541 	 * that case, call init_cache_level() anyway to give the arch-specific
542 	 * code a chance to make things right.
543 	 */
544 	if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
545 		return 0;
546 
547 	if (init_cache_level(cpu) || !cache_leaves(cpu))
548 		return -ENOENT;
549 
550 	/*
551 	 * Now that we have properly initialized the cache level info, make
552 	 * sure we don't try to do that again the next time we are called
553 	 * (e.g. as CPU hotplug callbacks).
554 	 */
555 	ci_cacheinfo(cpu)->early_ci_levels = false;
556 
557 	if (cache_leaves(cpu) <= early_leaves)
558 		return 0;
559 
560 	kfree(per_cpu_cacheinfo(cpu));
561 	return allocate_cache_info(cpu);
562 }
563 
564 int detect_cache_attributes(unsigned int cpu)
565 {
566 	int ret;
567 
568 	ret = init_level_allocate_ci(cpu);
569 	if (ret)
570 		return ret;
571 
572 	/*
573 	 * If LLC is valid the cache leaves were already populated so just go to
574 	 * update the cpu map.
575 	 */
576 	if (!last_level_cache_is_valid(cpu)) {
577 		/*
578 		 * populate_cache_leaves() may completely setup the cache leaves and
579 		 * shared_cpu_map or it may leave it partially setup.
580 		 */
581 		ret = populate_cache_leaves(cpu);
582 		if (ret)
583 			goto free_ci;
584 	}
585 
586 	/*
587 	 * For systems using DT for cache hierarchy, fw_token
588 	 * and shared_cpu_map will be set up here only if they are
589 	 * not populated already
590 	 */
591 	ret = cache_shared_cpu_map_setup(cpu);
592 	if (ret) {
593 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
594 		goto free_ci;
595 	}
596 
597 	return 0;
598 
599 free_ci:
600 	free_cache_attributes(cpu);
601 	return ret;
602 }
603 
604 /* pointer to cpuX/cache device */
605 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
606 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
607 
608 static cpumask_t cache_dev_map;
609 
610 /* pointer to array of devices for cpuX/cache/indexY */
611 static DEFINE_PER_CPU(struct device **, ci_index_dev);
612 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
613 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
614 
615 #define show_one(file_name, object)				\
616 static ssize_t file_name##_show(struct device *dev,		\
617 		struct device_attribute *attr, char *buf)	\
618 {								\
619 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
620 	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
621 }
622 
623 show_one(id, id);
624 show_one(level, level);
625 show_one(coherency_line_size, coherency_line_size);
626 show_one(number_of_sets, number_of_sets);
627 show_one(physical_line_partition, physical_line_partition);
628 show_one(ways_of_associativity, ways_of_associativity);
629 
630 static ssize_t size_show(struct device *dev,
631 			 struct device_attribute *attr, char *buf)
632 {
633 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
634 
635 	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
636 }
637 
638 static ssize_t shared_cpu_map_show(struct device *dev,
639 				   struct device_attribute *attr, char *buf)
640 {
641 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
642 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
643 
644 	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
645 }
646 
647 static ssize_t shared_cpu_list_show(struct device *dev,
648 				    struct device_attribute *attr, char *buf)
649 {
650 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
651 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
652 
653 	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
654 }
655 
656 static ssize_t type_show(struct device *dev,
657 			 struct device_attribute *attr, char *buf)
658 {
659 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
660 	const char *output;
661 
662 	switch (this_leaf->type) {
663 	case CACHE_TYPE_DATA:
664 		output = "Data";
665 		break;
666 	case CACHE_TYPE_INST:
667 		output = "Instruction";
668 		break;
669 	case CACHE_TYPE_UNIFIED:
670 		output = "Unified";
671 		break;
672 	default:
673 		return -EINVAL;
674 	}
675 
676 	return sysfs_emit(buf, "%s\n", output);
677 }
678 
679 static ssize_t allocation_policy_show(struct device *dev,
680 				      struct device_attribute *attr, char *buf)
681 {
682 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
683 	unsigned int ci_attr = this_leaf->attributes;
684 	const char *output;
685 
686 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
687 		output = "ReadWriteAllocate";
688 	else if (ci_attr & CACHE_READ_ALLOCATE)
689 		output = "ReadAllocate";
690 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
691 		output = "WriteAllocate";
692 	else
693 		return 0;
694 
695 	return sysfs_emit(buf, "%s\n", output);
696 }
697 
698 static ssize_t write_policy_show(struct device *dev,
699 				 struct device_attribute *attr, char *buf)
700 {
701 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
702 	unsigned int ci_attr = this_leaf->attributes;
703 	int n = 0;
704 
705 	if (ci_attr & CACHE_WRITE_THROUGH)
706 		n = sysfs_emit(buf, "WriteThrough\n");
707 	else if (ci_attr & CACHE_WRITE_BACK)
708 		n = sysfs_emit(buf, "WriteBack\n");
709 	return n;
710 }
711 
712 static DEVICE_ATTR_RO(id);
713 static DEVICE_ATTR_RO(level);
714 static DEVICE_ATTR_RO(type);
715 static DEVICE_ATTR_RO(coherency_line_size);
716 static DEVICE_ATTR_RO(ways_of_associativity);
717 static DEVICE_ATTR_RO(number_of_sets);
718 static DEVICE_ATTR_RO(size);
719 static DEVICE_ATTR_RO(allocation_policy);
720 static DEVICE_ATTR_RO(write_policy);
721 static DEVICE_ATTR_RO(shared_cpu_map);
722 static DEVICE_ATTR_RO(shared_cpu_list);
723 static DEVICE_ATTR_RO(physical_line_partition);
724 
725 static struct attribute *cache_default_attrs[] = {
726 	&dev_attr_id.attr,
727 	&dev_attr_type.attr,
728 	&dev_attr_level.attr,
729 	&dev_attr_shared_cpu_map.attr,
730 	&dev_attr_shared_cpu_list.attr,
731 	&dev_attr_coherency_line_size.attr,
732 	&dev_attr_ways_of_associativity.attr,
733 	&dev_attr_number_of_sets.attr,
734 	&dev_attr_size.attr,
735 	&dev_attr_allocation_policy.attr,
736 	&dev_attr_write_policy.attr,
737 	&dev_attr_physical_line_partition.attr,
738 	NULL
739 };
740 
741 static umode_t
742 cache_default_attrs_is_visible(struct kobject *kobj,
743 			       struct attribute *attr, int unused)
744 {
745 	struct device *dev = kobj_to_dev(kobj);
746 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
747 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
748 	umode_t mode = attr->mode;
749 
750 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
751 		return mode;
752 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
753 		return mode;
754 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
755 		return mode;
756 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
757 		return mode;
758 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
759 		return mode;
760 	if ((attr == &dev_attr_coherency_line_size.attr) &&
761 	    this_leaf->coherency_line_size)
762 		return mode;
763 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
764 	    this_leaf->size) /* allow 0 = full associativity */
765 		return mode;
766 	if ((attr == &dev_attr_number_of_sets.attr) &&
767 	    this_leaf->number_of_sets)
768 		return mode;
769 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
770 		return mode;
771 	if ((attr == &dev_attr_write_policy.attr) &&
772 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
773 		return mode;
774 	if ((attr == &dev_attr_allocation_policy.attr) &&
775 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
776 		return mode;
777 	if ((attr == &dev_attr_physical_line_partition.attr) &&
778 	    this_leaf->physical_line_partition)
779 		return mode;
780 
781 	return 0;
782 }
783 
784 static const struct attribute_group cache_default_group = {
785 	.attrs = cache_default_attrs,
786 	.is_visible = cache_default_attrs_is_visible,
787 };
788 
789 static const struct attribute_group *cache_default_groups[] = {
790 	&cache_default_group,
791 	NULL,
792 };
793 
794 static const struct attribute_group *cache_private_groups[] = {
795 	&cache_default_group,
796 	NULL, /* Place holder for private group */
797 	NULL,
798 };
799 
800 const struct attribute_group *
801 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
802 {
803 	return NULL;
804 }
805 
806 static const struct attribute_group **
807 cache_get_attribute_groups(struct cacheinfo *this_leaf)
808 {
809 	const struct attribute_group *priv_group =
810 			cache_get_priv_group(this_leaf);
811 
812 	if (!priv_group)
813 		return cache_default_groups;
814 
815 	if (!cache_private_groups[1])
816 		cache_private_groups[1] = priv_group;
817 
818 	return cache_private_groups;
819 }
820 
821 /* Add/Remove cache interface for CPU device */
822 static void cpu_cache_sysfs_exit(unsigned int cpu)
823 {
824 	int i;
825 	struct device *ci_dev;
826 
827 	if (per_cpu_index_dev(cpu)) {
828 		for (i = 0; i < cache_leaves(cpu); i++) {
829 			ci_dev = per_cache_index_dev(cpu, i);
830 			if (!ci_dev)
831 				continue;
832 			device_unregister(ci_dev);
833 		}
834 		kfree(per_cpu_index_dev(cpu));
835 		per_cpu_index_dev(cpu) = NULL;
836 	}
837 	device_unregister(per_cpu_cache_dev(cpu));
838 	per_cpu_cache_dev(cpu) = NULL;
839 }
840 
841 static int cpu_cache_sysfs_init(unsigned int cpu)
842 {
843 	struct device *dev = get_cpu_device(cpu);
844 
845 	if (per_cpu_cacheinfo(cpu) == NULL)
846 		return -ENOENT;
847 
848 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
849 	if (IS_ERR(per_cpu_cache_dev(cpu)))
850 		return PTR_ERR(per_cpu_cache_dev(cpu));
851 
852 	/* Allocate all required memory */
853 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
854 					 sizeof(struct device *), GFP_KERNEL);
855 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
856 		goto err_out;
857 
858 	return 0;
859 
860 err_out:
861 	cpu_cache_sysfs_exit(cpu);
862 	return -ENOMEM;
863 }
864 
865 static int cache_add_dev(unsigned int cpu)
866 {
867 	unsigned int i;
868 	int rc;
869 	struct device *ci_dev, *parent;
870 	struct cacheinfo *this_leaf;
871 	const struct attribute_group **cache_groups;
872 
873 	rc = cpu_cache_sysfs_init(cpu);
874 	if (unlikely(rc < 0))
875 		return rc;
876 
877 	parent = per_cpu_cache_dev(cpu);
878 	for (i = 0; i < cache_leaves(cpu); i++) {
879 		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
880 		if (this_leaf->disable_sysfs)
881 			continue;
882 		if (this_leaf->type == CACHE_TYPE_NOCACHE)
883 			break;
884 		cache_groups = cache_get_attribute_groups(this_leaf);
885 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
886 					   "index%1u", i);
887 		if (IS_ERR(ci_dev)) {
888 			rc = PTR_ERR(ci_dev);
889 			goto err;
890 		}
891 		per_cache_index_dev(cpu, i) = ci_dev;
892 	}
893 	cpumask_set_cpu(cpu, &cache_dev_map);
894 
895 	return 0;
896 err:
897 	cpu_cache_sysfs_exit(cpu);
898 	return rc;
899 }
900 
901 /*
902  * Calculate the size of the per-CPU data cache slice.  This can be
903  * used to estimate the size of the data cache slice that can be used
904  * by one CPU under ideal circumstances.  UNIFIED caches are counted
905  * in addition to DATA caches.  So, please consider code cache usage
906  * when use the result.
907  *
908  * Because the cache inclusive/non-inclusive information isn't
909  * available, we just use the size of the per-CPU slice of LLC to make
910  * the result more predictable across architectures.
911  */
912 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
913 {
914 	struct cpu_cacheinfo *ci;
915 	struct cacheinfo *llc;
916 	unsigned int nr_shared;
917 
918 	if (!last_level_cache_is_valid(cpu))
919 		return;
920 
921 	ci = ci_cacheinfo(cpu);
922 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
923 
924 	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
925 		return;
926 
927 	nr_shared = cpumask_weight(&llc->shared_cpu_map);
928 	if (nr_shared)
929 		ci->per_cpu_data_slice_size = llc->size / nr_shared;
930 }
931 
932 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu)
933 {
934 	unsigned int icpu;
935 
936 	for_each_online_cpu(icpu) {
937 		if (!cpu_online && icpu == cpu)
938 			continue;
939 		update_per_cpu_data_slice_size_cpu(icpu);
940 	}
941 }
942 
943 static int cacheinfo_cpu_online(unsigned int cpu)
944 {
945 	int rc = detect_cache_attributes(cpu);
946 
947 	if (rc)
948 		return rc;
949 	rc = cache_add_dev(cpu);
950 	if (rc)
951 		goto err;
952 	update_per_cpu_data_slice_size(true, cpu);
953 	setup_pcp_cacheinfo();
954 	return 0;
955 err:
956 	free_cache_attributes(cpu);
957 	return rc;
958 }
959 
960 static int cacheinfo_cpu_pre_down(unsigned int cpu)
961 {
962 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
963 		cpu_cache_sysfs_exit(cpu);
964 
965 	free_cache_attributes(cpu);
966 	update_per_cpu_data_slice_size(false, cpu);
967 	setup_pcp_cacheinfo();
968 	return 0;
969 }
970 
971 static int __init cacheinfo_sysfs_init(void)
972 {
973 	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
974 				 "base/cacheinfo:online",
975 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
976 }
977 device_initcall(cacheinfo_sysfs_init);
978