xref: /linux/drivers/base/cacheinfo.c (revision 8934827db5403eae57d4537114a9ff88b0a8460f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/bitops.h>
13 #include <linux/cacheinfo.h>
14 #include <linux/compiler.h>
15 #include <linux/cpu.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/of.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/smp.h>
22 #include <linux/sysfs.h>
23 
24 /* pointer to per cpu cacheinfo */
25 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
26 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
27 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
28 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
29 #define per_cpu_cacheinfo_idx(cpu, idx)		\
30 				(per_cpu_cacheinfo(cpu) + (idx))
31 
32 /* Set if no cache information is found in DT/ACPI. */
33 static bool use_arch_info;
34 
get_cpu_cacheinfo(unsigned int cpu)35 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
36 {
37 	return ci_cacheinfo(cpu);
38 }
39 
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)40 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
41 					   struct cacheinfo *sib_leaf)
42 {
43 	/*
44 	 * For non DT/ACPI systems, assume unique level 1 caches,
45 	 * system-wide shared caches for all other levels.
46 	 */
47 	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
48 	    use_arch_info)
49 		return (this_leaf->level != 1) && (sib_leaf->level != 1);
50 
51 	if ((sib_leaf->attributes & CACHE_ID) &&
52 	    (this_leaf->attributes & CACHE_ID))
53 		return sib_leaf->id == this_leaf->id;
54 
55 	return sib_leaf->fw_token == this_leaf->fw_token;
56 }
57 
last_level_cache_is_valid(unsigned int cpu)58 bool last_level_cache_is_valid(unsigned int cpu)
59 {
60 	struct cacheinfo *llc;
61 
62 	if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu))
63 		return false;
64 
65 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
66 
67 	return (llc->attributes & CACHE_ID) || !!llc->fw_token;
68 
69 }
70 
last_level_cache_is_shared(unsigned int cpu_x,unsigned int cpu_y)71 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
72 {
73 	struct cacheinfo *llc_x, *llc_y;
74 
75 	if (!last_level_cache_is_valid(cpu_x) ||
76 	    !last_level_cache_is_valid(cpu_y))
77 		return false;
78 
79 	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
80 	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
81 
82 	return cache_leaves_are_shared(llc_x, llc_y);
83 }
84 
85 #ifdef CONFIG_OF
86 
87 static bool of_check_cache_nodes(struct device_node *np);
88 
89 /* OF properties to query for a given cache type */
90 struct cache_type_info {
91 	const char *size_prop;
92 	const char *line_size_props[2];
93 	const char *nr_sets_prop;
94 };
95 
96 static const struct cache_type_info cache_type_info[] = {
97 	{
98 		.size_prop       = "cache-size",
99 		.line_size_props = { "cache-line-size",
100 				     "cache-block-size", },
101 		.nr_sets_prop    = "cache-sets",
102 	}, {
103 		.size_prop       = "i-cache-size",
104 		.line_size_props = { "i-cache-line-size",
105 				     "i-cache-block-size", },
106 		.nr_sets_prop    = "i-cache-sets",
107 	}, {
108 		.size_prop       = "d-cache-size",
109 		.line_size_props = { "d-cache-line-size",
110 				     "d-cache-block-size", },
111 		.nr_sets_prop    = "d-cache-sets",
112 	},
113 };
114 
get_cacheinfo_idx(enum cache_type type)115 static inline int get_cacheinfo_idx(enum cache_type type)
116 {
117 	if (type == CACHE_TYPE_UNIFIED)
118 		return 0;
119 	return type;
120 }
121 
cache_size(struct cacheinfo * this_leaf,struct device_node * np)122 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
123 {
124 	const char *propname;
125 	int ct_idx;
126 
127 	ct_idx = get_cacheinfo_idx(this_leaf->type);
128 	propname = cache_type_info[ct_idx].size_prop;
129 
130 	of_property_read_u32(np, propname, &this_leaf->size);
131 }
132 
133 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)134 static void cache_get_line_size(struct cacheinfo *this_leaf,
135 				struct device_node *np)
136 {
137 	int i, lim, ct_idx;
138 
139 	ct_idx = get_cacheinfo_idx(this_leaf->type);
140 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
141 
142 	for (i = 0; i < lim; i++) {
143 		int ret;
144 		u32 line_size;
145 		const char *propname;
146 
147 		propname = cache_type_info[ct_idx].line_size_props[i];
148 		ret = of_property_read_u32(np, propname, &line_size);
149 		if (!ret) {
150 			this_leaf->coherency_line_size = line_size;
151 			break;
152 		}
153 	}
154 }
155 
cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)156 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
157 {
158 	const char *propname;
159 	int ct_idx;
160 
161 	ct_idx = get_cacheinfo_idx(this_leaf->type);
162 	propname = cache_type_info[ct_idx].nr_sets_prop;
163 
164 	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
165 }
166 
cache_associativity(struct cacheinfo * this_leaf)167 static void cache_associativity(struct cacheinfo *this_leaf)
168 {
169 	unsigned int line_size = this_leaf->coherency_line_size;
170 	unsigned int nr_sets = this_leaf->number_of_sets;
171 	unsigned int size = this_leaf->size;
172 
173 	/*
174 	 * If the cache is fully associative, there is no need to
175 	 * check the other properties.
176 	 */
177 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
178 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
179 }
180 
cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)181 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
182 				  struct device_node *np)
183 {
184 	return of_property_read_bool(np, "cache-unified");
185 }
186 
match_cache_node(struct device_node * cpu,const struct device_node * cache_node)187 static bool match_cache_node(struct device_node *cpu,
188 			     const struct device_node *cache_node)
189 {
190 	struct device_node *prev, *cache = of_find_next_cache_node(cpu);
191 
192 	while (cache) {
193 		if (cache == cache_node) {
194 			of_node_put(cache);
195 			return true;
196 		}
197 
198 		prev = cache;
199 		cache = of_find_next_cache_node(cache);
200 		of_node_put(prev);
201 	}
202 
203 	return false;
204 }
205 
206 #ifndef arch_compact_of_hwid
207 #define arch_compact_of_hwid(_x)	(_x)
208 #endif
209 
cache_of_set_id(struct cacheinfo * this_leaf,struct device_node * cache_node)210 static void cache_of_set_id(struct cacheinfo *this_leaf,
211 			    struct device_node *cache_node)
212 {
213 	struct device_node *cpu;
214 	u32 min_id = ~0;
215 
216 	for_each_of_cpu_node(cpu) {
217 		u64 id = of_get_cpu_hwid(cpu, 0);
218 
219 		id = arch_compact_of_hwid(id);
220 		if (FIELD_GET(GENMASK_ULL(63, 32), id)) {
221 			of_node_put(cpu);
222 			return;
223 		}
224 
225 		if (match_cache_node(cpu, cache_node))
226 			min_id = min(min_id, id);
227 	}
228 
229 	if (min_id != ~0) {
230 		this_leaf->id = min_id;
231 		this_leaf->attributes |= CACHE_ID;
232 	}
233 }
234 
cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)235 static void cache_of_set_props(struct cacheinfo *this_leaf,
236 			       struct device_node *np)
237 {
238 	/*
239 	 * init_cache_level must setup the cache level correctly
240 	 * overriding the architecturally specified levels, so
241 	 * if type is NONE at this stage, it should be unified
242 	 */
243 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
244 	    cache_node_is_unified(this_leaf, np))
245 		this_leaf->type = CACHE_TYPE_UNIFIED;
246 	cache_size(this_leaf, np);
247 	cache_get_line_size(this_leaf, np);
248 	cache_nr_sets(this_leaf, np);
249 	cache_associativity(this_leaf);
250 	cache_of_set_id(this_leaf, np);
251 }
252 
cache_setup_of_node(unsigned int cpu)253 static int cache_setup_of_node(unsigned int cpu)
254 {
255 	struct cacheinfo *this_leaf;
256 	unsigned int index = 0;
257 
258 	struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
259 	if (!np) {
260 		pr_err("Failed to find cpu%d device node\n", cpu);
261 		return -ENOENT;
262 	}
263 
264 	if (!of_check_cache_nodes(np)) {
265 		return -ENOENT;
266 	}
267 
268 	while (index < cache_leaves(cpu)) {
269 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
270 		if (this_leaf->level != 1) {
271 			struct device_node *prev __free(device_node) = np;
272 			np = of_find_next_cache_node(np);
273 			if (!np)
274 				break;
275 		}
276 		cache_of_set_props(this_leaf, np);
277 		this_leaf->fw_token = np;
278 		index++;
279 	}
280 
281 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
282 		return -ENOENT;
283 
284 	return 0;
285 }
286 
of_check_cache_nodes(struct device_node * np)287 static bool of_check_cache_nodes(struct device_node *np)
288 {
289 	if (of_property_present(np, "cache-size")   ||
290 	    of_property_present(np, "i-cache-size") ||
291 	    of_property_present(np, "d-cache-size") ||
292 	    of_property_present(np, "cache-unified"))
293 		return true;
294 
295 	struct device_node *next __free(device_node) = of_find_next_cache_node(np);
296 	if (next) {
297 		return true;
298 	}
299 
300 	return false;
301 }
302 
of_count_cache_leaves(struct device_node * np)303 static int of_count_cache_leaves(struct device_node *np)
304 {
305 	unsigned int leaves = 0;
306 
307 	if (of_property_present(np, "cache-size"))
308 		++leaves;
309 	if (of_property_present(np, "i-cache-size"))
310 		++leaves;
311 	if (of_property_present(np, "d-cache-size"))
312 		++leaves;
313 
314 	if (!leaves) {
315 		/* The '[i-|d-|]cache-size' property is required, but
316 		 * if absent, fallback on the 'cache-unified' property.
317 		 */
318 		if (of_property_read_bool(np, "cache-unified"))
319 			return 1;
320 		else
321 			return 2;
322 	}
323 
324 	return leaves;
325 }
326 
init_of_cache_level(unsigned int cpu)327 int init_of_cache_level(unsigned int cpu)
328 {
329 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
330 	struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
331 	unsigned int levels = 0, leaves, level;
332 
333 	if (!of_check_cache_nodes(np)) {
334 		return -ENOENT;
335 	}
336 
337 	leaves = of_count_cache_leaves(np);
338 	if (leaves > 0)
339 		levels = 1;
340 
341 	while (1) {
342 		struct device_node *prev __free(device_node) = np;
343 		np = of_find_next_cache_node(np);
344 		if (!np)
345 			break;
346 
347 		if (!of_device_is_compatible(np, "cache"))
348 			return -EINVAL;
349 		if (of_property_read_u32(np, "cache-level", &level))
350 			return -EINVAL;
351 		if (level <= levels)
352 			return -EINVAL;
353 
354 		leaves += of_count_cache_leaves(np);
355 		levels = level;
356 	}
357 
358 	this_cpu_ci->num_levels = levels;
359 	this_cpu_ci->num_leaves = leaves;
360 
361 	return 0;
362 }
363 
364 #else
cache_setup_of_node(unsigned int cpu)365 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
init_of_cache_level(unsigned int cpu)366 int init_of_cache_level(unsigned int cpu) { return 0; }
367 #endif
368 
cache_setup_acpi(unsigned int cpu)369 int __weak cache_setup_acpi(unsigned int cpu)
370 {
371 	return -ENOTSUPP;
372 }
373 
374 unsigned int coherency_max_size;
375 
cache_setup_properties(unsigned int cpu)376 static int cache_setup_properties(unsigned int cpu)
377 {
378 	int ret = 0;
379 
380 	if (of_have_populated_dt())
381 		ret = cache_setup_of_node(cpu);
382 	else if (!acpi_disabled)
383 		ret = cache_setup_acpi(cpu);
384 
385 	// Assume there is no cache information available in DT/ACPI from now.
386 	if (ret && use_arch_cache_info())
387 		use_arch_info = true;
388 
389 	return ret;
390 }
391 
cache_shared_cpu_map_setup(unsigned int cpu)392 static int cache_shared_cpu_map_setup(unsigned int cpu)
393 {
394 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
395 	struct cacheinfo *this_leaf, *sib_leaf;
396 	unsigned int index, sib_index;
397 	int ret = 0;
398 
399 	if (this_cpu_ci->cpu_map_populated)
400 		return 0;
401 
402 	/*
403 	 * skip setting up cache properties if LLC is valid, just need
404 	 * to update the shared cpu_map if the cache attributes were
405 	 * populated early before all the cpus are brought online
406 	 */
407 	if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
408 		ret = cache_setup_properties(cpu);
409 		if (ret)
410 			return ret;
411 	}
412 
413 	for (index = 0; index < cache_leaves(cpu); index++) {
414 		unsigned int i;
415 
416 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
417 
418 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
419 		for_each_online_cpu(i) {
420 			if (i == cpu || !per_cpu_cacheinfo(i))
421 				continue;/* skip if itself or no cacheinfo */
422 			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
423 				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
424 
425 				/*
426 				 * Comparing cache IDs only makes sense if the leaves
427 				 * belong to the same cache level of same type. Skip
428 				 * the check if level and type do not match.
429 				 */
430 				if (sib_leaf->level != this_leaf->level ||
431 				    sib_leaf->type != this_leaf->type)
432 					continue;
433 
434 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
435 					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
436 					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
437 					break;
438 				}
439 			}
440 		}
441 		/* record the maximum cache line size */
442 		if (this_leaf->coherency_line_size > coherency_max_size)
443 			coherency_max_size = this_leaf->coherency_line_size;
444 	}
445 
446 	/* shared_cpu_map is now populated for the cpu */
447 	this_cpu_ci->cpu_map_populated = true;
448 	return 0;
449 }
450 
cache_shared_cpu_map_remove(unsigned int cpu)451 static void cache_shared_cpu_map_remove(unsigned int cpu)
452 {
453 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
454 	struct cacheinfo *this_leaf, *sib_leaf;
455 	unsigned int sibling, index, sib_index;
456 
457 	for (index = 0; index < cache_leaves(cpu); index++) {
458 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
459 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
460 			if (sibling == cpu || !per_cpu_cacheinfo(sibling))
461 				continue;/* skip if itself or no cacheinfo */
462 
463 			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
464 				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
465 
466 				/*
467 				 * Comparing cache IDs only makes sense if the leaves
468 				 * belong to the same cache level of same type. Skip
469 				 * the check if level and type do not match.
470 				 */
471 				if (sib_leaf->level != this_leaf->level ||
472 				    sib_leaf->type != this_leaf->type)
473 					continue;
474 
475 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
476 					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
477 					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
478 					break;
479 				}
480 			}
481 		}
482 	}
483 
484 	/* cpu is no longer populated in the shared map */
485 	this_cpu_ci->cpu_map_populated = false;
486 }
487 
free_cache_attributes(unsigned int cpu)488 static void free_cache_attributes(unsigned int cpu)
489 {
490 	if (!per_cpu_cacheinfo(cpu))
491 		return;
492 
493 	cache_shared_cpu_map_remove(cpu);
494 }
495 
early_cache_level(unsigned int cpu)496 int __weak early_cache_level(unsigned int cpu)
497 {
498 	return -ENOENT;
499 }
500 
init_cache_level(unsigned int cpu)501 int __weak init_cache_level(unsigned int cpu)
502 {
503 	return -ENOENT;
504 }
505 
populate_cache_leaves(unsigned int cpu)506 int __weak populate_cache_leaves(unsigned int cpu)
507 {
508 	return -ENOENT;
509 }
510 
allocate_cache_info(int cpu)511 static inline int allocate_cache_info(int cpu)
512 {
513 	per_cpu_cacheinfo(cpu) = kzalloc_objs(struct cacheinfo,
514 					      cache_leaves(cpu), GFP_ATOMIC);
515 	if (!per_cpu_cacheinfo(cpu)) {
516 		cache_leaves(cpu) = 0;
517 		return -ENOMEM;
518 	}
519 
520 	return 0;
521 }
522 
fetch_cache_info(unsigned int cpu)523 int fetch_cache_info(unsigned int cpu)
524 {
525 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
526 	unsigned int levels = 0, split_levels = 0;
527 	int ret;
528 
529 	if (acpi_disabled) {
530 		ret = init_of_cache_level(cpu);
531 	} else {
532 		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
533 		if (!ret) {
534 			this_cpu_ci->num_levels = levels;
535 			/*
536 			 * This assumes that:
537 			 * - there cannot be any split caches (data/instruction)
538 			 *   above a unified cache
539 			 * - data/instruction caches come by pair
540 			 */
541 			this_cpu_ci->num_leaves = levels + split_levels;
542 		}
543 	}
544 
545 	if (ret || !cache_leaves(cpu)) {
546 		ret = early_cache_level(cpu);
547 		if (ret)
548 			return ret;
549 
550 		if (!cache_leaves(cpu))
551 			return -ENOENT;
552 
553 		this_cpu_ci->early_ci_levels = true;
554 	}
555 
556 	return allocate_cache_info(cpu);
557 }
558 
init_level_allocate_ci(unsigned int cpu)559 static inline int init_level_allocate_ci(unsigned int cpu)
560 {
561 	unsigned int early_leaves = cache_leaves(cpu);
562 
563 	/* Since early initialization/allocation of the cacheinfo is allowed
564 	 * via fetch_cache_info() and this also gets called as CPU hotplug
565 	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
566 	 * as it will happen only once (the cacheinfo memory is never freed).
567 	 * Just populate the cacheinfo. However, if the cacheinfo has been
568 	 * allocated early through the arch-specific early_cache_level() call,
569 	 * there is a chance the info is wrong (this can happen on arm64). In
570 	 * that case, call init_cache_level() anyway to give the arch-specific
571 	 * code a chance to make things right.
572 	 */
573 	if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
574 		return 0;
575 
576 	if (init_cache_level(cpu) || !cache_leaves(cpu))
577 		return -ENOENT;
578 
579 	/*
580 	 * Now that we have properly initialized the cache level info, make
581 	 * sure we don't try to do that again the next time we are called
582 	 * (e.g. as CPU hotplug callbacks).
583 	 */
584 	ci_cacheinfo(cpu)->early_ci_levels = false;
585 
586 	/*
587 	 * Some architectures (e.g., x86) do not use early initialization.
588 	 * Allocate memory now in such case.
589 	 */
590 	if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu))
591 		return 0;
592 
593 	kfree(per_cpu_cacheinfo(cpu));
594 	return allocate_cache_info(cpu);
595 }
596 
detect_cache_attributes(unsigned int cpu)597 int detect_cache_attributes(unsigned int cpu)
598 {
599 	int ret;
600 
601 	ret = init_level_allocate_ci(cpu);
602 	if (ret)
603 		return ret;
604 
605 	/*
606 	 * If LLC is valid the cache leaves were already populated so just go to
607 	 * update the cpu map.
608 	 */
609 	if (!last_level_cache_is_valid(cpu)) {
610 		/*
611 		 * populate_cache_leaves() may completely setup the cache leaves and
612 		 * shared_cpu_map or it may leave it partially setup.
613 		 */
614 		ret = populate_cache_leaves(cpu);
615 		if (ret)
616 			goto free_ci;
617 	}
618 
619 	/*
620 	 * For systems using DT for cache hierarchy, fw_token
621 	 * and shared_cpu_map will be set up here only if they are
622 	 * not populated already
623 	 */
624 	ret = cache_shared_cpu_map_setup(cpu);
625 	if (ret) {
626 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
627 		goto free_ci;
628 	}
629 
630 	return 0;
631 
632 free_ci:
633 	free_cache_attributes(cpu);
634 	return ret;
635 }
636 
637 /* pointer to cpuX/cache device */
638 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
639 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
640 
641 static cpumask_t cache_dev_map;
642 
643 /* pointer to array of devices for cpuX/cache/indexY */
644 static DEFINE_PER_CPU(struct device **, ci_index_dev);
645 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
646 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
647 
648 #define show_one(file_name, object)				\
649 static ssize_t file_name##_show(struct device *dev,		\
650 		struct device_attribute *attr, char *buf)	\
651 {								\
652 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
653 	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
654 }
655 
656 show_one(id, id);
657 show_one(level, level);
658 show_one(coherency_line_size, coherency_line_size);
659 show_one(number_of_sets, number_of_sets);
660 show_one(physical_line_partition, physical_line_partition);
661 show_one(ways_of_associativity, ways_of_associativity);
662 
size_show(struct device * dev,struct device_attribute * attr,char * buf)663 static ssize_t size_show(struct device *dev,
664 			 struct device_attribute *attr, char *buf)
665 {
666 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
667 
668 	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
669 }
670 
shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)671 static ssize_t shared_cpu_map_show(struct device *dev,
672 				   struct device_attribute *attr, char *buf)
673 {
674 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
675 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
676 
677 	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
678 }
679 
shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)680 static ssize_t shared_cpu_list_show(struct device *dev,
681 				    struct device_attribute *attr, char *buf)
682 {
683 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
684 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
685 
686 	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
687 }
688 
type_show(struct device * dev,struct device_attribute * attr,char * buf)689 static ssize_t type_show(struct device *dev,
690 			 struct device_attribute *attr, char *buf)
691 {
692 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
693 	const char *output;
694 
695 	switch (this_leaf->type) {
696 	case CACHE_TYPE_DATA:
697 		output = "Data";
698 		break;
699 	case CACHE_TYPE_INST:
700 		output = "Instruction";
701 		break;
702 	case CACHE_TYPE_UNIFIED:
703 		output = "Unified";
704 		break;
705 	default:
706 		return -EINVAL;
707 	}
708 
709 	return sysfs_emit(buf, "%s\n", output);
710 }
711 
allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)712 static ssize_t allocation_policy_show(struct device *dev,
713 				      struct device_attribute *attr, char *buf)
714 {
715 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
716 	unsigned int ci_attr = this_leaf->attributes;
717 	const char *output;
718 
719 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
720 		output = "ReadWriteAllocate";
721 	else if (ci_attr & CACHE_READ_ALLOCATE)
722 		output = "ReadAllocate";
723 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
724 		output = "WriteAllocate";
725 	else
726 		return 0;
727 
728 	return sysfs_emit(buf, "%s\n", output);
729 }
730 
write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)731 static ssize_t write_policy_show(struct device *dev,
732 				 struct device_attribute *attr, char *buf)
733 {
734 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
735 	unsigned int ci_attr = this_leaf->attributes;
736 	int n = 0;
737 
738 	if (ci_attr & CACHE_WRITE_THROUGH)
739 		n = sysfs_emit(buf, "WriteThrough\n");
740 	else if (ci_attr & CACHE_WRITE_BACK)
741 		n = sysfs_emit(buf, "WriteBack\n");
742 	return n;
743 }
744 
745 static DEVICE_ATTR_RO(id);
746 static DEVICE_ATTR_RO(level);
747 static DEVICE_ATTR_RO(type);
748 static DEVICE_ATTR_RO(coherency_line_size);
749 static DEVICE_ATTR_RO(ways_of_associativity);
750 static DEVICE_ATTR_RO(number_of_sets);
751 static DEVICE_ATTR_RO(size);
752 static DEVICE_ATTR_RO(allocation_policy);
753 static DEVICE_ATTR_RO(write_policy);
754 static DEVICE_ATTR_RO(shared_cpu_map);
755 static DEVICE_ATTR_RO(shared_cpu_list);
756 static DEVICE_ATTR_RO(physical_line_partition);
757 
758 static struct attribute *cache_default_attrs[] = {
759 	&dev_attr_id.attr,
760 	&dev_attr_type.attr,
761 	&dev_attr_level.attr,
762 	&dev_attr_shared_cpu_map.attr,
763 	&dev_attr_shared_cpu_list.attr,
764 	&dev_attr_coherency_line_size.attr,
765 	&dev_attr_ways_of_associativity.attr,
766 	&dev_attr_number_of_sets.attr,
767 	&dev_attr_size.attr,
768 	&dev_attr_allocation_policy.attr,
769 	&dev_attr_write_policy.attr,
770 	&dev_attr_physical_line_partition.attr,
771 	NULL
772 };
773 
774 static umode_t
cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)775 cache_default_attrs_is_visible(struct kobject *kobj,
776 			       struct attribute *attr, int unused)
777 {
778 	struct device *dev = kobj_to_dev(kobj);
779 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
780 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
781 	umode_t mode = attr->mode;
782 
783 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
784 		return mode;
785 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
786 		return mode;
787 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
788 		return mode;
789 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
790 		return mode;
791 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
792 		return mode;
793 	if ((attr == &dev_attr_coherency_line_size.attr) &&
794 	    this_leaf->coherency_line_size)
795 		return mode;
796 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
797 	    this_leaf->size) /* allow 0 = full associativity */
798 		return mode;
799 	if ((attr == &dev_attr_number_of_sets.attr) &&
800 	    this_leaf->number_of_sets)
801 		return mode;
802 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
803 		return mode;
804 	if ((attr == &dev_attr_write_policy.attr) &&
805 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
806 		return mode;
807 	if ((attr == &dev_attr_allocation_policy.attr) &&
808 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
809 		return mode;
810 	if ((attr == &dev_attr_physical_line_partition.attr) &&
811 	    this_leaf->physical_line_partition)
812 		return mode;
813 
814 	return 0;
815 }
816 
817 static const struct attribute_group cache_default_group = {
818 	.attrs = cache_default_attrs,
819 	.is_visible = cache_default_attrs_is_visible,
820 };
821 
822 static const struct attribute_group *cache_default_groups[] = {
823 	&cache_default_group,
824 	NULL,
825 };
826 
827 static const struct attribute_group *cache_private_groups[] = {
828 	&cache_default_group,
829 	NULL, /* Place holder for private group */
830 	NULL,
831 };
832 
833 const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)834 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
835 {
836 	return NULL;
837 }
838 
839 static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo * this_leaf)840 cache_get_attribute_groups(struct cacheinfo *this_leaf)
841 {
842 	const struct attribute_group *priv_group =
843 			cache_get_priv_group(this_leaf);
844 
845 	if (!priv_group)
846 		return cache_default_groups;
847 
848 	if (!cache_private_groups[1])
849 		cache_private_groups[1] = priv_group;
850 
851 	return cache_private_groups;
852 }
853 
854 /* Add/Remove cache interface for CPU device */
cpu_cache_sysfs_exit(unsigned int cpu)855 static void cpu_cache_sysfs_exit(unsigned int cpu)
856 {
857 	int i;
858 	struct device *ci_dev;
859 
860 	if (per_cpu_index_dev(cpu)) {
861 		for (i = 0; i < cache_leaves(cpu); i++) {
862 			ci_dev = per_cache_index_dev(cpu, i);
863 			if (!ci_dev)
864 				continue;
865 			device_unregister(ci_dev);
866 		}
867 		kfree(per_cpu_index_dev(cpu));
868 		per_cpu_index_dev(cpu) = NULL;
869 	}
870 	device_unregister(per_cpu_cache_dev(cpu));
871 	per_cpu_cache_dev(cpu) = NULL;
872 }
873 
cpu_cache_sysfs_init(unsigned int cpu)874 static int cpu_cache_sysfs_init(unsigned int cpu)
875 {
876 	struct device *dev = get_cpu_device(cpu);
877 
878 	if (per_cpu_cacheinfo(cpu) == NULL)
879 		return -ENOENT;
880 
881 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
882 	if (IS_ERR(per_cpu_cache_dev(cpu)))
883 		return PTR_ERR(per_cpu_cache_dev(cpu));
884 
885 	/* Allocate all required memory */
886 	per_cpu_index_dev(cpu) = kzalloc_objs(struct device *,
887 					      cache_leaves(cpu), GFP_KERNEL);
888 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
889 		goto err_out;
890 
891 	return 0;
892 
893 err_out:
894 	cpu_cache_sysfs_exit(cpu);
895 	return -ENOMEM;
896 }
897 
cache_add_dev(unsigned int cpu)898 static int cache_add_dev(unsigned int cpu)
899 {
900 	unsigned int i;
901 	int rc;
902 	struct device *ci_dev, *parent;
903 	struct cacheinfo *this_leaf;
904 	const struct attribute_group **cache_groups;
905 
906 	rc = cpu_cache_sysfs_init(cpu);
907 	if (unlikely(rc < 0))
908 		return rc;
909 
910 	parent = per_cpu_cache_dev(cpu);
911 	for (i = 0; i < cache_leaves(cpu); i++) {
912 		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
913 		if (this_leaf->disable_sysfs)
914 			continue;
915 		if (this_leaf->type == CACHE_TYPE_NOCACHE)
916 			break;
917 		cache_groups = cache_get_attribute_groups(this_leaf);
918 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
919 					   "index%1u", i);
920 		if (IS_ERR(ci_dev)) {
921 			rc = PTR_ERR(ci_dev);
922 			goto err;
923 		}
924 		per_cache_index_dev(cpu, i) = ci_dev;
925 	}
926 	cpumask_set_cpu(cpu, &cache_dev_map);
927 
928 	return 0;
929 err:
930 	cpu_cache_sysfs_exit(cpu);
931 	return rc;
932 }
933 
cpu_map_shared_cache(bool online,unsigned int cpu,cpumask_t ** map)934 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
935 					 cpumask_t **map)
936 {
937 	struct cacheinfo *llc, *sib_llc;
938 	unsigned int sibling;
939 
940 	if (!last_level_cache_is_valid(cpu))
941 		return 0;
942 
943 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
944 
945 	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
946 		return 0;
947 
948 	if (online) {
949 		*map = &llc->shared_cpu_map;
950 		return cpumask_weight(*map);
951 	}
952 
953 	/* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
954 	for_each_cpu(sibling, &llc->shared_cpu_map) {
955 		if (sibling == cpu || !last_level_cache_is_valid(sibling))
956 			continue;
957 		sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
958 		*map = &sib_llc->shared_cpu_map;
959 		return cpumask_weight(*map);
960 	}
961 
962 	return 0;
963 }
964 
965 /*
966  * Calculate the size of the per-CPU data cache slice.  This can be
967  * used to estimate the size of the data cache slice that can be used
968  * by one CPU under ideal circumstances.  UNIFIED caches are counted
969  * in addition to DATA caches.  So, please consider code cache usage
970  * when use the result.
971  *
972  * Because the cache inclusive/non-inclusive information isn't
973  * available, we just use the size of the per-CPU slice of LLC to make
974  * the result more predictable across architectures.
975  */
update_per_cpu_data_slice_size_cpu(unsigned int cpu)976 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
977 {
978 	struct cpu_cacheinfo *ci;
979 	struct cacheinfo *llc;
980 	unsigned int nr_shared;
981 
982 	if (!last_level_cache_is_valid(cpu))
983 		return;
984 
985 	ci = ci_cacheinfo(cpu);
986 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
987 
988 	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
989 		return;
990 
991 	nr_shared = cpumask_weight(&llc->shared_cpu_map);
992 	if (nr_shared)
993 		ci->per_cpu_data_slice_size = llc->size / nr_shared;
994 }
995 
update_per_cpu_data_slice_size(bool cpu_online,unsigned int cpu,cpumask_t * cpu_map)996 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
997 					   cpumask_t *cpu_map)
998 {
999 	unsigned int icpu;
1000 
1001 	for_each_cpu(icpu, cpu_map) {
1002 		if (!cpu_online && icpu == cpu)
1003 			continue;
1004 		update_per_cpu_data_slice_size_cpu(icpu);
1005 		setup_pcp_cacheinfo(icpu);
1006 	}
1007 }
1008 
cacheinfo_cpu_online(unsigned int cpu)1009 static int cacheinfo_cpu_online(unsigned int cpu)
1010 {
1011 	int rc = detect_cache_attributes(cpu);
1012 	cpumask_t *cpu_map;
1013 
1014 	if (rc)
1015 		return rc;
1016 	rc = cache_add_dev(cpu);
1017 	if (rc)
1018 		goto err;
1019 	if (cpu_map_shared_cache(true, cpu, &cpu_map))
1020 		update_per_cpu_data_slice_size(true, cpu, cpu_map);
1021 	return 0;
1022 err:
1023 	free_cache_attributes(cpu);
1024 	return rc;
1025 }
1026 
cacheinfo_cpu_pre_down(unsigned int cpu)1027 static int cacheinfo_cpu_pre_down(unsigned int cpu)
1028 {
1029 	cpumask_t *cpu_map;
1030 	unsigned int nr_shared;
1031 
1032 	nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
1033 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
1034 		cpu_cache_sysfs_exit(cpu);
1035 
1036 	free_cache_attributes(cpu);
1037 	if (nr_shared > 1)
1038 		update_per_cpu_data_slice_size(false, cpu, cpu_map);
1039 	return 0;
1040 }
1041 
cacheinfo_sysfs_init(void)1042 static int __init cacheinfo_sysfs_init(void)
1043 {
1044 	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
1045 				 "base/cacheinfo:online",
1046 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
1047 }
1048 device_initcall(cacheinfo_sysfs_init);
1049