xref: /linux/drivers/accel/habanalabs/common/mmu/mmu_v1.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "../habanalabs.h"
9 #include "../../include/hw_ip/mmu/mmu_general.h"
10 
11 #include <linux/slab.h>
12 
13 #define MMU_V1_MAX_HOPS	(MMU_HOP4 + 1)
14 
get_hop_pte_addr(struct hl_ctx * ctx,struct hl_mmu_properties * mmu_prop,u64 * hop_addr_arr,u64 virt_addr,enum mmu_hop_num hop_idx)15 static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
16 					u64 *hop_addr_arr, u64 virt_addr, enum mmu_hop_num hop_idx)
17 {
18 	u64 mask, shift;
19 
20 	mask = mmu_prop->hop_masks[hop_idx];
21 	shift = mmu_prop->hop_shifts[hop_idx];
22 	return hop_addr_arr[hop_idx] +
23 			ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
24 }
25 
dram_default_mapping_init(struct hl_ctx * ctx)26 static int dram_default_mapping_init(struct hl_ctx *ctx)
27 {
28 	struct hl_device *hdev = ctx->hdev;
29 	struct asic_fixed_properties *prop = &hdev->asic_prop;
30 	u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
31 		hop2_pte_addr, hop3_pte_addr, pte_val;
32 	int rc, i, j, hop3_allocated = 0;
33 
34 	if ((!prop->dram_supports_virtual_memory) ||
35 			(!hdev->dram_default_page_mapping) ||
36 			(ctx->asid == HL_KERNEL_ASID_ID))
37 		return 0;
38 
39 	num_of_hop3 = prop->dram_size_for_default_page_mapping;
40 	do_div(num_of_hop3, prop->dram_page_size);
41 	do_div(num_of_hop3, HOP_PTE_ENTRIES_512);
42 
43 	/* add hop1 and hop2 */
44 	total_hops = num_of_hop3 + 2;
45 
46 	ctx->dram_default_hops = kcalloc(total_hops, HL_PTE_SIZE,  GFP_KERNEL);
47 	if (!ctx->dram_default_hops)
48 		return -ENOMEM;
49 
50 	hop0_addr = hl_mmu_dr_get_hop0_addr(ctx);
51 
52 	hop1_addr = hl_mmu_dr_alloc_hop(ctx);
53 	if (hop1_addr == ULLONG_MAX) {
54 		dev_err(hdev->dev, "failed to alloc hop 1\n");
55 		rc = -ENOMEM;
56 		goto hop1_err;
57 	}
58 
59 	ctx->dram_default_hops[total_hops - 1] = hop1_addr;
60 
61 	hop2_addr = hl_mmu_dr_alloc_hop(ctx);
62 	if (hop2_addr == ULLONG_MAX) {
63 		dev_err(hdev->dev, "failed to alloc hop 2\n");
64 		rc = -ENOMEM;
65 		goto hop2_err;
66 	}
67 
68 	ctx->dram_default_hops[total_hops - 2] = hop2_addr;
69 
70 	for (i = 0 ; i < num_of_hop3 ; i++) {
71 		ctx->dram_default_hops[i] = hl_mmu_dr_alloc_hop(ctx);
72 		if (ctx->dram_default_hops[i] == ULLONG_MAX) {
73 			dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
74 			rc = -ENOMEM;
75 			goto hop3_err;
76 		}
77 		hop3_allocated++;
78 	}
79 
80 	/* need only pte 0 in hops 0 and 1 */
81 	pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
82 	hl_mmu_dr_write_pte(ctx, hop0_addr, pte_val);
83 
84 	pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
85 	hl_mmu_dr_write_pte(ctx, hop1_addr, pte_val);
86 	hl_mmu_dr_get_pte(ctx, hop1_addr);
87 
88 	hop2_pte_addr = hop2_addr;
89 	for (i = 0 ; i < num_of_hop3 ; i++) {
90 		pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) |
91 				PAGE_PRESENT_MASK;
92 		hl_mmu_dr_write_pte(ctx, hop2_pte_addr, pte_val);
93 		hl_mmu_dr_get_pte(ctx, hop2_addr);
94 		hop2_pte_addr += HL_PTE_SIZE;
95 	}
96 
97 	pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) |
98 			LAST_MASK | PAGE_PRESENT_MASK;
99 
100 	for (i = 0 ; i < num_of_hop3 ; i++) {
101 		hop3_pte_addr = ctx->dram_default_hops[i];
102 		for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) {
103 			hl_mmu_dr_write_final_pte(ctx, hop3_pte_addr, pte_val);
104 			hl_mmu_dr_get_pte(ctx, ctx->dram_default_hops[i]);
105 			hop3_pte_addr += HL_PTE_SIZE;
106 		}
107 	}
108 
109 	hl_mmu_dr_flush(ctx);
110 
111 	return 0;
112 
113 hop3_err:
114 	for (i = 0 ; i < hop3_allocated ; i++)
115 		hl_mmu_dr_free_hop(ctx, ctx->dram_default_hops[i]);
116 
117 	hl_mmu_dr_free_hop(ctx, hop2_addr);
118 hop2_err:
119 	hl_mmu_dr_free_hop(ctx, hop1_addr);
120 hop1_err:
121 	kfree(ctx->dram_default_hops);
122 
123 	return rc;
124 }
125 
dram_default_mapping_fini(struct hl_ctx * ctx)126 static void dram_default_mapping_fini(struct hl_ctx *ctx)
127 {
128 	struct hl_device *hdev = ctx->hdev;
129 	struct asic_fixed_properties *prop = &hdev->asic_prop;
130 	u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
131 		hop2_pte_addr, hop3_pte_addr;
132 	int i, j;
133 
134 	if ((!prop->dram_supports_virtual_memory) ||
135 			(!hdev->dram_default_page_mapping) ||
136 			(ctx->asid == HL_KERNEL_ASID_ID))
137 		return;
138 
139 	num_of_hop3 = prop->dram_size_for_default_page_mapping;
140 	do_div(num_of_hop3, prop->dram_page_size);
141 	do_div(num_of_hop3, HOP_PTE_ENTRIES_512);
142 
143 	hop0_addr = hl_mmu_dr_get_hop0_addr(ctx);
144 	/* add hop1 and hop2 */
145 	total_hops = num_of_hop3 + 2;
146 	hop1_addr = ctx->dram_default_hops[total_hops - 1];
147 	hop2_addr = ctx->dram_default_hops[total_hops - 2];
148 
149 	for (i = 0 ; i < num_of_hop3 ; i++) {
150 		hop3_pte_addr = ctx->dram_default_hops[i];
151 		for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) {
152 			hl_mmu_dr_clear_pte(ctx, hop3_pte_addr);
153 			hl_mmu_dr_put_pte(ctx, ctx->dram_default_hops[i]);
154 			hop3_pte_addr += HL_PTE_SIZE;
155 		}
156 	}
157 
158 	hop2_pte_addr = hop2_addr;
159 	for (i = 0 ; i < num_of_hop3 ; i++) {
160 		hl_mmu_dr_clear_pte(ctx, hop2_pte_addr);
161 		hl_mmu_dr_put_pte(ctx, hop2_addr);
162 		hop2_pte_addr += HL_PTE_SIZE;
163 	}
164 
165 	hl_mmu_dr_clear_pte(ctx, hop1_addr);
166 	hl_mmu_dr_put_pte(ctx, hop1_addr);
167 	hl_mmu_dr_clear_pte(ctx, hop0_addr);
168 
169 	kfree(ctx->dram_default_hops);
170 
171 	hl_mmu_dr_flush(ctx);
172 }
173 
174 /**
175  * hl_mmu_v1_ctx_init() - initialize a context for using the MMU module.
176  * @ctx: pointer to the context structure to initialize.
177  *
178  * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
179  * page tables hops related to this context.
180  * Return: 0 on success, non-zero otherwise.
181  */
hl_mmu_v1_ctx_init(struct hl_ctx * ctx)182 static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx)
183 {
184 	hash_init(ctx->mmu_shadow_hash);
185 	return dram_default_mapping_init(ctx);
186 }
187 
188 /*
189  * hl_mmu_ctx_fini - disable a ctx from using the mmu module
190  *
191  * @ctx: pointer to the context structure
192  *
193  * This function does the following:
194  * - Free any pgts which were not freed yet
195  * - Free the mutex
196  * - Free DRAM default page mapping hops
197  */
hl_mmu_v1_ctx_fini(struct hl_ctx * ctx)198 static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx)
199 {
200 	struct hl_device *hdev = ctx->hdev;
201 	struct pgt_info *pgt_info;
202 	struct hlist_node *tmp;
203 	int i;
204 
205 	dram_default_mapping_fini(ctx);
206 
207 	if (!hash_empty(ctx->mmu_shadow_hash))
208 		dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
209 			ctx->asid);
210 
211 	hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
212 		dev_err_ratelimited(hdev->dev,
213 			"pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
214 			pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
215 		hl_mmu_dr_free_pgt_node(ctx, pgt_info);
216 	}
217 }
218 
hl_mmu_v1_unmap(struct hl_ctx * ctx,u64 virt_addr,bool is_dram_addr)219 static int hl_mmu_v1_unmap(struct hl_ctx *ctx,
220 				u64 virt_addr, bool is_dram_addr)
221 {
222 	u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0;
223 	struct hl_device *hdev = ctx->hdev;
224 	struct asic_fixed_properties *prop = &hdev->asic_prop;
225 	struct hl_mmu_properties *mmu_prop;
226 	bool is_huge, clear_hop3 = true;
227 	int hop_idx;
228 
229 	/* shifts and masks are the same in PMMU and HPMMU, use one of them */
230 	mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
231 
232 	for (hop_idx = MMU_HOP0; hop_idx < MMU_HOP4; hop_idx++) {
233 		if (hop_idx == MMU_HOP0) {
234 			hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx);
235 		} else {
236 			hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte);
237 			if (hop_addr[hop_idx] == ULLONG_MAX)
238 				goto not_mapped;
239 		}
240 
241 		hop_pte_addr[hop_idx] =
242 				get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
243 
244 		curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
245 	}
246 
247 	is_huge = curr_pte & mmu_prop->last_mask;
248 
249 	if (is_dram_addr && !is_huge) {
250 		dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n");
251 		return -EFAULT;
252 	}
253 
254 	if (!is_huge) {
255 		hop_idx = MMU_HOP4;
256 		hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte);
257 		if (hop_addr[hop_idx] == ULLONG_MAX)
258 			goto not_mapped;
259 
260 		hop_pte_addr[hop_idx] =
261 				get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
262 		curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
263 		clear_hop3 = false;
264 	}
265 
266 	if (hdev->dram_default_page_mapping && is_dram_addr) {
267 		u64 default_pte = (prop->mmu_dram_default_page_addr &
268 				HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask |
269 					PAGE_PRESENT_MASK;
270 		if (curr_pte == default_pte) {
271 			dev_err(hdev->dev,
272 				"DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
273 					virt_addr);
274 			goto not_mapped;
275 		}
276 
277 		if (!(curr_pte & PAGE_PRESENT_MASK)) {
278 			dev_err(hdev->dev,
279 				"DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
280 					virt_addr);
281 			goto not_mapped;
282 		}
283 
284 		hop_idx = MMU_HOP3;
285 		hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[hop_idx], default_pte);
286 		hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx]);
287 	} else {
288 		if (!(curr_pte & PAGE_PRESENT_MASK))
289 			goto not_mapped;
290 
291 		if (hop_addr[MMU_HOP4])
292 			hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP4]);
293 		else
294 			hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP3]);
295 
296 		if (hop_addr[MMU_HOP4] && !hl_mmu_dr_put_pte(ctx, hop_addr[MMU_HOP4]))
297 			clear_hop3 = true;
298 
299 		if (!clear_hop3)
300 			goto mapped;
301 
302 		for (hop_idx = MMU_HOP3; hop_idx >= 0; hop_idx--) {
303 			hl_mmu_dr_clear_pte(ctx, hop_pte_addr[hop_idx]);
304 
305 			if (hop_idx == MMU_HOP0)
306 				break;
307 
308 			if (hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx]))
309 				goto mapped;
310 		}
311 	}
312 
313 mapped:
314 	return 0;
315 
316 not_mapped:
317 	dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
318 		virt_addr);
319 
320 	return -EINVAL;
321 }
322 
hl_mmu_v1_map(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 page_size,bool is_dram_addr)323 static int hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
324 			u32 page_size, bool is_dram_addr)
325 {
326 	u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0;
327 	struct hl_device *hdev = ctx->hdev;
328 	struct asic_fixed_properties *prop = &hdev->asic_prop;
329 	struct hl_mmu_properties *mmu_prop;
330 	bool is_huge, hop_new[MMU_V1_MAX_HOPS] = {false};
331 	int num_hops, hop_idx, prev_hop, rc = -ENOMEM;
332 
333 	/*
334 	 * This mapping function can map a page or a huge page. For huge page
335 	 * there are only 3 hops rather than 4. Currently the DRAM allocation
336 	 * uses huge pages only but user memory could have been allocated with
337 	 * one of the two page sizes. Since this is a common code for all the
338 	 * three cases, we need this hugs page check.
339 	 */
340 	if (is_dram_addr) {
341 		mmu_prop = &prop->dmmu;
342 		is_huge = true;
343 	} else if (page_size == prop->pmmu_huge.page_size) {
344 		mmu_prop = &prop->pmmu_huge;
345 		is_huge = true;
346 	} else {
347 		mmu_prop = &prop->pmmu;
348 		is_huge = false;
349 	}
350 
351 	num_hops = is_huge ? (MMU_V1_MAX_HOPS - 1) : MMU_V1_MAX_HOPS;
352 
353 	for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) {
354 		if (hop_idx == MMU_HOP0) {
355 			hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx);
356 		} else {
357 			hop_addr[hop_idx] =
358 				hl_mmu_dr_get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[hop_idx]);
359 			if (hop_addr[hop_idx] == ULLONG_MAX)
360 				goto err;
361 		}
362 
363 		hop_pte_addr[hop_idx] =
364 				get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
365 		curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
366 	}
367 
368 	if (hdev->dram_default_page_mapping && is_dram_addr) {
369 		u64 default_pte = (prop->mmu_dram_default_page_addr &
370 					HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask |
371 						PAGE_PRESENT_MASK;
372 
373 		if (curr_pte != default_pte) {
374 			dev_err(hdev->dev,
375 				"DRAM: mapping already exists for virt_addr 0x%llx\n",
376 					virt_addr);
377 			rc = -EINVAL;
378 			goto err;
379 		}
380 
381 		for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) {
382 			if (hop_new[hop_idx]) {
383 				dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n");
384 				rc = -EFAULT;
385 				goto err;
386 			}
387 		}
388 	} else if (curr_pte & PAGE_PRESENT_MASK) {
389 		dev_err(hdev->dev,
390 			"mapping already exists for virt_addr 0x%llx\n",
391 				virt_addr);
392 
393 		for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++)
394 			dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", hop_idx,
395 					*(u64 *) (uintptr_t) hop_pte_addr[hop_idx],
396 					hop_pte_addr[hop_idx]);
397 
398 		rc = -EINVAL;
399 		goto err;
400 	}
401 
402 	curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask
403 			| PAGE_PRESENT_MASK;
404 
405 	hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[num_hops - 1], curr_pte);
406 
407 	for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) {
408 		prev_hop = hop_idx - 1;
409 
410 		if (hop_new[hop_idx]) {
411 			curr_pte = (hop_addr[hop_idx] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
412 			hl_mmu_dr_write_pte(ctx, hop_pte_addr[prev_hop], curr_pte);
413 			if (hop_idx != MMU_HOP1)
414 				hl_mmu_dr_get_pte(ctx, hop_addr[prev_hop]);
415 		}
416 	}
417 
418 	hl_mmu_dr_get_pte(ctx, hop_addr[num_hops - 1]);
419 
420 	return 0;
421 
422 err:
423 	for (hop_idx = num_hops; hop_idx > MMU_HOP0; hop_idx--) {
424 		if (hop_new[hop_idx])
425 			hl_mmu_dr_free_hop(ctx, hop_addr[hop_idx]);
426 	}
427 
428 	return rc;
429 }
430 
431 /*
432  * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out
433  *
434  * @ctx: pointer to the context structure
435  *
436  */
hl_mmu_v1_swap_out(struct hl_ctx * ctx)437 static void hl_mmu_v1_swap_out(struct hl_ctx *ctx)
438 {
439 
440 }
441 
442 /*
443  * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in
444  *
445  * @ctx: pointer to the context structure
446  *
447  */
hl_mmu_v1_swap_in(struct hl_ctx * ctx)448 static void hl_mmu_v1_swap_in(struct hl_ctx *ctx)
449 {
450 
451 }
452 
hl_mmu_v1_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops)453 static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
454 				struct hl_mmu_hop_info *hops)
455 {
456 	struct hl_device *hdev = ctx->hdev;
457 	struct asic_fixed_properties *prop = &hdev->asic_prop;
458 	struct hl_mmu_properties *mmu_prop;
459 	bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge;
460 	int i, used_hops;
461 
462 	is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
463 						prop->dmmu.start_addr,
464 						prop->dmmu.end_addr);
465 	is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size,
466 						prop->pmmu.start_addr,
467 						prop->pmmu.end_addr);
468 	is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr,
469 						prop->pmmu_huge.page_size,
470 						prop->pmmu_huge.start_addr,
471 						prop->pmmu_huge.end_addr);
472 	if (is_dram_addr) {
473 		mmu_prop = &prop->dmmu;
474 		is_huge = true;
475 	} else if (is_pmmu_addr) {
476 		mmu_prop = &prop->pmmu;
477 		is_huge = false;
478 	} else if (is_pmmu_h_addr) {
479 		mmu_prop = &prop->pmmu_huge;
480 		is_huge = true;
481 	} else {
482 		return -EINVAL;
483 	}
484 
485 	used_hops = mmu_prop->num_hops;
486 
487 	/* huge pages use lesser hops */
488 	if (is_huge)
489 		used_hops--;
490 
491 	hops->hop_info[0].hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx);
492 	hops->hop_info[0].hop_pte_addr =
493 			hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0,
494 					hops->hop_info[0].hop_addr, virt_addr);
495 	hops->hop_info[0].hop_pte_val =
496 			hdev->asic_funcs->read_pte(hdev,
497 						hops->hop_info[0].hop_pte_addr);
498 
499 	for (i = 1 ; i < used_hops ; i++) {
500 		hops->hop_info[i].hop_addr =
501 			hl_mmu_get_next_hop_addr(ctx,
502 					hops->hop_info[i - 1].hop_pte_val);
503 		if (hops->hop_info[i].hop_addr == ULLONG_MAX)
504 			return -EFAULT;
505 
506 		hops->hop_info[i].hop_pte_addr =
507 				hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
508 						hops->hop_info[i].hop_addr,
509 						virt_addr);
510 		hops->hop_info[i].hop_pte_val =
511 				hdev->asic_funcs->read_pte(hdev,
512 						hops->hop_info[i].hop_pte_addr);
513 
514 		if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
515 			return -EFAULT;
516 
517 		if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
518 			break;
519 	}
520 
521 	/* if passed over all hops then no last hop was found */
522 	if (i == mmu_prop->num_hops)
523 		return -EFAULT;
524 
525 	if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
526 		return -EFAULT;
527 
528 	hops->used_hops = i + 1;
529 
530 	return 0;
531 }
532 
533 /*
534  * hl_mmu_v1_prepare - prepare mmu  for working with mmu v1
535  *
536  * @hdev: pointer to the device structure
537  */
hl_mmu_v1_set_funcs(struct hl_device * hdev,struct hl_mmu_funcs * mmu)538 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu)
539 {
540 	mmu->init = hl_mmu_dr_init;
541 	mmu->fini = hl_mmu_dr_fini;
542 	mmu->ctx_init = hl_mmu_v1_ctx_init;
543 	mmu->ctx_fini = hl_mmu_v1_ctx_fini;
544 	mmu->map = hl_mmu_v1_map;
545 	mmu->unmap = hl_mmu_v1_unmap;
546 	mmu->flush = hl_mmu_dr_flush;
547 	mmu->swap_out = hl_mmu_v1_swap_out;
548 	mmu->swap_in = hl_mmu_v1_swap_in;
549 	mmu->get_tlb_info = hl_mmu_v1_get_tlb_info;
550 }
551