xref: /linux/arch/x86/kernel/cpu/common.c (revision f2586d921cea4feeddd1cc5ee3495700540dba8f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/set_memory.h>
66 #include <asm/traps.h>
67 #include <asm/sev.h>
68 
69 #include "cpu.h"
70 
71 u32 elf_hwcap2 __read_mostly;
72 
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76 
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79 
80 u16 get_llc_id(unsigned int cpu)
81 {
82 	return per_cpu(cpu_llc_id, cpu);
83 }
84 EXPORT_SYMBOL_GPL(get_llc_id);
85 
86 /* L2 cache ID of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
88 
89 static struct ppin_info {
90 	int	feature;
91 	int	msr_ppin_ctl;
92 	int	msr_ppin;
93 } ppin_info[] = {
94 	[X86_VENDOR_INTEL] = {
95 		.feature = X86_FEATURE_INTEL_PPIN,
96 		.msr_ppin_ctl = MSR_PPIN_CTL,
97 		.msr_ppin = MSR_PPIN
98 	},
99 	[X86_VENDOR_AMD] = {
100 		.feature = X86_FEATURE_AMD_PPIN,
101 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
102 		.msr_ppin = MSR_AMD_PPIN
103 	},
104 };
105 
106 static const struct x86_cpu_id ppin_cpuids[] = {
107 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
108 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
109 
110 	/* Legacy models without CPUID enumeration */
111 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
112 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
113 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
114 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
115 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
116 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
117 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
118 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
119 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
120 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
121 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
122 
123 	{}
124 };
125 
126 static void ppin_init(struct cpuinfo_x86 *c)
127 {
128 	const struct x86_cpu_id *id;
129 	unsigned long long val;
130 	struct ppin_info *info;
131 
132 	id = x86_match_cpu(ppin_cpuids);
133 	if (!id)
134 		return;
135 
136 	/*
137 	 * Testing the presence of the MSR is not enough. Need to check
138 	 * that the PPIN_CTL allows reading of the PPIN.
139 	 */
140 	info = (struct ppin_info *)id->driver_data;
141 
142 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
143 		goto clear_ppin;
144 
145 	if ((val & 3UL) == 1UL) {
146 		/* PPIN locked in disabled mode */
147 		goto clear_ppin;
148 	}
149 
150 	/* If PPIN is disabled, try to enable */
151 	if (!(val & 2UL)) {
152 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
153 		rdmsrl_safe(info->msr_ppin_ctl, &val);
154 	}
155 
156 	/* Is the enable bit set? */
157 	if (val & 2UL) {
158 		c->ppin = __rdmsr(info->msr_ppin);
159 		set_cpu_cap(c, info->feature);
160 		return;
161 	}
162 
163 clear_ppin:
164 	clear_cpu_cap(c, info->feature);
165 }
166 
167 static void default_init(struct cpuinfo_x86 *c)
168 {
169 #ifdef CONFIG_X86_64
170 	cpu_detect_cache_sizes(c);
171 #else
172 	/* Not much we can do here... */
173 	/* Check if at least it has cpuid */
174 	if (c->cpuid_level == -1) {
175 		/* No cpuid. It must be an ancient CPU */
176 		if (c->x86 == 4)
177 			strcpy(c->x86_model_id, "486");
178 		else if (c->x86 == 3)
179 			strcpy(c->x86_model_id, "386");
180 	}
181 #endif
182 }
183 
184 static const struct cpu_dev default_cpu = {
185 	.c_init		= default_init,
186 	.c_vendor	= "Unknown",
187 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
188 };
189 
190 static const struct cpu_dev *this_cpu = &default_cpu;
191 
192 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
193 #ifdef CONFIG_X86_64
194 	/*
195 	 * We need valid kernel segments for data and code in long mode too
196 	 * IRET will check the segment types  kkeil 2000/10/28
197 	 * Also sysret mandates a special GDT layout
198 	 *
199 	 * TLS descriptors are currently at a different place compared to i386.
200 	 * Hopefully nobody expects them at a fixed place (Wine?)
201 	 */
202 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
203 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
204 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
205 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
206 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
207 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
208 #else
209 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
210 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
211 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
212 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
213 	/*
214 	 * Segments used for calling PnP BIOS have byte granularity.
215 	 * They code segments and data segments have fixed 64k limits,
216 	 * the transfer segment sizes are set at run time.
217 	 */
218 	/* 32-bit code */
219 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
220 	/* 16-bit code */
221 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
222 	/* 16-bit data */
223 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
224 	/* 16-bit data */
225 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
226 	/* 16-bit data */
227 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
228 	/*
229 	 * The APM segments have byte granularity and their bases
230 	 * are set at run time.  All have 64k limits.
231 	 */
232 	/* 32-bit code */
233 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
234 	/* 16-bit code */
235 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
236 	/* data */
237 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
238 
239 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
240 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
241 #endif
242 } };
243 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
244 
245 #ifdef CONFIG_X86_64
246 static int __init x86_nopcid_setup(char *s)
247 {
248 	/* nopcid doesn't accept parameters */
249 	if (s)
250 		return -EINVAL;
251 
252 	/* do not emit a message if the feature is not present */
253 	if (!boot_cpu_has(X86_FEATURE_PCID))
254 		return 0;
255 
256 	setup_clear_cpu_cap(X86_FEATURE_PCID);
257 	pr_info("nopcid: PCID feature disabled\n");
258 	return 0;
259 }
260 early_param("nopcid", x86_nopcid_setup);
261 #endif
262 
263 static int __init x86_noinvpcid_setup(char *s)
264 {
265 	/* noinvpcid doesn't accept parameters */
266 	if (s)
267 		return -EINVAL;
268 
269 	/* do not emit a message if the feature is not present */
270 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
271 		return 0;
272 
273 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
274 	pr_info("noinvpcid: INVPCID feature disabled\n");
275 	return 0;
276 }
277 early_param("noinvpcid", x86_noinvpcid_setup);
278 
279 #ifdef CONFIG_X86_32
280 static int cachesize_override = -1;
281 static int disable_x86_serial_nr = 1;
282 
283 static int __init cachesize_setup(char *str)
284 {
285 	get_option(&str, &cachesize_override);
286 	return 1;
287 }
288 __setup("cachesize=", cachesize_setup);
289 
290 /* Standard macro to see if a specific flag is changeable */
291 static inline int flag_is_changeable_p(u32 flag)
292 {
293 	u32 f1, f2;
294 
295 	/*
296 	 * Cyrix and IDT cpus allow disabling of CPUID
297 	 * so the code below may return different results
298 	 * when it is executed before and after enabling
299 	 * the CPUID. Add "volatile" to not allow gcc to
300 	 * optimize the subsequent calls to this function.
301 	 */
302 	asm volatile ("pushfl		\n\t"
303 		      "pushfl		\n\t"
304 		      "popl %0		\n\t"
305 		      "movl %0, %1	\n\t"
306 		      "xorl %2, %0	\n\t"
307 		      "pushl %0		\n\t"
308 		      "popfl		\n\t"
309 		      "pushfl		\n\t"
310 		      "popl %0		\n\t"
311 		      "popfl		\n\t"
312 
313 		      : "=&r" (f1), "=&r" (f2)
314 		      : "ir" (flag));
315 
316 	return ((f1^f2) & flag) != 0;
317 }
318 
319 /* Probe for the CPUID instruction */
320 int have_cpuid_p(void)
321 {
322 	return flag_is_changeable_p(X86_EFLAGS_ID);
323 }
324 
325 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
326 {
327 	unsigned long lo, hi;
328 
329 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
330 		return;
331 
332 	/* Disable processor serial number: */
333 
334 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335 	lo |= 0x200000;
336 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
337 
338 	pr_notice("CPU serial number disabled.\n");
339 	clear_cpu_cap(c, X86_FEATURE_PN);
340 
341 	/* Disabling the serial number may affect the cpuid level */
342 	c->cpuid_level = cpuid_eax(0);
343 }
344 
345 static int __init x86_serial_nr_setup(char *s)
346 {
347 	disable_x86_serial_nr = 0;
348 	return 1;
349 }
350 __setup("serialnumber", x86_serial_nr_setup);
351 #else
352 static inline int flag_is_changeable_p(u32 flag)
353 {
354 	return 1;
355 }
356 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
357 {
358 }
359 #endif
360 
361 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
362 {
363 	if (cpu_has(c, X86_FEATURE_SMEP))
364 		cr4_set_bits(X86_CR4_SMEP);
365 }
366 
367 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
368 {
369 	unsigned long eflags = native_save_fl();
370 
371 	/* This should have been cleared long ago */
372 	BUG_ON(eflags & X86_EFLAGS_AC);
373 
374 	if (cpu_has(c, X86_FEATURE_SMAP))
375 		cr4_set_bits(X86_CR4_SMAP);
376 }
377 
378 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
379 {
380 	/* Check the boot processor, plus build option for UMIP. */
381 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
382 		goto out;
383 
384 	/* Check the current processor's cpuid bits. */
385 	if (!cpu_has(c, X86_FEATURE_UMIP))
386 		goto out;
387 
388 	cr4_set_bits(X86_CR4_UMIP);
389 
390 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
391 
392 	return;
393 
394 out:
395 	/*
396 	 * Make sure UMIP is disabled in case it was enabled in a
397 	 * previous boot (e.g., via kexec).
398 	 */
399 	cr4_clear_bits(X86_CR4_UMIP);
400 }
401 
402 /* These bits should not change their value after CPU init is finished. */
403 static const unsigned long cr4_pinned_mask =
404 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
405 	X86_CR4_FSGSBASE | X86_CR4_CET;
406 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
407 static unsigned long cr4_pinned_bits __ro_after_init;
408 
409 void native_write_cr0(unsigned long val)
410 {
411 	unsigned long bits_missing = 0;
412 
413 set_register:
414 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
415 
416 	if (static_branch_likely(&cr_pinning)) {
417 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
418 			bits_missing = X86_CR0_WP;
419 			val |= bits_missing;
420 			goto set_register;
421 		}
422 		/* Warn after we've set the missing bits. */
423 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
424 	}
425 }
426 EXPORT_SYMBOL(native_write_cr0);
427 
428 void __no_profile native_write_cr4(unsigned long val)
429 {
430 	unsigned long bits_changed = 0;
431 
432 set_register:
433 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
434 
435 	if (static_branch_likely(&cr_pinning)) {
436 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
437 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
438 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
439 			goto set_register;
440 		}
441 		/* Warn after we've corrected the changed bits. */
442 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
443 			  bits_changed);
444 	}
445 }
446 #if IS_MODULE(CONFIG_LKDTM)
447 EXPORT_SYMBOL_GPL(native_write_cr4);
448 #endif
449 
450 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
451 {
452 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
453 
454 	lockdep_assert_irqs_disabled();
455 
456 	newval = (cr4 & ~clear) | set;
457 	if (newval != cr4) {
458 		this_cpu_write(cpu_tlbstate.cr4, newval);
459 		__write_cr4(newval);
460 	}
461 }
462 EXPORT_SYMBOL(cr4_update_irqsoff);
463 
464 /* Read the CR4 shadow. */
465 unsigned long cr4_read_shadow(void)
466 {
467 	return this_cpu_read(cpu_tlbstate.cr4);
468 }
469 EXPORT_SYMBOL_GPL(cr4_read_shadow);
470 
471 void cr4_init(void)
472 {
473 	unsigned long cr4 = __read_cr4();
474 
475 	if (boot_cpu_has(X86_FEATURE_PCID))
476 		cr4 |= X86_CR4_PCIDE;
477 	if (static_branch_likely(&cr_pinning))
478 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
479 
480 	__write_cr4(cr4);
481 
482 	/* Initialize cr4 shadow for this CPU. */
483 	this_cpu_write(cpu_tlbstate.cr4, cr4);
484 }
485 
486 /*
487  * Once CPU feature detection is finished (and boot params have been
488  * parsed), record any of the sensitive CR bits that are set, and
489  * enable CR pinning.
490  */
491 static void __init setup_cr_pinning(void)
492 {
493 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
494 	static_key_enable(&cr_pinning.key);
495 }
496 
497 static __init int x86_nofsgsbase_setup(char *arg)
498 {
499 	/* Require an exact match without trailing characters. */
500 	if (strlen(arg))
501 		return 0;
502 
503 	/* Do not emit a message if the feature is not present. */
504 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
505 		return 1;
506 
507 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
508 	pr_info("FSGSBASE disabled via kernel command line\n");
509 	return 1;
510 }
511 __setup("nofsgsbase", x86_nofsgsbase_setup);
512 
513 /*
514  * Protection Keys are not available in 32-bit mode.
515  */
516 static bool pku_disabled;
517 
518 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
519 {
520 	if (c == &boot_cpu_data) {
521 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
522 			return;
523 		/*
524 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
525 		 * bit to be set.  Enforce it.
526 		 */
527 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
528 
529 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
530 		return;
531 	}
532 
533 	cr4_set_bits(X86_CR4_PKE);
534 	/* Load the default PKRU value */
535 	pkru_write_default();
536 }
537 
538 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
539 static __init int setup_disable_pku(char *arg)
540 {
541 	/*
542 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
543 	 * runtime checks are against OSPKE so clearing the
544 	 * bit does nothing.
545 	 *
546 	 * This way, we will see "pku" in cpuinfo, but not
547 	 * "ospke", which is exactly what we want.  It shows
548 	 * that the CPU has PKU, but the OS has not enabled it.
549 	 * This happens to be exactly how a system would look
550 	 * if we disabled the config option.
551 	 */
552 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
553 	pku_disabled = true;
554 	return 1;
555 }
556 __setup("nopku", setup_disable_pku);
557 #endif
558 
559 #ifdef CONFIG_X86_KERNEL_IBT
560 
561 __noendbr u64 ibt_save(bool disable)
562 {
563 	u64 msr = 0;
564 
565 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
566 		rdmsrl(MSR_IA32_S_CET, msr);
567 		if (disable)
568 			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
569 	}
570 
571 	return msr;
572 }
573 
574 __noendbr void ibt_restore(u64 save)
575 {
576 	u64 msr;
577 
578 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 		rdmsrl(MSR_IA32_S_CET, msr);
580 		msr &= ~CET_ENDBR_EN;
581 		msr |= (save & CET_ENDBR_EN);
582 		wrmsrl(MSR_IA32_S_CET, msr);
583 	}
584 }
585 
586 #endif
587 
588 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
589 {
590 	u64 msr = CET_ENDBR_EN;
591 
592 	if (!HAS_KERNEL_IBT ||
593 	    !cpu_feature_enabled(X86_FEATURE_IBT))
594 		return;
595 
596 	wrmsrl(MSR_IA32_S_CET, msr);
597 	cr4_set_bits(X86_CR4_CET);
598 
599 	if (!ibt_selftest()) {
600 		pr_err("IBT selftest: Failed!\n");
601 		wrmsrl(MSR_IA32_S_CET, 0);
602 		setup_clear_cpu_cap(X86_FEATURE_IBT);
603 		return;
604 	}
605 }
606 
607 __noendbr void cet_disable(void)
608 {
609 	if (cpu_feature_enabled(X86_FEATURE_IBT))
610 		wrmsrl(MSR_IA32_S_CET, 0);
611 }
612 
613 /*
614  * Some CPU features depend on higher CPUID levels, which may not always
615  * be available due to CPUID level capping or broken virtualization
616  * software.  Add those features to this table to auto-disable them.
617  */
618 struct cpuid_dependent_feature {
619 	u32 feature;
620 	u32 level;
621 };
622 
623 static const struct cpuid_dependent_feature
624 cpuid_dependent_features[] = {
625 	{ X86_FEATURE_MWAIT,		0x00000005 },
626 	{ X86_FEATURE_DCA,		0x00000009 },
627 	{ X86_FEATURE_XSAVE,		0x0000000d },
628 	{ 0, 0 }
629 };
630 
631 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
632 {
633 	const struct cpuid_dependent_feature *df;
634 
635 	for (df = cpuid_dependent_features; df->feature; df++) {
636 
637 		if (!cpu_has(c, df->feature))
638 			continue;
639 		/*
640 		 * Note: cpuid_level is set to -1 if unavailable, but
641 		 * extended_extended_level is set to 0 if unavailable
642 		 * and the legitimate extended levels are all negative
643 		 * when signed; hence the weird messing around with
644 		 * signs here...
645 		 */
646 		if (!((s32)df->level < 0 ?
647 		     (u32)df->level > (u32)c->extended_cpuid_level :
648 		     (s32)df->level > (s32)c->cpuid_level))
649 			continue;
650 
651 		clear_cpu_cap(c, df->feature);
652 		if (!warn)
653 			continue;
654 
655 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
656 			x86_cap_flag(df->feature), df->level);
657 	}
658 }
659 
660 /*
661  * Naming convention should be: <Name> [(<Codename>)]
662  * This table only is used unless init_<vendor>() below doesn't set it;
663  * in particular, if CPUID levels 0x80000002..4 are supported, this
664  * isn't used
665  */
666 
667 /* Look up CPU names by table lookup. */
668 static const char *table_lookup_model(struct cpuinfo_x86 *c)
669 {
670 #ifdef CONFIG_X86_32
671 	const struct legacy_cpu_model_info *info;
672 
673 	if (c->x86_model >= 16)
674 		return NULL;	/* Range check */
675 
676 	if (!this_cpu)
677 		return NULL;
678 
679 	info = this_cpu->legacy_models;
680 
681 	while (info->family) {
682 		if (info->family == c->x86)
683 			return info->model_names[c->x86_model];
684 		info++;
685 	}
686 #endif
687 	return NULL;		/* Not found */
688 }
689 
690 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
691 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
692 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
693 
694 #ifdef CONFIG_X86_32
695 /* The 32-bit entry code needs to find cpu_entry_area. */
696 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
697 #endif
698 
699 /* Load the original GDT from the per-cpu structure */
700 void load_direct_gdt(int cpu)
701 {
702 	struct desc_ptr gdt_descr;
703 
704 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
705 	gdt_descr.size = GDT_SIZE - 1;
706 	load_gdt(&gdt_descr);
707 }
708 EXPORT_SYMBOL_GPL(load_direct_gdt);
709 
710 /* Load a fixmap remapping of the per-cpu GDT */
711 void load_fixmap_gdt(int cpu)
712 {
713 	struct desc_ptr gdt_descr;
714 
715 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
716 	gdt_descr.size = GDT_SIZE - 1;
717 	load_gdt(&gdt_descr);
718 }
719 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
720 
721 /**
722  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
723  * @cpu:	The CPU number for which this is invoked
724  *
725  * Invoked during early boot to switch from early GDT and early per CPU to
726  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
727  * switch is implicit by loading the direct GDT. On 64bit this requires
728  * to update GSBASE.
729  */
730 void __init switch_gdt_and_percpu_base(int cpu)
731 {
732 	load_direct_gdt(cpu);
733 
734 #ifdef CONFIG_X86_64
735 	/*
736 	 * No need to load %gs. It is already correct.
737 	 *
738 	 * Writing %gs on 64bit would zero GSBASE which would make any per
739 	 * CPU operation up to the point of the wrmsrl() fault.
740 	 *
741 	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
742 	 * early mapping is still valid. That means the GSBASE update will
743 	 * lose any prior per CPU data which was not copied over in
744 	 * setup_per_cpu_areas().
745 	 *
746 	 * This works even with stackprotector enabled because the
747 	 * per CPU stack canary is 0 in both per CPU areas.
748 	 */
749 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
750 #else
751 	/*
752 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
753 	 * it is required to load FS again so that the 'hidden' part is
754 	 * updated from the new GDT. Up to this point the early per CPU
755 	 * translation is active. Any content of the early per CPU data
756 	 * which was not copied over in setup_per_cpu_areas() is lost.
757 	 */
758 	loadsegment(fs, __KERNEL_PERCPU);
759 #endif
760 }
761 
762 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
763 
764 static void get_model_name(struct cpuinfo_x86 *c)
765 {
766 	unsigned int *v;
767 	char *p, *q, *s;
768 
769 	if (c->extended_cpuid_level < 0x80000004)
770 		return;
771 
772 	v = (unsigned int *)c->x86_model_id;
773 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
774 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
775 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
776 	c->x86_model_id[48] = 0;
777 
778 	/* Trim whitespace */
779 	p = q = s = &c->x86_model_id[0];
780 
781 	while (*p == ' ')
782 		p++;
783 
784 	while (*p) {
785 		/* Note the last non-whitespace index */
786 		if (!isspace(*p))
787 			s = q;
788 
789 		*q++ = *p++;
790 	}
791 
792 	*(s + 1) = '\0';
793 }
794 
795 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
796 {
797 	unsigned int eax, ebx, ecx, edx;
798 
799 	c->x86_max_cores = 1;
800 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
801 		return;
802 
803 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
804 	if (eax & 0x1f)
805 		c->x86_max_cores = (eax >> 26) + 1;
806 }
807 
808 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
809 {
810 	unsigned int n, dummy, ebx, ecx, edx, l2size;
811 
812 	n = c->extended_cpuid_level;
813 
814 	if (n >= 0x80000005) {
815 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
816 		c->x86_cache_size = (ecx>>24) + (edx>>24);
817 #ifdef CONFIG_X86_64
818 		/* On K8 L1 TLB is inclusive, so don't count it */
819 		c->x86_tlbsize = 0;
820 #endif
821 	}
822 
823 	if (n < 0x80000006)	/* Some chips just has a large L1. */
824 		return;
825 
826 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
827 	l2size = ecx >> 16;
828 
829 #ifdef CONFIG_X86_64
830 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831 #else
832 	/* do processor-specific cache resizing */
833 	if (this_cpu->legacy_cache_size)
834 		l2size = this_cpu->legacy_cache_size(c, l2size);
835 
836 	/* Allow user to override all this if necessary. */
837 	if (cachesize_override != -1)
838 		l2size = cachesize_override;
839 
840 	if (l2size == 0)
841 		return;		/* Again, no L2 cache is possible */
842 #endif
843 
844 	c->x86_cache_size = l2size;
845 }
846 
847 u16 __read_mostly tlb_lli_4k[NR_INFO];
848 u16 __read_mostly tlb_lli_2m[NR_INFO];
849 u16 __read_mostly tlb_lli_4m[NR_INFO];
850 u16 __read_mostly tlb_lld_4k[NR_INFO];
851 u16 __read_mostly tlb_lld_2m[NR_INFO];
852 u16 __read_mostly tlb_lld_4m[NR_INFO];
853 u16 __read_mostly tlb_lld_1g[NR_INFO];
854 
855 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
856 {
857 	if (this_cpu->c_detect_tlb)
858 		this_cpu->c_detect_tlb(c);
859 
860 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
861 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
862 		tlb_lli_4m[ENTRIES]);
863 
864 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
865 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
866 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
867 }
868 
869 int detect_ht_early(struct cpuinfo_x86 *c)
870 {
871 #ifdef CONFIG_SMP
872 	u32 eax, ebx, ecx, edx;
873 
874 	if (!cpu_has(c, X86_FEATURE_HT))
875 		return -1;
876 
877 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
878 		return -1;
879 
880 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
881 		return -1;
882 
883 	cpuid(1, &eax, &ebx, &ecx, &edx);
884 
885 	smp_num_siblings = (ebx & 0xff0000) >> 16;
886 	if (smp_num_siblings == 1)
887 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
888 #endif
889 	return 0;
890 }
891 
892 void detect_ht(struct cpuinfo_x86 *c)
893 {
894 #ifdef CONFIG_SMP
895 	int index_msb, core_bits;
896 
897 	if (detect_ht_early(c) < 0)
898 		return;
899 
900 	index_msb = get_count_order(smp_num_siblings);
901 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
902 
903 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
904 
905 	index_msb = get_count_order(smp_num_siblings);
906 
907 	core_bits = get_count_order(c->x86_max_cores);
908 
909 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
910 				       ((1 << core_bits) - 1);
911 #endif
912 }
913 
914 static void get_cpu_vendor(struct cpuinfo_x86 *c)
915 {
916 	char *v = c->x86_vendor_id;
917 	int i;
918 
919 	for (i = 0; i < X86_VENDOR_NUM; i++) {
920 		if (!cpu_devs[i])
921 			break;
922 
923 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
924 		    (cpu_devs[i]->c_ident[1] &&
925 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
926 
927 			this_cpu = cpu_devs[i];
928 			c->x86_vendor = this_cpu->c_x86_vendor;
929 			return;
930 		}
931 	}
932 
933 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
934 		    "CPU: Your system may be unstable.\n", v);
935 
936 	c->x86_vendor = X86_VENDOR_UNKNOWN;
937 	this_cpu = &default_cpu;
938 }
939 
940 void cpu_detect(struct cpuinfo_x86 *c)
941 {
942 	/* Get vendor name */
943 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
944 	      (unsigned int *)&c->x86_vendor_id[0],
945 	      (unsigned int *)&c->x86_vendor_id[8],
946 	      (unsigned int *)&c->x86_vendor_id[4]);
947 
948 	c->x86 = 4;
949 	/* Intel-defined flags: level 0x00000001 */
950 	if (c->cpuid_level >= 0x00000001) {
951 		u32 junk, tfms, cap0, misc;
952 
953 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
954 		c->x86		= x86_family(tfms);
955 		c->x86_model	= x86_model(tfms);
956 		c->x86_stepping	= x86_stepping(tfms);
957 
958 		if (cap0 & (1<<19)) {
959 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
960 			c->x86_cache_alignment = c->x86_clflush_size;
961 		}
962 	}
963 }
964 
965 static void apply_forced_caps(struct cpuinfo_x86 *c)
966 {
967 	int i;
968 
969 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
970 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
971 		c->x86_capability[i] |= cpu_caps_set[i];
972 	}
973 }
974 
975 static void init_speculation_control(struct cpuinfo_x86 *c)
976 {
977 	/*
978 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
979 	 * and they also have a different bit for STIBP support. Also,
980 	 * a hypervisor might have set the individual AMD bits even on
981 	 * Intel CPUs, for finer-grained selection of what's available.
982 	 */
983 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
984 		set_cpu_cap(c, X86_FEATURE_IBRS);
985 		set_cpu_cap(c, X86_FEATURE_IBPB);
986 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
987 	}
988 
989 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
990 		set_cpu_cap(c, X86_FEATURE_STIBP);
991 
992 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
993 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
994 		set_cpu_cap(c, X86_FEATURE_SSBD);
995 
996 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
997 		set_cpu_cap(c, X86_FEATURE_IBRS);
998 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
999 	}
1000 
1001 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1002 		set_cpu_cap(c, X86_FEATURE_IBPB);
1003 
1004 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1005 		set_cpu_cap(c, X86_FEATURE_STIBP);
1006 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1007 	}
1008 
1009 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1010 		set_cpu_cap(c, X86_FEATURE_SSBD);
1011 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1012 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1013 	}
1014 }
1015 
1016 void get_cpu_cap(struct cpuinfo_x86 *c)
1017 {
1018 	u32 eax, ebx, ecx, edx;
1019 
1020 	/* Intel-defined flags: level 0x00000001 */
1021 	if (c->cpuid_level >= 0x00000001) {
1022 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1023 
1024 		c->x86_capability[CPUID_1_ECX] = ecx;
1025 		c->x86_capability[CPUID_1_EDX] = edx;
1026 	}
1027 
1028 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1029 	if (c->cpuid_level >= 0x00000006)
1030 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1031 
1032 	/* Additional Intel-defined flags: level 0x00000007 */
1033 	if (c->cpuid_level >= 0x00000007) {
1034 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1035 		c->x86_capability[CPUID_7_0_EBX] = ebx;
1036 		c->x86_capability[CPUID_7_ECX] = ecx;
1037 		c->x86_capability[CPUID_7_EDX] = edx;
1038 
1039 		/* Check valid sub-leaf index before accessing it */
1040 		if (eax >= 1) {
1041 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1042 			c->x86_capability[CPUID_7_1_EAX] = eax;
1043 		}
1044 	}
1045 
1046 	/* Extended state features: level 0x0000000d */
1047 	if (c->cpuid_level >= 0x0000000d) {
1048 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1049 
1050 		c->x86_capability[CPUID_D_1_EAX] = eax;
1051 	}
1052 
1053 	/* AMD-defined flags: level 0x80000001 */
1054 	eax = cpuid_eax(0x80000000);
1055 	c->extended_cpuid_level = eax;
1056 
1057 	if ((eax & 0xffff0000) == 0x80000000) {
1058 		if (eax >= 0x80000001) {
1059 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1060 
1061 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1062 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1063 		}
1064 	}
1065 
1066 	if (c->extended_cpuid_level >= 0x80000007) {
1067 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1068 
1069 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1070 		c->x86_power = edx;
1071 	}
1072 
1073 	if (c->extended_cpuid_level >= 0x80000008) {
1074 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1075 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1076 	}
1077 
1078 	if (c->extended_cpuid_level >= 0x8000000a)
1079 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1080 
1081 	if (c->extended_cpuid_level >= 0x8000001f)
1082 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1083 
1084 	if (c->extended_cpuid_level >= 0x80000021)
1085 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1086 
1087 	init_scattered_cpuid_features(c);
1088 	init_speculation_control(c);
1089 
1090 	/*
1091 	 * Clear/Set all flags overridden by options, after probe.
1092 	 * This needs to happen each time we re-probe, which may happen
1093 	 * several times during CPU initialization.
1094 	 */
1095 	apply_forced_caps(c);
1096 }
1097 
1098 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1099 {
1100 	u32 eax, ebx, ecx, edx;
1101 
1102 	if (c->extended_cpuid_level >= 0x80000008) {
1103 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1104 
1105 		c->x86_virt_bits = (eax >> 8) & 0xff;
1106 		c->x86_phys_bits = eax & 0xff;
1107 	}
1108 #ifdef CONFIG_X86_32
1109 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1110 		c->x86_phys_bits = 36;
1111 #endif
1112 	c->x86_cache_bits = c->x86_phys_bits;
1113 }
1114 
1115 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1116 {
1117 #ifdef CONFIG_X86_32
1118 	int i;
1119 
1120 	/*
1121 	 * First of all, decide if this is a 486 or higher
1122 	 * It's a 486 if we can modify the AC flag
1123 	 */
1124 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1125 		c->x86 = 4;
1126 	else
1127 		c->x86 = 3;
1128 
1129 	for (i = 0; i < X86_VENDOR_NUM; i++)
1130 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1131 			c->x86_vendor_id[0] = 0;
1132 			cpu_devs[i]->c_identify(c);
1133 			if (c->x86_vendor_id[0]) {
1134 				get_cpu_vendor(c);
1135 				break;
1136 			}
1137 		}
1138 #endif
1139 }
1140 
1141 #define NO_SPECULATION		BIT(0)
1142 #define NO_MELTDOWN		BIT(1)
1143 #define NO_SSB			BIT(2)
1144 #define NO_L1TF			BIT(3)
1145 #define NO_MDS			BIT(4)
1146 #define MSBDS_ONLY		BIT(5)
1147 #define NO_SWAPGS		BIT(6)
1148 #define NO_ITLB_MULTIHIT	BIT(7)
1149 #define NO_SPECTRE_V2		BIT(8)
1150 #define NO_MMIO			BIT(9)
1151 #define NO_EIBRS_PBRSB		BIT(10)
1152 
1153 #define VULNWL(vendor, family, model, whitelist)	\
1154 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1155 
1156 #define VULNWL_INTEL(model, whitelist)		\
1157 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1158 
1159 #define VULNWL_AMD(family, whitelist)		\
1160 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1161 
1162 #define VULNWL_HYGON(family, whitelist)		\
1163 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1164 
1165 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1166 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1167 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1168 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1169 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1170 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1171 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1172 
1173 	/* Intel Family 6 */
1174 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1175 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1176 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1177 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1178 
1179 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1180 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1181 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1182 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1183 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1184 
1185 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1186 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1187 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1188 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1189 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1190 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1191 
1192 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1193 
1194 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196 
1197 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1198 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1199 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1200 
1201 	/*
1202 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1203 	 * being documented as such in the APM).  But according to AMD, %gs is
1204 	 * updated non-speculatively, and the issuing of %gs-relative memory
1205 	 * operands will be blocked until the %gs update completes, which is
1206 	 * good enough for our purposes.
1207 	 */
1208 
1209 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1210 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1211 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1212 
1213 	/* AMD Family 0xf - 0x12 */
1214 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1215 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1216 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1217 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1218 
1219 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1220 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1221 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1222 
1223 	/* Zhaoxin Family 7 */
1224 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1225 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1226 	{}
1227 };
1228 
1229 #define VULNBL(vendor, family, model, blacklist)	\
1230 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1231 
1232 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1233 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1234 					    INTEL_FAM6_##model, steppings, \
1235 					    X86_FEATURE_ANY, issues)
1236 
1237 #define VULNBL_AMD(family, blacklist)		\
1238 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1239 
1240 #define VULNBL_HYGON(family, blacklist)		\
1241 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1242 
1243 #define SRBDS		BIT(0)
1244 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1245 #define MMIO		BIT(1)
1246 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1247 #define MMIO_SBDS	BIT(2)
1248 /* CPU is affected by RETbleed, speculating where you would not expect it */
1249 #define RETBLEED	BIT(3)
1250 /* CPU is affected by SMT (cross-thread) return predictions */
1251 #define SMT_RSB		BIT(4)
1252 /* CPU is affected by SRSO */
1253 #define SRSO		BIT(5)
1254 /* CPU is affected by GDS */
1255 #define GDS		BIT(6)
1256 
1257 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1258 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1259 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1260 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1261 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1262 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1263 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1264 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1265 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1266 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1267 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1268 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1269 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED),
1270 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED | GDS),
1271 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		SRBDS | MMIO | RETBLEED | GDS),
1272 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1273 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1274 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1275 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1276 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1277 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1278 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1279 	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1280 	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1281 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1282 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1283 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1284 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1285 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1286 
1287 	VULNBL_AMD(0x15, RETBLEED),
1288 	VULNBL_AMD(0x16, RETBLEED),
1289 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1290 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1291 	VULNBL_AMD(0x19, SRSO),
1292 	{}
1293 };
1294 
1295 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1296 {
1297 	const struct x86_cpu_id *m = x86_match_cpu(table);
1298 
1299 	return m && !!(m->driver_data & which);
1300 }
1301 
1302 u64 x86_read_arch_cap_msr(void)
1303 {
1304 	u64 ia32_cap = 0;
1305 
1306 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1307 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1308 
1309 	return ia32_cap;
1310 }
1311 
1312 static bool arch_cap_mmio_immune(u64 ia32_cap)
1313 {
1314 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1315 		ia32_cap & ARCH_CAP_PSDP_NO &&
1316 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1317 }
1318 
1319 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1320 {
1321 	u64 ia32_cap = x86_read_arch_cap_msr();
1322 
1323 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1324 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1325 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1326 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1327 
1328 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1329 		return;
1330 
1331 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1332 
1333 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1334 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1335 
1336 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1337 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1338 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1339 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1340 
1341 	/*
1342 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1343 	 * flag and protect from vendor-specific bugs via the whitelist.
1344 	 */
1345 	if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1346 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1347 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1348 		    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1349 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1350 	}
1351 
1352 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1353 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1354 		setup_force_cpu_bug(X86_BUG_MDS);
1355 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1356 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1357 	}
1358 
1359 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1360 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1361 
1362 	/*
1363 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1364 	 *	- TSX is supported or
1365 	 *	- TSX_CTRL is present
1366 	 *
1367 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1368 	 * the kernel boot e.g. kexec.
1369 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1370 	 * update is not present or running as guest that don't get TSX_CTRL.
1371 	 */
1372 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1373 	    (cpu_has(c, X86_FEATURE_RTM) ||
1374 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1375 		setup_force_cpu_bug(X86_BUG_TAA);
1376 
1377 	/*
1378 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1379 	 * in the vulnerability blacklist.
1380 	 *
1381 	 * Some of the implications and mitigation of Shared Buffers Data
1382 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1383 	 * SRBDS.
1384 	 */
1385 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1386 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1387 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1388 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1389 
1390 	/*
1391 	 * Processor MMIO Stale Data bug enumeration
1392 	 *
1393 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1394 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1395 	 * not want the guest to enumerate the bug.
1396 	 *
1397 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1398 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1399 	 */
1400 	if (!arch_cap_mmio_immune(ia32_cap)) {
1401 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1402 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1403 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1404 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1405 	}
1406 
1407 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1408 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1409 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1410 	}
1411 
1412 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1413 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1414 
1415 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1416 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1417 			setup_force_cpu_bug(X86_BUG_SRSO);
1418 	}
1419 
1420 	/*
1421 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1422 	 * an affected processor, the VMM may have disabled the use of GATHER by
1423 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1424 	 * which means that AVX will be disabled.
1425 	 */
1426 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1427 	    boot_cpu_has(X86_FEATURE_AVX))
1428 		setup_force_cpu_bug(X86_BUG_GDS);
1429 
1430 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1431 		return;
1432 
1433 	/* Rogue Data Cache Load? No! */
1434 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1435 		return;
1436 
1437 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1438 
1439 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1440 		return;
1441 
1442 	setup_force_cpu_bug(X86_BUG_L1TF);
1443 }
1444 
1445 /*
1446  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1447  * unfortunately, that's not true in practice because of early VIA
1448  * chips and (more importantly) broken virtualizers that are not easy
1449  * to detect. In the latter case it doesn't even *fail* reliably, so
1450  * probing for it doesn't even work. Disable it completely on 32-bit
1451  * unless we can find a reliable way to detect all the broken cases.
1452  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1453  */
1454 static void detect_nopl(void)
1455 {
1456 #ifdef CONFIG_X86_32
1457 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1458 #else
1459 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1460 #endif
1461 }
1462 
1463 /*
1464  * We parse cpu parameters early because fpu__init_system() is executed
1465  * before parse_early_param().
1466  */
1467 static void __init cpu_parse_early_param(void)
1468 {
1469 	char arg[128];
1470 	char *argptr = arg, *opt;
1471 	int arglen, taint = 0;
1472 
1473 #ifdef CONFIG_X86_32
1474 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1475 #ifdef CONFIG_MATH_EMULATION
1476 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1477 #else
1478 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1479 #endif
1480 
1481 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1482 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1483 #endif
1484 
1485 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1486 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1487 
1488 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1489 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1490 
1491 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1492 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1493 
1494 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1495 	if (arglen <= 0)
1496 		return;
1497 
1498 	pr_info("Clearing CPUID bits:");
1499 
1500 	while (argptr) {
1501 		bool found __maybe_unused = false;
1502 		unsigned int bit;
1503 
1504 		opt = strsep(&argptr, ",");
1505 
1506 		/*
1507 		 * Handle naked numbers first for feature flags which don't
1508 		 * have names.
1509 		 */
1510 		if (!kstrtouint(opt, 10, &bit)) {
1511 			if (bit < NCAPINTS * 32) {
1512 
1513 				/* empty-string, i.e., ""-defined feature flags */
1514 				if (!x86_cap_flags[bit])
1515 					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1516 				else
1517 					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1518 
1519 				setup_clear_cpu_cap(bit);
1520 				taint++;
1521 			}
1522 			/*
1523 			 * The assumption is that there are no feature names with only
1524 			 * numbers in the name thus go to the next argument.
1525 			 */
1526 			continue;
1527 		}
1528 
1529 		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1530 			if (!x86_cap_flag(bit))
1531 				continue;
1532 
1533 			if (strcmp(x86_cap_flag(bit), opt))
1534 				continue;
1535 
1536 			pr_cont(" %s", opt);
1537 			setup_clear_cpu_cap(bit);
1538 			taint++;
1539 			found = true;
1540 			break;
1541 		}
1542 
1543 		if (!found)
1544 			pr_cont(" (unknown: %s)", opt);
1545 	}
1546 	pr_cont("\n");
1547 
1548 	if (taint)
1549 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1550 }
1551 
1552 /*
1553  * Do minimum CPU detection early.
1554  * Fields really needed: vendor, cpuid_level, family, model, mask,
1555  * cache alignment.
1556  * The others are not touched to avoid unwanted side effects.
1557  *
1558  * WARNING: this function is only called on the boot CPU.  Don't add code
1559  * here that is supposed to run on all CPUs.
1560  */
1561 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1562 {
1563 #ifdef CONFIG_X86_64
1564 	c->x86_clflush_size = 64;
1565 	c->x86_phys_bits = 36;
1566 	c->x86_virt_bits = 48;
1567 #else
1568 	c->x86_clflush_size = 32;
1569 	c->x86_phys_bits = 32;
1570 	c->x86_virt_bits = 32;
1571 #endif
1572 	c->x86_cache_alignment = c->x86_clflush_size;
1573 
1574 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1575 	c->extended_cpuid_level = 0;
1576 
1577 	if (!have_cpuid_p())
1578 		identify_cpu_without_cpuid(c);
1579 
1580 	/* cyrix could have cpuid enabled via c_identify()*/
1581 	if (have_cpuid_p()) {
1582 		cpu_detect(c);
1583 		get_cpu_vendor(c);
1584 		get_cpu_cap(c);
1585 		get_cpu_address_sizes(c);
1586 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1587 		cpu_parse_early_param();
1588 
1589 		if (this_cpu->c_early_init)
1590 			this_cpu->c_early_init(c);
1591 
1592 		c->cpu_index = 0;
1593 		filter_cpuid_features(c, false);
1594 
1595 		if (this_cpu->c_bsp_init)
1596 			this_cpu->c_bsp_init(c);
1597 	} else {
1598 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1599 	}
1600 
1601 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1602 
1603 	cpu_set_bug_bits(c);
1604 
1605 	sld_setup(c);
1606 
1607 #ifdef CONFIG_X86_32
1608 	/*
1609 	 * Regardless of whether PCID is enumerated, the SDM says
1610 	 * that it can't be enabled in 32-bit mode.
1611 	 */
1612 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1613 #endif
1614 
1615 	/*
1616 	 * Later in the boot process pgtable_l5_enabled() relies on
1617 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1618 	 * enabled by this point we need to clear the feature bit to avoid
1619 	 * false-positives at the later stage.
1620 	 *
1621 	 * pgtable_l5_enabled() can be false here for several reasons:
1622 	 *  - 5-level paging is disabled compile-time;
1623 	 *  - it's 32-bit kernel;
1624 	 *  - machine doesn't support 5-level paging;
1625 	 *  - user specified 'no5lvl' in kernel command line.
1626 	 */
1627 	if (!pgtable_l5_enabled())
1628 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1629 
1630 	detect_nopl();
1631 }
1632 
1633 void __init early_cpu_init(void)
1634 {
1635 	const struct cpu_dev *const *cdev;
1636 	int count = 0;
1637 
1638 #ifdef CONFIG_PROCESSOR_SELECT
1639 	pr_info("KERNEL supported cpus:\n");
1640 #endif
1641 
1642 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1643 		const struct cpu_dev *cpudev = *cdev;
1644 
1645 		if (count >= X86_VENDOR_NUM)
1646 			break;
1647 		cpu_devs[count] = cpudev;
1648 		count++;
1649 
1650 #ifdef CONFIG_PROCESSOR_SELECT
1651 		{
1652 			unsigned int j;
1653 
1654 			for (j = 0; j < 2; j++) {
1655 				if (!cpudev->c_ident[j])
1656 					continue;
1657 				pr_info("  %s %s\n", cpudev->c_vendor,
1658 					cpudev->c_ident[j]);
1659 			}
1660 		}
1661 #endif
1662 	}
1663 	early_identify_cpu(&boot_cpu_data);
1664 }
1665 
1666 static bool detect_null_seg_behavior(void)
1667 {
1668 	/*
1669 	 * Empirically, writing zero to a segment selector on AMD does
1670 	 * not clear the base, whereas writing zero to a segment
1671 	 * selector on Intel does clear the base.  Intel's behavior
1672 	 * allows slightly faster context switches in the common case
1673 	 * where GS is unused by the prev and next threads.
1674 	 *
1675 	 * Since neither vendor documents this anywhere that I can see,
1676 	 * detect it directly instead of hard-coding the choice by
1677 	 * vendor.
1678 	 *
1679 	 * I've designated AMD's behavior as the "bug" because it's
1680 	 * counterintuitive and less friendly.
1681 	 */
1682 
1683 	unsigned long old_base, tmp;
1684 	rdmsrl(MSR_FS_BASE, old_base);
1685 	wrmsrl(MSR_FS_BASE, 1);
1686 	loadsegment(fs, 0);
1687 	rdmsrl(MSR_FS_BASE, tmp);
1688 	wrmsrl(MSR_FS_BASE, old_base);
1689 	return tmp == 0;
1690 }
1691 
1692 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1693 {
1694 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1695 	if (!IS_ENABLED(CONFIG_X86_64))
1696 		return;
1697 
1698 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1699 		return;
1700 
1701 	/*
1702 	 * CPUID bit above wasn't set. If this kernel is still running
1703 	 * as a HV guest, then the HV has decided not to advertize
1704 	 * that CPUID bit for whatever reason.	For example, one
1705 	 * member of the migration pool might be vulnerable.  Which
1706 	 * means, the bug is present: set the BUG flag and return.
1707 	 */
1708 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1709 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1710 		return;
1711 	}
1712 
1713 	/*
1714 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1715 	 * 0x18 is the respective family for Hygon.
1716 	 */
1717 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1718 	    detect_null_seg_behavior())
1719 		return;
1720 
1721 	/* All the remaining ones are affected */
1722 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1723 }
1724 
1725 static void generic_identify(struct cpuinfo_x86 *c)
1726 {
1727 	c->extended_cpuid_level = 0;
1728 
1729 	if (!have_cpuid_p())
1730 		identify_cpu_without_cpuid(c);
1731 
1732 	/* cyrix could have cpuid enabled via c_identify()*/
1733 	if (!have_cpuid_p())
1734 		return;
1735 
1736 	cpu_detect(c);
1737 
1738 	get_cpu_vendor(c);
1739 
1740 	get_cpu_cap(c);
1741 
1742 	get_cpu_address_sizes(c);
1743 
1744 	if (c->cpuid_level >= 0x00000001) {
1745 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1746 #ifdef CONFIG_X86_32
1747 # ifdef CONFIG_SMP
1748 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1749 # else
1750 		c->apicid = c->initial_apicid;
1751 # endif
1752 #endif
1753 		c->phys_proc_id = c->initial_apicid;
1754 	}
1755 
1756 	get_model_name(c); /* Default name */
1757 
1758 	/*
1759 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1760 	 * systems that run Linux at CPL > 0 may or may not have the
1761 	 * issue, but, even if they have the issue, there's absolutely
1762 	 * nothing we can do about it because we can't use the real IRET
1763 	 * instruction.
1764 	 *
1765 	 * NB: For the time being, only 32-bit kernels support
1766 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1767 	 * whether to apply espfix using paravirt hooks.  If any
1768 	 * non-paravirt system ever shows up that does *not* have the
1769 	 * ESPFIX issue, we can change this.
1770 	 */
1771 #ifdef CONFIG_X86_32
1772 	set_cpu_bug(c, X86_BUG_ESPFIX);
1773 #endif
1774 }
1775 
1776 /*
1777  * Validate that ACPI/mptables have the same information about the
1778  * effective APIC id and update the package map.
1779  */
1780 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1781 {
1782 #ifdef CONFIG_SMP
1783 	unsigned int apicid, cpu = smp_processor_id();
1784 
1785 	apicid = apic->cpu_present_to_apicid(cpu);
1786 
1787 	if (apicid != c->apicid) {
1788 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1789 		       cpu, apicid, c->initial_apicid);
1790 	}
1791 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1792 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1793 #else
1794 	c->logical_proc_id = 0;
1795 #endif
1796 }
1797 
1798 /*
1799  * This does the hard work of actually picking apart the CPU stuff...
1800  */
1801 static void identify_cpu(struct cpuinfo_x86 *c)
1802 {
1803 	int i;
1804 
1805 	c->loops_per_jiffy = loops_per_jiffy;
1806 	c->x86_cache_size = 0;
1807 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1808 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1809 	c->x86_vendor_id[0] = '\0'; /* Unset */
1810 	c->x86_model_id[0] = '\0';  /* Unset */
1811 	c->x86_max_cores = 1;
1812 	c->x86_coreid_bits = 0;
1813 	c->cu_id = 0xff;
1814 #ifdef CONFIG_X86_64
1815 	c->x86_clflush_size = 64;
1816 	c->x86_phys_bits = 36;
1817 	c->x86_virt_bits = 48;
1818 #else
1819 	c->cpuid_level = -1;	/* CPUID not detected */
1820 	c->x86_clflush_size = 32;
1821 	c->x86_phys_bits = 32;
1822 	c->x86_virt_bits = 32;
1823 #endif
1824 	c->x86_cache_alignment = c->x86_clflush_size;
1825 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1826 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1827 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1828 #endif
1829 
1830 	generic_identify(c);
1831 
1832 	if (this_cpu->c_identify)
1833 		this_cpu->c_identify(c);
1834 
1835 	/* Clear/Set all flags overridden by options, after probe */
1836 	apply_forced_caps(c);
1837 
1838 #ifdef CONFIG_X86_64
1839 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1840 #endif
1841 
1842 	/*
1843 	 * Vendor-specific initialization.  In this section we
1844 	 * canonicalize the feature flags, meaning if there are
1845 	 * features a certain CPU supports which CPUID doesn't
1846 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1847 	 * we handle them here.
1848 	 *
1849 	 * At the end of this section, c->x86_capability better
1850 	 * indicate the features this CPU genuinely supports!
1851 	 */
1852 	if (this_cpu->c_init)
1853 		this_cpu->c_init(c);
1854 
1855 	/* Disable the PN if appropriate */
1856 	squash_the_stupid_serial_number(c);
1857 
1858 	/* Set up SMEP/SMAP/UMIP */
1859 	setup_smep(c);
1860 	setup_smap(c);
1861 	setup_umip(c);
1862 
1863 	/* Enable FSGSBASE instructions if available. */
1864 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1865 		cr4_set_bits(X86_CR4_FSGSBASE);
1866 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1867 	}
1868 
1869 	/*
1870 	 * The vendor-specific functions might have changed features.
1871 	 * Now we do "generic changes."
1872 	 */
1873 
1874 	/* Filter out anything that depends on CPUID levels we don't have */
1875 	filter_cpuid_features(c, true);
1876 
1877 	/* If the model name is still unset, do table lookup. */
1878 	if (!c->x86_model_id[0]) {
1879 		const char *p;
1880 		p = table_lookup_model(c);
1881 		if (p)
1882 			strcpy(c->x86_model_id, p);
1883 		else
1884 			/* Last resort... */
1885 			sprintf(c->x86_model_id, "%02x/%02x",
1886 				c->x86, c->x86_model);
1887 	}
1888 
1889 #ifdef CONFIG_X86_64
1890 	detect_ht(c);
1891 #endif
1892 
1893 	x86_init_rdrand(c);
1894 	setup_pku(c);
1895 	setup_cet(c);
1896 
1897 	/*
1898 	 * Clear/Set all flags overridden by options, need do it
1899 	 * before following smp all cpus cap AND.
1900 	 */
1901 	apply_forced_caps(c);
1902 
1903 	/*
1904 	 * On SMP, boot_cpu_data holds the common feature set between
1905 	 * all CPUs; so make sure that we indicate which features are
1906 	 * common between the CPUs.  The first time this routine gets
1907 	 * executed, c == &boot_cpu_data.
1908 	 */
1909 	if (c != &boot_cpu_data) {
1910 		/* AND the already accumulated flags with these */
1911 		for (i = 0; i < NCAPINTS; i++)
1912 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1913 
1914 		/* OR, i.e. replicate the bug flags */
1915 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1916 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1917 	}
1918 
1919 	ppin_init(c);
1920 
1921 	/* Init Machine Check Exception if available. */
1922 	mcheck_cpu_init(c);
1923 
1924 	select_idle_routine(c);
1925 
1926 #ifdef CONFIG_NUMA
1927 	numa_add_cpu(smp_processor_id());
1928 #endif
1929 }
1930 
1931 /*
1932  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1933  * on 32-bit kernels:
1934  */
1935 #ifdef CONFIG_X86_32
1936 void enable_sep_cpu(void)
1937 {
1938 	struct tss_struct *tss;
1939 	int cpu;
1940 
1941 	if (!boot_cpu_has(X86_FEATURE_SEP))
1942 		return;
1943 
1944 	cpu = get_cpu();
1945 	tss = &per_cpu(cpu_tss_rw, cpu);
1946 
1947 	/*
1948 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1949 	 * see the big comment in struct x86_hw_tss's definition.
1950 	 */
1951 
1952 	tss->x86_tss.ss1 = __KERNEL_CS;
1953 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1954 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1955 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1956 
1957 	put_cpu();
1958 }
1959 #endif
1960 
1961 void __init identify_boot_cpu(void)
1962 {
1963 	identify_cpu(&boot_cpu_data);
1964 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1965 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1966 #ifdef CONFIG_X86_32
1967 	enable_sep_cpu();
1968 #endif
1969 	cpu_detect_tlb(&boot_cpu_data);
1970 	setup_cr_pinning();
1971 
1972 	tsx_init();
1973 	lkgs_init();
1974 }
1975 
1976 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1977 {
1978 	BUG_ON(c == &boot_cpu_data);
1979 	identify_cpu(c);
1980 #ifdef CONFIG_X86_32
1981 	enable_sep_cpu();
1982 #endif
1983 	validate_apic_and_package_id(c);
1984 	x86_spec_ctrl_setup_ap();
1985 	update_srbds_msr();
1986 	if (boot_cpu_has_bug(X86_BUG_GDS))
1987 		update_gds_msr();
1988 
1989 	tsx_ap_init();
1990 }
1991 
1992 void print_cpu_info(struct cpuinfo_x86 *c)
1993 {
1994 	const char *vendor = NULL;
1995 
1996 	if (c->x86_vendor < X86_VENDOR_NUM) {
1997 		vendor = this_cpu->c_vendor;
1998 	} else {
1999 		if (c->cpuid_level >= 0)
2000 			vendor = c->x86_vendor_id;
2001 	}
2002 
2003 	if (vendor && !strstr(c->x86_model_id, vendor))
2004 		pr_cont("%s ", vendor);
2005 
2006 	if (c->x86_model_id[0])
2007 		pr_cont("%s", c->x86_model_id);
2008 	else
2009 		pr_cont("%d86", c->x86);
2010 
2011 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2012 
2013 	if (c->x86_stepping || c->cpuid_level >= 0)
2014 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2015 	else
2016 		pr_cont(")\n");
2017 }
2018 
2019 /*
2020  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2021  * function prevents it from becoming an environment variable for init.
2022  */
2023 static __init int setup_clearcpuid(char *arg)
2024 {
2025 	return 1;
2026 }
2027 __setup("clearcpuid=", setup_clearcpuid);
2028 
2029 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2030 	.current_task	= &init_task,
2031 	.preempt_count	= INIT_PREEMPT_COUNT,
2032 	.top_of_stack	= TOP_OF_INIT_STACK,
2033 };
2034 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2035 
2036 #ifdef CONFIG_X86_64
2037 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2038 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2039 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2040 
2041 static void wrmsrl_cstar(unsigned long val)
2042 {
2043 	/*
2044 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2045 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2046 	 * guest. Avoid the pointless write on all Intel CPUs.
2047 	 */
2048 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2049 		wrmsrl(MSR_CSTAR, val);
2050 }
2051 
2052 /* May not be marked __init: used by software suspend */
2053 void syscall_init(void)
2054 {
2055 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2056 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2057 
2058 #ifdef CONFIG_IA32_EMULATION
2059 	wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2060 	/*
2061 	 * This only works on Intel CPUs.
2062 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2063 	 * This does not cause SYSENTER to jump to the wrong location, because
2064 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2065 	 */
2066 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2067 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2068 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2069 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2070 #else
2071 	wrmsrl_cstar((unsigned long)ignore_sysret);
2072 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2073 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2074 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2075 #endif
2076 
2077 	/*
2078 	 * Flags to clear on syscall; clear as much as possible
2079 	 * to minimize user space-kernel interference.
2080 	 */
2081 	wrmsrl(MSR_SYSCALL_MASK,
2082 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2083 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2084 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2085 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2086 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2087 }
2088 
2089 #else	/* CONFIG_X86_64 */
2090 
2091 #ifdef CONFIG_STACKPROTECTOR
2092 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2093 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2094 #endif
2095 
2096 #endif	/* CONFIG_X86_64 */
2097 
2098 /*
2099  * Clear all 6 debug registers:
2100  */
2101 static void clear_all_debug_regs(void)
2102 {
2103 	int i;
2104 
2105 	for (i = 0; i < 8; i++) {
2106 		/* Ignore db4, db5 */
2107 		if ((i == 4) || (i == 5))
2108 			continue;
2109 
2110 		set_debugreg(0, i);
2111 	}
2112 }
2113 
2114 #ifdef CONFIG_KGDB
2115 /*
2116  * Restore debug regs if using kgdbwait and you have a kernel debugger
2117  * connection established.
2118  */
2119 static void dbg_restore_debug_regs(void)
2120 {
2121 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2122 		arch_kgdb_ops.correct_hw_break();
2123 }
2124 #else /* ! CONFIG_KGDB */
2125 #define dbg_restore_debug_regs()
2126 #endif /* ! CONFIG_KGDB */
2127 
2128 static inline void setup_getcpu(int cpu)
2129 {
2130 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2131 	struct desc_struct d = { };
2132 
2133 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2134 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2135 
2136 	/* Store CPU and node number in limit. */
2137 	d.limit0 = cpudata;
2138 	d.limit1 = cpudata >> 16;
2139 
2140 	d.type = 5;		/* RO data, expand down, accessed */
2141 	d.dpl = 3;		/* Visible to user code */
2142 	d.s = 1;		/* Not a system segment */
2143 	d.p = 1;		/* Present */
2144 	d.d = 1;		/* 32-bit */
2145 
2146 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2147 }
2148 
2149 #ifdef CONFIG_X86_64
2150 static inline void ucode_cpu_init(int cpu) { }
2151 
2152 static inline void tss_setup_ist(struct tss_struct *tss)
2153 {
2154 	/* Set up the per-CPU TSS IST stacks */
2155 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2156 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2157 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2158 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2159 	/* Only mapped when SEV-ES is active */
2160 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2161 }
2162 
2163 #else /* CONFIG_X86_64 */
2164 
2165 static inline void ucode_cpu_init(int cpu)
2166 {
2167 	show_ucode_info_early();
2168 }
2169 
2170 static inline void tss_setup_ist(struct tss_struct *tss) { }
2171 
2172 #endif /* !CONFIG_X86_64 */
2173 
2174 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2175 {
2176 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2177 
2178 #ifdef CONFIG_X86_IOPL_IOPERM
2179 	tss->io_bitmap.prev_max = 0;
2180 	tss->io_bitmap.prev_sequence = 0;
2181 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2182 	/*
2183 	 * Invalidate the extra array entry past the end of the all
2184 	 * permission bitmap as required by the hardware.
2185 	 */
2186 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2187 #endif
2188 }
2189 
2190 /*
2191  * Setup everything needed to handle exceptions from the IDT, including the IST
2192  * exceptions which use paranoid_entry().
2193  */
2194 void cpu_init_exception_handling(void)
2195 {
2196 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2197 	int cpu = raw_smp_processor_id();
2198 
2199 	/* paranoid_entry() gets the CPU number from the GDT */
2200 	setup_getcpu(cpu);
2201 
2202 	/* IST vectors need TSS to be set up. */
2203 	tss_setup_ist(tss);
2204 	tss_setup_io_bitmap(tss);
2205 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2206 
2207 	load_TR_desc();
2208 
2209 	/* GHCB needs to be setup to handle #VC. */
2210 	setup_ghcb();
2211 
2212 	/* Finally load the IDT */
2213 	load_current_idt();
2214 }
2215 
2216 /*
2217  * cpu_init() initializes state that is per-CPU. Some data is already
2218  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2219  * reload it nevertheless, this function acts as a 'CPU state barrier',
2220  * nothing should get across.
2221  */
2222 void cpu_init(void)
2223 {
2224 	struct task_struct *cur = current;
2225 	int cpu = raw_smp_processor_id();
2226 
2227 	ucode_cpu_init(cpu);
2228 
2229 #ifdef CONFIG_NUMA
2230 	if (this_cpu_read(numa_node) == 0 &&
2231 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2232 		set_numa_node(early_cpu_to_node(cpu));
2233 #endif
2234 	pr_debug("Initializing CPU#%d\n", cpu);
2235 
2236 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2237 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2238 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2239 
2240 	if (IS_ENABLED(CONFIG_X86_64)) {
2241 		loadsegment(fs, 0);
2242 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2243 		syscall_init();
2244 
2245 		wrmsrl(MSR_FS_BASE, 0);
2246 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2247 		barrier();
2248 
2249 		x2apic_setup();
2250 	}
2251 
2252 	mmgrab(&init_mm);
2253 	cur->active_mm = &init_mm;
2254 	BUG_ON(cur->mm);
2255 	initialize_tlbstate_and_flush();
2256 	enter_lazy_tlb(&init_mm, cur);
2257 
2258 	/*
2259 	 * sp0 points to the entry trampoline stack regardless of what task
2260 	 * is running.
2261 	 */
2262 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2263 
2264 	load_mm_ldt(&init_mm);
2265 
2266 	clear_all_debug_regs();
2267 	dbg_restore_debug_regs();
2268 
2269 	doublefault_init_cpu_tss();
2270 
2271 	if (is_uv_system())
2272 		uv_cpu_init();
2273 
2274 	load_fixmap_gdt(cpu);
2275 }
2276 
2277 #ifdef CONFIG_MICROCODE_LATE_LOADING
2278 /**
2279  * store_cpu_caps() - Store a snapshot of CPU capabilities
2280  * @curr_info: Pointer where to store it
2281  *
2282  * Returns: None
2283  */
2284 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2285 {
2286 	/* Reload CPUID max function as it might've changed. */
2287 	curr_info->cpuid_level = cpuid_eax(0);
2288 
2289 	/* Copy all capability leafs and pick up the synthetic ones. */
2290 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2291 	       sizeof(curr_info->x86_capability));
2292 
2293 	/* Get the hardware CPUID leafs */
2294 	get_cpu_cap(curr_info);
2295 }
2296 
2297 /**
2298  * microcode_check() - Check if any CPU capabilities changed after an update.
2299  * @prev_info:	CPU capabilities stored before an update.
2300  *
2301  * The microcode loader calls this upon late microcode load to recheck features,
2302  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2303  *
2304  * Return: None
2305  */
2306 void microcode_check(struct cpuinfo_x86 *prev_info)
2307 {
2308 	struct cpuinfo_x86 curr_info;
2309 
2310 	perf_check_microcode();
2311 
2312 	amd_check_microcode();
2313 
2314 	store_cpu_caps(&curr_info);
2315 
2316 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2317 		    sizeof(prev_info->x86_capability)))
2318 		return;
2319 
2320 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2321 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2322 }
2323 #endif
2324 
2325 /*
2326  * Invoked from core CPU hotplug code after hotplug operations
2327  */
2328 void arch_smt_update(void)
2329 {
2330 	/* Handle the speculative execution misfeatures */
2331 	cpu_bugs_smt_update();
2332 	/* Check whether IPI broadcasting can be enabled */
2333 	apic_smt_update();
2334 }
2335 
2336 void __init arch_cpu_finalize_init(void)
2337 {
2338 	identify_boot_cpu();
2339 
2340 	/*
2341 	 * identify_boot_cpu() initialized SMT support information, let the
2342 	 * core code know.
2343 	 */
2344 	cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2345 
2346 	if (!IS_ENABLED(CONFIG_SMP)) {
2347 		pr_info("CPU: ");
2348 		print_cpu_info(&boot_cpu_data);
2349 	}
2350 
2351 	cpu_select_mitigations();
2352 
2353 	arch_smt_update();
2354 
2355 	if (IS_ENABLED(CONFIG_X86_32)) {
2356 		/*
2357 		 * Check whether this is a real i386 which is not longer
2358 		 * supported and fixup the utsname.
2359 		 */
2360 		if (boot_cpu_data.x86 < 4)
2361 			panic("Kernel requires i486+ for 'invlpg' and other features");
2362 
2363 		init_utsname()->machine[1] =
2364 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2365 	}
2366 
2367 	/*
2368 	 * Must be before alternatives because it might set or clear
2369 	 * feature bits.
2370 	 */
2371 	fpu__init_system();
2372 	fpu__init_cpu();
2373 
2374 	alternative_instructions();
2375 
2376 	if (IS_ENABLED(CONFIG_X86_64)) {
2377 		/*
2378 		 * Make sure the first 2MB area is not mapped by huge pages
2379 		 * There are typically fixed size MTRRs in there and overlapping
2380 		 * MTRRs into large pages causes slow downs.
2381 		 *
2382 		 * Right now we don't do that with gbpages because there seems
2383 		 * very little benefit for that case.
2384 		 */
2385 		if (!direct_gbpages)
2386 			set_memory_4k((unsigned long)__va(0), 1);
2387 	} else {
2388 		fpu__init_check_bugs();
2389 	}
2390 
2391 	/*
2392 	 * This needs to be called before any devices perform DMA
2393 	 * operations that might use the SWIOTLB bounce buffers. It will
2394 	 * mark the bounce buffers as decrypted so that their usage will
2395 	 * not cause "plain-text" data to be decrypted when accessed. It
2396 	 * must be called after late_time_init() so that Hyper-V x86/x64
2397 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2398 	 */
2399 	mem_encrypt_init();
2400 }
2401