xref: /linux/arch/x86/kernel/cpu/common.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/fred.h>
65 #include <asm/uv/uv.h>
66 #include <asm/ia32.h>
67 #include <asm/set_memory.h>
68 #include <asm/traps.h>
69 #include <asm/sev.h>
70 #include <asm/tdx.h>
71 
72 #include "cpu.h"
73 
74 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
75 EXPORT_PER_CPU_SYMBOL(cpu_info);
76 
77 u32 elf_hwcap2 __read_mostly;
78 
79 /* Number of siblings per CPU package */
80 unsigned int __max_threads_per_core __ro_after_init = 1;
81 EXPORT_SYMBOL(__max_threads_per_core);
82 
83 unsigned int __max_dies_per_package __ro_after_init = 1;
84 EXPORT_SYMBOL(__max_dies_per_package);
85 
86 unsigned int __max_logical_packages __ro_after_init = 1;
87 EXPORT_SYMBOL(__max_logical_packages);
88 
89 unsigned int __num_cores_per_package __ro_after_init = 1;
90 EXPORT_SYMBOL(__num_cores_per_package);
91 
92 unsigned int __num_threads_per_package __ro_after_init = 1;
93 EXPORT_SYMBOL(__num_threads_per_package);
94 
95 static struct ppin_info {
96 	int	feature;
97 	int	msr_ppin_ctl;
98 	int	msr_ppin;
99 } ppin_info[] = {
100 	[X86_VENDOR_INTEL] = {
101 		.feature = X86_FEATURE_INTEL_PPIN,
102 		.msr_ppin_ctl = MSR_PPIN_CTL,
103 		.msr_ppin = MSR_PPIN
104 	},
105 	[X86_VENDOR_AMD] = {
106 		.feature = X86_FEATURE_AMD_PPIN,
107 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
108 		.msr_ppin = MSR_AMD_PPIN
109 	},
110 };
111 
112 static const struct x86_cpu_id ppin_cpuids[] = {
113 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
114 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
115 
116 	/* Legacy models without CPUID enumeration */
117 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
118 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
119 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
120 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
121 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
123 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
124 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
125 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
126 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
127 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
128 
129 	{}
130 };
131 
132 static void ppin_init(struct cpuinfo_x86 *c)
133 {
134 	const struct x86_cpu_id *id;
135 	unsigned long long val;
136 	struct ppin_info *info;
137 
138 	id = x86_match_cpu(ppin_cpuids);
139 	if (!id)
140 		return;
141 
142 	/*
143 	 * Testing the presence of the MSR is not enough. Need to check
144 	 * that the PPIN_CTL allows reading of the PPIN.
145 	 */
146 	info = (struct ppin_info *)id->driver_data;
147 
148 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
149 		goto clear_ppin;
150 
151 	if ((val & 3UL) == 1UL) {
152 		/* PPIN locked in disabled mode */
153 		goto clear_ppin;
154 	}
155 
156 	/* If PPIN is disabled, try to enable */
157 	if (!(val & 2UL)) {
158 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
159 		rdmsrl_safe(info->msr_ppin_ctl, &val);
160 	}
161 
162 	/* Is the enable bit set? */
163 	if (val & 2UL) {
164 		c->ppin = __rdmsr(info->msr_ppin);
165 		set_cpu_cap(c, info->feature);
166 		return;
167 	}
168 
169 clear_ppin:
170 	clear_cpu_cap(c, info->feature);
171 }
172 
173 static void default_init(struct cpuinfo_x86 *c)
174 {
175 #ifdef CONFIG_X86_64
176 	cpu_detect_cache_sizes(c);
177 #else
178 	/* Not much we can do here... */
179 	/* Check if at least it has cpuid */
180 	if (c->cpuid_level == -1) {
181 		/* No cpuid. It must be an ancient CPU */
182 		if (c->x86 == 4)
183 			strcpy(c->x86_model_id, "486");
184 		else if (c->x86 == 3)
185 			strcpy(c->x86_model_id, "386");
186 	}
187 #endif
188 }
189 
190 static const struct cpu_dev default_cpu = {
191 	.c_init		= default_init,
192 	.c_vendor	= "Unknown",
193 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
194 };
195 
196 static const struct cpu_dev *this_cpu = &default_cpu;
197 
198 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
199 #ifdef CONFIG_X86_64
200 	/*
201 	 * We need valid kernel segments for data and code in long mode too
202 	 * IRET will check the segment types  kkeil 2000/10/28
203 	 * Also sysret mandates a special GDT layout
204 	 *
205 	 * TLS descriptors are currently at a different place compared to i386.
206 	 * Hopefully nobody expects them at a fixed place (Wine?)
207 	 */
208 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
209 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
210 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
211 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
212 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
213 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
214 #else
215 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
216 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
217 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
218 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
219 	/*
220 	 * Segments used for calling PnP BIOS have byte granularity.
221 	 * They code segments and data segments have fixed 64k limits,
222 	 * the transfer segment sizes are set at run time.
223 	 */
224 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
225 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
226 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
227 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
228 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
229 	/*
230 	 * The APM segments have byte granularity and their bases
231 	 * are set at run time.  All have 64k limits.
232 	 */
233 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
234 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
235 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
236 
237 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
238 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
239 #endif
240 } };
241 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
242 
243 #ifdef CONFIG_X86_64
244 static int __init x86_nopcid_setup(char *s)
245 {
246 	/* nopcid doesn't accept parameters */
247 	if (s)
248 		return -EINVAL;
249 
250 	/* do not emit a message if the feature is not present */
251 	if (!boot_cpu_has(X86_FEATURE_PCID))
252 		return 0;
253 
254 	setup_clear_cpu_cap(X86_FEATURE_PCID);
255 	pr_info("nopcid: PCID feature disabled\n");
256 	return 0;
257 }
258 early_param("nopcid", x86_nopcid_setup);
259 #endif
260 
261 static int __init x86_noinvpcid_setup(char *s)
262 {
263 	/* noinvpcid doesn't accept parameters */
264 	if (s)
265 		return -EINVAL;
266 
267 	/* do not emit a message if the feature is not present */
268 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
269 		return 0;
270 
271 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
272 	pr_info("noinvpcid: INVPCID feature disabled\n");
273 	return 0;
274 }
275 early_param("noinvpcid", x86_noinvpcid_setup);
276 
277 #ifdef CONFIG_X86_32
278 static int cachesize_override = -1;
279 static int disable_x86_serial_nr = 1;
280 
281 static int __init cachesize_setup(char *str)
282 {
283 	get_option(&str, &cachesize_override);
284 	return 1;
285 }
286 __setup("cachesize=", cachesize_setup);
287 
288 /* Standard macro to see if a specific flag is changeable */
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291 	u32 f1, f2;
292 
293 	/*
294 	 * Cyrix and IDT cpus allow disabling of CPUID
295 	 * so the code below may return different results
296 	 * when it is executed before and after enabling
297 	 * the CPUID. Add "volatile" to not allow gcc to
298 	 * optimize the subsequent calls to this function.
299 	 */
300 	asm volatile ("pushfl		\n\t"
301 		      "pushfl		\n\t"
302 		      "popl %0		\n\t"
303 		      "movl %0, %1	\n\t"
304 		      "xorl %2, %0	\n\t"
305 		      "pushl %0		\n\t"
306 		      "popfl		\n\t"
307 		      "pushfl		\n\t"
308 		      "popl %0		\n\t"
309 		      "popfl		\n\t"
310 
311 		      : "=&r" (f1), "=&r" (f2)
312 		      : "ir" (flag));
313 
314 	return ((f1^f2) & flag) != 0;
315 }
316 
317 /* Probe for the CPUID instruction */
318 int have_cpuid_p(void)
319 {
320 	return flag_is_changeable_p(X86_EFLAGS_ID);
321 }
322 
323 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
324 {
325 	unsigned long lo, hi;
326 
327 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
328 		return;
329 
330 	/* Disable processor serial number: */
331 
332 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
333 	lo |= 0x200000;
334 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335 
336 	pr_notice("CPU serial number disabled.\n");
337 	clear_cpu_cap(c, X86_FEATURE_PN);
338 
339 	/* Disabling the serial number may affect the cpuid level */
340 	c->cpuid_level = cpuid_eax(0);
341 }
342 
343 static int __init x86_serial_nr_setup(char *s)
344 {
345 	disable_x86_serial_nr = 0;
346 	return 1;
347 }
348 __setup("serialnumber", x86_serial_nr_setup);
349 #else
350 static inline int flag_is_changeable_p(u32 flag)
351 {
352 	return 1;
353 }
354 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
355 {
356 }
357 #endif
358 
359 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
360 {
361 	if (cpu_has(c, X86_FEATURE_SMEP))
362 		cr4_set_bits(X86_CR4_SMEP);
363 }
364 
365 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
366 {
367 	unsigned long eflags = native_save_fl();
368 
369 	/* This should have been cleared long ago */
370 	BUG_ON(eflags & X86_EFLAGS_AC);
371 
372 	if (cpu_has(c, X86_FEATURE_SMAP))
373 		cr4_set_bits(X86_CR4_SMAP);
374 }
375 
376 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
377 {
378 	/* Check the boot processor, plus build option for UMIP. */
379 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
380 		goto out;
381 
382 	/* Check the current processor's cpuid bits. */
383 	if (!cpu_has(c, X86_FEATURE_UMIP))
384 		goto out;
385 
386 	cr4_set_bits(X86_CR4_UMIP);
387 
388 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
389 
390 	return;
391 
392 out:
393 	/*
394 	 * Make sure UMIP is disabled in case it was enabled in a
395 	 * previous boot (e.g., via kexec).
396 	 */
397 	cr4_clear_bits(X86_CR4_UMIP);
398 }
399 
400 /* These bits should not change their value after CPU init is finished. */
401 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
402 					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
403 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
404 static unsigned long cr4_pinned_bits __ro_after_init;
405 
406 void native_write_cr0(unsigned long val)
407 {
408 	unsigned long bits_missing = 0;
409 
410 set_register:
411 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
412 
413 	if (static_branch_likely(&cr_pinning)) {
414 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
415 			bits_missing = X86_CR0_WP;
416 			val |= bits_missing;
417 			goto set_register;
418 		}
419 		/* Warn after we've set the missing bits. */
420 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
421 	}
422 }
423 EXPORT_SYMBOL(native_write_cr0);
424 
425 void __no_profile native_write_cr4(unsigned long val)
426 {
427 	unsigned long bits_changed = 0;
428 
429 set_register:
430 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
431 
432 	if (static_branch_likely(&cr_pinning)) {
433 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
434 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
435 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
436 			goto set_register;
437 		}
438 		/* Warn after we've corrected the changed bits. */
439 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
440 			  bits_changed);
441 	}
442 }
443 #if IS_MODULE(CONFIG_LKDTM)
444 EXPORT_SYMBOL_GPL(native_write_cr4);
445 #endif
446 
447 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
448 {
449 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
450 
451 	lockdep_assert_irqs_disabled();
452 
453 	newval = (cr4 & ~clear) | set;
454 	if (newval != cr4) {
455 		this_cpu_write(cpu_tlbstate.cr4, newval);
456 		__write_cr4(newval);
457 	}
458 }
459 EXPORT_SYMBOL(cr4_update_irqsoff);
460 
461 /* Read the CR4 shadow. */
462 unsigned long cr4_read_shadow(void)
463 {
464 	return this_cpu_read(cpu_tlbstate.cr4);
465 }
466 EXPORT_SYMBOL_GPL(cr4_read_shadow);
467 
468 void cr4_init(void)
469 {
470 	unsigned long cr4 = __read_cr4();
471 
472 	if (boot_cpu_has(X86_FEATURE_PCID))
473 		cr4 |= X86_CR4_PCIDE;
474 	if (static_branch_likely(&cr_pinning))
475 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
476 
477 	__write_cr4(cr4);
478 
479 	/* Initialize cr4 shadow for this CPU. */
480 	this_cpu_write(cpu_tlbstate.cr4, cr4);
481 }
482 
483 /*
484  * Once CPU feature detection is finished (and boot params have been
485  * parsed), record any of the sensitive CR bits that are set, and
486  * enable CR pinning.
487  */
488 static void __init setup_cr_pinning(void)
489 {
490 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
491 	static_key_enable(&cr_pinning.key);
492 }
493 
494 static __init int x86_nofsgsbase_setup(char *arg)
495 {
496 	/* Require an exact match without trailing characters. */
497 	if (strlen(arg))
498 		return 0;
499 
500 	/* Do not emit a message if the feature is not present. */
501 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
502 		return 1;
503 
504 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
505 	pr_info("FSGSBASE disabled via kernel command line\n");
506 	return 1;
507 }
508 __setup("nofsgsbase", x86_nofsgsbase_setup);
509 
510 /*
511  * Protection Keys are not available in 32-bit mode.
512  */
513 static bool pku_disabled;
514 
515 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
516 {
517 	if (c == &boot_cpu_data) {
518 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
519 			return;
520 		/*
521 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
522 		 * bit to be set.  Enforce it.
523 		 */
524 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
525 
526 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
527 		return;
528 	}
529 
530 	cr4_set_bits(X86_CR4_PKE);
531 	/* Load the default PKRU value */
532 	pkru_write_default();
533 }
534 
535 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
536 static __init int setup_disable_pku(char *arg)
537 {
538 	/*
539 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
540 	 * runtime checks are against OSPKE so clearing the
541 	 * bit does nothing.
542 	 *
543 	 * This way, we will see "pku" in cpuinfo, but not
544 	 * "ospke", which is exactly what we want.  It shows
545 	 * that the CPU has PKU, but the OS has not enabled it.
546 	 * This happens to be exactly how a system would look
547 	 * if we disabled the config option.
548 	 */
549 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
550 	pku_disabled = true;
551 	return 1;
552 }
553 __setup("nopku", setup_disable_pku);
554 #endif
555 
556 #ifdef CONFIG_X86_KERNEL_IBT
557 
558 __noendbr u64 ibt_save(bool disable)
559 {
560 	u64 msr = 0;
561 
562 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
563 		rdmsrl(MSR_IA32_S_CET, msr);
564 		if (disable)
565 			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
566 	}
567 
568 	return msr;
569 }
570 
571 __noendbr void ibt_restore(u64 save)
572 {
573 	u64 msr;
574 
575 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
576 		rdmsrl(MSR_IA32_S_CET, msr);
577 		msr &= ~CET_ENDBR_EN;
578 		msr |= (save & CET_ENDBR_EN);
579 		wrmsrl(MSR_IA32_S_CET, msr);
580 	}
581 }
582 
583 #endif
584 
585 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
586 {
587 	bool user_shstk, kernel_ibt;
588 
589 	if (!IS_ENABLED(CONFIG_X86_CET))
590 		return;
591 
592 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
593 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
594 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
595 
596 	if (!kernel_ibt && !user_shstk)
597 		return;
598 
599 	if (user_shstk)
600 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
601 
602 	if (kernel_ibt)
603 		wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
604 	else
605 		wrmsrl(MSR_IA32_S_CET, 0);
606 
607 	cr4_set_bits(X86_CR4_CET);
608 
609 	if (kernel_ibt && ibt_selftest()) {
610 		pr_err("IBT selftest: Failed!\n");
611 		wrmsrl(MSR_IA32_S_CET, 0);
612 		setup_clear_cpu_cap(X86_FEATURE_IBT);
613 	}
614 }
615 
616 __noendbr void cet_disable(void)
617 {
618 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
619 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
620 		return;
621 
622 	wrmsrl(MSR_IA32_S_CET, 0);
623 	wrmsrl(MSR_IA32_U_CET, 0);
624 }
625 
626 /*
627  * Some CPU features depend on higher CPUID levels, which may not always
628  * be available due to CPUID level capping or broken virtualization
629  * software.  Add those features to this table to auto-disable them.
630  */
631 struct cpuid_dependent_feature {
632 	u32 feature;
633 	u32 level;
634 };
635 
636 static const struct cpuid_dependent_feature
637 cpuid_dependent_features[] = {
638 	{ X86_FEATURE_MWAIT,		0x00000005 },
639 	{ X86_FEATURE_DCA,		0x00000009 },
640 	{ X86_FEATURE_XSAVE,		0x0000000d },
641 	{ 0, 0 }
642 };
643 
644 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
645 {
646 	const struct cpuid_dependent_feature *df;
647 
648 	for (df = cpuid_dependent_features; df->feature; df++) {
649 
650 		if (!cpu_has(c, df->feature))
651 			continue;
652 		/*
653 		 * Note: cpuid_level is set to -1 if unavailable, but
654 		 * extended_extended_level is set to 0 if unavailable
655 		 * and the legitimate extended levels are all negative
656 		 * when signed; hence the weird messing around with
657 		 * signs here...
658 		 */
659 		if (!((s32)df->level < 0 ?
660 		     (u32)df->level > (u32)c->extended_cpuid_level :
661 		     (s32)df->level > (s32)c->cpuid_level))
662 			continue;
663 
664 		clear_cpu_cap(c, df->feature);
665 		if (!warn)
666 			continue;
667 
668 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
669 			x86_cap_flag(df->feature), df->level);
670 	}
671 }
672 
673 /*
674  * Naming convention should be: <Name> [(<Codename>)]
675  * This table only is used unless init_<vendor>() below doesn't set it;
676  * in particular, if CPUID levels 0x80000002..4 are supported, this
677  * isn't used
678  */
679 
680 /* Look up CPU names by table lookup. */
681 static const char *table_lookup_model(struct cpuinfo_x86 *c)
682 {
683 #ifdef CONFIG_X86_32
684 	const struct legacy_cpu_model_info *info;
685 
686 	if (c->x86_model >= 16)
687 		return NULL;	/* Range check */
688 
689 	if (!this_cpu)
690 		return NULL;
691 
692 	info = this_cpu->legacy_models;
693 
694 	while (info->family) {
695 		if (info->family == c->x86)
696 			return info->model_names[c->x86_model];
697 		info++;
698 	}
699 #endif
700 	return NULL;		/* Not found */
701 }
702 
703 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
704 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706 
707 #ifdef CONFIG_X86_32
708 /* The 32-bit entry code needs to find cpu_entry_area. */
709 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
710 #endif
711 
712 /* Load the original GDT from the per-cpu structure */
713 void load_direct_gdt(int cpu)
714 {
715 	struct desc_ptr gdt_descr;
716 
717 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
718 	gdt_descr.size = GDT_SIZE - 1;
719 	load_gdt(&gdt_descr);
720 }
721 EXPORT_SYMBOL_GPL(load_direct_gdt);
722 
723 /* Load a fixmap remapping of the per-cpu GDT */
724 void load_fixmap_gdt(int cpu)
725 {
726 	struct desc_ptr gdt_descr;
727 
728 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
729 	gdt_descr.size = GDT_SIZE - 1;
730 	load_gdt(&gdt_descr);
731 }
732 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
733 
734 /**
735  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
736  * @cpu:	The CPU number for which this is invoked
737  *
738  * Invoked during early boot to switch from early GDT and early per CPU to
739  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
740  * switch is implicit by loading the direct GDT. On 64bit this requires
741  * to update GSBASE.
742  */
743 void __init switch_gdt_and_percpu_base(int cpu)
744 {
745 	load_direct_gdt(cpu);
746 
747 #ifdef CONFIG_X86_64
748 	/*
749 	 * No need to load %gs. It is already correct.
750 	 *
751 	 * Writing %gs on 64bit would zero GSBASE which would make any per
752 	 * CPU operation up to the point of the wrmsrl() fault.
753 	 *
754 	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
755 	 * early mapping is still valid. That means the GSBASE update will
756 	 * lose any prior per CPU data which was not copied over in
757 	 * setup_per_cpu_areas().
758 	 *
759 	 * This works even with stackprotector enabled because the
760 	 * per CPU stack canary is 0 in both per CPU areas.
761 	 */
762 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
763 #else
764 	/*
765 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
766 	 * it is required to load FS again so that the 'hidden' part is
767 	 * updated from the new GDT. Up to this point the early per CPU
768 	 * translation is active. Any content of the early per CPU data
769 	 * which was not copied over in setup_per_cpu_areas() is lost.
770 	 */
771 	loadsegment(fs, __KERNEL_PERCPU);
772 #endif
773 }
774 
775 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
776 
777 static void get_model_name(struct cpuinfo_x86 *c)
778 {
779 	unsigned int *v;
780 	char *p, *q, *s;
781 
782 	if (c->extended_cpuid_level < 0x80000004)
783 		return;
784 
785 	v = (unsigned int *)c->x86_model_id;
786 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
787 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
788 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
789 	c->x86_model_id[48] = 0;
790 
791 	/* Trim whitespace */
792 	p = q = s = &c->x86_model_id[0];
793 
794 	while (*p == ' ')
795 		p++;
796 
797 	while (*p) {
798 		/* Note the last non-whitespace index */
799 		if (!isspace(*p))
800 			s = q;
801 
802 		*q++ = *p++;
803 	}
804 
805 	*(s + 1) = '\0';
806 }
807 
808 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
809 {
810 	unsigned int n, dummy, ebx, ecx, edx, l2size;
811 
812 	n = c->extended_cpuid_level;
813 
814 	if (n >= 0x80000005) {
815 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
816 		c->x86_cache_size = (ecx>>24) + (edx>>24);
817 #ifdef CONFIG_X86_64
818 		/* On K8 L1 TLB is inclusive, so don't count it */
819 		c->x86_tlbsize = 0;
820 #endif
821 	}
822 
823 	if (n < 0x80000006)	/* Some chips just has a large L1. */
824 		return;
825 
826 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
827 	l2size = ecx >> 16;
828 
829 #ifdef CONFIG_X86_64
830 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831 #else
832 	/* do processor-specific cache resizing */
833 	if (this_cpu->legacy_cache_size)
834 		l2size = this_cpu->legacy_cache_size(c, l2size);
835 
836 	/* Allow user to override all this if necessary. */
837 	if (cachesize_override != -1)
838 		l2size = cachesize_override;
839 
840 	if (l2size == 0)
841 		return;		/* Again, no L2 cache is possible */
842 #endif
843 
844 	c->x86_cache_size = l2size;
845 }
846 
847 u16 __read_mostly tlb_lli_4k[NR_INFO];
848 u16 __read_mostly tlb_lli_2m[NR_INFO];
849 u16 __read_mostly tlb_lli_4m[NR_INFO];
850 u16 __read_mostly tlb_lld_4k[NR_INFO];
851 u16 __read_mostly tlb_lld_2m[NR_INFO];
852 u16 __read_mostly tlb_lld_4m[NR_INFO];
853 u16 __read_mostly tlb_lld_1g[NR_INFO];
854 
855 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
856 {
857 	if (this_cpu->c_detect_tlb)
858 		this_cpu->c_detect_tlb(c);
859 
860 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
861 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
862 		tlb_lli_4m[ENTRIES]);
863 
864 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
865 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
866 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
867 }
868 
869 static void get_cpu_vendor(struct cpuinfo_x86 *c)
870 {
871 	char *v = c->x86_vendor_id;
872 	int i;
873 
874 	for (i = 0; i < X86_VENDOR_NUM; i++) {
875 		if (!cpu_devs[i])
876 			break;
877 
878 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
879 		    (cpu_devs[i]->c_ident[1] &&
880 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
881 
882 			this_cpu = cpu_devs[i];
883 			c->x86_vendor = this_cpu->c_x86_vendor;
884 			return;
885 		}
886 	}
887 
888 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
889 		    "CPU: Your system may be unstable.\n", v);
890 
891 	c->x86_vendor = X86_VENDOR_UNKNOWN;
892 	this_cpu = &default_cpu;
893 }
894 
895 void cpu_detect(struct cpuinfo_x86 *c)
896 {
897 	/* Get vendor name */
898 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
899 	      (unsigned int *)&c->x86_vendor_id[0],
900 	      (unsigned int *)&c->x86_vendor_id[8],
901 	      (unsigned int *)&c->x86_vendor_id[4]);
902 
903 	c->x86 = 4;
904 	/* Intel-defined flags: level 0x00000001 */
905 	if (c->cpuid_level >= 0x00000001) {
906 		u32 junk, tfms, cap0, misc;
907 
908 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
909 		c->x86		= x86_family(tfms);
910 		c->x86_model	= x86_model(tfms);
911 		c->x86_stepping	= x86_stepping(tfms);
912 
913 		if (cap0 & (1<<19)) {
914 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
915 			c->x86_cache_alignment = c->x86_clflush_size;
916 		}
917 	}
918 }
919 
920 static void apply_forced_caps(struct cpuinfo_x86 *c)
921 {
922 	int i;
923 
924 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
925 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
926 		c->x86_capability[i] |= cpu_caps_set[i];
927 	}
928 }
929 
930 static void init_speculation_control(struct cpuinfo_x86 *c)
931 {
932 	/*
933 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
934 	 * and they also have a different bit for STIBP support. Also,
935 	 * a hypervisor might have set the individual AMD bits even on
936 	 * Intel CPUs, for finer-grained selection of what's available.
937 	 */
938 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
939 		set_cpu_cap(c, X86_FEATURE_IBRS);
940 		set_cpu_cap(c, X86_FEATURE_IBPB);
941 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
942 	}
943 
944 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
945 		set_cpu_cap(c, X86_FEATURE_STIBP);
946 
947 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
948 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
949 		set_cpu_cap(c, X86_FEATURE_SSBD);
950 
951 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
952 		set_cpu_cap(c, X86_FEATURE_IBRS);
953 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
954 	}
955 
956 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
957 		set_cpu_cap(c, X86_FEATURE_IBPB);
958 
959 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
960 		set_cpu_cap(c, X86_FEATURE_STIBP);
961 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
962 	}
963 
964 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
965 		set_cpu_cap(c, X86_FEATURE_SSBD);
966 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
967 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
968 	}
969 }
970 
971 void get_cpu_cap(struct cpuinfo_x86 *c)
972 {
973 	u32 eax, ebx, ecx, edx;
974 
975 	/* Intel-defined flags: level 0x00000001 */
976 	if (c->cpuid_level >= 0x00000001) {
977 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
978 
979 		c->x86_capability[CPUID_1_ECX] = ecx;
980 		c->x86_capability[CPUID_1_EDX] = edx;
981 	}
982 
983 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
984 	if (c->cpuid_level >= 0x00000006)
985 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
986 
987 	/* Additional Intel-defined flags: level 0x00000007 */
988 	if (c->cpuid_level >= 0x00000007) {
989 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
990 		c->x86_capability[CPUID_7_0_EBX] = ebx;
991 		c->x86_capability[CPUID_7_ECX] = ecx;
992 		c->x86_capability[CPUID_7_EDX] = edx;
993 
994 		/* Check valid sub-leaf index before accessing it */
995 		if (eax >= 1) {
996 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
997 			c->x86_capability[CPUID_7_1_EAX] = eax;
998 		}
999 	}
1000 
1001 	/* Extended state features: level 0x0000000d */
1002 	if (c->cpuid_level >= 0x0000000d) {
1003 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1004 
1005 		c->x86_capability[CPUID_D_1_EAX] = eax;
1006 	}
1007 
1008 	/* AMD-defined flags: level 0x80000001 */
1009 	eax = cpuid_eax(0x80000000);
1010 	c->extended_cpuid_level = eax;
1011 
1012 	if ((eax & 0xffff0000) == 0x80000000) {
1013 		if (eax >= 0x80000001) {
1014 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1015 
1016 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1017 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1018 		}
1019 	}
1020 
1021 	if (c->extended_cpuid_level >= 0x80000007) {
1022 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1023 
1024 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1025 		c->x86_power = edx;
1026 	}
1027 
1028 	if (c->extended_cpuid_level >= 0x80000008) {
1029 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1030 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1031 	}
1032 
1033 	if (c->extended_cpuid_level >= 0x8000000a)
1034 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1035 
1036 	if (c->extended_cpuid_level >= 0x8000001f)
1037 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1038 
1039 	if (c->extended_cpuid_level >= 0x80000021)
1040 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1041 
1042 	init_scattered_cpuid_features(c);
1043 	init_speculation_control(c);
1044 
1045 	/*
1046 	 * Clear/Set all flags overridden by options, after probe.
1047 	 * This needs to happen each time we re-probe, which may happen
1048 	 * several times during CPU initialization.
1049 	 */
1050 	apply_forced_caps(c);
1051 }
1052 
1053 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1054 {
1055 	u32 eax, ebx, ecx, edx;
1056 	bool vp_bits_from_cpuid = true;
1057 
1058 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059 	    (c->extended_cpuid_level < 0x80000008))
1060 		vp_bits_from_cpuid = false;
1061 
1062 	if (vp_bits_from_cpuid) {
1063 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1064 
1065 		c->x86_virt_bits = (eax >> 8) & 0xff;
1066 		c->x86_phys_bits = eax & 0xff;
1067 	} else {
1068 		if (IS_ENABLED(CONFIG_X86_64)) {
1069 			c->x86_clflush_size = 64;
1070 			c->x86_phys_bits = 36;
1071 			c->x86_virt_bits = 48;
1072 		} else {
1073 			c->x86_clflush_size = 32;
1074 			c->x86_virt_bits = 32;
1075 			c->x86_phys_bits = 32;
1076 
1077 			if (cpu_has(c, X86_FEATURE_PAE) ||
1078 			    cpu_has(c, X86_FEATURE_PSE36))
1079 				c->x86_phys_bits = 36;
1080 		}
1081 	}
1082 	c->x86_cache_bits = c->x86_phys_bits;
1083 	c->x86_cache_alignment = c->x86_clflush_size;
1084 }
1085 
1086 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1087 {
1088 #ifdef CONFIG_X86_32
1089 	int i;
1090 
1091 	/*
1092 	 * First of all, decide if this is a 486 or higher
1093 	 * It's a 486 if we can modify the AC flag
1094 	 */
1095 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1096 		c->x86 = 4;
1097 	else
1098 		c->x86 = 3;
1099 
1100 	for (i = 0; i < X86_VENDOR_NUM; i++)
1101 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1102 			c->x86_vendor_id[0] = 0;
1103 			cpu_devs[i]->c_identify(c);
1104 			if (c->x86_vendor_id[0]) {
1105 				get_cpu_vendor(c);
1106 				break;
1107 			}
1108 		}
1109 #endif
1110 }
1111 
1112 #define NO_SPECULATION		BIT(0)
1113 #define NO_MELTDOWN		BIT(1)
1114 #define NO_SSB			BIT(2)
1115 #define NO_L1TF			BIT(3)
1116 #define NO_MDS			BIT(4)
1117 #define MSBDS_ONLY		BIT(5)
1118 #define NO_SWAPGS		BIT(6)
1119 #define NO_ITLB_MULTIHIT	BIT(7)
1120 #define NO_SPECTRE_V2		BIT(8)
1121 #define NO_MMIO			BIT(9)
1122 #define NO_EIBRS_PBRSB		BIT(10)
1123 
1124 #define VULNWL(vendor, family, model, whitelist)	\
1125 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1126 
1127 #define VULNWL_INTEL(model, whitelist)		\
1128 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1129 
1130 #define VULNWL_AMD(family, whitelist)		\
1131 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1132 
1133 #define VULNWL_HYGON(family, whitelist)		\
1134 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1135 
1136 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1137 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1138 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1139 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1140 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1141 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1142 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1143 
1144 	/* Intel Family 6 */
1145 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1146 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1147 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1148 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1149 
1150 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1151 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1152 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1153 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 
1156 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1157 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1158 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 
1163 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1164 
1165 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1166 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1167 
1168 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1169 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1170 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1171 
1172 	/*
1173 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1174 	 * being documented as such in the APM).  But according to AMD, %gs is
1175 	 * updated non-speculatively, and the issuing of %gs-relative memory
1176 	 * operands will be blocked until the %gs update completes, which is
1177 	 * good enough for our purposes.
1178 	 */
1179 
1180 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1181 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1182 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1183 
1184 	/* AMD Family 0xf - 0x12 */
1185 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1186 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1187 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1188 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1189 
1190 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1191 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1192 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1193 
1194 	/* Zhaoxin Family 7 */
1195 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1196 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1197 	{}
1198 };
1199 
1200 #define VULNBL(vendor, family, model, blacklist)	\
1201 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1202 
1203 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1204 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1205 					    INTEL_FAM6_##model, steppings, \
1206 					    X86_FEATURE_ANY, issues)
1207 
1208 #define VULNBL_AMD(family, blacklist)		\
1209 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1210 
1211 #define VULNBL_HYGON(family, blacklist)		\
1212 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1213 
1214 #define SRBDS		BIT(0)
1215 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1216 #define MMIO		BIT(1)
1217 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1218 #define MMIO_SBDS	BIT(2)
1219 /* CPU is affected by RETbleed, speculating where you would not expect it */
1220 #define RETBLEED	BIT(3)
1221 /* CPU is affected by SMT (cross-thread) return predictions */
1222 #define SMT_RSB		BIT(4)
1223 /* CPU is affected by SRSO */
1224 #define SRSO		BIT(5)
1225 /* CPU is affected by GDS */
1226 #define GDS		BIT(6)
1227 /* CPU is affected by Register File Data Sampling */
1228 #define RFDS		BIT(7)
1229 
1230 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1231 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1232 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1233 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1234 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1235 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1236 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1237 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1238 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1239 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1240 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1241 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1242 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1243 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1244 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1245 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1246 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1247 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1248 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1249 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1250 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1251 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1252 	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1253 	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1254 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1255 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1256 	VULNBL_INTEL_STEPPINGS(ALDERLAKE,	X86_STEPPING_ANY,		RFDS),
1257 	VULNBL_INTEL_STEPPINGS(ALDERLAKE_L,	X86_STEPPING_ANY,		RFDS),
1258 	VULNBL_INTEL_STEPPINGS(RAPTORLAKE,	X86_STEPPING_ANY,		RFDS),
1259 	VULNBL_INTEL_STEPPINGS(RAPTORLAKE_P,	X86_STEPPING_ANY,		RFDS),
1260 	VULNBL_INTEL_STEPPINGS(RAPTORLAKE_S,	X86_STEPPING_ANY,		RFDS),
1261 	VULNBL_INTEL_STEPPINGS(ATOM_GRACEMONT,	X86_STEPPING_ANY,		RFDS),
1262 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1263 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO | RFDS),
1264 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1265 	VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT,	X86_STEPPING_ANY,		RFDS),
1266 	VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_D,	X86_STEPPING_ANY,		RFDS),
1267 	VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY,		RFDS),
1268 
1269 	VULNBL_AMD(0x15, RETBLEED),
1270 	VULNBL_AMD(0x16, RETBLEED),
1271 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1272 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1273 	VULNBL_AMD(0x19, SRSO),
1274 	{}
1275 };
1276 
1277 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1278 {
1279 	const struct x86_cpu_id *m = x86_match_cpu(table);
1280 
1281 	return m && !!(m->driver_data & which);
1282 }
1283 
1284 u64 x86_read_arch_cap_msr(void)
1285 {
1286 	u64 ia32_cap = 0;
1287 
1288 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1289 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1290 
1291 	return ia32_cap;
1292 }
1293 
1294 static bool arch_cap_mmio_immune(u64 ia32_cap)
1295 {
1296 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1297 		ia32_cap & ARCH_CAP_PSDP_NO &&
1298 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1299 }
1300 
1301 static bool __init vulnerable_to_rfds(u64 ia32_cap)
1302 {
1303 	/* The "immunity" bit trumps everything else: */
1304 	if (ia32_cap & ARCH_CAP_RFDS_NO)
1305 		return false;
1306 
1307 	/*
1308 	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1309 	 * indicate that mitigation is needed because guest is running on a
1310 	 * vulnerable hardware or may migrate to such hardware:
1311 	 */
1312 	if (ia32_cap & ARCH_CAP_RFDS_CLEAR)
1313 		return true;
1314 
1315 	/* Only consult the blacklist when there is no enumeration: */
1316 	return cpu_matches(cpu_vuln_blacklist, RFDS);
1317 }
1318 
1319 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1320 {
1321 	u64 ia32_cap = x86_read_arch_cap_msr();
1322 
1323 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1324 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1325 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1326 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1327 
1328 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1329 		return;
1330 
1331 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1332 
1333 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1334 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1335 
1336 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1337 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1338 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1339 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1340 
1341 	/*
1342 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1343 	 * flag and protect from vendor-specific bugs via the whitelist.
1344 	 *
1345 	 * Don't use AutoIBRS when SNP is enabled because it degrades host
1346 	 * userspace indirect branch performance.
1347 	 */
1348 	if ((ia32_cap & ARCH_CAP_IBRS_ALL) ||
1349 	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1350 	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1351 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1352 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1353 		    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1354 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1355 	}
1356 
1357 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1358 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1359 		setup_force_cpu_bug(X86_BUG_MDS);
1360 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1361 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1362 	}
1363 
1364 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1365 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1366 
1367 	/*
1368 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1369 	 *	- TSX is supported or
1370 	 *	- TSX_CTRL is present
1371 	 *
1372 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1373 	 * the kernel boot e.g. kexec.
1374 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1375 	 * update is not present or running as guest that don't get TSX_CTRL.
1376 	 */
1377 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1378 	    (cpu_has(c, X86_FEATURE_RTM) ||
1379 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1380 		setup_force_cpu_bug(X86_BUG_TAA);
1381 
1382 	/*
1383 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1384 	 * in the vulnerability blacklist.
1385 	 *
1386 	 * Some of the implications and mitigation of Shared Buffers Data
1387 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1388 	 * SRBDS.
1389 	 */
1390 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1391 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1392 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1393 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1394 
1395 	/*
1396 	 * Processor MMIO Stale Data bug enumeration
1397 	 *
1398 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1399 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1400 	 * not want the guest to enumerate the bug.
1401 	 *
1402 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1403 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1404 	 */
1405 	if (!arch_cap_mmio_immune(ia32_cap)) {
1406 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1407 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1408 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1409 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1410 	}
1411 
1412 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1413 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1414 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1415 	}
1416 
1417 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1418 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1419 
1420 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1421 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1422 			setup_force_cpu_bug(X86_BUG_SRSO);
1423 	}
1424 
1425 	/*
1426 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1427 	 * an affected processor, the VMM may have disabled the use of GATHER by
1428 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1429 	 * which means that AVX will be disabled.
1430 	 */
1431 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1432 	    boot_cpu_has(X86_FEATURE_AVX))
1433 		setup_force_cpu_bug(X86_BUG_GDS);
1434 
1435 	if (vulnerable_to_rfds(ia32_cap))
1436 		setup_force_cpu_bug(X86_BUG_RFDS);
1437 
1438 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1439 		return;
1440 
1441 	/* Rogue Data Cache Load? No! */
1442 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1443 		return;
1444 
1445 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1446 
1447 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1448 		return;
1449 
1450 	setup_force_cpu_bug(X86_BUG_L1TF);
1451 }
1452 
1453 /*
1454  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1455  * unfortunately, that's not true in practice because of early VIA
1456  * chips and (more importantly) broken virtualizers that are not easy
1457  * to detect. In the latter case it doesn't even *fail* reliably, so
1458  * probing for it doesn't even work. Disable it completely on 32-bit
1459  * unless we can find a reliable way to detect all the broken cases.
1460  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1461  */
1462 static void detect_nopl(void)
1463 {
1464 #ifdef CONFIG_X86_32
1465 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1466 #else
1467 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1468 #endif
1469 }
1470 
1471 /*
1472  * We parse cpu parameters early because fpu__init_system() is executed
1473  * before parse_early_param().
1474  */
1475 static void __init cpu_parse_early_param(void)
1476 {
1477 	char arg[128];
1478 	char *argptr = arg, *opt;
1479 	int arglen, taint = 0;
1480 
1481 #ifdef CONFIG_X86_32
1482 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1483 #ifdef CONFIG_MATH_EMULATION
1484 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1485 #else
1486 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1487 #endif
1488 
1489 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1490 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1491 #endif
1492 
1493 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1494 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1495 
1496 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1497 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1498 
1499 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1500 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1501 
1502 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1503 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1504 
1505 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1506 	if (arglen <= 0)
1507 		return;
1508 
1509 	pr_info("Clearing CPUID bits:");
1510 
1511 	while (argptr) {
1512 		bool found __maybe_unused = false;
1513 		unsigned int bit;
1514 
1515 		opt = strsep(&argptr, ",");
1516 
1517 		/*
1518 		 * Handle naked numbers first for feature flags which don't
1519 		 * have names.
1520 		 */
1521 		if (!kstrtouint(opt, 10, &bit)) {
1522 			if (bit < NCAPINTS * 32) {
1523 
1524 				/* empty-string, i.e., ""-defined feature flags */
1525 				if (!x86_cap_flags[bit])
1526 					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1527 				else
1528 					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1529 
1530 				setup_clear_cpu_cap(bit);
1531 				taint++;
1532 			}
1533 			/*
1534 			 * The assumption is that there are no feature names with only
1535 			 * numbers in the name thus go to the next argument.
1536 			 */
1537 			continue;
1538 		}
1539 
1540 		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1541 			if (!x86_cap_flag(bit))
1542 				continue;
1543 
1544 			if (strcmp(x86_cap_flag(bit), opt))
1545 				continue;
1546 
1547 			pr_cont(" %s", opt);
1548 			setup_clear_cpu_cap(bit);
1549 			taint++;
1550 			found = true;
1551 			break;
1552 		}
1553 
1554 		if (!found)
1555 			pr_cont(" (unknown: %s)", opt);
1556 	}
1557 	pr_cont("\n");
1558 
1559 	if (taint)
1560 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1561 }
1562 
1563 /*
1564  * Do minimum CPU detection early.
1565  * Fields really needed: vendor, cpuid_level, family, model, mask,
1566  * cache alignment.
1567  * The others are not touched to avoid unwanted side effects.
1568  *
1569  * WARNING: this function is only called on the boot CPU.  Don't add code
1570  * here that is supposed to run on all CPUs.
1571  */
1572 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1573 {
1574 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1575 	c->extended_cpuid_level = 0;
1576 
1577 	if (!have_cpuid_p())
1578 		identify_cpu_without_cpuid(c);
1579 
1580 	/* cyrix could have cpuid enabled via c_identify()*/
1581 	if (have_cpuid_p()) {
1582 		cpu_detect(c);
1583 		get_cpu_vendor(c);
1584 		get_cpu_cap(c);
1585 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1586 		get_cpu_address_sizes(c);
1587 		cpu_parse_early_param();
1588 
1589 		cpu_init_topology(c);
1590 
1591 		if (this_cpu->c_early_init)
1592 			this_cpu->c_early_init(c);
1593 
1594 		c->cpu_index = 0;
1595 		filter_cpuid_features(c, false);
1596 
1597 		if (this_cpu->c_bsp_init)
1598 			this_cpu->c_bsp_init(c);
1599 	} else {
1600 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1601 		get_cpu_address_sizes(c);
1602 		cpu_init_topology(c);
1603 	}
1604 
1605 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1606 
1607 	cpu_set_bug_bits(c);
1608 
1609 	sld_setup(c);
1610 
1611 #ifdef CONFIG_X86_32
1612 	/*
1613 	 * Regardless of whether PCID is enumerated, the SDM says
1614 	 * that it can't be enabled in 32-bit mode.
1615 	 */
1616 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1617 #endif
1618 
1619 	/*
1620 	 * Later in the boot process pgtable_l5_enabled() relies on
1621 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1622 	 * enabled by this point we need to clear the feature bit to avoid
1623 	 * false-positives at the later stage.
1624 	 *
1625 	 * pgtable_l5_enabled() can be false here for several reasons:
1626 	 *  - 5-level paging is disabled compile-time;
1627 	 *  - it's 32-bit kernel;
1628 	 *  - machine doesn't support 5-level paging;
1629 	 *  - user specified 'no5lvl' in kernel command line.
1630 	 */
1631 	if (!pgtable_l5_enabled())
1632 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1633 
1634 	detect_nopl();
1635 }
1636 
1637 void __init early_cpu_init(void)
1638 {
1639 	const struct cpu_dev *const *cdev;
1640 	int count = 0;
1641 
1642 #ifdef CONFIG_PROCESSOR_SELECT
1643 	pr_info("KERNEL supported cpus:\n");
1644 #endif
1645 
1646 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1647 		const struct cpu_dev *cpudev = *cdev;
1648 
1649 		if (count >= X86_VENDOR_NUM)
1650 			break;
1651 		cpu_devs[count] = cpudev;
1652 		count++;
1653 
1654 #ifdef CONFIG_PROCESSOR_SELECT
1655 		{
1656 			unsigned int j;
1657 
1658 			for (j = 0; j < 2; j++) {
1659 				if (!cpudev->c_ident[j])
1660 					continue;
1661 				pr_info("  %s %s\n", cpudev->c_vendor,
1662 					cpudev->c_ident[j]);
1663 			}
1664 		}
1665 #endif
1666 	}
1667 	early_identify_cpu(&boot_cpu_data);
1668 }
1669 
1670 static bool detect_null_seg_behavior(void)
1671 {
1672 	/*
1673 	 * Empirically, writing zero to a segment selector on AMD does
1674 	 * not clear the base, whereas writing zero to a segment
1675 	 * selector on Intel does clear the base.  Intel's behavior
1676 	 * allows slightly faster context switches in the common case
1677 	 * where GS is unused by the prev and next threads.
1678 	 *
1679 	 * Since neither vendor documents this anywhere that I can see,
1680 	 * detect it directly instead of hard-coding the choice by
1681 	 * vendor.
1682 	 *
1683 	 * I've designated AMD's behavior as the "bug" because it's
1684 	 * counterintuitive and less friendly.
1685 	 */
1686 
1687 	unsigned long old_base, tmp;
1688 	rdmsrl(MSR_FS_BASE, old_base);
1689 	wrmsrl(MSR_FS_BASE, 1);
1690 	loadsegment(fs, 0);
1691 	rdmsrl(MSR_FS_BASE, tmp);
1692 	wrmsrl(MSR_FS_BASE, old_base);
1693 	return tmp == 0;
1694 }
1695 
1696 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1697 {
1698 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1699 	if (!IS_ENABLED(CONFIG_X86_64))
1700 		return;
1701 
1702 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1703 		return;
1704 
1705 	/*
1706 	 * CPUID bit above wasn't set. If this kernel is still running
1707 	 * as a HV guest, then the HV has decided not to advertize
1708 	 * that CPUID bit for whatever reason.	For example, one
1709 	 * member of the migration pool might be vulnerable.  Which
1710 	 * means, the bug is present: set the BUG flag and return.
1711 	 */
1712 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1713 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1714 		return;
1715 	}
1716 
1717 	/*
1718 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1719 	 * 0x18 is the respective family for Hygon.
1720 	 */
1721 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1722 	    detect_null_seg_behavior())
1723 		return;
1724 
1725 	/* All the remaining ones are affected */
1726 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1727 }
1728 
1729 static void generic_identify(struct cpuinfo_x86 *c)
1730 {
1731 	c->extended_cpuid_level = 0;
1732 
1733 	if (!have_cpuid_p())
1734 		identify_cpu_without_cpuid(c);
1735 
1736 	/* cyrix could have cpuid enabled via c_identify()*/
1737 	if (!have_cpuid_p())
1738 		return;
1739 
1740 	cpu_detect(c);
1741 
1742 	get_cpu_vendor(c);
1743 
1744 	get_cpu_cap(c);
1745 
1746 	get_cpu_address_sizes(c);
1747 
1748 	get_model_name(c); /* Default name */
1749 
1750 	/*
1751 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1752 	 * systems that run Linux at CPL > 0 may or may not have the
1753 	 * issue, but, even if they have the issue, there's absolutely
1754 	 * nothing we can do about it because we can't use the real IRET
1755 	 * instruction.
1756 	 *
1757 	 * NB: For the time being, only 32-bit kernels support
1758 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1759 	 * whether to apply espfix using paravirt hooks.  If any
1760 	 * non-paravirt system ever shows up that does *not* have the
1761 	 * ESPFIX issue, we can change this.
1762 	 */
1763 #ifdef CONFIG_X86_32
1764 	set_cpu_bug(c, X86_BUG_ESPFIX);
1765 #endif
1766 }
1767 
1768 /*
1769  * This does the hard work of actually picking apart the CPU stuff...
1770  */
1771 static void identify_cpu(struct cpuinfo_x86 *c)
1772 {
1773 	int i;
1774 
1775 	c->loops_per_jiffy = loops_per_jiffy;
1776 	c->x86_cache_size = 0;
1777 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1778 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1779 	c->x86_vendor_id[0] = '\0'; /* Unset */
1780 	c->x86_model_id[0] = '\0';  /* Unset */
1781 #ifdef CONFIG_X86_64
1782 	c->x86_clflush_size = 64;
1783 	c->x86_phys_bits = 36;
1784 	c->x86_virt_bits = 48;
1785 #else
1786 	c->cpuid_level = -1;	/* CPUID not detected */
1787 	c->x86_clflush_size = 32;
1788 	c->x86_phys_bits = 32;
1789 	c->x86_virt_bits = 32;
1790 #endif
1791 	c->x86_cache_alignment = c->x86_clflush_size;
1792 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1793 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1794 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1795 #endif
1796 
1797 	generic_identify(c);
1798 
1799 	cpu_parse_topology(c);
1800 
1801 	if (this_cpu->c_identify)
1802 		this_cpu->c_identify(c);
1803 
1804 	/* Clear/Set all flags overridden by options, after probe */
1805 	apply_forced_caps(c);
1806 
1807 	/*
1808 	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1809 	 * Hygon will clear it in ->c_init() below.
1810 	 */
1811 	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1812 
1813 	/*
1814 	 * Vendor-specific initialization.  In this section we
1815 	 * canonicalize the feature flags, meaning if there are
1816 	 * features a certain CPU supports which CPUID doesn't
1817 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1818 	 * we handle them here.
1819 	 *
1820 	 * At the end of this section, c->x86_capability better
1821 	 * indicate the features this CPU genuinely supports!
1822 	 */
1823 	if (this_cpu->c_init)
1824 		this_cpu->c_init(c);
1825 
1826 	/* Disable the PN if appropriate */
1827 	squash_the_stupid_serial_number(c);
1828 
1829 	/* Set up SMEP/SMAP/UMIP */
1830 	setup_smep(c);
1831 	setup_smap(c);
1832 	setup_umip(c);
1833 
1834 	/* Enable FSGSBASE instructions if available. */
1835 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1836 		cr4_set_bits(X86_CR4_FSGSBASE);
1837 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1838 	}
1839 
1840 	/*
1841 	 * The vendor-specific functions might have changed features.
1842 	 * Now we do "generic changes."
1843 	 */
1844 
1845 	/* Filter out anything that depends on CPUID levels we don't have */
1846 	filter_cpuid_features(c, true);
1847 
1848 	/* If the model name is still unset, do table lookup. */
1849 	if (!c->x86_model_id[0]) {
1850 		const char *p;
1851 		p = table_lookup_model(c);
1852 		if (p)
1853 			strcpy(c->x86_model_id, p);
1854 		else
1855 			/* Last resort... */
1856 			sprintf(c->x86_model_id, "%02x/%02x",
1857 				c->x86, c->x86_model);
1858 	}
1859 
1860 	x86_init_rdrand(c);
1861 	setup_pku(c);
1862 	setup_cet(c);
1863 
1864 	/*
1865 	 * Clear/Set all flags overridden by options, need do it
1866 	 * before following smp all cpus cap AND.
1867 	 */
1868 	apply_forced_caps(c);
1869 
1870 	/*
1871 	 * On SMP, boot_cpu_data holds the common feature set between
1872 	 * all CPUs; so make sure that we indicate which features are
1873 	 * common between the CPUs.  The first time this routine gets
1874 	 * executed, c == &boot_cpu_data.
1875 	 */
1876 	if (c != &boot_cpu_data) {
1877 		/* AND the already accumulated flags with these */
1878 		for (i = 0; i < NCAPINTS; i++)
1879 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1880 
1881 		/* OR, i.e. replicate the bug flags */
1882 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1883 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1884 	}
1885 
1886 	ppin_init(c);
1887 
1888 	/* Init Machine Check Exception if available. */
1889 	mcheck_cpu_init(c);
1890 
1891 #ifdef CONFIG_NUMA
1892 	numa_add_cpu(smp_processor_id());
1893 #endif
1894 }
1895 
1896 /*
1897  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1898  * on 32-bit kernels:
1899  */
1900 #ifdef CONFIG_X86_32
1901 void enable_sep_cpu(void)
1902 {
1903 	struct tss_struct *tss;
1904 	int cpu;
1905 
1906 	if (!boot_cpu_has(X86_FEATURE_SEP))
1907 		return;
1908 
1909 	cpu = get_cpu();
1910 	tss = &per_cpu(cpu_tss_rw, cpu);
1911 
1912 	/*
1913 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1914 	 * see the big comment in struct x86_hw_tss's definition.
1915 	 */
1916 
1917 	tss->x86_tss.ss1 = __KERNEL_CS;
1918 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1919 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1920 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1921 
1922 	put_cpu();
1923 }
1924 #endif
1925 
1926 static __init void identify_boot_cpu(void)
1927 {
1928 	identify_cpu(&boot_cpu_data);
1929 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1930 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1931 #ifdef CONFIG_X86_32
1932 	enable_sep_cpu();
1933 #endif
1934 	cpu_detect_tlb(&boot_cpu_data);
1935 	setup_cr_pinning();
1936 
1937 	tsx_init();
1938 	tdx_init();
1939 	lkgs_init();
1940 }
1941 
1942 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1943 {
1944 	BUG_ON(c == &boot_cpu_data);
1945 	identify_cpu(c);
1946 #ifdef CONFIG_X86_32
1947 	enable_sep_cpu();
1948 #endif
1949 	x86_spec_ctrl_setup_ap();
1950 	update_srbds_msr();
1951 	if (boot_cpu_has_bug(X86_BUG_GDS))
1952 		update_gds_msr();
1953 
1954 	tsx_ap_init();
1955 }
1956 
1957 void print_cpu_info(struct cpuinfo_x86 *c)
1958 {
1959 	const char *vendor = NULL;
1960 
1961 	if (c->x86_vendor < X86_VENDOR_NUM) {
1962 		vendor = this_cpu->c_vendor;
1963 	} else {
1964 		if (c->cpuid_level >= 0)
1965 			vendor = c->x86_vendor_id;
1966 	}
1967 
1968 	if (vendor && !strstr(c->x86_model_id, vendor))
1969 		pr_cont("%s ", vendor);
1970 
1971 	if (c->x86_model_id[0])
1972 		pr_cont("%s", c->x86_model_id);
1973 	else
1974 		pr_cont("%d86", c->x86);
1975 
1976 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1977 
1978 	if (c->x86_stepping || c->cpuid_level >= 0)
1979 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1980 	else
1981 		pr_cont(")\n");
1982 }
1983 
1984 /*
1985  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1986  * function prevents it from becoming an environment variable for init.
1987  */
1988 static __init int setup_clearcpuid(char *arg)
1989 {
1990 	return 1;
1991 }
1992 __setup("clearcpuid=", setup_clearcpuid);
1993 
1994 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
1995 	.current_task	= &init_task,
1996 	.preempt_count	= INIT_PREEMPT_COUNT,
1997 	.top_of_stack	= TOP_OF_INIT_STACK,
1998 };
1999 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2000 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2001 
2002 #ifdef CONFIG_X86_64
2003 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2004 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2005 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2006 
2007 static void wrmsrl_cstar(unsigned long val)
2008 {
2009 	/*
2010 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2011 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2012 	 * guest. Avoid the pointless write on all Intel CPUs.
2013 	 */
2014 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2015 		wrmsrl(MSR_CSTAR, val);
2016 }
2017 
2018 static inline void idt_syscall_init(void)
2019 {
2020 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2021 
2022 	if (ia32_enabled()) {
2023 		wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2024 		/*
2025 		 * This only works on Intel CPUs.
2026 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2027 		 * This does not cause SYSENTER to jump to the wrong location, because
2028 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2029 		 */
2030 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2031 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2032 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2033 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2034 	} else {
2035 		wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2036 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2037 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2038 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2039 	}
2040 
2041 	/*
2042 	 * Flags to clear on syscall; clear as much as possible
2043 	 * to minimize user space-kernel interference.
2044 	 */
2045 	wrmsrl(MSR_SYSCALL_MASK,
2046 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2047 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2048 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2049 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2050 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2051 }
2052 
2053 /* May not be marked __init: used by software suspend */
2054 void syscall_init(void)
2055 {
2056 	/* The default user and kernel segments */
2057 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2058 
2059 	/*
2060 	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2061 	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2062 	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2063 	 * instruction to return to ring 3 (both sysexit and sysret cause
2064 	 * #UD when FRED is enabled).
2065 	 */
2066 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2067 		idt_syscall_init();
2068 }
2069 
2070 #else	/* CONFIG_X86_64 */
2071 
2072 #ifdef CONFIG_STACKPROTECTOR
2073 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2074 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2075 #endif
2076 
2077 #endif	/* CONFIG_X86_64 */
2078 
2079 /*
2080  * Clear all 6 debug registers:
2081  */
2082 static void clear_all_debug_regs(void)
2083 {
2084 	int i;
2085 
2086 	for (i = 0; i < 8; i++) {
2087 		/* Ignore db4, db5 */
2088 		if ((i == 4) || (i == 5))
2089 			continue;
2090 
2091 		set_debugreg(0, i);
2092 	}
2093 }
2094 
2095 #ifdef CONFIG_KGDB
2096 /*
2097  * Restore debug regs if using kgdbwait and you have a kernel debugger
2098  * connection established.
2099  */
2100 static void dbg_restore_debug_regs(void)
2101 {
2102 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2103 		arch_kgdb_ops.correct_hw_break();
2104 }
2105 #else /* ! CONFIG_KGDB */
2106 #define dbg_restore_debug_regs()
2107 #endif /* ! CONFIG_KGDB */
2108 
2109 static inline void setup_getcpu(int cpu)
2110 {
2111 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2112 	struct desc_struct d = { };
2113 
2114 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2115 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2116 
2117 	/* Store CPU and node number in limit. */
2118 	d.limit0 = cpudata;
2119 	d.limit1 = cpudata >> 16;
2120 
2121 	d.type = 5;		/* RO data, expand down, accessed */
2122 	d.dpl = 3;		/* Visible to user code */
2123 	d.s = 1;		/* Not a system segment */
2124 	d.p = 1;		/* Present */
2125 	d.d = 1;		/* 32-bit */
2126 
2127 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2128 }
2129 
2130 #ifdef CONFIG_X86_64
2131 static inline void tss_setup_ist(struct tss_struct *tss)
2132 {
2133 	/* Set up the per-CPU TSS IST stacks */
2134 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2135 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2136 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2137 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2138 	/* Only mapped when SEV-ES is active */
2139 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2140 }
2141 #else /* CONFIG_X86_64 */
2142 static inline void tss_setup_ist(struct tss_struct *tss) { }
2143 #endif /* !CONFIG_X86_64 */
2144 
2145 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2146 {
2147 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2148 
2149 #ifdef CONFIG_X86_IOPL_IOPERM
2150 	tss->io_bitmap.prev_max = 0;
2151 	tss->io_bitmap.prev_sequence = 0;
2152 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2153 	/*
2154 	 * Invalidate the extra array entry past the end of the all
2155 	 * permission bitmap as required by the hardware.
2156 	 */
2157 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2158 #endif
2159 }
2160 
2161 /*
2162  * Setup everything needed to handle exceptions from the IDT, including the IST
2163  * exceptions which use paranoid_entry().
2164  */
2165 void cpu_init_exception_handling(void)
2166 {
2167 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2168 	int cpu = raw_smp_processor_id();
2169 
2170 	/* paranoid_entry() gets the CPU number from the GDT */
2171 	setup_getcpu(cpu);
2172 
2173 	/* For IDT mode, IST vectors need to be set in TSS. */
2174 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2175 		tss_setup_ist(tss);
2176 	tss_setup_io_bitmap(tss);
2177 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2178 
2179 	load_TR_desc();
2180 
2181 	/* GHCB needs to be setup to handle #VC. */
2182 	setup_ghcb();
2183 
2184 	if (cpu_feature_enabled(X86_FEATURE_FRED))
2185 		cpu_init_fred_exceptions();
2186 	else
2187 		load_current_idt();
2188 }
2189 
2190 /*
2191  * cpu_init() initializes state that is per-CPU. Some data is already
2192  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2193  * reload it nevertheless, this function acts as a 'CPU state barrier',
2194  * nothing should get across.
2195  */
2196 void cpu_init(void)
2197 {
2198 	struct task_struct *cur = current;
2199 	int cpu = raw_smp_processor_id();
2200 
2201 #ifdef CONFIG_NUMA
2202 	if (this_cpu_read(numa_node) == 0 &&
2203 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2204 		set_numa_node(early_cpu_to_node(cpu));
2205 #endif
2206 	pr_debug("Initializing CPU#%d\n", cpu);
2207 
2208 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2209 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2210 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2211 
2212 	if (IS_ENABLED(CONFIG_X86_64)) {
2213 		loadsegment(fs, 0);
2214 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2215 		syscall_init();
2216 
2217 		wrmsrl(MSR_FS_BASE, 0);
2218 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2219 		barrier();
2220 
2221 		x2apic_setup();
2222 	}
2223 
2224 	mmgrab(&init_mm);
2225 	cur->active_mm = &init_mm;
2226 	BUG_ON(cur->mm);
2227 	initialize_tlbstate_and_flush();
2228 	enter_lazy_tlb(&init_mm, cur);
2229 
2230 	/*
2231 	 * sp0 points to the entry trampoline stack regardless of what task
2232 	 * is running.
2233 	 */
2234 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2235 
2236 	load_mm_ldt(&init_mm);
2237 
2238 	clear_all_debug_regs();
2239 	dbg_restore_debug_regs();
2240 
2241 	doublefault_init_cpu_tss();
2242 
2243 	if (is_uv_system())
2244 		uv_cpu_init();
2245 
2246 	load_fixmap_gdt(cpu);
2247 }
2248 
2249 #ifdef CONFIG_MICROCODE_LATE_LOADING
2250 /**
2251  * store_cpu_caps() - Store a snapshot of CPU capabilities
2252  * @curr_info: Pointer where to store it
2253  *
2254  * Returns: None
2255  */
2256 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2257 {
2258 	/* Reload CPUID max function as it might've changed. */
2259 	curr_info->cpuid_level = cpuid_eax(0);
2260 
2261 	/* Copy all capability leafs and pick up the synthetic ones. */
2262 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2263 	       sizeof(curr_info->x86_capability));
2264 
2265 	/* Get the hardware CPUID leafs */
2266 	get_cpu_cap(curr_info);
2267 }
2268 
2269 /**
2270  * microcode_check() - Check if any CPU capabilities changed after an update.
2271  * @prev_info:	CPU capabilities stored before an update.
2272  *
2273  * The microcode loader calls this upon late microcode load to recheck features,
2274  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2275  *
2276  * Return: None
2277  */
2278 void microcode_check(struct cpuinfo_x86 *prev_info)
2279 {
2280 	struct cpuinfo_x86 curr_info;
2281 
2282 	perf_check_microcode();
2283 
2284 	amd_check_microcode();
2285 
2286 	store_cpu_caps(&curr_info);
2287 
2288 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2289 		    sizeof(prev_info->x86_capability)))
2290 		return;
2291 
2292 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2293 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2294 }
2295 #endif
2296 
2297 /*
2298  * Invoked from core CPU hotplug code after hotplug operations
2299  */
2300 void arch_smt_update(void)
2301 {
2302 	/* Handle the speculative execution misfeatures */
2303 	cpu_bugs_smt_update();
2304 	/* Check whether IPI broadcasting can be enabled */
2305 	apic_smt_update();
2306 }
2307 
2308 void __init arch_cpu_finalize_init(void)
2309 {
2310 	identify_boot_cpu();
2311 
2312 	select_idle_routine();
2313 
2314 	/*
2315 	 * identify_boot_cpu() initialized SMT support information, let the
2316 	 * core code know.
2317 	 */
2318 	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2319 
2320 	if (!IS_ENABLED(CONFIG_SMP)) {
2321 		pr_info("CPU: ");
2322 		print_cpu_info(&boot_cpu_data);
2323 	}
2324 
2325 	cpu_select_mitigations();
2326 
2327 	arch_smt_update();
2328 
2329 	if (IS_ENABLED(CONFIG_X86_32)) {
2330 		/*
2331 		 * Check whether this is a real i386 which is not longer
2332 		 * supported and fixup the utsname.
2333 		 */
2334 		if (boot_cpu_data.x86 < 4)
2335 			panic("Kernel requires i486+ for 'invlpg' and other features");
2336 
2337 		init_utsname()->machine[1] =
2338 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2339 	}
2340 
2341 	/*
2342 	 * Must be before alternatives because it might set or clear
2343 	 * feature bits.
2344 	 */
2345 	fpu__init_system();
2346 	fpu__init_cpu();
2347 
2348 	alternative_instructions();
2349 
2350 	if (IS_ENABLED(CONFIG_X86_64)) {
2351 		/*
2352 		 * Make sure the first 2MB area is not mapped by huge pages
2353 		 * There are typically fixed size MTRRs in there and overlapping
2354 		 * MTRRs into large pages causes slow downs.
2355 		 *
2356 		 * Right now we don't do that with gbpages because there seems
2357 		 * very little benefit for that case.
2358 		 */
2359 		if (!direct_gbpages)
2360 			set_memory_4k((unsigned long)__va(0), 1);
2361 	} else {
2362 		fpu__init_check_bugs();
2363 	}
2364 
2365 	/*
2366 	 * This needs to be called before any devices perform DMA
2367 	 * operations that might use the SWIOTLB bounce buffers. It will
2368 	 * mark the bounce buffers as decrypted so that their usage will
2369 	 * not cause "plain-text" data to be decrypted when accessed. It
2370 	 * must be called after late_time_init() so that Hyper-V x86/x64
2371 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2372 	 */
2373 	mem_encrypt_init();
2374 }
2375